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Preface

During the past decade and a half, several noteworthy textbooks
have been published in the previously neglected field of helicopter
acrodynamics, spurred no doubt by a growing acceptance world-
wide of the importance of the helicopter in modern society. One
may cite in this context Bramwell’s Helicopter Dynamics (1976),
Johnson’s Helicopter Theory (1980) and Rotary wing aerodynamics
(1984) by Stepniewski and Keys. The appearance now of another
book on the subject requires some explanation, therefore. I have
three specific reasons for writing it.

The first reason is one of brevity. Bramwell’s book runs to 400
pages, that of Stepniewski and Keys to 600 and Johnson’s extremely
comprehensive treatment to over 1000. The users I have princi-
pally in mind are University or Polytechnic students taking a short
course of lectures — say one year — in the subject, probably as an
‘optional’ or ‘elective’ in the final undergraduate or early post-
graduate year. The object in that time is to provide them with a
grounding while hopefully stimulating an interest which may carry
them further in the subject at a later date. The amount of teaching
material required for this purpose is only a fraction of that con-
tained in the standard textbooks and a monograph of around 150
pages is more than sufficient to contain what is needed and hope-
fully may be produced at a price not beyond the individual student’s
pocket.

My second reason, which links with the first, concerns the type
of approach. This book does not aim at a comprehensive treatment
but neither is it content to consign problems to the digital computer at
the earliest opportunity. In between lies an analytical route to
solutions, taken far enough to produce results of usable accuracy
for many practical purposes, while at the same time providing a
physical understanding of the phenomena involved, which rapid
recourse to the computer often fails to do. It is this route that the
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book attempts to follow. The analytical approach is usually termin-
ated when it is thought to have gone far enough to serve the
stated purpose, the reader being left with a reference to one of the
standard textbooks in case he should wish to pursue the topic
further.

The third reason is one of content. Despite the need for brevity,
I have thought it worthwhile to include, in addition to treatments
of the standard topics — momentum theory, blade element theory,
basic performance, stability and control — a strong flavour of
research and development activity (Chapter 6) and of forward-
looking, if speculative, calculations (Chapter 7). It might be con-
sidered that these items are of such a transitory nature as not to be
suitable for a textbook, but my criterion of stimulating the student’s
interest is what has determined their inclusion. Certainly they have
proved to be interesting in classroom presentation and there seems
no reason why that should not be so for the written word.

In addition to meeting the needs of students, to whom it is
primarily addressed, the book should have an appeal as background
material to short courses held in or on behalf of industry: such
courses are increasing in popularity. Companies and research estab-
lishments may also find it useful for new entrants and for more
established workers requiring a ‘refresher’ text.

Reverting to the matter of brevity, the recent publication Heli-
copter Aerodynamics by Prouty is a most admirable short exposition,
well worth studying as an adjunct to any other textbook: however
it shuns the mathematics completely and therefore will not suffice
alone for the present purposes. Saunders’ Dynamics of Helicopter
Flight is not greatly beyond the target length but as the title implies
it is concerned more with flight dynamics than with aerodynamics
and is adapted more to the needs of pilots than to those of engin-
eering students already equipped with a general aerodynamic
background.

I have taken it as a starting point that my readers have a
knowledge of the aerodynamics of lifting wings as they exist in
fixed-wing aircraft. A helicopter rotor blade performs the same
function as a lifting wing but in a very different environment; and
to note the similarities on the one hand and the distinctions on the
other can be a considerable fillip to the learner’s interest, one
which I have tried to nurture by frequent references back to fixed-
wing situations. This again is a somewhat non-standard approach.

Substantial omissions from the book are not hard to find. A
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historical survey might have been included in Chapter 1 but was
thought not necessary despite its undoubted interest. To judge by
the work effort it attracts, wake analysis (‘Vortex theory’) deserves
a more extensive treatment than it gets (Chapters 2 and 5) but here
it was necessary to refrain from opening a Pandora’s box of different
approaches. Among topics which could have been included in
Chapter 5 are autorotation in forward flight, pitch-flap coupling
and blade flexibility but these were seen as marginally ‘second-line’
topics. The forward look in Chapter 6 might have contained a
discussion of the potential of circulation control, the only system
which is capable of attacking all the three non-uniformities of rotor
blade flow, chordwise, spanwise and azimuthal; but the subject is
too big and too distinct from the main line of treatment. The
reference to autostabilization in Chapter 8 is brief in the extreme
but again the choice was between this and a much lengthier expo-
sition in which aerodynamics would have been largely submerged
beneath system mechanics and electronics.

In compiling the book I have been greatly helped by discussions
with Mr D.E.H. (‘Dave’) Balmford, Head of Advanced Engineer-
ing at Westland Helicopters, to whom my thanks are expressed.
Other Westland staff members whose assistance I wish to acknowl-
edge in specific contexts are Dr M.V. Lowson (now Professor of
Aerospace Engineering at Bristol University) for Section 7.10, Mr
F.J. Perry for Section 6.6, Mr R.V. Smith for Section 7.11 and Mr
B. Pitkin for Chapter 8. Naturally the standard textbooks, particu-
larly those mentioned earlier, have been invaluable in places and I
trust that this fact is duly recognized in the text and diagrams.

Formal acknowledgement is made to Westland Helicopters for
permission to reproduce the photographs at Figs 2.11, 4.10, 4.11,
7.6 and 7.7; to Edward Arnold, Publishers, for the use of Figs
2.10, 2.13, 5.1, 5.3, 6.3, 8.5 and 8.6 from A.R.S. Bramwell’s book
Helicopter Dynamics (1976); to Mr P.G. Wilby of the Royal Air-
craft Establishment for Figs 6.2 and 6.5, which are reproduced
with the permission of the Controller of Her Majesty’s Stationery
Office; and to Dr J.P. Jones for the use of Figs 2.12, 4.2 and 4.4.

My thanks are due to Molly Gibbs of Bristol University who
copy-typed the manuscript and to my grandson Daniel Cowley who
drew the figures.

J. Seddon



Notation List

General

a lift curve slope dCy/d«

ao first term in Fourier expansion of 3

ay coefficient of second term in Fourier expansion of f
a coefficient of fourth term in Fourier expansion of f3
A area of rotor disc

Ap  total blade area (N blades)

Ay coefficient of second term in Fourier expansion of 6
A, coefficient of fourth term in Fourier expansion of 6
A, projected frontal area of rotorhead (Chapter 6)

As flow spoiling factor (Chapter 6)

A, boundary layer shielding factor (Chapter 6)

by coefficient of third term in Fourier expansion of f3
b> coefficient of fifth term in Fourier expansion of f
B tip loss factor in r = BR

B, coefficient of third term in Fourier expansion of 6
B; coefficient of fifth term in Fourier expansion of 6

c blade chord

Cp  drag coefficient

CL lift coefficient

Chy  H-force coefficient

Cp  power coefficient

Co  torque coefficient

Cr  thrust coefficient

d differential operator
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aerodynamic drag

hinge offset ratio

equivalent flat-plate area

H-force

moment of inertia

empirical constant in expression for profile power
empirical constant in Glauert expression for induced velocity
moment arm of tail rotor thrust about main shaft
aerodynamic lift

blade mass per unit span

figure of merit

Mach number

moment (Figs, 8.4, 8.5)

aerodynamic moment about flapping axis

inertia number (Chapter 8)

number of blades

static pressure

power

torque coefficient (Bramwell definition)

dynamic pressure, 5pV?

torque

fraction of blade span from axis (= y/R)

blade radius

stiffness number

thrust coefficient (Bramwell definition)

thrust

component velocity (non-dimensional, U/QR)
component velocity (dimensional)

induced velocity

stream velocity (flight speed)

hypothetical velocity in Glauert formula for forward flight
climbing speed

disc loading, T/A



Xiv NOTATION LIST NOTATION LIST

w aircraft weight H H-force
y distance along blade span from axis i induced
b4 height of rotor plane above ground L lift
max maximum
Greek o basic or constant value
o incidence (angle of attack) of blade, positive nose-up p parasite
o incidence of fuselage (Chapter 6), positive nose-up P power
O angle of attack of tip path plane to flight direction, Q torque
positive nose-down req required
B flapping angle (blade span to reference plane) t blade tip
B compressibility factor \/1—M? (Chapter 6) tw blade twist
Y Lock number T thrust
o} relative density of air, p/pg o0 conditions ‘at infinity’, i.e. where flow is undisturbed
A prefix denoting increment, thus AP
0 blade pitch angle
K empirical constant in expression for induced power
A inflow factor (non-dimensional induced velocity)
A blade natural flapping frequency (Chapter 8)
u advance ratio, V/QR
n pi
o absolute density of air
o blade solidity factor
0} angle of resultant velocity at blade to reference plane
P angle of azimuth in blade rotation
Q blade rotational speed, radians per sec
Suffixes
av available
b blade
c suffix for thrust coefficient (Bramwell definition)
C in climb
D drag
h hover value
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Units

The metric system is taken as fundamental, this being the educational Quantity Metric unit Imperial
basis in the UK. Imperial units are still used extensively, however, and symbol equivalent
particularly in the USA but also by industry and other organizations
in the UK. For dimensional examples in the text and diagrams, Primary quantities
therefore, those units are used which it is felt have stood the test of Mass kilogram (kg) 0.0685 slug
time and may well continue to do so. Often units in both systems Weight newton (N) 0.2248 pound (Ib)
are quoted: in other cases reference may need to be made to the Length metre (m) 3.281 feet (ft)
conversion tables set out below. In either system, units other than Time second (s) 1.0 second (sec)
the basic one are sometimes used, depending on the context; this is Temperature kelvin (K) Celsius (°C)
particularly so for velocity, where for example aircraft flight speed Temp(K) = temp (°C) + 273.15
is more conveniently expressed in kilometres/hour or in knots than
in metres/second or in feet/second. The varieties used in the book Derived quantities
are included in the table. Weight (force) kilogram force
9.807N (kQG) 2.20461b
Density kg/m® 0.00194 slug/ft>
Pressure N/m? 0.0209 Ib/ft?
0.1020kG/m”
Velocity m/s 3.281 ft/sec
3.600km/h 196.86 ft/min
1.941 knots
Acceleration m/s? 3.281 ft/sec?
Accel. of gravity 9.807 m/s* (g) 32.2 ft/sec”
Power watt, Nm/s (W) 0.7376 ft.1b/sec
Metric horsepower 75kG m/s (mhp) 0.9863 HP

English horsepower 76.04kG m/s 550 ft.1b/sec




List of Abbreviations

Aero. Jour.
AGARD

AIAA
ARC
CG
IGE
JAHS
NACA

NFA
NFP
OGE
RLD
R&M
SAE
SA
SNP
TPA
TPP
UK
USA
WHL

Journal of the Royal Aeronautical Society
Advisory Group for Aeronautical Research and
Development

American Institute for Aeronautics and Aerospace
Aeronautical Research Council

Centre of gravity

In ground effect

Journal of the American Helicopter Society
National Advisory Committee for Aeronautics (now
NASA)

No-feathering axis

No-feathering plane

Out of ground effect

Really-low-drag (helicopter)

Reports and Memoranda of the ARC

Society of Automotive Engineers

Shaft axis

Shaft normal plane

Tip-path axis

Tip-path plane

United Kingdom

United States of America

Westland Helicopters Ltd

1 Introduction

‘It is easy to invent a flying machine;
more difficult to build one;
to make it fly is everything’

Otto Lilienthal, 1848—1896

One may Houbt whether Lilienthal, the pioneer par excellence of
gliding flight, had the helicopter in mind when he wrote the above
but his words could not have been more appropriate to our subject.
To take the quotation line by line, the concept of a lifting rotor
constitutes the essential invention. Making it large is simply taking
advantage of Newton’s Second and Third Laws, which guarantee
that blowing a large quantity of air at low speed is an efficient way
of producing a thrust. When it comes to building a machine, the
problems of directing it around the sky have to be thought out and
translated into hardware: ultimately, however, the solutions for the
helicopter are both straightforward and impressive. Upward lift is
obtained with the rotor shaft essentially vertical; forward (or back-
ward or sideways) propulsion is achieved by tilting the shaft in the
desired direction; and moments for manoeuvring are produced by
tilting the rotor plane relative to the shaft. Here is a system more
elegant in principle than that of a fixed-wing aircraft, where such
integration of functions is not possible. And to pursue its virtues
one stage further, when the direction of airflow through the rotor
becomes reversed in descent, blade lift can be produced without
power (‘autorotation’), allowing a controlled landing in the event
of engine failure. These points were made by J.P. Jones in the
1972 Cierva Memorial Lecture! to the Royal Aeronautical Society.
To quote him at this juncture:

‘Can we wonder that the conventional rotor has been a success? At this
stage one might think the real question is why the fixed-wing aircraft
has not died out’

But back to Lilienthal and there’s the rub. Making the helicopter
fly has involved wrestling with a long catalogue of problems, of
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which some have been solved and others continue to be lived with.
Thus it was necessary to invent the use of a tail rotor to stop the
helicopter spinning round on the main rotor axis. It took the
genius of Juan de la Cierva to devise a system of articulated blades
to prevent the aircraft rolling over continuously. The helicopter
can never fly fast judged by fixed-wing aircraft standards, the
restriction, surprisingly enough, being one of blade stalling. Climbing
is straightforward aerodynamically but descending involves a de-
liberate venture into an aerodynamicist’s nightmare of vortices,
turbulence and separated flow. Blade articulation leads to sluggish
control, which can be improved by going to the more modern
system of a hingeless rotor, but only at the expense of worsening
the aircraft stability. With any practical combination of stability
and control characteristics the helicopter remains a difficult and
taxing aircraft to fly and generally requires autostabilization to
restrict the pilot workload to a safe and comfortable level.

It would seem that we have on our hands a veritable box of
tricks. What is certain, however, is that the modern world cannot
do without it. The helicopter has become an invaluable asset in
many fields of human activity and the variety of its uses continues
to increase. Moreover, to come close to the purpose of this book,
the problems that have been solved, or if only partly solved, at
least understood, make good science, high in interest value. This
the book purports to show.

The period since World War II has seen a proliferation of
different types of rotary-wing aircraft. The single-rotor helicopter
(with tail rotor), established firmly by Sikorsky during the war
years, has been joined by versions having tandem rotors, side-by-
side rotors, coaxial rotors and tip-driven rotors. A second group,
heading back increasingly towards fixed wings, includes compound
systems, tilt rotors and tilt wings. The tilt rotor, in which as the
name implies the rotors face upwards for vertical take-off and
hover and forwards for horizontal flight, offers considerable prom-
ise and may in the future become the type which releases the
helicopter from its inhibiting speed restriction. Up to the present,
however, the single-rotor helicopter remains by far the most
numerous worldwide and in this book we concentrate exclusively
on that type. Its familiar profile, sketched in Fig. 1.1, is the result
of practical considerations not readily varied. The engines and
gearbox require to be grouped tightly around the rotor shaft and
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Fig. 1.1 The single-main-rotor helicopter in essence.

close below the rotor. Below them the payload compartment is
centrally placed fore and aft to minimize centre of gravity move-
ments away from the shaft line. In front of the payload compart-
ment is the flight cabin. The transmission line from gearbox to tail
rotor needs to be as straight and uninterrupted as possible. Put a
fairing around these units so defined and the characteristic profile
emerges.

It will be helpful to explain certain logistics of the presentation.
Symbols are defined when first introduced but for ease of reference
are also collected in a table at the start of the book. As concerns
units, where there is complete freedom of choice the metric system
is preferred: since, however, much use continues to be made of
imperial units, particularly in the USA, I have also employed these
units freely in numerical examples, sometimes giving both. Again
there are tables at the start defining primary and derived units and
listing the conversion factors. Lastly, on the question of references,
these are numbered in each chapter and listed at the end of the
chapter in the usual way. Exception is made, however, in the case
of three standard textbooks, which are referred to repeatedly,
usually for further information on a topic where the present short
treatment is deemed to have gone far enough. The three books
are:

(1) Bramwell, A.R.S. (1976) Helicopter dynamics. Edward Arnold.
(2) Johnson, Wayne (1980) Helicopter theory. Princeton University

Press.
(3) Stepniewski, W.Z. and Keys, C.N. (1984) Rotary-wing aero-
dynamics, Vols I and 11. Dover Publications Inc.

In the text, these are called upon by author’s name and no further
reference is given.
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With this brief introduction we are poised to move into the main

treatment of our subject.

Reference

1

Jones, J.P. (1980) ‘The rotor and its future’. Aero. Jour., July 1973.

2 Rotor in Vertical Flight:
Momentum Theory and
Wake Analysis

2.1 Momentum theory for hover

The helicopter rotor produces an upward thrust by driving a column
of air downwards through the rotor plane. A relationship between
the thrust produced and the velocity communicated to the air can
be obtained by the application of Newtonian mechanics — the laws
of conservation of mass, momentum and energy — to the overall
process. This approach is commonly referred to as the momentum
theory for helicopters. It corresponds essentially to the theory set
out by Glauert' for aircraft propellers, based on earlier work by
Rankine and Froude for marine propellers.

The rotor is conceived as an ‘actuator disc’, across which there is
a sudden increase of pressure, uniformly spread. In hover the
column of air passing through the disc is a clearly defined streamtube
above and below the disc: outside this streamtube the air is un-
disturbed. No rotation is imparted to the flow. The situation is
illustrated in Fig. 2.1. As air is sucked into the disc from above,
the pressure falls. An increase of pressure Ap occurs at the disc,
after which the pressure falls again in the outflow, eventually
arriving back at the initial or atmospheric level p... Velocity in the
streamtube increases from zero at ‘upstream infinity’ to a value v;
at the disc and continues to increase as pressure falls in the outflow,
reaching a value v., at ‘downstream infinity’. Continuity of mass
flow in the streamtube requires that the velocity is continuous
through the disc.

Energy conservation, in the form of Bernoulli’s equation, can be
applied separately to the flows before and after the disc. Using the
assumption of incompressible flow, we have in the inflow:

P = pi + 3P Vi
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Py
DI _vg
iS¢ D
1 (_A p
+ve
P
Flow field Pressure Velocity

Fig. 2.1 Actuator disc concept for rotor in hover.

p being the air density, and in the outflow:
pi+ Ap + 3p v = pa + 30 v
It follows from these that:
Ap = ip v’

Now by momentum conservation, the thrust 7 on the disc is equal
to the overall rate of increase of axial momentum of the air, that is
to say:

T=pAvVve

A being the disc area, hence p A v; is the mass flow through it.
Since Ap is the thrust per unit area of the disc we have:

T
Ap=Z=pvivoo

From the two expressions for Ap it is seen that:
Ve = 2V (2.1)

Thus half the velocity communicated to the air occurs above the
disc and half below it, and the relationship between thrust and the
velocity v; is:

T =2p A v (2.2)
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or if the thrust is known,

T w

- L = /X 2.
2pA 2p (2:3)

Vi

where w = T/A is termed the ‘disc loading’. v; is the ‘induced
velocity’ or alternatively the ‘downwash’, using an analogy with
aircraft wing flow which becomes more obvious when the helicopter
is in forward flight (Chapter 5).

In practice the level of disc loading for a piston-engined helicopter
will normally be around 10 kG/m?. Piston engines are heavy and a
large rotor diameter must be used to minimize the engine size
needed for vertical lift; hence the disc loading is relatively low. The
gas turbine engine, used much the more extensively in modern
helicopters, has a higher power-to-weight ratio, so smaller rotors
can be used, which in turn lead to shorter fuselages, all this giving
savings on weight, drag and cost (though the engine itself is a more
costly item). With gas turbine engines, helicopter disc loadings are
generally in the region of 30—40 kG/m?>.

The work done on the air, represented by its change in kinetic
energy per unit time, is (pAvi)v,@z, which by Equation (2.1) is
2pAv;> or simply, by Equation (2.2), Tv;. This is known as the
induced power of the rotor written as

P, = Tv, = T?/\/2pA (2.4)

To non-dimensionalize the above relationships, we use as rep-
resentative velocity the rotor tip speed QR, where Q is the angular
velocity and R the rotor radius. Then the coefficients are:

thrust: Cr = T/pA (QR)?
power: Cp = PIpA (QR)?
induced velocity: A = vi/QR

and the relationships of simple momentum theory for a rotor in
hover become

N o= VG2 (2.5)
Cpi = Cr = Cy7PI2 (2.6)

More rigorous forms of the momentum theory can be developed —
see standard full length texts — to take account of swirl energy in
the wake, non-uniformity of the induced velocity and so on.
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Generally the corrections emerging amount to a few per cent only
and are not always of the same sign. So for much performance
work, the simple momentum theory, combined with blade element
theory (Chapter 3) gives adequate results.

When more exact rotor analyses are required, calculation of the
induced velocity involves assembling a realistic picture of the com-
plex pattern of vortices which in actuality exists in the flow below
the rotor. A short description of this approach by ‘vortex theory’ is
contained later in the present chapter.

2.2 Figure of merit

The induced power P; is the major part of the total power ab-
sorbed by a rotor in hover. A further power component is needed,
however, to overcome the aerodynamic drag of the blades: this is
the profile power P,, say. Since it is the induced power which
relates to the useful function of the rotor — that of producing lift —
the ratio of induced power to total power is a measure of rotor
efficiency in the hover. This ratio is called the figure of merit,
commonly denoted by M. Using the results of simple momentum
theory, M may be variously expressed as:

_ Pi _ Po _1_ CP(.\/E_1
M= Tp)" (1 + ﬁ) - (1 * CT3/2> (2.7)

Cp_ being the profile power coefficient P,/pA(QR)?. Now for a
given rotor blade the drag, and hence the profile power, may be
expected not to vary greatly with the level of thrust, provided the
blade does not stall nor experience high compressibility drag rise.
Equation (2.7) shows therefore that the value of M for a given
rotor will generally increase as Cr increases. This feature means
that care is needed in using the figure of merit for comparative
purposes. A designer may have scope for producing a high value of
M by selecting a low blade area such that the blades operate at
high lift coefficient approaching the stall but he needs to be sure
that the blade area is sufficient for conditions away from hover,
such as in high speed manoeuvre. Again, a comparison of different
blade designs — section shape, planform, twist etc, — for a given
application must be made at constant thrust coefficient.

A good figure of merit is around (.75, the profile drag accounting
for about one quarter of total rotor power. We may note that for
the helicopter as a whole, some power is also required to drive the
tail rotor, to overcome transmission losses and to drive auxiliary
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components: as a result the induced power in hover amounts to
only 60—65% of the total power absorbed.

2.3 Momentum theory for vertical climb

A flow diagram for the rotor in vertical climb, with upward velocity
V., is shown in Fig. 2.2. Applying Bernoulli’s equation as before,
we now have in the inflow:

P+ 3p VE = pi + ip(Ve + vi)°
and in the outflow:
pi+ Ap + (Ve + v)? = pa + ip(Ve + v2)’
Also the thrust, by momentum conservation, is:
T = pA(V. + vi)va

It is readily seen that these equations lead, as in the hover case, to
the relation:

Voo = 2V;
whence the expression for thrust becomes:
T = 2pA(Ve + vy (2.8)

If we write vy, for the value of v; in hover at the same thrust, the

Fig. 2.2 Flow ficld in vertical climb.
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relationship between induced velocities in hover and vertical climb
is given by:
ve' = (Ve + vy (2.9)

which for v; in terms of vy, has the solution:

Vi Vc / Vc 2 }

Mo ﬂ(hh) b1 (2.10)
Thus the induced velocity decreases as climbing speed increases
(Fig. 2.3), falling asymptotically towards zero for high rates of

climb. For low rates of climb v; approximates to (v, — V./2).
The power consumption, or total work done by the thrust, is

P, = T(V. + vy),

of which TV, is the work done on the rotor and 7v; is that done on
the air, represented by the kinetic energy in the induced velocity.
Relating P; to the value in hover and using Equation (2.10) gives:

i P _ Ve vi_ Ve {<L>2 }

P, Tv, v, + v, 2w + \/ 2vi +1 (2.11)
Thus the induced power increases with climb speed, the manner
of this being shown in Fig. 2.4. At high rates of climb P; ap-

proximates to the climb work TV, only. For small rates we have
approximately:

P, = Py + TV.2

Here momentum theory, because of its over-simplified picture of

1-4

[=1
]
=~
w
=~

Fig. 2.3 Induced velocity as function of climbing speed.
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Fig. 2.4 Induced power as function of climbing speed.

the nature of the outflow below the rotor, fails to reveal a power
benefit in climb which has been shown to be significant, at least on
some helicopters. The position of the tip vortex from a blade
(Section 2.8) when the next blade passes by is found to be lower in
climb than in hover. This changes the upwash at the blade tips in
such a way that for small rates of climb the power required is
actually less than for the hover.

2.4 Vertical descent

In vertical descent the nature of flow through the rotor undergoes
significant changes. The stream velocity V. is now negative while
the induced velocity v; remains positive as the rotor continues to
maintain lift. Becoming evident when V. reaches a level about half
vi, an interaction takes place between the upward flow around the
disc and the downward flow through it, resulting in the formation
of a vortex ring encircling the rim of the disc, doughnut fashion.
The situation is illustrated in Fig. 2.5. As this vortex-ring state
develops the flow becomes very unsteady and the rotor exhibits
high levels of vibration. It appears that the ring vortex builds up
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-J“ Haphazard
p ‘bursting

Fig. 2.5 Vortex-ring state in vertical descent.

strength and periodically breaks away from the disc, spilling hap-
hazardly into the flow and causing fluctuations in lift and also in
helicopter pitch and roll. Flight in the developed vortex-ring state,
which reaches its worst condition when the descent rate is about
three quarters of the hover induced velocity, is unpleasant and
potentially dangerous. Because of the dissipation of energy in the
unsteady flow, simple momentum theory cannot be applied.

As the descent rate approaches the level of the induced velocity,
a modified state is observed in which, corresponding to the near
equality, there is little or no net flow through the disc. Now the
flow is characterized by vortices shed into the wake in the manner
of the flow around a solid bluff body. In this turbulent-wake state
(Fig. 2.6) flight is still rough but less so than in the vortex-ring
state. Simple momentum theory is again not applicable, since energy
is dissipated in the eddies of the wake.

At large descent rates, when V. is numerically greater than
about 2v;, the flow is everywhere upwards relative to the rotor,
producing a windmill-brake state, in which power is transferred
from the air to the rotor. With a flow pattern as in Fig. 2.7, simple
momentum theory gives a reasonable approximation: thus with V.
negative and v; positive the thrust is:

T = =2pA(V. + vi)v (2.12)
and the induced velocity relates to vy, by:
(Ve + V) = —vi’ (2.13)

MOMENTUM THEORY AND WAKE ANALYSIS 13

'Flat-plate’
turbulence

cC S

Fig. 2.6 Turbulent-wake statc in vertical descent.
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Fig. 2.7 Windmill-brake state in vertical descent.

The power required to maintain thrust in vertical descent generally
falls as the rate of descent increases, except that in the vortex-ring
state an increase is observed (Fig. 2.8). The effect appears to be
caused by stalling of the blade sections during the violent vortex-
shedding action. The increase can be embarrassing when making a
near-vertical landing approach under conditions in which the engine
power available is relatively low, as would be the case under high
helicopter load in a high ambient temperature.

2.5 Complete induced-velocity curve

It is of interest to know how the induced velocity varies through all
the phases of axial flight. For the vortex-ring and turbulent-wake
states, where momentum theory fails, information has been obtained
from measurements in flight, supported by wind tunnel tests
(Gustafson (1945), Gessow (1948), Brotherhood (1949), Castles
and Gray (1951) and others). Obviously the making of flight tests
(measuring essentially the rate of descent and control angles) is
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Fig. 2.8 Variation of induced power in climb and descent.

both difficult and hazardous, especially where the vortex-ring state
is prominent, and not surprisingly the results show some variation:
nevertheless the main trend has been ascertained and what is
effectively a universal induced-velocity curve can be defined. This
is shown in Fig. 2.9, using the simple momentum-theory results of
Equations (2.10) and (2.13) in the regions to which they apply. We
see that moving from hover into descent the induced velocity
increases more rapidly than momentum theory would indicate. The
value rises, in the vortex-ring state, to about twice the hover value,
then falls steeply to about the hover value at entry to the windmill-
brake state.

2.6 Autorotation

The point of intersection of the induced-velocity curve with the
line V. + vi = 0 is of particular interest because it defines the state
of ideal autorotation, (1A in Fig. 2.9}, in which since there is
no mean flow through the rotor, the induced power is zero. Auto-
rotation is an extremely important facility because in a case of
power failure the rotor can continue to produce a thrust approxi-
mately equal to the aircraft weight, allowing a controlled descent
to ground to be made. The term ideal autorotation is used because
in practice power is still needed to overcome the drag of the
blades. This profile power, P, say, means that real autorotation
occurs at a somewhat higher descent rate, given by

Vit vi= —-PJT
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Fig. 2.9 Geaoeral induced velocity characteristic {after Johnson).

so that total power is
Pi+ Po=T(V.+ v) ~ T(Ve + v) = 0

In round terms, values of V./v, for ideal and real autorotation
are about —1.8 and —1.7, respectively. Pursuing the analogy of
flow past a solid plate (turbulent-wake state, Section 2.4}, the plate
drag may be written

D= %p chA CD
and if this is equated to rotor thrust we have
%pVCQA Cp =2 pA th

)

from which

With V./vy, = —1.8, Cp has the value 1.23 which is close to that
for a solid plate. A slightly better analogy is obtained by taking the
real value V /v, = —1.7, which yields a Cp value 1.38, close to the
etfective drag coefficient of a parachute. Thus in autorotative vertical
descent the rotor behaves very like a parachute.

2.7 Summary remarks on momentum theory

The place of momentum theory is that it gives a broad understand-
ing of the functioning of the rotor and provides basic relationships
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for the induced velocity created and the power required in producing
a thrust to support the helicopter. The actuator disc concept, upon
which the theory is based, is most obviously fitted to flight conditions
at right angles to its plane, that is to say the hover and verti-
cal flight states we have discussed. Nevertheless further reference
to the theory will be made when discussing forward flight
(Chapter 5).

Momentum theory brings out the importance of disc loading as a
gross parameter: it cannot however look into the detail of how the
thrust is produced by the rotating blades and what design criteria
are to be applied to them. For such information we need additionally
a blade element theory, corresponding to aerofoil theory in fixed-
wing aerodynamics: to this we shall turn in Chapter 3.

2.8 Complexity of real wake

The actuator disc concept, taken together with blade-element theory,
serves well for the purposes of helicopter performance calculation.
When, however, blade loading distributions or vibration character-
istics are required for stressing purposes it is necessary to take into
account the real nature of flow in the rotor wake. This means
abandoning the disc concept and recognizing that the rotor consists
of a number of discrete lifting blades, carrying vorticity correspond-
ing to the local lift at all points along the span. Corresponding
to this bound vorticity a vortex system must exist in the wake
(Helmholtz’s theorem) in which the strength of wake vortices is
governed by the rate of change of circulation along the blade span.
If for the sake of argument this rate could be made constant, the
wake for a single rotor blade in hover would consist of a vortex
sheet of constant spanwise strength, descending in a helical pattern
at constant velocity, as illustrated in Fig. 2.10. The situation is
analogous to that of elliptic loading with a fixed wing, for which
the induced drag (and hence the induced power) is a minimum.
This ideal distribution of lift, however, is not realizable for the
rotor blade, because of the steadily increasing velocity from root to
tip.

The most noticeable feature of the rotor-blade wake in practice
is the existence of a strong vortex emanating from the blade tip,
where because the velocity is highest the rate of change of lift is
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I

Fig. 2.10 ldealized wake of single rotor blade in hover (after Bramwell).

greatest. In hover the tip vortex descends below the rotor in a
helical path. It can be visualized in a wind tunnel using smoke
injection (Fig. 2.11) or other means and is often observable in
open flight under conditions of high load and high humidity. An
important feature which can be seen in Fig. 2.11 is that on leaving
the blade the tip vortex initially moves inwards towards the axis of
rotation and stays close under the disc plane: in consequence the
next tip to come round receives an upwash, increasing its effective
incidence and thereby intensifying the tip vortex strength. Figure
2.12 due to J.P. Jones® shows a calculated spanwise loading for a
Wessex helicopter blade in hover and indicates the tip vortex
position on successive passes. The kink in loading distribution at
80% span results from this tip vortex pattern, particularly from the
position of the immediately preceding blade.

The concentration of the tip vortex can be reduced by design
changes such as twisting the tip nose-down, reducing the blade tip
area or special shaping of the planform, but it must be borne in
mind that the blade does its best lifting in the tip region where the
velocity is high.
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Fig. 2.11 Wind tunnel visualization of tip vortex. (Reproduced courtesy of Westland
Helicopters Ltd.)
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Fig. 2.12 Calculated spanwise loading for Wessex blade (after J.P. Jones).
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Since blade loading increases from the root to near the tip (Fig.
2.12), the wake may be expected to contain some inner vorticity in
addition to the tip vortex. This might appear as a form of helical
sheet akin to that of the illustration in Fig. 2.10, though generally
not of uniform strength. Definitive experimental studies by Gray”,
Landgrebe* and their associates have shown this to be the case.
Thus the total wake comprises essentially the strong tip vortex and
an inner vortex sheet, normally of opposite sign. The situation as
established by Gray and Landgrebe is pictured, in a diagram which
has become standard, by Bramwell (p. 117) and other authors.
Figure 2.13 is a modified version of this diagram, intended to
indicate vortex lines making up the inner sheet, emanating from
the bound vorticity on the inner part of the blade.

The Gray/Landgrebe studies show clearly the contraction of the
wake immediately below the rotor disc. Other features which have

Blade Loading

Distribution
Disc Plane o Q*_ .
TN — - Blade
(/ |—-—-£ /’3/
e
\

T.p Vortex

Inner Vortex Sheet

Fig. 2.13 Nature of total wake in hover. deduced from smoke studies (after Gray and
Landgrebe).
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been observed are that the inner sheet moves downward faster
than the tip vortex and that the outer part of the sheet moves
faster than the inner part, so the sheet becomes increasingly inclined
to the rotor plane.

2.9 Wake analysis methods

By analysis of his carefully conducted series of smoke-injection
tests, Landgrebe’ reduced the results to formulae giving the radial
and axial coordinates of a tip vortex in terms of azimuth angle,
with corresponding formulae for the inner sheet. From these estab-
lished vortex positions the induced velocities at the rotor plane
may be calculated. The method belongs in a general category of
prescribed-wake analysis, as do earlier analyses by Prandtl, Goldstein
and Theodorsen, descriptions of which are given by Bramwell.
These earlier forms treated either a uniform vortex sheet as pictured
in Fig. 2.10 or the tip vortex in isolation, and so for practical
application are effectively superseded by Landgrebe’s method.

More recently, considerable emphasis has been placed on free-
wake analysis, in which modern numerical methods are used to
perform iterative calculations between the induced velocity distri-
bution and the wake geometry, both being allowed to vary until
mutual consistency is achieved. This form of analysis has been
described for example by Clark and Leiper®. Generally the com-
puting requirements are very heavy, so considerable research effort
also goes into devising simplified free-wake models which will
reduce the computing load.

Calculations for a rotor involve adding together calculations for
the separate blades. Generally this is satisfactory up to a depth of
wake corresponding to at least two rotor revolutions. A factor
which helps this situation is the effect on the tip vortex of the
upwash ahead of the succeeding blade — analogous to the upwash
ahead of a fixed wing. The closer the spacing between blades, the
stronger is this effect from a succeeding blade on the tip vortex of
the blade ahead of it; thus it is observed that when the number of
blades is large, the tip vortex remains approximately in the plane
of the rotor until the succeeding blade arrives, when it is convected
downwards. In the ‘far’ wake, that is beyond a depth correspond-
ing to two rotor revolutions, it is sufficient to represent the vor-
ticity in simplified fashion; for example free-wake calculations can
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be simplified by using a succession of vortex rings, the spacing of
which is determined by the number of blades and the mean local
induced velocity. Eventually in practice both the tip vortices and
the inner sheets from different blades interact and the ultimate
wake moves downward in a confused manner.

There we leave this brief description of the real wake of a
hovering rotor and the methods used to represent it. This branch
of the subject is often referred to as vortex theory. It will be
touched on again in the context of the rotor in forward flight
(Chapter 5). For more detailed accounts, the reader is referred to
the standard textbooks and the more specific references which
have been given in these past two sections.

2.10 Ground effect

The induced velocity of a rotor in hover is considerably influenced
by near presence of the ground. At ground surface the downward
velocity in the wake is of course reduced to zero and this effect is
transferred upwards to the disc through pressure changes in the
wake, resulting in a lower induced velocity for a given thrust. The
induced power is therefore lower, which is to say that a helicopter
at a given weight is able to hover at lower power thanks to ‘support’
given by the ground. Alternatively put, for a given power output, a
helicopter ‘in ground effect’ is able to hover at a greater weight
than when it is away from the ground. As Bramwell has put it, ‘the
improvement in performance may be quite remarkable; indeed
some of the earlier, underpowered, helicopters could hover only
with the help of the ground.’

The theoretical approach to ground effect is, as would be expected,
by way of an image concept. A theory by Knight and Hafner’
makes two assumptions about the normal wake, (1) that circulation
along the blade is constant, thus restricting the vortex system to
the tip vortices only, and (2) that the helical tip vortices form a
uniform vortex cylinder reaching to the ground. The ground plane
is then represented by a reflection of this system, of equal dimensions
below the plane but of opposite vorticity, ensuring zero normal
velocity at the surface. The induced velocity at the rotor produced
by the total system of real and image vortex cylinders is calculated
and hence the induced power can be derived as a function of rotor
height above the ground.
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It is found that the power, expressed as a proportion of that
required in absence of the ground, is as low as .5 when the rotor
height to rotor radius is about 0.3, a typical value for the point of
take-off. Since induced power is roughly two thirds of total power
(Section 2.2), this represents a reduction of about one third in total
power. By the time the height to radius ratio reaches 2.0, the
power ratio is close to 1.0, which is to say the ground effect has
virtually disappeared. The results are only slightly dependent on
the level of thrust coefficient.

Similar results have been obtained from tests on model rotors,
measuring the thrust that can be produced for a given power.
A useful expression emerges from a simple analysis made by
Cheeseman and Bennett®, who give the approximate relationship:

r___1r
T. 1 — (R/4Z)?

Z being the rotor height above ground, R the rotor radius. This
shows good agreement with experimental data.
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3 Rotor in Vertical Flight:
Blade Element Theory

3.1 Basic method

Blade element theory is basically the application of the standard
process of aerofoil theory to the rotating blade. Although in reality
flexible, the blade is assumed throughout to be rigid, justification
for this lying in the fact that at normal rotation speeds the outward
centrifugal force is the largest force acting on a blade and in effect
is sufficient to hold the blade in rigid form. In vertical flight,
including hover, the main complication is the need to integrate the
elementary forces along the blade span. Offsetting this, useful
simplification occurs because the blade incidence and induced flow
angles are normally small enough to allow small-angle approxi-
mations to be made.

Figure 3.1 is a plan view of the rotor disc, viewed from above.
Blade rotation is anticlockwise (the normal system in Western-
world countries) with angular velocity Q. The blade radius is R,
the tip speed therefore being QR, alternatively written as V,. An
elementary blade section is taken at radius y, of chord length ¢ and
spanwise width dy. Forces on the blade section are shown in Fig.
3.2. The flow seen by the section has velocity components Qy in
the disc plane and (v; + V,) perpendicular to it. The resultant of
these is

U= [(vi + Vo* + ()" (3.1)

The blade pitch angle, determined by the pilot’s collective control
setting (see Chapter 4), is 6. The angle between the flow direction
and the plane of rotation, known as the inflow angle is ¢, given by

¢ = tan~" [(V. + v)/Qy] (3.2)
or for small angles, which we shall assume,

¢ = (Ve + vi)/Qy (3.3)
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Fig. 3.1 Rotor disc viewed from above.

~ . Blade section

Fig. 3.2 Blade scction flow conditions in vertical flight.

The angle of incidence of the blade section, denoted by «, is seen
to be

x=0—-¢ (3.4)
The elementary lift and drag forces on the section are

dL = $pU?cdy Cp
and dD = pU?cdy Cp

Resolving these normal and parallel to the disc plane gives an
element of thrust

dT = dLcos¢ — dDsin¢
and an element of blade torque

dQ = (dLsin¢ + dDcoso) y
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The inflow angle ¢ may generally be assumed small: from Equation
(3.3) this may be questionable near the blade root where Qy is
small, but there the blade loads are themselves small also. The
following approximations can therefore be made:

U= Qy
dT = dL
dQ = (¢ dL + dD) y

It is convenient to introduce dimensionless quantities at this stage.
The development then follows in principle the exposition given by
Johnson. We write

r= ylR (3.5)
U _Qy _
oR " or =" (3.6)
dCr = dT/pA(QR)? (3.7)
dCo = dQ/pA(QR)? R (3.8)
P Vc i
)= (—Q;—V) = 1 (3.9)

A is known as the inflow factor and was previously used in Chapter
2. Now the element of thrust becomes

pUlcdy CL 1 ¢

dCr =" RT(QR)? ~ 3 7R

Cy ¥ dr

This is for a single blade. For N blades we have

_ I Ne oy,
dCT—zl’n’R CLI dr

and introducing a solidity factor ¢ which for constant blade chord ¢
is given by

blade area NcR  Nc
o= disc area  7R® @R (3.10)

we are led to
dCp =136 C, 2 d" (3.11)

Integrating along the blade span gives the rotor thrust coefficient

1
Cr=lo fl) C, 2 dr (3.12)
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The element of torque, non-dimensionalized, becomes

1 ¢
dCQ=§ﬁ(¢CL+CD)r3dr

for a single blade; and for N blades of constant chord,
dCo =30 (¢ CL + Cp) P dr (3.13)

Integrating along the span gives the torque coefficient

1
CQ=§OI (¢ C1 + CP) A dr
(0}

1
= %of (h CL P+ Cp 1) dr (3.14)
0
The rotor power requirement is given by
P = Q0 (3.15)
so that, defining the power coefficient as
Cp = PIpA(QR)? (3.16)

we see that Cp and Cq are identical.

We are using here and throughout this book the American forms
of thrust and torque coefficient. Other forms are also in use: thus
Bramwell uses

tc = TIpoA(QR)* and gq. = Q/pcAQ?R? 3.17)

These are seen to be related to the present Cr and Cq by

te = Crlo, q.= Colo (3.18)
Another possibility is the use of a factor ; in the denominator, thus
Cr = TIpA(QR)*, Cqo = QIpAQ*R? (3.19)

which is sometimes called the British definition.

To evaluate Equations (3.12) and (3.14) it is necessary to know
the span-wise variation of blade incidence o and to have blade
section data which give C; and C), as a functions of «. The
equations can then be integrated numerically. Since « is given by
(6 — @), its distribution depends upon the variations of 0, the
blade pitch, and (V. + V;), the induced velocity, represented by
the inflow factor A. Useful approximations can be made, however,
which allow analytical solutions with, in most cases, only small loss
of accuracy.
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3.2 Thrust approximations

If the blade incidence « is measured from the no-lift line and stall
and compressibility effects can be neglected, the section lift coef-
ficient can be approximated by the linear relation,

CL =ax =a(® - ¢) (3.20)
where the two-dimensional lift slope factor ‘a’ has a value about
5.7. Equation (3.12) then takes the form

1
C1~=§0af (6 — @) P~ dr
0
1
= §oaf (6 — hr) dr (3.21)
0

For a blade of zero twist, 0 is constant. For uniform induced
velocity — as assumed in simple momentum theory — the inflow
factor A is also constant. In these circumstances Equation (3.21)
integrates readily to

Cr = loa [10 — 2] (3.22)

Conventionally, modern blades have a degree of negative twist,
decreasing the pitch angle towards the tip so as to compromise on
the blade loading distribution. Thus 6 takes a form such as

0 =0) + r 6 (3.23)
with 0y, negative. Using this form the thrust coefficient becomes
Cr = 304 500 + 10 — 30] (3.24)

If the reference pitch angle is taken to be that at three-quarters
radius, that is to say

0= 6()'75 + (r - 075) Gtw (325)

. then it is readily seen that the relation in Equation (3.22) is restored,

namely
Cr= %oa [%90.75 - %)\] (3.26)

Thus a blade with linear twist has the same thrust coefficient as one
of constant 0 equal to that of the twisted blade at three-quarters
radius.

Equation (3.22) expresses the rotor thrust coefficient as a function
of pitch angle and inflow ratio. The sequence from the starting
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point of an aerodynamic lift coefficient on the blade section has
been:

Ct = fin(Cyp) = fn(«) = fn(6, ¢) = fn(0, 1)

For a direct relationship between thrust coefficient and pitch setting,
we need to invoke also the overall link between thrust and induced
velocity given by the momentum theorem. For the rotor in hover,
this is Equation (2.5), which on incorporation with Equation (3.22)
leads to:

je:
Cr = ioa (;9 -3 \/7T> (3.27)
_6 3 /Cx
or 0=—Cr+5 |5 (3.28)

in which for a blade with a linear twist, 0 is taken at three-quarters
radius. It is readily seen that correspondingly the direct relationship
between 6 and A is:

x=%[\/(1+%e)—1} (3.29)

3.3 Non-uniform inflow

A questionable assumption which has been made so far is that the
induced velocity is uniform across the blade span. The effect of
non-uniformity can be allowed for by using differential forms of
the appropriate equations in the combination of blade element
theory and momentum theory. Equation (3.21) in the blade element
theory is replaced by

dCr = joa (86r* — Ar) dr (3.30)

which expresses the element of thrust on an annulus of the disc at
radius r. The corresponding equation from momentum theory,
again using the hover case for simplicity, is the replacement of
Equation (2.2), namely

dT = 2pv2 dA (3.31)
or
dCr = 232 %4 = M2 rdr (3.32)

ROTOR IN VERTICAL FLIGHT: BLADE ELEMENT THEORY 29

Combining Equations (3.30) and (3.32) yields a quadratic equation
in A, the solution of which is

=2 [\/(1 + % br) — 1] (3.33)

The inflow distribution may now be calculated as a function of r
and the thrust evaluated from Equation (3.21).

As a numerical example let us consider the case of a blade
having linear twist, from a pitch setting 12° at the root to 6° at the
tip (the root cutout can be ignored for this purpose). Assume also
that the rotor solidity is o = 0.08 and the value of oa, using a = 5.7,
is 0.456. Applying Equation (3.28) for the three-quarters radius
point, at which 6 is 7.5°, gives a thrust coefficient Ct = 0.004 53.
Turning now to Equation (3.33), the non-uniform A varies along
the span as shown in Fig. 3.3. Superficially this is greatly different
from a constant value : = ; Ct. Nevertheless, on evaluating Equation
(3.21) the variation of (87" — Ar) is as shown in the figure, from
which the integrated value of thrust coefficient is Ct = 0.00461.
Thus the assumption of constant inflow has led to underestimating
the thrust by a mere 1.7%. The result agrees well with Bramwell’s
general conclusion (p. 93) and confirms that uniform inflow may be
assumed for many, perhaps most, practical purposes.

3.4 Ideal twist

The relation in Equation (3.33) contains one particular case when
A is indeed constant, namely if 6r is constant along the span, that is

or = 0, (3.34)

0, being the pitch angle at the tip. This non-linear twist is not
physically realizable near the root but the case is of interest because,
as momentum theory shows, uniform induced velocity corresponds
to minimum induced power. The analogy with elliptic loading for a
fixed-wing aircraft is again recalled. The twist in Equation (3.34) is
known as ideal twist. Inserting in Equation (3.21) gives

1
Cy = goaj (8, — A) r dr
0
= loa (8, — 1) (3.35)
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Fig. 3.3 Non-uniform inflow: variation of % and (87*—r) along blade.

or, since A = rp = ¢y,

Cr = j0a (8, — ¢y (3.36)
The constant value of A is
oa 32
x_ﬁ[\/(wra;e[)—l] (3.37)
and the direct relationship between 6 and Cr is
4 Cr
= — - 3.38
et oa CT + 2 ( )

Some pitch angles for ideal twist and linear twist are compared
in Fig. 3.4. The inboard end of the blade is assumed to be at r = 0,
ignoring for the purposes of comparison the practical necessity of a
root cutout. The linear twist is assumed to vary from 12° pitch at
the root to 6° at the tip. A straightforward comparison is when the
ideal twist has the same pitch at the tip: we see that unrealistically
high pitch angles are involved at 40% radius and inboard. A more
useful comparison is at equal thrust for the two blades. From
Equations (3.28) and (3.38) it follows that for the same thrust
coefficient the pitch angle at two-thirds span with the ideal twist is
the same as that at three-quarters span with the linear twist, which
for the case in point is 7.5°. Thus the ideal twist is given by

2

br=6,=75x =50
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Fig. 3.4 Idcal twist and linear twist compared.

This case is also shown in Fig. 3.4. The two twist distributions give
the same pitch angle when r = (1 — \/1/6) = 0.59. Again the ideal
twist leads to high pitch angles further inboard but a practical
solution, losing little in induced power, might be to transfer to
constant pitch from about 0.4r inwards.

3.5 Blade mean lift coefficient

Characteristics of a rotor obviously depend on the lift coefficient at
which the blades are operating and it is useful to have a simple
approximate indication of this. The blade mean lift coefficient pro-
vides such an indication. As the name implies the mean lift is that
which, applied uniformly along the blade span, would give the
same total thrust as the actual blade. Writing the mean lift coefficient
as Cp we have, from Equation (3.12),

1

CTZJO%O

9!

oh—

erdr
1

P dr
o T |
L

g
(9)

)

=
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from which
C,.=6Ctlo (3.39)

The parameter Cr/o is thus of fundamental importance and this
explains the preference some workers have for using it as the
definition of thrust coefficient (see Equation (3.18)) instead of Cr.
Expanding the definition gives

Cr T A T

o ~ pA(QRY Ay~ p Ay (QR) (3-40)

where Ay, is the total blade area. Thus Ct/0g is the non-dimensional
blade loading corresponding to the non-dimensional disc loading
Cr.

Blades usually operate in the C range 0.3 to 0.6, so typical
values of Cy/o are between 0.05 and 0.1. Typical values of Cr are
an order of 10 smaller.

3.6 Power approximations

From Equation (3.13) the differential power coefficient dCp
(= dCq) may be written as
dC, = dCq = 1oCp. ¢r’dr + {0Cp, rdr
= loCy M?dr + oCp rdr (3.41)
= dCp + dC,,
where dCp is the differential power coefficient associated with

induced flow and dCp_is that associated with blade section profile
drag. The first term, using Equation (3.11), is simply

dCp = MCy (3.42)
Thus
dCp = L dCy + %6Cp 1 dr (3.43)
whence
r=1 1
G = |  hdCr+ [ hoCp P ar (3.44)

Assuming uniform inflow and a constant profile drag coefficient
Cp,, we have the approximation

Cp = A CT + %OCD“ (345)
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In the flover, where A = VCy/2, this becomes

B (CT)3/2
Cp = V2
The first term of Equations (3.45) or (3.46) agrees with the result
from simple momentum theory (Equation (2.6)). The present A,
defined by Equation (3.9), includes the inflow from climbing speed
V. (if any), so the power coefficient term includes the climb power
pP. = V.T.

The total induced power in hover or climbing flight is generally
two or three times as large as the profile power. The chief deficiency
of the formula at Equation (3.45) in practice arises from the
assumption of uniform inflow. Bramwell (p. 94 et seq.) shows that
for a linear variation of inflow the induced power is increased by
approximately 13%. This and other smaller correction factors such
as tip loss (Section 3.7) are commonly allowed for by applying an
empirical factor k to the first term of Equation (3.45), so that as a
practical formula,

+ 50Cp, (3.46)

C, = KACr + {oCp, (3.47)

is used, in which a suggested value of x is 1.15. The combination of
Equations (3.47) and (3.22) provides adequate accuracy for many
performance problems.

For the hover, we have

- K
P \/2
The figure of merit M may be written

(Cp)idcal _ CT3/2
(Cp)actual K C’I‘g./2 + OCD“/4\/2

C Cr” + {oCp, (3.48)

M:

(3.49)

which demonstrates that for a given thrust coefficient a high figure
of merit requires a low value of 6Cp . Using a low solidity seems
an obvious way to this end but it must be tempered because the
lower the solidity the higher are the blade angles-of-incidence
required to produce the thrust and the profile drag may then
increased significantly from either Mach number effects or the
approach of stall. A low solidity subject to retaining a good margin
of incidence below the stall would appear to be the formula for
producing an efficient design.

For accurate performance work the basic relationships at
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Equations (3.12) and (3.14) are integrated numerically along the
span. Appropriate aerofoil section data can then be used, including
both compressibility effects and stalling characteristics. Further
reference to numerical methods is made in Chapter 6.

3.7 Tip loss

A characteristic of the actuator disc concept is that the linear
theory of lift is maintained right out to the edge of the disc.
Physically, recalling Fig. 2.1, we suppose the induced velocity, in
which the pressure is above that of the surrounding air, to be
contained entirely below the disc in a well-defined streamtube
surrounded by air at rest relative to it. In reality, because the rotor
consists of a finite number of separate blades, some air is able to
escape outwards between the tips, drawn out by the tip vortices.
Thus the total induced flow is less than the actuator disc theory
would prescribe, so that for a given pitch setting of the blades the
thrust is somewhat lower than that given by Equation (3.22). The
deficiency is known as tip loss and is shown by a rapid falling off of
lift over the last few per cent of span near the tip, in a blade
loading distribution such as that of Fig. 2.13.

Although several workers have suggested approximations
[Bramwell (p. 111) quotes Prandtl, Johnson (p. 60) quotes in
addition Sissingh and Wheatley] no exact theory of tip loss is
available. A common method of arriving at a formula is to assume
that outboard of a station r = BR the blade sections produce drag
but no lift. Then the thrust integral in Equation (3.21) is replaced
by

B
Cr = doa [ (07 — hr) dr (3.50)
0

whence is obtained, for uniform inflow and zero twist,
Cy = loa (1B*0 — 1B?)) (3.51)

With a typical value B = 0.97 or 0.98 Equation (3.51) yields
between 5% and 10% lower thrust than Equation (3.22) for a
given 0.

To obtain the effect on rotor power at a given thrust coefficient,
we need to express the increase in induced velocity corresponding
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Fig. 3.5 Hover characteristics from sample calculations.

to the effective reduction of disc area. Since the latter is by a factor
B? and the induced velocity is proportional to the square root of
disc loading (Equation (2.3)), the increase in induced velocity is by
a factor 1/B. The rotor induced power in hover thus becomes

C. = l (CT)3/2

P B2
Typically this amounts to 2—3% increase in induced power. The
factor can be incorporated in the overall value assumed for the

empirical constant k in Equation (3.47).

(3.52)

3.8 Example of hover characteristics

Corresponding to Cp/« and Cp/Cy. characteristics for fixed wings,
we have C1/0 and C/Cy for the helicopter in hover. An example
has been evaluated using the following data:
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blade radius, R = 6 m

blade chord (constant), ¢ = 0.5m

blade twist, linear from 12° at root to 6° at tip
number of blades, N = 4

empirical constant, k = 1.13

blade profile drag coefficient (constant), Cp, = 0.010

The variation of Cy/c with 0 is shown in Fig. 3.5(a). The non-
linearity results from the \/C term in Equation (3.28). The vari-
ation of Cp/c with C/0, known as the hover polar, is calculated
for three cases:

k = 1.13, Equation (3.48),
x = 1.0, Equation (3.46), the simple momentum theory result,
figure of merit M = 1.0, which assumes k = 1 and Cp, = 0.

Over the range shown (Fig. 3.5 (b)), using the factor x = 1.13
results in a power coefficient 0—9% higher than that obtained
using simple momentum theory. The curve for M = 1 is of course
unrealistic but gives an indication of the division of power between
induced and profile components.

4 Rotor Mechanisms for
Forward Flight

4.1 The edgewise rotor

In level forward flight the rotor is edgewise on to the airstream, a
basically unnatural state for propeller functioning. Practical compli-
cations which arise from this have been resolved by the introduction
of mechanical devices, the functioning of which in turn adds to the
complexity of the aerodynamics.

Figure 4.1 pictures the rotor disc as seen from above. Blade
rotation is in a counter-clockwise sense (the standard adopted for
all helicopters of the Western countries) with rotational speed €.
Forward flight velocity is V and the ratio V/QR, R being the blade
radius, is known as the advance ratio symbol u, and has a value
normally within the range zero to 0.5. Azimuth angle v is measured
from the downstream blade position: the range yp = 0°—180°
defines the advancing side and that from 180°—360° (or 0°) the
retreating side.

A blade is shown in Fig. 4.1 at 90° and again at 270°. These are
the positions of maximum and minimum relative air velocity normal
i0 the blade, the velocities at the tip being (QR + V) and (QR —
V), respectively. If the blade were to rotate at fixed incidence,
then owing to this velocity differential, much more lift would be
generated on the advancing side than on the retreating side.
Calculated pressure contours for a fixed-incidence rotation with
u = 0.3 are shown in Fig. 4.2. About four-fifths of the total lift is
produced on the advancing side. The consequences of this imbalance
would be large oscillatory bending stresses at the blade roots and a
large rolling moment on the vehicle. Both structurally and dynami-
cally the helicopter would be unflyable.

Clearly a cyclical variation in blade incidence is needed to balance
lift on the two sides. The widely adopted method of achieving this
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Fig. 4.1 Rotor disc from above showing velocities in forward flight.

of flight

T Direction

Direction
of rotation

Fig. 4.2 Calculated pressure contours for unbalanced rotation (after J.P. Jones).

is by use of flapping hinges, first introduced by Juan de la Cierva
around 1923. The blade is freely hinged as close as possible to the
root, allowing it to flap up and down during rotation. Thus as a
blade moves on to the advancing side, the rise in relative velocity
increases the lift, causing the blade to flap upwards. This motion
reduces the effective blade incidence (Fig. 4.3) thereby reducing
the lift and ultimately allowing the blade to flap down again. On
the retreating side the reverse process occurs. The presence of free
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hinges means that blade root stresses are avoided and no rolling
moment is communicated to the airframe.

Contours of pressure level for a roll-balanced lift distribution are
of the type shown in Fig. 4.4 The mean pressure level is now
lower, the lift on the advancing side being greatly reduced, with
only small compensation on the retreating side. The fore and aft
sectors now carry the main lift load. The total lift can be restored
in some degree by applying a general increase in blade incidence
level through the pilot’s control system (Section 4.3) but as this is
done, the retreating blade, producing lift at relatively low airspeed,
must ultimately stall. Also, compressibility effects such as shock-
induced flow separation enter the picture, both on the advancing
side where the Mach number is highest and on the retreating side
where lower Mach number is combined with high blade incidence.
Since the degree of load asymmetry across the disc increases with
forward speed, the retreating-blade stall and its associated effects
determine the maximum possible flight speed of the vehicle. For
the conventional helicopter a speed of about 400 km/h (250 m/h) is
usually regarded as the upper limit.

An additional feature of the asymmetry in velocity across the
disc is that there exists a region on the retreating side where the
flow over the blade is actually reversed. At 270° azimuth the
resultant velocity at a point y of span is

U=Qy -V

or non-dimensionally,

w= 2L (4.1)
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Fig. 4.4 Calculated pressure contours for roll-balanced rotation (after J.P. Jones).

Thus the flow over the blade is reversed inboard of the point r = u.
It will be apparent that the reversed flow boundary is a circle of
diameter u centred at r = w2 on the 270° azimuth. Dynamic
pressure in this region is low, so the effect of the reversed flow on
the blade lift is small, usually negligible from a performance aspect
for advance ratios up to 0.4. Very precise calculations may require
the reversed flow region to be taken into account and it may be
important also in studies of blade vibration.

A flapping blade in rotation sets up Coriolis moments in the
plane of the disc, and to relieve this it is usual to provide a second
hinge, the lead-lag hinge, normal to the disc plane, allowing free
in-plane motion. This may need to be fitted with a mechanical
damper to ensure dynamic stability. The lead-lag motion of a blade
contributes in only a minor way to rotor performance and we shall
not study it further in the present book.

Blade rotation about a third axis, approximately normal to the
flapping and lead-lag axes, is required for control of the blade
incidence or pitch angle. This movement is provided by a pitch
bearing, known alternatively as the feathering hinge, linked to a
control system operated by the pilot (Section 4.3). The standard
articulated blade thus possesses this triple movement system of
flapping hinge, lead-lag hinge and pitch bearing in a suitable mech-
anical arrangement, located inboard of the lifting blade itself. The
principles are illustrated in Fig. 4.5.

Strictly the blade root bending stress and helicopter rolling
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Fig. 4.5 Principles of articulated rotor hinge system.

moment are eliminated by flapping only if the hinge is located on
the axis of rotation. This is impracticable for a rotor with more
than two blades, so residual moments do exist. These are not
important, however, if the offset of the hinge from the axis is only
a few per cent of blade radius. The flapping hinge is therefore
normally made the innermost, with an offset 3—4%. The lag hinge
and pitch bearing can be more freely disposed: sometimes the
former is the farther out of the two.

The total mechanical complexity of an articulated rotor is sub-
stantial. Hinge bearings operate under high centrifugal loads, so
service and maintenance requirements are severe. Hinges, dampers
and control rods make up a bulky rotorhead, which is likely to
have a high parasitic drag — perhaps as much as the rest of the
helicopter.

In modern rotors the flapping and lag hinges are often replaced
by flexible elements which allow the flapping and lead-lag motions
of the blades to take place, albeit with a degree of stiffness not
present with free hinges. With such hingeless rotors, bending stresses
and rolling moments reappear, in moderation only but sufficient to
modify the stability and control characteristics of the helicopter
(Chapter 8). The effect of a flexible flapping element can usually
be calculated by equating it to a hinged blade with larger offset
(10—15%). The use of a hingeless rotor is one way of reducing the
parasitic drag of the rotorhead. A pitch bearing mechanism is of
course needed for rotor control, as with the articulated rotor. The
hingeless rotor of the Westland Lynx helicopter is pictured in Fig.
4.6.
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Fig. 4.6 Rotor hub of Lynx helicopter.

4.2 Flapping motion

To examine the flapping motion more fully we assume, unless
otherwise stated, that the flapping hinge is on the axis of rotation.
This simplifies the considerations without hiding anything of
significance.

Referring to Fig. 4.7, the flapping takes place under conditions
of dynamic equilibrium, about the hinge, between the aerodynamic
lift (the exciting function), the centrifugal force (the ‘spring’ or
restraining force) and the blade inertia (the damping). In other
words, the once-per-cycle oscillatory motion is that of a dynamic
system in resonance. The flapping moment equation is seen to be

R R . R
JydT—fmyzﬁdy—JmByzgzdyZO (4.2)
0 0 0

We shall return to this equation later.

The centrifugal force is by far the largest force acting on the
blade and provides an essential stability to the flapping motion.
The degree of stability is highest in the hover condition (where the
flapping angle is constant) and decreases as the advance ratio
increases. Bramwell’s consideration of the flapping equation (p.
153 et seq.) leads in effect to the conclusion that the motion is
dynamically stable for all realistic values of .

Maximum flapping velocities occur where the resultant air velocity
is at its highest and lowest, that is at 90° and 270° azimuth. Maximum
displacements occur 90° later, that is at 180° (upward) and 0°
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Fig. 4.7 Blade forces in flapping.

(downward). These displacements mean that the plane of rotation
of the blade tips, the tip-path plane (TPP), is tilted backwards
relative to the plane normal to the rotor shaft, the shaft normal
plane (SNP).

In hover the blades cone upwards at a constant angle ao, say, to
the shaft normal plane. The coning angle is that at which the blade
weight is supported by the aerodynamic lift. Its existence has an
additional effect on the orientation of the TPP during rotation in
forward flight. Figure 4.8 shows that because of the coning angle,
the flight velocity V has a lift-increasing effect on a blade at 180°
(the forward blade) and a lift-decreasing effect on a blade at 0°
(the rearward blade). This asymmetry in lift is, we see, at 90° to
the side-to-side asymmetry discussed earlier: its effect is to tilt the
TPP laterally and since the point of lowest tilt follows 90° behind
the point of lowest lift, the TPP is tilted downwards to the right,
that is on the advancing side. The coning and disc tilt angles are
normally no more than a few degrees.

Since in any steady state of the rotor the flapping motion is
periodic, the flapping angle can be expressed in the form of a
Fourier series:

B = ag — ajcosy — bysiny — arcos2y — bysin2y — etc.
(4.3)

Textbooks vary both in the symbols used and in the sign convention
adopted. The advantage of using negative signs for the harmonic
terms is that for normal forward flight the coefficients a; and b,
have positive values. For most purposes the series can be limited to
the constant and first harmonic terms, thus:

B =ay— acosy — bysiny (4.4)
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Fig. 4.8 Longitudinal lift asymmetry which leads to lateral tilt.

This form will be used in the aerodynamic analysis of the next
chapter. For the moment we note that g, is the coning angle, a, the
angle of backward tilt and b, the angle of sideways tilt. The
inclusion of second or higher harmonic terms would represent
waviness on the tip-path plane but any such is of secondary
importance only. '

Differentials of § will be needed in the later analysis: using the
fact that the rotational speed Q2 is dy/dt, these are:

B = dp/dt = (a;siny — bycosy) Q = Q df/dy (4.5)
B = &°B/df = @ (arcosy + bysiny) (4.6)

4.3 Rotor control

Control of the helicopter in flight involves changing the magnitude
of rotor thrust or its line of action or both. Almost the whole of the
control task falls to the lot of the main rotor and it is on this that
we concentrate. A change in line of action of the thrust would in
principle be obtained by tilting the rotor shaft, or at least the hub,
relative to the fuselage. Since the rotor is engine-driven (unlike
that of an autogyro) tilting the shaft is impracticable. Tilting the
hub is possible with some designs but the large mechanical forces
required restrict this method to very small helicopters. Use of the
feathering mechanism, however, by which the pitch angle of the
blades is varied, either collectively or cyclically, effectively transfers
to the aerodynamic forces the work involved in changing the magni-
tude and direction of the rotor thrust.

Blade feathering, or pitch change, could be achieved in various
ways. Thus Saunders (1975)! lists the use of aerodynamic servo
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tabs, auxiliary rotors, fluidically controlled jet flaps, or pitch links
from a control gyro as possible methods. The widely adopted
method, however, is through a swashplate system, illustrated in
Fig. 4.9. Carried on the rotor shaft, this embodies two parallel
plates, the lower of which does not rotate with the shaft but can be
tilted in any direction by operation of the pilot’s cyclic control
column and raised or lowered by means of his collective lever. The
upper plate is connected by control rods to the feathering hinge
mechanisms of the blades and rotates with the shaft, while being
constrained to remain parallel to the lower plate. Raising the
collective lever thus increases the pitch angle of the blades by the
same amount all round, while tilting the cyclic column applies a tilt
to the plates and thence a cyclic pitch change to the blades, these

o-g ( ‘Fqs Collective pitch

—_— — — - — Control
plane
l {NFP)
Cyclic pitch
Advancing Retreating
blade blade

Fig. 4.9 Principles of swashplatc system.
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being constrained to remain at constant pitch relative to the upper
plate. An increase of collective pitch at constant engine speed
increases the rotor thrust (short of stalling the blades), as for take-
off and vertical control generally. A cyclic pitch change alters the
line of action of the thrust, since the tip-path plane of the blades,
to which the thrust is effectively perpendicular, tilts in the direction
of the swashplate angle.

Rotorhead designs vary considerably in detail but one such is
pictured in Fig. 4.10. The rotor is of the hingeless type. Items
discernible in the photograph include the flexible flapping elements,
the feathering housing, the pitch control rods and, at the base of
the arrangement, the swashplate mechanism. A good impression is
gained of the mechanical complexity, strength and general bulkiness
of this type of rotorhead installation.

Figure 4.11 is an interior view of a pilot’s cockpit. The collective
pitch lever is down at seat level on the pilot’s left (right-hand seat);
the cyclic control stick directly in front of him. The foot pedals
control the collective pitch of the tail rotor (normally its only
control), the purpose of which is to balance the torque of the main
rotor, or when required to change the heading of the aircraft.

Cyclic pitch on the main rotor implies a blade angle changing
with azimuth, relative to the shaft normal plane. The once-
per-cycle periodicity means that the pitch angle can be described
mathematically by a Fourier series, in like manner to that used for
the flapping angle.

We write

0 = 8) — Ajcosy — Bysiny — A,cos2y —Bsin2y .. (4.7)

in which, as before, only the constant and first harmonic terms are
normally required:

6 = 6() - A]COSIP - BISiI]IP (48)

8o represents the collective pitch, the terms in y the cyclic pitch.
The factor A;, which applies maximum pitch when the blades are
at 0° and 180°, is referred to as the lateral cyclic coefficient because
the rotor response, phased 90°, produces a control effect in the
lateral sense. Correspondingly, the factor B, is the longitudinal
cyclic coefficient.

The value of pitch angle would be different if a different reference
plane were used. In any flight condition, there is always one plane
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F .

Fig. 4.10 Modern rotorhead showing flexible elements and swashplate system. (Reproduced
courtesy of Westland Helicopters Ltd.)

relative to which the blade pitch remains constant with azimuth.
This by definition is the plane of the swashplate, which _is therefor'e
known as the control plane or, referring to the elimination of cy(;llc
pitch variation, the no-feathering plane (NFP). The' no-feathering
plane, though not fixed in the aircraft, is a useful ad]ustab}e datum
for the measurement of aerodynamic characteristics considered in
e next chapter.
" In some ccf)ntexts it is useful to refer to the axes TPA and NFA,
perpendicular to the TPP and NFP, rather than to the planes
themselves. Generally in forward flight these two axes and also the
shaft axis will be away from the vertical (i.e. the normal to the
flight path). Fig. 4.12 shows a common arrangement. The thr‘u§t
line being inclined in the direction of flight, the TPP‘norm'al toitis
tilted down at the nose relative to the horizontal (the flight dlrec':tlon).
The TPA, being also the thrust line, is away from the vertical as
shown. The shaft axis is tilted further from the vertical, the angle
with the TPA being the tilt-back angle of the flapping motion. The
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Fig. 4.11 Example of flight cabin interior. (Reproduced courtesy of Westland Helicopters
Lid.)

Thrust

Direction
of flight
é_—

Shaft axis
(determines attitude
of helicopter fuselage)

Fig. 4.12 A possible juxtaposition of axes in forward flight.
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inclination of the shaft axis to the NFA depends upon the degree
of feathering in the helicopter motion.

4.4 Equivalence of flapping and feathering

The performance of the rotor blade depends upon its angle of
incidence to the tip-path plane. A given blade incidence can be
obtained with different combinations of flapping and feathering.
Consider the two situations illustrated in Fig. 4.13: these are views
from the left side with the helicopter in forward flight in the
direction shown. In situation 1 the shaft axis coincides with the
TPA; there is therefore no flapping but the necessary blade inci-
dences are obtained from feathering according to Equation 4.8.

Oirection of flight
Thrust Thryst

Situation 1: Feathering Situation 2 : Flapping
but no flapping but no feathering

Blade chordwise attitudes are shown :
— inplane of diagram
« normal to plane of diagram,

at azimuth angles indicated

Fig. 4.13 Equivalence of flapping and feathcring.
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Blade attitudes at the four quarter points of a rotation are as
indicated in the diagram. In situation 2 the shaft axis coincides with
the NFA. By definition this means that feathering is zero: the
blade angles however are obtained from flapping according to
Equation (4.4). It is seen that if the feathering and flapping coef-
ficients B, and a; are equal, the blade attitudes to the tip-path
plane are identical around the azimuth in the two situations. The
blade perceives a change in nose-down feathering, via the swash-
plate, as being equivalent to the same angle change in nose-up
flapping.

A pilot uses this equivalence in flying the helicopter, for example
to trim the vehicle for different positions of the centre of gravity
(CG). The rotor thrust, in direction and magnitude, depends upon
the inclination of the tip-path plane in space and the incidence of
the blades relative to it. The same blade incidence can be achieved, as
we have seen, either with nose-up flapping or with the same degree
of nose-down feathering, or of course with a combination of the
two. By adjusting the relationship, using his cyclic control stick,
the pilot is able to compensate for different nose-up or nose-down
moments in the helicopter, arising from different CG positions.
The angle of the shaft axis to the vertical, hence the attitude of the
helicopter in space, varies with the CG position but the tip-path
plane remains at a constant inclination to the direction of flight.

Reference

1 Saunders, George H. (1975) Dynamics of helicopter flight. John Wiley and
Sons Inc.

5 Rotor Aerodynamics in
Forward Flight

The aerodynamic situation in forward flight is complex. Numerical
methods have largely taken over the task of evaluation but an
analytical treatment, using simplifying assumptions, is valuable for
providing a basic understanding of rotor behaviour. Such a treatment
is the subject of this present chapter. The mechanisms of the
previous chapter affect essentially the details of blade element
theory. Before turning to that, however, it is useful to examine
briefly what can be made of momentum theory, which as has been
said is principally a theory for hover and axial flight: also it may be
asked to what situations is one led in considering a more detailed
wake analysis under forward flight conditions.

5.1 Momentum theory

A modified actuator disc approach can be used. The basic proposal
is due to Glauert' who, drawing an analogy between the rotor and
an elliptically loaded circular wing, suggested that a mean induced
velocity v; could be expressed by the formula:

vi = T/2pA V' (5.1)
where
V' = \/( V2 o+ viz) (5.2)

V being the forward flight speed. The formula can be illustrated in
flow terms as shown in Fig. 5.1: a circular jet of air at velocity V,
of the same area as the rotor, or actuator disc, impinges upon the
latter and is deflected downwards at velocity v; at the disc and
ultimately in the downstream flow at velocity 2v;. The similarity
with the basic momentum flow discussed in Chapter 2 is obvious.
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No proof exists, however, that the flow depicted in Fig. 5.1 is other
than fictitious: the merit of the proposal is that the formula in
Equation (5.1) reduces to that for hover — Equation (2.2) — when
V' is zero and, at the other extreme, if Vis so large that V and V’
are virtually identical, the formula converts to that for the induced
velocity of an elliptically-loaded fixed wing. And both experiment
and more detailed analysis (see for example Bramwell, Chapter 4)
confirm that the Glauert proposal works well.

If vy, is written for the induced velocity in hover at the same
thrust, we have

vp? = T/2pA (5.3)
and Equation (5.1) may be written:
“= () ()
' 2pA V2 + 2
= 2 /(V? + v?) (5.4)
whence the equation for v; in forward flight is:
vi\* VAZ [vi\?
1 + = 1 _ —
(Vh> (Vh> (Vh> 1 0 (55)

The variation of induced velocity with forward speed is therefore
as shown in Fig. 5.2. It is seen that vi decreases rapidly as V
increases and for all V/v, greater than about 2 the fixed-wing
analogy applies, that is to say:

(5.6)

Fig. 5.1 Interpretation of Glauert formula for momentum theory in forward flight (after
Bramwell).
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Fig. 5.2 Variation of induced velocity with forward speed.

In practice the induced velocity cannot be expected to be constant
over the area of the disc. Standard aerofoil theory would suggest
an upwash at the leading edge and a greater-than-mean downwash
at the trailing edge. To allow for a variation of this kind, Glauert
proposed a second formula:

vi = (vi)o (1 + Krcosy) (5.7)

where (1), is the value at the centre, taken to be that given by
Equation (5.1), r is the proportionate radius from the centre and
y is the azimuth angle. If the constant K is chosen to be greater
than 1.0 (typically 1.2), the formula gives a negative value, that is
an upwash, at the leading edge (y = 180°). Equation (5.7) is often
used as an input to numerical methods.

More elaborate treatments of the non-uniform induced velocity
in forward flight have been devised, among which one of the
foremost is the method of Mangler and Squire?. Described at
length by Bramwell (p. 127 et seq. ), this method has shown satisfac-
tory agreement with controlled experiments and is stated to be
very useful in rotor calculations.

Reverting to the Glauert formula for uniform induced velocity,
the induced power is:

P = Tvi = T 12pA(V? + vH)'72 (5.8)
which at normal forward flight speeds becomes approximately

P = T*12pAV = Tw/2pV, (5.9)



54 BASIC HELICOPTER AERODYNAMICS

that is directly proportional to the disc loading w.
In non-dimensional terms the first equality of Equation (5.8) is
simply

Cp‘ = }\'i CT (510)

where }; is vi/QR. It will be useful for the forward flight case to
adopt a suffix i for that part of the total induced flow which is due
to the thrust-dependent induced velocity v;, as distinct from a part
due to the forward velocity V.

As with hover, a practical approximation to allow for the effect
of non-uniformity in v; and other smaller correction factors is
obtained by applying an empirical factor k such that

Cpi = K}\,i CT (511)

The value of k in forward flight is somewhat higher than that in
hover, say 1.20 compared with the formerly suggested 1.15 (Section
3.6). Countering this however the induced velocity is seen in Fig.
5.2 to become quite small even at moderate forward speeds: it will
duly emerge that Cp, is then much smaller than other components
of the total power requirement.

5.2 Wake analysis

As concerns a detailed analysis of the rotor wake, corresponding to
that outlined in Chapter 2 for the hover, the complication introduced
by forward flight comes down to the fact that at a given radial
position, the blade incidence, and hence the circulation, varies
widely around the azimuth. Each change of circulation results in a
counter vortex being shed into the wake and since the change is a
circumferential one, the vortex line in this case lies in the spanwise
direction. This system of ‘shed’ vortices is now additional to the
‘trailing’ vortex system arising, as in hover, from the spanwise
variations in circulation.

Undeterred by such multiplicity of complication, the modern
computer, guided by skilled workers among whom may be men-
tioned Miller, Piziali and Landgrebe, is still capable of providing
solutions. An example from Landgrebe’s calculations shows in
Fig. 5.3 a theoretical wake boundary at low advance ratio, compared
with experiment by smoke visualization and also with the Glauert
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Rotor
plane

Calculation (Landgrebe)
—————— Classical (Glaert hypothesis)
——————— Experiment

Fig. 5.3 Wake boundarics at low advance ratio (after Landgrebc).

momentum theory solution. The numerical solution and the exper-
imental evidence agree well: momentum theory gives a much less
accurate picture. A feature to note is that the boundary at the
front of the disc lies close to the disc. At a higher advance ratio,
more representative of forward flight, this feature and the general
sweeping back of the wake would be much more marked.

This brief reference to what is a large subject in itself will suffice
for the purposes of the present book. Extended descriptions can be
found in the standard textbooks.

5.3 Blade element theory

5.3.1 Factors involved

An exposition of blade element theory follows the same broad
lines as used for hover (Chapter 3), taking into account, however,
the extra complexities involved in forward flight. We begin by
introducing the additional factors which enter into a forward flight
condition. Figure 5.4 shows a side view of the rotor disc — strictly
a shallow cone as we have seen. Motion is to the left and is
assumed horizontal, that is to say without a climb component. The
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Veos ox,

Fig. 5.4 Disc incidence and component velocities in forward flight.

plane enclosing the edge of the disc — the tip-path plane (TPP) —
makes an angle o, with the oncoming stream direction. o, IS
reckoned positively downwards since that is the natural direction
of tilt needed to obtain a forward component of the thrust. We
shall use small-angle approximations as required. The flight velocity
V' has components Vcosa, and Vsina, along and normal to the
TPP. The advance ratio is:
V cos «, |4

=" OrR "OR (5.12)
as used previously. The total inflow through the rotor is the sum of
Vsin«, and v;, the thrust related induced velocity.

Referring to Fig. 5.5, the resultant velocity U at a blade section
is now a function of rotor rotation, helicopter forward speed,
induced velocity and blade flapping motion. Components of U in
the plane of the blade section are Ut and Up: additionally because
of the forward speed factor there is a spanwise component Uy,
shown in Fig. 5.6. Components Uy and Ug are readily defined; to
first order these are:

Ur = Q, + Vsiny (5.13)
Ur = Vcosy (5.14)
or, in non-dimensional form,
ur =r + psiny (5.15)
UR = [LCOSY (5.16)

The component Up has three terms, non-dimensionally as follows:
(1) inflow factor:

_ Visin o + v

& QR

= uoy + A (5.17)
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Fig. 5.5 Component velocitics Ut and Usp.

+v

=

Fig. 5.6 Componcnt velocitics Ut and Uy,

(2) a component of ug normal to the blade, which for a flapping
angle f relative to the reference plane is seen (Fig. 5.7) to be
Bugr or Pucosy;

(3) a component resulting from the angular motion about the
flapping hinge; at station y along the span, this is:

dp 4B dy a4
yaorydw dtordeworidw
when non-dimensionalized.
Thus adding together,
d
up, = A + Pucosy + r£ (5.18)

For small angles the resultant velocity U/ may be approximated by
U-r. Blade angle of incidence may be written:

aZG—q):B—Up/UT:O—up/uT (519)
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Il

Fig. 5.7 Flapping term in Ulp.

Note that whereas the values of 6 and ¢ depend upon the choice of
reference plane, the actual blade incidence o does not, so the
expression (6 — up/ut) is independent of the reference plane used.

5.3.2 Thrust
Following the lines of the hover analysis in Chapter 3 we write an
elementary thrust coefficient of a single blade at station y as

4c :%pUzcdyCL_li Us? c dy
T paRHQRY? T 23R (QRY? - R
and for N blades, introducing the solidity factor ¢ and non-
dimensionalizing,

dCT = %O Ll']"2 CL dr

(5.20)
On expressing Cy in the linear form
CL = ax = a(® — up/uy), (5.21)
Equation (5.20) becomes
dCr = j0a (Out® — ur up) dr (5.22)

For the hover we were able to write ut = ¥, up = A: in forward
flight, however, ut and up, and in general 0 also, are functions of
azimuth angle 1. The elementary thrust must therefore be averaged
around the azimuth and integrated along the blade. It is convenient to
perform the azimuth averaging first and we therefore write the
thrust coefficient of the rotor as:

1 1 25t
= L — 2 _ .
Cq fo loa [m L (Bur® — up ur)dw] dr  (5.23)

To expand the terms within the inside brackets, we recall from
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Chapter 4 that the flapping angle B may be expressed in the form

B = ap — ajcosy — bysinvy, (4.4)
from which also we have
d .
£ = a;siny — bjcosy (5.24)

For the feathering angle 6 a similar Fourier expansion (Equation
(4.8)) can be used: however, there is always one plane, the plane
of the swashplate or no-feathering plane (NFP), relative to which
there is no cyclic change in 8; for our analytical solution therefore
this will be used as the reference plane. Thus we have 6 = 6,
constant in azimuth, and following the same procedure as for
hover we shall assume an untwisted blade, giving 8, constant also
along the span. Averaging round the azimuth involves recognition
that the operators

27 27 2n .
j siny dy, f cosydy and f siny cos Y dy
0 0 (]
are each equal to zero, whilst

21 2n
f sin®ydy and j cos®y dy
0 o

are each equal to m. Breaking down Equation (5.23) then, we
obtain

1 2n ) B 1 2m . )
EEL Bur” dy = ZJTL Bo(r + psiny)” dy
= 0(r* + u?) (5.25)

while

27

2l

27 d .
up uy dy :fly?fo <X+ B ucosy + r£> (r + psinyp) dy

=\r (5.26)

all other terms cancelling out after substituting for § and (dp/dy)
and integrating. Hence finally,
1
Cr = j s0a [60 (r + iu?) — )\r} dr
0

= Joa [16y (1 + 3p%/2) — iA] (5.27)
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This is the simplest expression for the lift coefficient of a rotor in
forward level flight. The assumptions on which it is based are the
ones assumed for hover in Chapter 3, namely uniform induced
velocity across the disc, constant solidity o along the span and zero
blade twist. As before it may be assumed that for a linearly twisted
blade, Equation (5.27) can be used if the value of 6 is taken to be
that at three quarters radius. Also in Equation (5.27) the values of
B and X are taken relative to the non-feathering plane as reference.
Bramwell (p. 157) derives a significantly more complex expression
for thrust when referred to disc axes (the tip-path plane) but since
the transformation involves the assumption that actual thrust, to
the accuracy required, is not altered as between the two reference
planes, the change is a purely formal one and Equation (5.27)
stands as a working formula.

5.3.3 In-plane H force
In hover the in-plane H force, representing principally the blade
profile drag, contributed only to the torque (Fig. 3.2). Here, how-
ever, since the resultant velocity at the blade is Qy + Vsiny
(Equation (5.13), the drag force on the advancing side exceeds the
reverse drag force on the retreating side, leaving a net drag force
on the blade, positive in the rearward direction.

Seen in azimuth (Fig. 5.8) the elementary H force, reckoned
normal to the blade span and resolved in the rearward direction, is

dH = (dDcos¢ + dLsin¢) siny (5.28)

which may be written as dH,, plus dH; where the suffices relate to
the drag and lift-dependent terms, respectively. Treating the drag

do
(+d[EOSSI? ¢)

Fig. 5.8 Elementary H force.
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term separately and making the usual approximations, we have
dH, = dDsiny = ip Us* ¢ dy Cp,_siny (5.29)
In coefficient form, for N blades, this gives
N Ur? ¢ Cp_sinydy
dCH = > 2 >
° paR*(QR)
= ;0 Cp, ur?sinyp dr
=30 Cp,_ (r + usiny)’sinydr (5.30)

Hence
1 1
Cy =loC [_ 102 si ]
H, = 2 D“J;) 2nf0 (r + usiny)sinypdy | dr

1
= 30 Cp, j ur dr
0

=30 Cp, - (5.31)
Overall then for the in-plane H force
CH = %0’ CD“ cp o+ CH. (532)

Expressions can be obtained for the induced component Cy; in
terms of 6, A, u and the flapping coefficients aq, a; and b;: these
are derived in varying forms in the standard textbooks, for example
Bramwell p. 148 and Johnson p. 177. The relations are somewhat
complex and since we shall not require to make further use of
them in the present treatment and moreover in the usual case Ch,
is small compared with Cy , we can be satisfied with the reduction
at Equation (5.32).

5.3.4 Torque and power
The elementary torque is

dQ = dH'y = y(dDcos¢ + dLsin¢) (5.33)

Again there is a profile drag term, dQ, say, and an induced term
dQ;. The former is readily manipulated thus (in coefficient form):

27

1
Cao =10 Co, [ | 1 [

1
= 10 Cp, f (r + u?r) dr
0

(r + usiny)? rde dr
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=30 Cp, (1 + p?) (5.34)

The induced term, after a lengthier manipulation, is shown
(Bramwell p. 151) to be

CQ. = A CT - U CwHI (535)
giving for the total torque
CQ = éo CD“ (1 + |J.2) + A CT - u CHi (536)

Using Equation (5.32) this becomes
Co =40 Cp, (1 + p’) + MCr — uCy + to Cp, - W
=30 Cp, (1 + 3’ + ACr — uCy (5.37)
NOW by Equation (5.17) the inflow factor A is a function of the
inclination «, of the tip-path plane, which clearly depends upon the
drag not only of the rotor but of the helicopter as a whole. Examining

the relationships for trimmed level flight, illustrated in Fig. 5.9, we
have approximately

T =W (5.38)
Ta, = H + D, (5.39)

D, being the parasite drag of the fuselage, including tail rotor, tail
plane and any other attachments. Thus

& = T T
_ Cy Dp
= on + W (5.40)
whence
)\. = )\.i + [ZEe
C D
N U (5.41)

Using this in Equation (5.37) the power coefficient is expressed in
the form

Cp=Co=xCr+10Cp (1 +31%)+p VD‘/ Cr (5.42)

which is seen to be the sum of terms representing the induced or
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Fig. 5.9 Forces in trimmed level flight.

lift-dependent drag, the rotor profile drag and the fuselage parasite
drag. The first of these had already been derived (Equation (5.10))
when considering the adaptation of momentum theory to forward
flight.

In practice both the induced and profile-drag power requirements
are somewhat higher than are shown in Equation (5.42), An
empirical correction factor k for the induced power was suggested
in Equation (5.11). For the profile-drag power the deficiency of the
analytical formula arises from neglect of:

(1) a spanwise component of drag (Fig. 5.8);

(2) a yawed-wing effect on the profile drag coefficient at azimuth
angles significantly away from 90° and 270°;

(3) the reversed flow region on the retreating side.

The first of these factors is probably the most important. They are
conventionally allowed for by substituting for the factor 3 in Equation
(5.42) an empirical, larger factor, k say. Studies by Bennett® and
Stepniewski* suggest that an appropriate value is between 4.5 and
4.7. Industrial practice tends to be based on a firm’s own experience:
thus a value commonly used by Westland Helicopters is 4.65.

With the empirical corrections embodied, the power equation
takes the form:

Co=xMkCr+toCp (1 +kp)+ H%CT (5.43)

This will be followed up in the chapter on helicopter performance
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(Chapter 7). In the present chapter we take our analytical study of
the rotor aerodynamics two stages further; firstly examining the
nature of the flapping coefficients ag, a; and by in terms of 8, . and p;
and secondly looking at some typical values of collective pitch 9,
inflow factor A and the flapping coefficients in relation to the
forward speed parameter p and the level of thrust coefficient Cr.

5.3.5 Flapping coefficients

The flapping motion is determined by the condition that the net
moment of forces acting on the blade about the flapping hinge is
zero. Referring back to Fig. 4.7, the forces on an element dy of
blade span, of mass m dy where m is the mass per unit span, are:

(1) the aerodynamic lift, expressed as an element of thrust dT,
acting on a moment arm y;

(2) a centrifugal force yQ?m dy, acting on a moment arm yB;

(3) an inertial force y fm dy, acting on a moment arm y;

(4) a blade weight moment, small in comparison with the rest and
therefore to be neglected.

These lead to the flapping moment relationship given in Equation
(4.2). Writing the aerodynamic or thrust moment for the time
being as M, we have

R 2 2 R o
Lﬁy dey+fo[3ymdy=MT

Assuming the spanwise mass distribution is uniform, m is constant
and the equation integrates to

BQR2miIR+ pmiR? = My (5.44) -

Substituting the first order Fourier expressions for § and f leads to
m Q2 R? ay = My (5.45)

Thus the aerodynamic moment Mt is invariant with azimuth angle 1.
If Iis written for the moment of inertia of the blade about its
hinge, that is to say

I = "2 dy = im R3 5.46
()ymy M (5.46)

we have

ap = IWT/I 92 (547)
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Now Mt may be written:
R (T 1 R "
= — =3 8 U — Up Up)y d
My foydydy -paCJO( T p Ur)y dy
so that, in dimensionless form,
1
ag = %’Y f (e MTZ — Up MT)I' dr (548)
0

where v is written for the quantity pac R*/I and is known as the
Lock number. Replacing uy and up by their definitions in Equation
(5.15) and (5.18), and substituting for § and df3/dy the right-hand
side of Equation (5.48) develops to:

1
5y f [8 (¥ + Lu?) — A + terms in siny
0
+ terms in cosjrdr
Since M risindependent of y, its value can be obtained by integrating
only the first part of this expression. Hence
! 2
ao =4y [ [0 (7 + i) — 1]ar
0
=1y [0 (1 + u?) — 40/3] (5.49)
This is for an untwisted blade (6 = constant 6,) or in the usual way
for a linearly twisted blade with 6 taken at three-quarters radius.
Also because of the independence of M the terms in siny and

those in cosy are each separately equatable to zero. These two
equations yield expressions for the first harmonic coefficients a,

and b, namely

186, — 20
a; = &(%e__(ll_uzr) (5.50)
b — 4 nay/3
A
Lt e (5.51)

The above three equations represent the classical definitions of
flapping coefficients, in which 6 and A have been defined relative to
the no-feathering plane. Equivalent though rather more complex
definitions relative to the tip-path plane are given by Johnson
p. 189 or Bramwell p. 157. Bramwell’s equations, whilst not com-
pletely general, are probably accurate enough for most purposes
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and are quoted here for ease of reference:

ap =4y [0 (1 + p?) — M rr + pna) (5.52)
ap = u 80 — 2 h)/(1 + 13 u?) (5.53)
by = 34 wag/(1 + ip?) (5.54)

The corresponding relationship for thrust coefficient is:

Cr = %oa [16 (1 + 33 p?) — 3y — ua | (5.55)

5.3.6 Typical numerical values

Calculations have been made to illustrate in broad fashion the
ways in which parameters discussed in the foregoing analysis vary
with one another and particularly with forward speed. For this
purpose the following values have been used:

rotor solidity o = (.08

blade lift slope a = 5.7

Lock number y = 8

aircraft weight ratio W/p(QR)?A = 0.008
parasite drag factor f/A = 0.016

The parasite drag factor is a form of expression in common use, in
which f is the ‘equivalent flat plate area’ defined by

D, = ip V¥ (5.56)

Dy, being the parasite drag and A the rotor disc area.

Figure 5.10 shows the variation of inflow factor A with advance
ratio u at two levels of thrust coefficient. A as defined in Equation
(5.17) is relative to the tip-path plane, so is denoted by Ay in the
diagram. The variation shows a minimum value at moderate u,
inflow being high at low p because the induced velocity is large and
high again at high u because of the increased forward tilt of the tip-
path plane required to overcome the parasite drag. The lower the
thrust coefficient, the more marked is the high p effect.

The corresponding variation of collective thrust angle 8, for C/
o = 0.1, is shown in the same diagram. The variations of 6 and A
are similar in character, as might be expected from Equation
(5.55).

Combination of Equations (5.17) and (5.55) leads, on elimination
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Fig. 5.10 Calculated values of At and 6 versus u

of A, to a direct relationship between Ct and 8 which, using the
chosen values of aircraft weight ratio and parasite drag factor in
the final term, is:

- 2 o 3w 3 s

_ 2 ICr + = 5.57
0 0aBCT+2Vh :Cr + 50 (5.57)

where B is a slowly decreasing function of u:
B=35(1+8Bu)+wGE-20) (5.58)

Note that when u is zero, B = 1 and v;/vy, = 1, so that we have
Equation (3.28) as previously derived for the hover. Figure 5.11
shows variations of 8 with C+ for different levels of u. The charac-
teristics at low and high forward speed are significantly different.
When u is zero or small the variation is non-linear, 6 increasing
rapidly at low thrust coefficient owing to the induced flow term
(the second expression in the equation) and more slowly at higher
Cr as the first term becomes dominant. At high u, however, the
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Fig. 5.11 Calculated values of Cy/o versus 6

induced velocity factor v;/vy, is so small that the second term becomes
negligible for all Cr, so the 8/Cy relationship is effectively linear.
The intercept on the 6 axis reflects the particular value of u while,
more interestingly, with i and o known the slope is a function only
of the lift slope ‘a’. This provides an experimental method for
determining ‘a’ in a practical case.

A final illustration of (Fig. 5.12) shows the flapping coefficients
a9, a1 and by as functions of u. These have been calculated using
Equations (5.52) to (5.54). The coning angle g varies only slightly
with u, being essentially determined by the thrust coefficient. It
may readily be shown in fact that a, is approximately equal to (6
Cr v)/(8 oa) which with our chosen numbers has the value 0.105°
or 6.0°. The longitudinal coefficient a; is approximately linear with
forward speed, showing however an effect of the increase of A at
high speed. The lateral coefficient b, is also approximately linear,
at about one third the value of a;. In practice b, at low speeds
depends very much on the longitudinal distribution of induced
velocity (assumed uniform throughout the calculations) and tends
to rise to an early peak as indicated by a broken line in the
diagram.
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6  Aerodynamic Design

6.1 Introductory

In this chapter are described some of the trends in aerodynamic
design which in the latter part of the twentieth century are making
the helicopter a considerably more efficient flying vehicle than it
formerly was. In earlier years the low power-to-weight ratio of
piston engines necessitated the use of large rotors to provide the
all-important vertical lift capability: both profile drag and parasite
drag were unavoidably high in consequence and forward speeds
were therefore so low as to consign the problems of refining either
the lift or drag performance to a low, even zero, priority. With the
adoption of gas-turbine engines, and an ever increasing list of
useful and important applications for helicopters, in both military
and civil fields of exploitation, forward-flight performance has be-
come a more lively issue, even to the point of encouraging com-
parisons with fixed-wing aircraft in certain specialized contexts (an
example is given in Chapter 7). Some improvements in aero-
dynamics stem essentially and naturally from fixed-wing practice.
A stage has now been reached at which these appear to be ap-
proaching, or even to have arrived at, optimum levels in the
helicopter application and therefore a substantial description here
is appropriate. Further enhancements, concerned with the funda-
mental nature of the rotor system, may yet emerge to full develop-
ment: one such is the use of higher harmonic control, which is
described briefly. In the concluding section an account is given of a

step-by-step method of defining the aerodynamic design parameters
of a new rotor system.
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6.2 Blade section design

In the design of rotor blade sections there is an a priori case for
following the lead given by fixed-wing aircraft. It could be said,
for instance, that the use of supercritical aerofoil sections for
postponing the drag-rise Mach number is as valid an objective for
the advancing blade of a rotor as for the wing of a high-subsonic
transport aircraft. Or again, the use of blade camber to enhance
maximum lift may be as valuable for the retreating blade as for a
fixed wing approaching stall. Having accepted, say, this latter prin-
ciple, there remains a problem of adapting it to the helicopter
environment: this calls for particularized research, a great deal of
which has been done in recent years.

The widely ranging conditions of incidence and Mach number
experienced by a rotor blade in forward flight are conveniently
illustrated by a ‘figure-of-eight’ diagram (Fig. 6.1(a)) which plots
these conditions for a particular station on the blade near the tip (» =
0.91 in the case shown) at a specified value of u. The hover
would be represented by a single point: as p is increased the figure-
of-eight expands, extending into regions of higher « (or C;) and
higher M.

Plotting on such a diagram the a—M loci of C;_and Mp (the
drag-rise Mach number) for a particular blade section, these being
obtained independently, as for example by two-dimensional section
tests in a wind tunnel, gives an indication of whether either blade
stall or drag divergence will be encountered in the rotor at the
particular level of p. The example in Fig. 6.1(b) relates to a
symmetrical, 12% thick, NACA 0012 section. It is seen that the
retreating-blade loop passes well into the stalled region and the
advancing-blade loop likewise into the drag-rise region.

NACA 0012 was the standard choice for helicopter blade sections
over many years. Modern sections embodying camber to increase
maximum lift have been developed in various series, of which the
‘VR’ Series in the USA and the ‘96’ Series in the UK are examples.
Results for a 9615 section are shown in Fig. 6.1(c). The figure-
of-eight now lies wholly within the C;_  locus, confirming an
improvement in lift performance. Additionally the high Mach
number drag rise now affects a much reduced portion of the
retreating-blade loop, and the advancing-blade loop not at all, so a
reduction in power requirement can be expected.
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Fig. 6.1 Figure-of-cight diagrams for a typical blade.

The evidence, though necessary, is not of itself sufficient, however.
To ensure acceptability of the cambered section for the helicopter
environment, additional aspects of a major character need to be
considered. One is the question of section pitching moments. The
use of camber introduces a nose-down Cy (pitching moment at
zero lift), which has an adverse effect on loads in the control
system. A gain in Cp_ _must therefore be considered in conjunction
with the amount of Cy; produced. One way of controlling the
latter is by the use of reflex camber over the rear of a profile.
Wilby' gives comparative results for a number of section shapes of
the ‘96 Series, tested in a wind tunnel under two-dimensional
steady-flow conditions. A selection of his results is reproduced in
Fig. 6.2, from which we can see that the more spectacular gains in
Cr ., (30% to 40%) tend to be associated with more adverse
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pitching moments, especially above about (.75 Mach number which
would apply on the advancing side of a rotor. Generally, therefore,
compromises must be sought through much careful section shaping
and testing. Moreover. whilst aiming to improve blade lift per-
formance for the retreating sector, care must be taken to see that
the profile drag is not increased, either at low Ci and high Mach
number for the advancing sector, or at moderate C; and moderate
Mach number for the fore and aft sectors which in a balanced
forward flight condition will carry the main thrust load.

Whilst static testing of this nature is very useful in a comparative
sense, it cannot be relied upon to give an accurate final value of
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Cy, ., because the stall of a rotor blade in action is known to be
dynamic in character, owing to the changes in incidence occurring
as the blade passes through the retreating sector. Farren? recorded
as long ago as 1935 that when an aerofoil is changing incidence, the
stalling angle and Cr,__ may be different from those occurring
under static conditions. Carta® in 1960 reported oscillation tests on
a wing with 0012 section suggesting that this dynamic situation
would apply in a helicopter context. Figure 6.3 shows a typical
result of Carta’s tests. When the aerofoil was oscillated through 6°
on either side of 12° incidence (just above the static stalling angle),
with a representative rotor frequency, a hysteresis loop in lift
coefficient was obtained, in which the maximum C; reached during
incidence increase was about 30% higher than the static level.

Many subsequent researchers, among them Ham*, McCroskey”,
Johnson and Ham® and Beddoes’, have contributed to the provision
of data and the evolution of theoretical treatments on dynamic stall
and in the process have revealed the physical nature of the flow,
which is of intrinsic interest. As blade incidence increases beyond
the static stall point, flow reversals are observed in the upper-
surface boundary layer but for a time these are not transmitted to
the outside potential flow. Consequently the lift goes on increasing
with incidence. Eventually, flow separation develops at the leading
edge (or it may be behind a recompression shock close to the
leading edge), creating a transverse vortex which begins to travel
downstream. As the vortex rolls back along the upper surface into
the mid-chord region, lift continues to be generated but a large
nose-down pitching moment develops owing to the redistribution
of upper surface pressure. Passage of the vortex beyond the trailing
edge results in a major breakdown of flow. Finally, when the
incidence falls below the static stall angle as the blade approaches
the rear of the disc, the flow reattaches at the leading edge and
normal linear lift characteristics are re-established.

Some further results for the RAE 9647 aerofoil section are
shown in Fig. 6.4, in this case from blade oscillation tests over four
different incidence ranges. As the range is moved up the incidence
scale, the hysteresis loop develops in normal-force coefficient
(representing Cy) and the pitching moment ‘break’ comes into
play. In practice it is the latter which limits the rotor thrust, by
reason of the large fluctuations in pitch-control loads and in blade
torsional vibrations which are set up. It is of interest to note that in

AERODYNAMIC DESIGN 75

1.5
C a X
|<_ ->| _______ Steady
1.0 -7 T
0.5
NACA 0012
Mean cX=12°
A x=z6°
0 5° 10° 15° 20°

x

Fig. 6.3 Lift hysteresis for oscillating blade (after Carta).

S b
e SN

&/
1.0
NN e |
o3 17 |7 R=3x I0%
v =0.098
° s Vs Vs 1 20

-0.1 \(

-0.2

SRR
N

Fig. 6.4 Development of lift hysteresis and pitching moment break as incidence range is
raiscd (after Wilby).



76 BASIC HELICOPTER AERODYNAMICS

the results shown the normal coefficient reached at the point of
pitching-moment break is about 1.8. Considerably higher values
may in fact be attained; however it is to be noted that this value on
the retreating blade is not particularly important in itself, since
what matters more is the amount of lift produced by the other
blades in the fore and aft sectors, where in a balanced rotor the
major contributions to thrust are made.

Writing in 1989, one sees a situation on blade section design still
capable of further development. So far the emphasis has been
placed on improving the lift capability of the retreating blade. As
the aspect of fuel economy in helicopter flight gains in importance,
the incentive grows to reduce blade profile drag, particularly for
the advancing sector. In this area there are probably improvements
to be had by following the lead given by fixed-wing aircraft in the
use of so-called supercritical wing sections. A further comment
putting the incentive into context is made in Chapter 7.

6.3 Blade tip shapes

The loading on a helicopter blade is highly concentrated in the
region of the tip, as has been seen (Fig. 2.12). It is unlikely that a
plain rectangular planform is the optimum shape for the task of
carrying this load and consequently investigations into tip design
are a feature of modern aerodynamic research. Since resultant
velocities in the tip region on the advancing blade are close to
Mach 1.0, it is natural to enquire whether sweepback can be
incorporated to delay the compressibility drag rise and thereby
reduce the power requirement at a given flight speed or alternatively
raise the maximum speed attainable. The answer is not so immedi-
ately obvious as in the case of a fixed wing, because a rotor blade
tip which at one moment is swept back relative to the resultant
airflow, in the next moment lies across the stream. In fact, however,
the gain from sweepback outweighs the loss, as is indicated in a
typical case by Wilby and Philippe® (Fig. 6.5): a large reduction in
Mach number normal to the leading edge is obtained over the rear
half of the disc, including a reduction in maximum Mach number
of the cycle (near y = 90°), at the expense of a small increase in
the forward sector (¢ = 130° to 240°). Reductions in power required
were confirmed in the case shown.
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Shaping the blade tip can also be used to improve the stalling
characteristics of the retreating blade. A particular all-round
solution devised by Westland Helicopters is pictured in Fig. 6.6.
The principal features are:

(1) approximately 20° sweepback of the outboard 15% of blade
span;

(2) a forward extension of the leading edge in this region, to
safeguard dynamic stability;

(3) a sharply swept outer edge to promote controlled vortex
separation and thereby delay the tip stall.

Wind tunnel tests (static conditions) showed this last effect to have
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Fig. 6.6 Westland development blade tip.

been achieved in remarkable degree (Fig. 6.7). Subsequently the
tip proved highly successful in flight and was used on a version of
the Lynx helicopter which captured the world speed record (see
Chapter 7).

6.4 Parasite drag

Parasite drag — drag of the many parts of a helicopter, such as the
fuselage, rotorhead, landing gear, tail rotor and tail surfaces, which
make no direct contribution to main rotor lift — becomes a domi-
nant factor in aircraft performance at the upper end of the forward
speed range. Clearly the incentive to reduce parasite drag grows as
emphasis is placed on speed achievement or on fuel economy.
Equally clearly, since the contributing items all have individual
functions of a practical nature, their design tends to be governed
by practical considerations rather than by aerodynamic desiderata.
Recommendations for streamlining, taken on their own, tend to
have a somewhat hollow ring. What the research aerodynamicist
can and must do, however, is provide an adequate background of
reliable information which allows a designer to calculate and
understand the items of parasite drag as they relate to his particular
requirement and so review his options.
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Such a background has been accumulated through the years and
much of what is required can be obtained from review papers, of
which an excellent example is that of Keys and Wiesner’. These
authors have provided, by means of experimental data presented
non-dimensionally, values of fuselage shape parameters that serve
as targets for good aerodynamic design. These include such items
as corner radii of the fuselage nose-section, fuselage cross-section
shape, afterbody taper and fuselage camber. Guidelines are given
for calculating the drag of engine nacelles and protuberances such
as aerials, lights and handholds. Particular attention is paid to the
trends of landing-gear drag for wheels or skids, exposed or faired.
Obviously the best solution for reducing the drag of landing gear is
full retraction, which however adds significantly to aircraft weight.
Keys and Wiesner have put this problem into perspective by means
of a specimen calculation, which for a given mission estimates the
minimum flight speed above which retraction shows a net benefit.
The longer the mission, the lower is the break-even speed.

The largest single item in parasite drag is normally the rotorhead
drag, known also briefly as hub drag. This relates to the driving
mechanism between rotor shaft and blades, illustrated in Fig. 4.5,
and includes as drag components the hub itself, the shanks linking
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hub to blades, the hinge and feathering mechanisms and the control
rods. Conventionally all these components are non-streamlined
parts creating large regions of separated flow and giving a total
drag greater than that of the basic fuselage, despite their much
smaller dimensions. The drag of an articulated head may amount
to 40% or 50% of total parasite drag, that of a hingeless head to
about 30% . The application of aerodynamic fairings is possible to a
degree, the more so with hingeless than with articulated heads, but
is limited by the relative motions required between parts.
Sheehy'” conducted a review of drag data on rotorheads from
American sources and showed that projected frontal area was the
determining factor for unfaired heads. Additionally, allowance had
to be made for the effects of local dynamic pressure and head—
fuselage interference, both of which factors increased the drag.
Fairings needed to be aerodynamically sealed, especially at the
head—fuselage junction. The effect of head rotation on drag was
negligible for unfaired heads and variable for faired heads.
Picking up the lines of Sheehy’s review, a systematic series of
wind tunnel model tests was made at Bristol University, UK!!, in
which a simulated rotorhead was built up in stages. Figure 6.8
shows the model in the University low-speed tunnel and in Fig. 6.9

E

Fig. 6.8 Analysis of rotorhcad drag: model in wind tunncl.
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the drag results are summarized. An expression for rotorhead drag

D emerges in the form
D_ac,a, (1—
d0 4o

with the following definitions.

qo is the free stream dynamic pressure ip V,°. g is the local
dynamic pressure at the hub position, measured in absence of the
rotorhead. In a general case, the local supervelocity and hence ¢
can be calculated from a knowledge of the fuselage shape.

Cp is the effective drag coefficient of the bluff shapes making up
the head. This may be assumed to be the same as for a circular
cylinder at the same mean Reynolds number. For the results of
Fig. 6.9 it is seen that a value Cp = 1.0 fits the experimental data

+
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well, apart from an analytically interesting but unreal case of the
hub without shanks, where the higher Reynolds number of the
large diameter unit is reflected in a lower Cp value. In default of
more precise information it is suggested that the value Cp = 1.0
should be used for general estimation purposes. One might expect
the larger Reynolds number of a full scale head to give a lower
drag coefficient but the suggestion rests to a degree on Sheehy’s
comment that small scale model tests tend to undervalue the full
scale drag, probably because of difficulties of accurately modelling
the head details.

A, is the projected frontal area of the head, as used by Sheehy.
A, represents a relieving factor on the drag, illustrated in Fig. 6.9
and resulting from the fact that the head is partly immersed in the
fuselage boundary layer. In magnitude A, turns out to be equal to
the projected area contained in a single thickness of the boundary
layer as estimated in absence of the head. The last quantity A
represents in equivalent area terms the flow spoiling effect of the
head on the canopy. This is a function jointly of the separation
distance of the blade shanks above the canopy (the smaller the
separation, the greater the spoiling) and the taper ratio of the
canopy afterbody (the sharper the taper, the greater the spoiling).
The ratio A;/A, may be estimated from a chart given in Fig. 6.10
constructed by interpolation from the results for different canopies
tested.

In light of the evidence quoted, the situation on rotorhead drag
may be summed up in the following points.

(1) The high drag of unfaired rotorheads is explained in terms of
exposed frontal area and interference effects and can be
calculated approximately for a given case.

(2) Hingeless systems have significantly lower rotorhead drag than
articulated systems.

(3) The scope for aerodynamic fairings is limited by the
mechanical nature of the systems but some fairings are
practical, more especially with hingeless rotors, and can give
useful drag reductions.

(4) The development of head design concepts having smaller
exposed frontal areas carries considerable aerodynamic
benefit.
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6.5 Rear fuselage upsweep

A special drag problem relates to the design of the rear fuselage
upsweep for a helicopter with rear loading doors, where the width
across the back of the fuselage needs to be more or less constant
from bottom to top. In the 1960s, experience on fixed-wing aircraft'?
revealed that where a rear fuselage was particularly bluff, drag was
difficult to predict and could be considerably greater than would
have been expected on a basis of classical bluff-body flow separation.
Light was thrown on this problem in the 1970s by T. Morel'>:'*:
studying the drag of hatchback automobiles he found that the flow
over a slanted base could take either of two forms (1) the classical
bluff-body flow consisting of cross-stream eddies or (2) a flow
characterized by streamwise vortices. Subsequently the problem
was put into a helicopter context by Seddon'?, using wind tunnel
model tests of which the results are summarized in Figs 6.11 to
6.14. The combination of upsweep angle of the rear fuselage and
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Fig. 6.11 Types of flow from rear fuselage upsweep with associated critical drag change.
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incidence of the helicopter to the airstream determines the type of
flow obtained. At positive incidence eddy flow persists. As incidence
is decreased (nose going down as in forward flight) a critical angle
is reached at which the flow changes suddenly to the vortex type
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and the drag jumps to a much higher level (Fig. 6.11), which is
maintained for further incidence decrease. If incidence is now
increased the reverse change takes place, though at a less negative
incidence than before. The high drag corresponds to a high level of
suction on the inclined surface, which is characteristic of the vortex
flow. The suction force also has a downward lift component which
is additionally detrimental to the helicopter. The type of flow is
similar to that found on aerodynamically slender wings (as for
example on the supersonic Concorde aircraft) but there the results
are favourable because the lift component is upwards and the drag
component is small except at high angle of attack.

The effect of changing upsweep angle is shown in Fig. 6.12.
Here each curve is for a constant fuselage incidence. With upsweep
angles near 90°, eddy flow exists as would be expected. At a point
in the mid-angle range of upsweep, depending on incidence, the
flow change occurs, accompanied by the drag increase. As upsweep
angle is further reduced the drag falls progressively but there is a
significant range of angle over which the drag is higher than in
eddy flow.

As an aid to design, the situation can be presented in the form of
an o — ¢ diagram, ¢ being here the upsweep angle. The full line in
Fig. 6.13 is the locus of the drag jump when incidence is decreasing. If
required, a locus can be drawn alongside to represent the situation
with incidence increasing. Below the critical boundary is the zone
of excess drag. From such a diagram a designer can decide what
range of upsweep angles is to be avoided for his aircraft. Of
associated interest is the broken line shown: this marks an estimated
boundary between vortex flow and streamlined flow, that is when
no separation occurs at the upsweep. General considerations of
aerodynamic streamlining suggest that the flow will remain attached
if the upswept surface is inclined at not more than 20° to the
direction of flight, in other words when

d — a < 20°

The final diagram Fig. 6.14 shows that if vortex flow occurs
naturally, it can be prevented by an application of short, closely-
spaced deflectors on the fuselage side immediately ahead of the
upswept face. The action is one of preventing the vortex from
building up by cutting it off at multiple points along the edge.
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6.6 Higher harmonic control

In forward flight with a rotor operating under first-order cyclic
control, a considerable proportion of the lifting capacity of the
blades has been sacrificed, as we have seen in Chapter 4, in order
to balance out the roll tendency. The lift carried in the advancing
sector is reduced to very low level, while the main load is taken in
the fore and aft sectors but at blade incidences (and hence lift
coefficients) well below the stall. This can be seen explicitly in a
typical figure-of-eight diagram, for example that at Fig. 6.1(c).
Little can be done to change the situation in the advancing sector
but in the fore and aft sectors, where the loading has only a minor
effect on the roll problem, the prospect exists of producing more
lift without exceeding stalling limits in the retreating sector. In
principle the result can be achieved by introducing second and
possibly other harmonics into the cyclic control law. The concept is
not new: Stewart in 1953 proposed the use of second harmonic
pitch control, predicting an increase of at least 0.1 in available
advance ratio. Up to the present time (1980s), however, the potential
of higher harmonic control has not received general development.
Overall the problem is not a simple one, as it involves the fields of
control systems and rotor dynamics at least as extensively as that of
aerodynamics. Moreover the benefits could until now be obtained
by less complicated means, such as increasing tip speed or blade
area. As these other methods reach a stage of diminishing returns,
the attraction of higher harmonic control is enhanced by comparison.
Also, modern numerical methods allow the rotor performance to
be related to details of the flow and realistic blade aerodynamic
limitations, so that the prediction of performance benefits is much
more secure than it was.

A calculation provided by Westland Helicopters illustrates the
aerodynamic situation. The investigation consisted in comparing
thrust performances of two rotors with and without second harmonic
control, of quite small amplitude — about 1.5° of blade incidence.
Local lift conditions near the tip were monitored round the azimuth
and related to the Cp—M boundary of the blade section. The
results shown in Fig. 6.15 indicate that second harmonic control
gave an advantage of at least 0.2 in lift coefficient in the middle
Mach number region appropriate to the disc fore and aft sectors.
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This translated into a 28.4% increase in thrust available for the
same retreating-blade boundary. A further advantage was that the
rotor with second harmonic control required a 22% smaller blade
area than the datum rotor, which, whether exploited as a reduction
say from six blades to five or as a weight saving at equal blade
numbers, would represent a considerable benefit in terms of com-
ponent size and mission effectiveness.

6.7 Aerodynamic design process

To end this chapter we turn from research topics to the practical
problem of determining the aerodynamic design of a rotor for a
new helicopter project. A step-by-step process enables the designer
to take into account the many and varied factors that influence his
choice — aircraft specification. limitations in hover and at high
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forward speed, engine characteristics at various ratings, vibratory
loads, flyover noise and so on. The following exposition comes
from an unpublished instructional document kindly supplied by
Westland Helicopters.

The basic requirement is assumed to be for a helicopter of
moderate size, payload and range, with good manoeuvrability,
robust and reliable. Maximum flight speed is to be at least 80 m/s
and a good high-temperature altitude performance is required,
stipulated as 1200 metres at ISA + 28 K. Prior to determining the
rotor configuration, a general study of payload and range diagrams,
in relation to the intended roles, leads to a choice of all-up weight,
namely 4100kG. Empty weight is set at 55% of this, leaving 45%
disposable weight, of which it is assumed one half can be devoted
to fuel and crew. Consideration of various engine options follows
and a choice is made of a pair of engines having a continuous
power rating at sea level ISA of 560kW each, with take-off and
contingency ratings to match. Experience naturally plays a large
part in the making of these choices, as indeed it does throughout
the design process.

First choice for the rotor is the tip speed: this is influenced by the
factors shown in Fig. 6.16. The tip Mach number in hover is one
possible limitation. Allowing a margin for the fact that in high
speed forward flight a blade at the front or rear of the disc will be
at the same Mach number as in hover but at a higher lift coefficient,
corresponding to the greater power required, the hover tip speed
limit is set at Mach 0.69 (235 m/s). On the advancing tip in forward
flight the lift coefficient is low and the Mach number limit can be
between 0.8 and 0.9: recognizing that an advanced blade section
will be used, the limit is set at 0.88. Flyover noise is largely a
function of advancing tip Mach number and may come into this
consideration. High advance ratio brings on rotor vibratory loads
and hence fuselage vibration, so a limiting u for normal maximum
speed is set at 0.4. Lastly the maximum speed called for is at least
80 m/s. It is seen that to satisfy these requirements constrains the
rotor tip speed to about 215m/s, the targetted maximum flight
speed being 160 knots (82 m/s).

Next to be decided is the blade area. The area required increases
as design speed increases, because the retreating blade operates at
decreasing relative speed while its lift coefficient is stall-limited.
The non-dimensional thrust coefficient C/o is limited as shown in
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Fig. 6.16 Determination of tip speed for new rotor design.

Fig. 6.17(a) — see Equation (3.39). Writing

CT _ %% R
0 pA (QRY? Nc
w
~ pNcR (QR)? (6.2)

we have for the total blade area NcR,
W Cr
NcR = — .
o = ;] )
From a knowledge of tip speed (R2R) and aircraft weight the blade
area diagram, Fig. 6.17(b), is constructed. The design maximum
speed then corresponds to a total blade area of 10m?. Note that
use of the advanced blade section results in about 10% saving in
blade area, which translates directly into rotor overall weight.
Choice of the rotor radius requires a study of engine performance.
For the vertical axis in Fig. 6.18 specific power loading (kW/kg)
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Fig. 6.17 Determination of blade area for ncw rotor design.

from the engine data is translated into actual power in W for the
4100kG helicopter. Both twin-engine and single-engine values are
shown, in each case for take-off, continuous and contingency ratings.
Curves of power required for various hover conditions are plotted
in terms of disc loading (kG/m?) on the established basis (Chapter
2) that induced power is proportional to the square root of disc
loading. The four curves shown, reading from the lowest upwards,
are:

(1) ideal induced power at sea level ISA, given by

w
=W |2 4

w being the disc loading;
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Fig. 6.18 Determination of rotor radius for new design.

(2) actual total power at sea level ISA, scaled up from induced
power to include blade profile power, tail rotor power, trans-
mission loss, power to auxiliaries and an allowance for excess
of thrust over weight caused by downwash on the fuselage;

(3) actual total power calculated for 1200m altitude at ISA
+ 28°%

(4) total power at sea level necessary to meet the requirement at
(3), taking into account the decrease of engine power with
increasing altitude and temperature.

A design point for disc loading can now be read off corresponding
to the twin-engine take-off power rating (or using the contingency
rating if preferred). From disc loading the blade radius follows,
since

w w
=TT (65)
hence
124
R=_" (6.6)

In the present example the selected disc loading is 32kG/m? and
the corresponding blade radius is 6.4 m. The single-engine capability
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has also to be considered. It is seen that on contingency rating the
helicopter does not have quite enough power from a single engine
to hover at sea level ISA and full all-up weight. The deficit is small
enough, however, to ensure that a good fly-away manoeuvre would
be possible following an engine failure; while at 90% all-up weight,
hovering at the single-engine contingency rating is just possible.
Undetermined so far is the number of blades. From a knowledge
of the blade radius and total blade area, the blade aspect ratio is
given by
R R°N

¢ NcR

=41N (6.7)

Using three blades, an aspect ratio 12.3 could be considered low
from a standpoint of three-dimensional effects at the tip. Five
blades, giving aspect ratio 20.5, could pose problems in structural
integrity and in complexity of the rotor hub and controls. Four
blades is therefore the natural choice. Consideration of vibration
characteristics is also important here: it is concluded that whereas
with three blades vibration levels could be high, the advantage of
five blades over four would not be very significant, so the choice of
four blades is acceptable.

The choice between an articulated and a hingeless rotor is mainly a
matter of dynamics and relates to flight handling criteria for the
aircraft. A criterion often used is a time constant in pitch or roll
when hovering; this is the time required to reach a certain per-
centage — 60% or over — of the final pitch or roll rate following an
application of cyclic control. For the case in point, recalling the
requirement for good manoeuvrability, low time constants are
targetted. It is then found that, using flapping hinges with about
4% offset, the targets cannot be reached except by mounting the
rotor on a very tall shaft, which is incompatible with the stated
aims for robustness and compactness. A hingeless rotor produces
greater hub moments, equivalent to flapping offsets 10% and more,
and is therefore seen as the natural choice.
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7  Performance

7.1 Introductory

The preceding chapters have been mostly concerned with estab-
lishing the aerodynamic characteristics of the helicopter main rotor.
We turn now to considerations of the helicopter as a total vehicle.
The assessment of helicopter performance, like that of a fixed-wing
aircraft, is at bottom a matter of comparing the power required
with that available, in order to determine whether a particular
flight task is feasible. The number of different performance calcu-
lations that can be made for a particular aircraft is of course
unlimited, but aircraft specification sets the scene in allowing
meaningful limits to be prescribed. A typical specification for a
new or updated helicopter might contain the following requirements,
exclusive of emergency operations such as personnel rescue and
life saving.

(1) Prescribed missions, such as a hover role, a payload/range task
or a patrol/loiter task. More than one are likely to be called
for. A mission specification leads to a weight determination for
payload plus fuel and thence to an all-up weight, in the standard
fashion illustrated in Fig. 7.1.

(2) Some specific atmosphere-related requirements, for example
the ability to perform the mission at standard (ISA) temperature
plus, say, 15° the ability to perform a reduced mission at
altitude; the ability to fly at a particular cruise speed.

(3) Specified safety requirements to allow for an engine failure.

(4) Specified environmental operating conditions, such as to and
from ships or oil rigs.

(5) Prescribed dimensional constraints for stowage, air portability
etc.

(6) Possibly a prescribed power plant.
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Calculations at the flexible design stage are only a beginning; as a
design matures, more will be needed to check estimates against
actual performance, find ways out of unexpected difficulties, or
enhance achievement in line with fresh objectives.

Generally, in a calculation of achievable or required performance,
the principal characteristics to be evaluated are:

(1) power needed in hover

(2) power needed in forward flight

(3) envelope of thrust limitations imposed by retreating-blade stall
and advancing-blade compressibility drag rise.

The following sections concentrate on these aspects, using simple
analytical formulae, mostly already derived. Factor (3) must always
be kept under review because the flight envelope so defined often
lies inside the power limits and is thus the determining factor on
level flight speed and manoeuvre capability.

A brief descriptive section is included on more accurate per-
formance estimation using numerical methods. The chapter con-
cludes with three numerical examples: the first concerns a practical
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achievement from advanced aerodynamics, the others are hypo-
thetical relating to directions in which advanced aerodynamics may
lead in the future.

7.2 Hover and vertical flight

The formula relating thrust and power in vertical flight, according
to blade element theory, was derived in Equation (3.47). The
power required is the sum of induced power, related to blade lift,
and profile power, related to blade drag. Converting to dimensional
terms the equation is

P = k(Ve+ )T + {Cp, p Ap Vo’ (7.1)

where in the induced term, using momentum theory as in Equation
(2.10), one may write

Vet =ver e + oo (12)
In the profile term, A,, is the total blade area, equal to 0A, and Vy
is the tip speed, equal to QR. This term is independent of the
climb speed V., that is to say the profile drag power is the same in
climb as in hover.

If in Equation (7.1) the thrust is expressed in newtons, velocities
in m/s, area in m? and air density in kg/m®, the power is then in
watts or, when divided by 1000, in kW. Using imperial units, thrust
in Ib, velocities in ft/sec, area in ft* and density in slugs/ft* lead to
a power in Ibft/sec or, on dividing by 550, to HP.

To make a performance assessment, Equation (7.1) is used to
calculate separately the power requirements of main and tail rotors.
For the latter, V, disappears and the level of thrust needed is such
as to balance the main rotor torque in hover: this requires an
evaluation of hover trim, based on the simple equation

T = Q (7.3)

where Q is the main rotor torque and ¢ is the moment arm from
the tail rotor shaft perpendicular to the main rotor shaft. The tail
rotor power may be 10—15% of main rotor power. To these two
are added allowances for transmission loss and auxiliary drives,
perhaps a further 3%. This leads to a total power requirement,
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Preq say, at the main shaft, for a nominated level of main rotor
thrust or vehicle weight. The power available, P,, say, is ascertained
from engine data, debited for installation loss. Comparing the two
powers determines the weight capability in hover, out of ground
effect (OGE), under given ambient conditions. The corresponding
capability in ground effect (IGE) can be deduced using a semi-
empirical relationship such as Equation (2.18). The aircraft ceiling
in vertical flight is obtained by matching P.q and P,, for nominated
weights and atmospheric conditions. The difference in induced
power for climbing at V. and for hover is the incremental power
required to climb, which may be written:

[% : ( i A> 2pA]
KT [;Vc 2\/ . (7.4)

Knowing the incremental power available the climb speed can
be calculated iteratively. For low rates of climb it is seen that,
approximately,

Ve = 2AP

e (7.5)

which, if k is given a value 1.15 and T is assumed to 1.025W (to
allow for fuselage download), approximates to
AP

Ve = 1.7 W (7.6)
This result was foreshadowed at Equation (2.12) where, using only
the simple momentum theory, the numerical factor was 2. That a
factor greater than 1.0 emerges is because for a given thrust the
induced velocity v; is reduced owing to an increase in rotor inflow
caused by climbing vertically. As rate of climb increases the power
is increasingly determined by the climb work term TV, so that at
high climb rates Equation (7.5) is replaced by

V_AP

which with our chosen empirical values gives
V. = 0.85 AP (7.8)

w
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The two-to-one variation in factor between zero climb rate and a
high climb rate (say 6000 ft/min) is typical. Stepniewski and Keys
(Vol. 11, p. 55) suggest a linear variation between the two extremes.
It should be borne in mind, however, that at low rates of either
climb or descent, vertical movements of the tip vortices relative to
the disc plane are liable to change the power relationships in ways
which cannot be reflected by momentum theory and which are
such that the power relative to that in hover is actually decreased
initially in climb and increased initially in descent. These effects,
which have been pointed out by Prouty', were mentioned in
Chapter 2. Obviously in such situations Equation (7.4) and the
deductions from it do not apply.

7.3 Forward level flight

The power-thrust relationship for level flight was derived in Chapter
5 and is given in idealized form in Equation (5.42), or with empirical
constants incorporated in Equation (5.43). Generally we assume
the latter form to be the more suitable for practical use and indeed
to be adequate for most preliminary performance calculation. The
equation shows the power coefficient to be the linear sum of
separate terms representing, respectively, the induced power (rotor-
lift dependent), profile power (blade-section drag dependent) and
parasite power (fuselage-drag dependent). It is in effect an energy
equation, in which each term represents a separately identifiable
sink of energy, and might have been calculated directly as such. In
dimensional terms we have

2
P = Ky, T + éC’D0 pAb VT3 [1 + k (%) ] + %p V3f (79)
T
in which Vr is the rotor tip speed, V the forward-flight speed and f
the fuselage-equivalent flat-plate area, defined in Equation (5.56).
The induced velocity v; is given according to momentum theory by
Equation (5.5) and may be written in the form

w2 = — W2+ WV + &TI2pA)} (7.10)

Allowances should be added for tail rotor power and power to
transmission and accessories: collecting these together in a miscel-
laneous item, the total is perhaps 15% of P at V = 0 (Section 7.2)
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and half this, say 8%, at high speed. Otherwise, if the evidence is
available, the items may be assessed separately. The thrust 7 may
be assumed equal to the aircraft weight W for all forward speeds
above 5m/s (10 knots).

A typical breakdown of the total power as a function of flight
speed is shown in Fig. 7.2. Induced power dominates the hover but
makes only a small contribution in the upper half of the speed
range. Profile power rises only slowly with speed unless and until
the compressibility drag rise begins to be shown at high speed.
Parasite power, zero in the hover, increases as V> and is the largest
component at high speed, contributing about half the total. As a
result of these variations the total power has a typical ‘bucket’
shape, high in the hover falling to a minimum at moderate speed
and rising rapidly at high speed to levels above the hover value.
Except at high speed, therefore, the helicopter uses less power in
forward flight than in hover.

Charts are a useful aid for rapid performance calculation. If
power is expressed as P/, where O is the relative air density at
altitude, a power carpet can be constructed giving the variation of
P/d with W/8 and V. Figure 7.3 shows an example, in which for
convenience the carpet is presented in two parts, covering the low
and high speed ranges. When weight, speed and density are known,
the power required for level flight is read off directly.
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Fig. 7.2 Typical power breakdown for forward level flight.
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Fig. 7.3 Power carpets for rapid calculation.

101




102 BASIC HELICOPTER AERODYNAMICS

7.4 Climb in forward flight

As a first approximation let us assume that for climbing flight the
profile power and parasite power remain the same as in level flight
and only the induced power has to be reassessed. The forced
downflow alleviates the v; term but the climb work term, 7T- Ve,
must be added. In coefficient form the full power equation is now:

Cp=x Mk Cr + 40Cp (1 + k p?) + 4? 1 Tk Cr (7.11)
The usual condition for calculating climb performance is that of
minimum-power forward speed. Here v; is small compared with V,
its variation from level flight to climb can be neglected and the
incremental power A P required for climb is simply 7 V.. Thus the
rate of climb is

V.= APIT (7.12)

The result is a useful approximation but requires qualification on
the grounds that since climbing increases the effective nose-down
attitude of the fuselage, the parasite drag may be somewhat higher
than in level flight. Also, because the main rotor torque is increased
in climb — Equation (7.11) ~ an increase in tail rotor power is
needed to balance it. Some of the incremental power available is
absorbed in overcoming these increases and hence the climb rate
potential is reduced, perhaps by as much as 30%. A further effect
is that the increase in drag moves the best climb speed to a
somewhat lower value than the level flight minimum power speed.

For a given aircraft weight the incremental power available for
climb decreases with increasing altitude, mainly because of a
decrease in the engine power available. When the incremental
power runs out at best climb speed the aircraft has reached its
absolute ceiling at that weight. In practice, as Equation (7.12)
shows, the absolute ceiling can only be approached asymptotically
and it is normal to define instead a service ceiling as the height at
which the rate of climb has dropped to a stated low value, usually
about 0.5 m/s (100 ft/min). Increasing the weight increases the power
required at all forward speeds and thereby lowers the ceiling.
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7.5 Optimum speeds

The bucket shape of the level-flight power curve allows the ready
definition of speeds for optimum efficiency and safety for a number
of flight operations. These are illustrated in Fig. 7.4. The minimum-
power speed (A) allows the minimum rate of descent in autorotation.
It is also, as discussed in the previous section, the speed for
maximum rate of climb, subject to a correction to lower speed (A")
if the parasite drag is increased appreciably by climbing. Subject to
a further qualification, point A also defines the speed for maximum
endurance or loiter time. Strictly the endurance relates directly to
the rate of fuel usage, the curve of which, while closely similar to,
is not an exact copy of the shaft-power curve, owing to internal
fuel consumption within the engine: the approximation is normally
close enough to be acceptable.

Maximum glide distance in autorotative descent is achieved at
speed B, defined by a tangent to the power curve from the origin.
Here the ratio of power to speed is a minimum: the condition
corresponds to that of gliding a fixed-wing aircraft at its maximum
lift-to-drag ratio. Point B 1s also the speed for maximum range,
subject to the fuel-flow qualification stated above. This is for the
range in zero wind: in a headwind the best-range speed is at B,
obtained by striking the tangent from a point on the speed axis
corresponding to the wind strength. Obviously, for a tailwind the
tangent is taken from a point on the negative speed axis, leading to
a lower best-range speed than B.

7.6 Maximum level speed

The maximum speed attainable in level flight is likely to be limited
by the envelope of retreating-blade stall and advancing-blade drag
rise (Section 7.7). If and when power limited, it is defined by the
intersection of the curves of shaft power required and shaft power
available, (C) in Fig. 7.4. In the diagram the power available has
been assumed to be greater than that required for hover (out of
ground effect) and, typically, to be nearly constant with speed,
gaining a little at high speed from the effect of ram pressure in the
engine intakes.
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Fig. 7.4 Optimum speeds and maximum speed.

Approaching maximum speed, the power requirement curve is
rising rapidly owing to the V? variation of parasite drag. For a
rough approximation one might suppose the sum of the other
components, induced drag, profile drag and miscellaneous additional
drag. to be constant and equal to, say, half the total. Then at
maximum speed, writing P, for the parasite power, we have

P'(l\" = 2 Pp = p V3mzlx f (7'13)

whence

Vmax = (PdV'/pf)l/3 (7'14)

For a helicopter having 1000 kW available power, with a flat-plate
drag area 1m?, the top speed at sea level density would by this
formula be 93.4m/s (181 knots).

Increasing density altitude reduces the power available and may
either increase cor decrease the power required. Generally the
reduction of available power dominates and V,,, decreases. In-
creasing weight increases the power required (through the induced
power P;) without changing the power available, so again V. is
reduced.
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7.7 Rotor limits envelope

The envelope of rotor thrust limits is the outcome of operation on
the blades of stall effects at high angle of incidence and compress-
ibility effects at high Mach number. Usually the restrictions occur
within the limits of available power. The nature of the envelope is
sketched in Fig. 7.5. In hover, conditions are uniform around the
azimuth and blade stall sets a limit to the thrust available. As
forward speed increases, maximum thrust on the retreating blade
falls because of the drop in dynamic pressure (despite some increase
in maximum lift coefficient with decreasing resultant Mach number)
and this limits the thrust achievable throughout the forward-speed
range. By the converse effect, maximum thrust possible on the
advancing side increases but is unrealizable because of the retreating-
blade restriction. Then at higher speeds, as the advancing-tip Mach
number approaches 1.0, its lift becomes restricted by shock-induced
flow separation, leading to drag or pitching moment divergence,
which eventually limits the maximum speed achievable. Thus the
envelope comprises a limit on thrust from retreating-blade stall
and a limit on forward speed from advancing-blade Mach effects.
Without the advancing-blade problem, the retreating-blade stall
would itself eventually set a maximum to the forward speed, as the
figure-of-eight diagrams in Fig. 6.1 show.

Calculation of the limits envelope is best done by computer,
allowing the inclusion of sophisticated factors. natural choices

Advancing blade
Thrust
limits
Retreating
blade
0 Advance ratio M

Fig. 7.5 Naturc of rotor thrust limits.
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among which are a non-uniform induced velocity distribution, a
compressibility factor on lift slope (usually 1/ where p = /(1 —
M?), M being the blade section Mach number) and a representation
of blade dynamic stall characteristics.

An example of the way in which the limits envelope can dominate
performance issues is given later in Section 7.11.

7.8 Accurate performance prediction

The ability to deploy computer methods in performance calculation
has been a major factor in the rapid development of helicopter
technology since the Second World War. Results may often not be
greatly different from those derived from the simple analytical
formulae but the fact that the feasibility of calculation is not
dependent upon making a large number of challengeable assumptions
is important in pinning down a design, making comparisons with
flight tests or meeting guarantees. So it is that commercial organiz-
ations and research centres are equipped nowadays with computer
programmes for use in all the principal phases of performance
calculation — hover characteristics, trim analysis, forward-flight
performance, rotor-thrust limits and so on.

It may be noted en passant that performance calculation is gener-
ally not the primary factor determining the need for numerical
methods. The stressing of rotor blades makes a greater demand for
complexity in calculation. Another highly important factor is the
need for quantification of handling characteristics, as for example
to determine the behaviour of a helicopter flying in a bad aero-
dynamic environment.

Within the realm of performance prediction are contained many
sub-items, not individually dominant but requiring detailed assess-
ment if maximum accuracy is to be achieved. One such sub-item is
parasite drag, in toto an extensive subject, as with fixed-wing
aircraft, about which not merely a whole chapter but a whole book
could be written. For computation purposes the total drag needs to
be broken down into manageable groupings, among which are
streamlined and non-streamlined components, fuselage angle of
attack, surface roughness, leakage and cooling-air loss. Maximum
advantage must be taken of review literature, as compiled by
Hoerner?, Keys and Wiesner® and others, and of background
information on projects similar to the one in hand.
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Once a best estimate of parasite drag has been made, the accuracy
problem in power calculation devolves upon the induced and profile
items, as Equation (7.11) shows, together with the additional sub-
items of tail-rotor power, transmission loss and power to auxiliaries.
Improving the estimation of induced and profile power comes
down to the ability to use a realistic distribution of induced velocity
over the disc area and the most accurate blade section lift and drag
characteristics, including dynamic effects. This information has to
be provided separately; the problem in the rotor is then to ascertain
the angles of attack and Mach numbers of all blade sections, these
varying from root to tip and round the azimuth as the blade
rotates. That is basically what the focal computer programmes do.
Iterative calculations are normally required among the basic
equations of thrust, collective and cyclic pitch and the flapping
angles. Starting with, say, values of thrust and the flapping coef-
ficients, corresponding values of the pitch angle, collective and
cyclic, can be calculated; the information then allows the blade
angles and local Mach numbers to be determined, from which the
lift forces can be integrated into overall thrust for comparison with
the value initially assumed. When the iterations have converged,
the required output data — power requirement, thrust limits, etc. —
can be ascertained.

These sketchy notes must suffice for the purposes of the present
book. Going more deeply into the subject would immerse one
immediately into copious detail, for which there is no place here.
An excellent and thorough exposition of the total process of per-
formance prediction is available in Stepniewski and Keys, Volume
I1, to which the reader who wishes to come to grips with the whole
computational complex is referred.

7.9 A world speed record

In the context of advanced rotor-blade design as discussed in
Chapter 6, and as an example of realized performance, it is of
interest to record the capture of the world speed record for heli-
copters by a Westland Lynx aircraft in August 1986. The incentive
to make the attempt was provided by the results of a programme
of test flying on the Lynx fitted with an experimental set of blades
in which lift-enhancing aerofoil sections of the RAE ‘96’ series
(Section 6.2) were used throughout the length of the blade, together
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with the Westland tip design (Section 6.3) combining a sweepback
benefit on local Mach number with delaying the tip stall. The tests
showed the flight envelope to be improved by the equivalent of
35% to 40% increase in blade area and made it clear that level
flight speeds beyond the existing record were achievable.

Different aerofoil sections were used for the inboard, mid-span
and tip parts of the blade, chosen in relation to the local speed
conditions and lift requirements. The section used for the tip was
thinner than the other two. The blade was built in glass fibre with a
single spar, special construction methods being employed.

The aircraft was a standard Lynx (Ultility version) with a skid
undercarriage, in which protuberance drag had been reduced to a
minimum and an attempt had been made to reduce rotorhead drag
by fairings. The engine power was enhanced by water-methanol
injection. The purpose of these measures was to ensure that, given
a large alleviation in the flight envelope, the aircraft would not
then be power limited unnecessarily.

For the record attempt, the course of 15km was flown at 150 m
above ground, this being well within the altitude band officially
required. The mean speed of two runs in opposite directions
was 400.87km/hr (216 knots), exceeding the previous record by
33km/hr. The aircraft also had an extraordinarily good rate of
climb near the bucket speed (80—100 knots), this being well over
20m/sec (4000ft/min) — exceeding the capacity of the indicator
instrument — and generally exhibited excellent flying characteristics.
Fig. 7.6 shows a photograph of the aircraft in flight and Fig. 7.7
presents a spectacular view of the rotor blade.

7.10 Speculation on the really-low-drag helicopter

The ideas in this section come mainly from M.V. Lowson®. It is of
interest to consider, at least in a hypothetical manner, the lowest
level of cruising power that might be envisaged for a really-low-
drag helicopter of the future, by comparison with levels typically
achieved in current design. The demand for fuel-efficient operation
is likely to increase with time, as more range-flying movements are
undertaken, whether in an industrial or a passenger-carrying context.
Any increase in fuel costs will narrow the operating cost differential
between helicopters (currently dominated by maintenance costs)
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Fig. 7.6 World speed record helicopter in flight. (Reproduced courtesy of Westland
Helicopters Ltd.)

and fixed-wing aircraft and the possibility of the helicopter achieving
comparability is an intriguing one.

Reference to Fig. 7.2 shows that at high forward speed, whilst all
the power components need to be considered, the concept of a
really-low-drag (RLD) helicopter stands or falls on the possibility
of a major reduction in parasite drag being achieved. This is not a
priori an impossible task, since current helicopters have from four
to six times the parasite drag of an aerodynamically clean fixed-
wing aircraft. For the present exercise let us take as the datum case
a 4500kG (100001b) helicopter, the parasite drag of which, in
terms of equivalent flat plate area, is broken down in Table 7.1.
All calculations were made in Imperial units and for simplicity
these are used in the presentation. The total, 14.05 ft?, is somewhat
higher than the best values currently achievable but is closely in
line with the value of 19.1ft* for a 180001b helicopter used by
Stepniewski and Keys, Vol. 11, for their typical case.

In setting target values for the RLD helicopter, as given in
Table 7.1, the arguments used are as follows. Minimum fuselage
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Fig. 7.7 Rotor blade on speed record aircraft. (Reproduced courtesy of Westland Helicopters
Lid.)

drag, inferred from standard texts such as Hoerner (loc. cit.) and
Goldstein®, would be based on a frontal-area drag coefficient of
0.05. This corresponds to 2 ft* flat plate area in our case, which is
not strictly the lowest possible because helicopters traditionally
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Table 7.1

Datum aircraft, Target for RLD

ft? aircraft, ft

Basic fuselage 2.74 2.3
Nacelles 0.80 0.4
Tail unit 0.45 0.3
Rotorhead 4.29 0.8
Landing gear 1.55 0
Total 14.05 5.0

have spacious cabins with higher frontal areas, weight for weight,
than fixed-wing aircraft. A target value of 2.3 ft* is therefore entirely
reasonable and might be bettered. The reductions in nacelle and
tail unit drags may be expected to come in time and with special
effort. A large reduction in rotorhead drag is targetted but the
figure suggested corresponds to a frontal-area drag coefficient about
double that of a smooth ellipsoidal body, so while much work
would be involved in reshaping and fairing the head, the target
seems not impossible of attainment. Landing-gear drag is assumed
to be eliminated by retraction or other means. In the miscellaneous
item of the datum helicopter, a substantial portion is engine-cooling
loss, on which much research could be done. Tail rotorhead drag
can presumably be reduced in much the same proportion as that of
the main rotorhead. Roughness and protuberance losses will of
course have to be minimized.

In total the improvement envisaged is a 64% reduction in parasite
drag. Achievement of this target would leave the helicopter still
somewhat inferior to an equivalent clean fixed-wing aircraft.

Such a major reduction in parasite drag will leave the profile
power as the largest component of RLD power at cruise. The best
prospect for reducing blade profile drag below current levels prob-
ably lies in following the lead given by fixed-wing technology in the
development of supercritical aerofoil sections. Using such sections
in the tip region postpones the compressibility drag rise to higher
Mach number: thus a higher tip speed can be used which, by
Equation (6.3), reduces the blade area required and thereby the



112 BASIC HELICOPTER AERODYNAMICS

profile drag. Advances have already been made in this direction
but whereas in the rotor design discussed in Chapter 6 a tip Mach
number 0.88 was assumed, in fixed-wing research drag-rise Mach
numbers as high as 0.95 were described by Haines® more than a
decade ago. Making up this kind of deficiency would reduce blade
profile drag by about 15%. If it is supposed that in addition
advances will be made in the use of thinner sections, a target of
20% lower profile power for the RLD helicopter seems reasonable.

Reduction in induced power will involve the use of rotors of
larger diameter and lower disc loading than in current practice.
Developments in blade materials and construction techniques will
be needed for the higher aspect ratios involved. These can be
expected, as can also the relaxation of some operational require-
ments framed in a military context, for example that of take-off in
a high wind from a ship. A 10% reduction of induced power at
cruise is therefore anticipated. The same proportion is assumed for
the small residual power requirement of the miscellaneous items.

Table 7.2 shows the make-up of cruise power at 160 knots from
Fig. 7.2, representing the datum aircraft, and compares this with
the values for the RLD helicopter according to the foregoing
analysis.

The overall reduction for the RLD helicopter is 41% of the
power requirement of the datum aircraft. An improvement of this
magnitude would put the RLD helicopter into a competitive pos-
ition with certain types of small, fixed-wing, propeller-driven busi-
ness aircraft for low-altitude operation. Qualitatively it may be said
that the RLD helicopter has a slightly higher parasite drag than the

Table 7.2
Datum aircraft, RLD aircraft,

HP HP
Parasite 680 245
Profile 410 328
Induced 130 117
Miscellaneous 80 72
Total 1300 762
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fixed-wing aircraft, about the same profile drag or slightly less
(since the fixed-wing aircraft normally carries a greater wing area
than is needed for cruise, while the helicopter blade area can be
made to suit, provided that adverse Mach effects are avoided) and
a lower induced drag if the rotor diameter is greater than the fixed-
wing span. The helicopter, however, has no ready answer to the
ability of the fixed-wing aircraft to reduce drag by flying at high
altitude. Equally of course, the fixed-wing aircraft cannot match
the low-speed and hover capability of the helicopter.

7.11 An exercise in high-altitude operation

Fixed-wing aircraft operate more economically at high altitude
than at low. Aircraft drag is reduced and engine (gas turbine)
efficiency is improved, leading to increases in cruising speed and
specific range (distance per unit of fuel consumed). With gas-
turbine powered helicopters, the incentive to realize similar im-
provements is strong: there are, however, basic differences to be
taken into account. On a fixed-wing aircraft, the wing area is
determined principally by the stalling condition at ground level;
increasing the cruise altitude improves the match between area
requirements at stall and cruise. On a helicopter, the blade area is
fixed by a cruise speed requirement, while low speed flight deter-
mines the installed power needed. The helicopter rotor is unable to
sustain the specified cruising speed at altitudes above the density
design altitude, the limitation being that of retreating blade stall.
The calculations now to be described are of a purely hypothetical
nature, intended to illustrate the kind of changes that could in
principle convey a high-altitude flight potential. The altitude chosen
for the exercise is 3000 m (10000 ft), this being near the limit for
zero pressurization. I am indebted to R.V. Smith for the work
involved.

Imperial units are used as in the previous section. The datum
case is that of a typical light helicopter, of all-up weight 100001b
and having good clean aerodynamic design, though traditional in
the sense of featuring neither especially low drag nor advanced
blade design. Power requirements are calculated by the simple
methods outlined earlier in the present chapter. Engine fuel flow is
related to power output in a manner typical of modern gas turbine
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engines. Specific range (nautical miles per pound fuel) is calculated
thus:

specific range (nm/lb) = forward speed (knots)/fuel flow (Ib/hr)

A flight envelope of the kind described in Section 7.7 is assumed:
this is primarily a retreating-blade limitation in which the value of
W16 (8 being the relative density at altitude) decreases from 14 000 Ib
at 80 knots to 80001b at 180 knots.

The results are presented graphically in Fig. 7.8. Specific range is
plotted as a function of flight speed for sea level, 5000ft and
100001t altitude. Intersecting these curves are (a) the flight envelope
limit, (b) the locus of best-range speeds and (c) the power limitation
curve. We see that in case A, which is for the datum helicopter,
the flight envelope restricts the maximum specific range to 0.219 nm/
Ib, this occurring at 5000 ft and low speed (only 114 knots). So far
as available power is concerned it would be possible to realize the
best-range speeds up to 10000 ft and beyond.

Case B examines the effect of a substantial reduction in parasite
drag. Using a less ambitious target than that envisaged in Section
7.10, a parasite drag two thirds that of the datum aircraft is assumed.
At best-range speed a large increase in specific range at all alti-
tudes is possible but, as before, the restriction imposed by the
flight envelope is severe, allowing an increase to only 0.231 nm/Ib,
again at approximately 5000 ft and low speed (120 knots). It is
clear that the full benefit of drag reduction cannot be realized
without a considerable increase in rotor thrust capability. A com-
parison of cruising speeds emphasises the deficiency: without the
flight-envelope limitation the best-range speeds would be usable,
namely at all heights a little above 150 knots for the datum aircraft
and 20 knots higher for the low-drag version.

The increase in thrust capability required by the low-drag aircraft
to raise the flight envelope limit to the level of best-range speed at
100001t is approximately 70%. Case C shows the performance of
the low-drag aircraft supposing the increase to be obtained from
the same percentage increase in blade area. Penalties of weight
increase and profile power increase are allowed for, assumed to be
in proportion to the area change. The best-range speed is now
attainable up to over 9000 ft, while at 10000 ft the specific range is

virtually the same as at best-range speed, namely 0.267 nm/Ib at
170 knots: this represents a 22% increase in specific range over the
datum aircraft, attained at 60 knots higher cruising speed.
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Fig. 7.8 Specific range calculations for high-altitude operation.

For a final comparison, case D shows the effect of obtaining the
required thrust increase by combination of a much smaller incrf%ase
in blade area (24.5% ) with conversion to an advanced rotor design,
using an optimum distribution of cambered blade sections and the
Westland advanced tip. The penalties in weight and profile power
are thereby reduced considerably. The result is a further increase
in specific range, to 0.293nm/Ib or 34% above that of the datum
aircraft, attained at the same cruising speed as in case C.

The changes are seen to further advantage by calculating a.lso
the maximum range achievable. This has been done in alternative
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Table 7.3

Best-range Specific  Weight Max. range,

speed, Altitude, range, penalty, nm

Datum kt ft nm/lb 1b (1) 2)
A 114 5000 0.219 357 357
B 120 4200 0.231 0
C 174 10000 0.267 652 274 458
D 174 10000 0.293 225 433 503

ways, assuming that the weight penalty reduces (1) the fuel load or
(2) the payload. On the first supposition, the weight penalty of
case C results in a range reduction but with case D the gain more
than compensates for the smaller weight penalty.

‘ The characteristics of the various configurations are summarized
in Table 7.3.
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8 Trim, Stability and Control*

8.1 Trim

The general principle of flight with any aircraft is that the aero-
dynamic, inertial and gravitational forces and moments about three
mutually perpendicular axes are in balance at all times. In helicopter
steady flight (non-rotating), the balance of forces determines the
orientation of the main rotor in space. The balance of moments
about the aircraft centre of gravity (CG) determines the attitude
adopted by the airframe and when this balance is achieved, the
helicopter is said to be trimmed. To a pilot the trim may be ‘hands
on’ or ‘hands off’: in the latter case in addition to zero net forces
and moments on the helicopter the control forces are also zero:
these are a function of the internal control mechanism and will not
concern us further, apart from a brief reference at the end of this
section.

In deriving the performance equation for forward flight in
Chapter 5 (Equation (5.42)), the longitudinal trim equations were
used in their simplest approximate form (Equations (5.38) and
(5.39). They involve the assumption that the helicopter parasite
drag is independent of fuselage attitude, or alternatively that
Equation (5.42) is used with a particular value of D, for a particular
attitude, which is determined by solving a moment equation (see
Fig. 8.2 and the accompanying description below). This procedure
is adequate for many performance calculations, which explains why
the subject of trim was not introduced at that earlier stage. For the
most accurate performance calculations, however, a trim analysis
programme is needed in which the six equations of force and

* This chapter makes liberal usc of unpublishcd papers by B. Pitkin, Flight Mecchanics
Specialist, Westland Hclicopters.
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moment are solved simultaneously, or at least in longitudinal and
lateral groups, by iterative procedures such as Stepniewski and
Keys (Vol. II) have described.

Consideration of helicopter moments has not been necessary up
to this point in the book. To go further we need to define the
functions of the horizontal ailplane and vertical fin and the nature
of direct head moment.

In steady cruise the function of a tailplane is to provide a pitching
moment to offset that produced by the fuselage and thereby reduce
the net balancing moment which has to be generated by the rotor.
The smaller this balancing moment can be, the less is the potential
fatigue damage on the rotor. In transient conditions the tailplane
pitching moment is stabilizing, as on a fixed-wing aircraft, and
offsets the inherent static instability of the fuselage and to some
extent that of the main rotor. A fixed tailplane setting is often
used, although this is only optimum for one combination of flight
condition and CG location.

A central vertical fin is multi-functional: it generates a stabilizing
yawing moment and also provides a structural mounting for the tail
rotor. The central fin operates in a poor aerodynamic environment,
as a consequence of turbulent wakes from the main and tail rotors
and blanking by the fuselage, but fin effectiveness can be improved
by providing additional fin area near the tips of the horizontal
tailplane.

When the flapping hinge axis is offset from the shaft axis (the
normal condition for a rotor with three or more blades), the
centrifugal force on a blade produces (Fig. 8.1) a pitching or
rolling moment proportional to disc tilt. Known as direct rotor
moment, the effect is large because although the moment arm is
small the centrifugal force is large compared with the aerodynamic
and inertial forces. A hingeless rotor produces a direct moment
perhaps four times that of an articulated rotor for the same disc
tilt. Analytically this would be expressed by according to the flexible
element an effective offset four times the typical 3% to 4% span
offset of the articulated hinge.

Looking now at a number of trim situations, in hover with zero
wind speed the rotor thrust is vertical in the longitudinal plane,
with magnitude equal to the helicopter weight corrected for fuselage
downwash. For accelerating away from hover the rotor disc must
be inclined forward and the thrust magnitude adjusted so that it is
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equal to, and directly opposed to, the vector sum of the weight and
the inertial force due to acceleration. In steady forward flight the
disc is inclined forward and the thrust magnitude is adjusted so
that it is equal to, and directly opposed to, the vector sum of the
weight and aerodynamic drag.

The pitch attitude adopted by the airframe in a given flight
condition depends upon a balance of pitching moments about the
CG. Illustrating firstly without direct rotor moment or tailplane-
and-airframe moment, the vector sum of aircraft drag (acting through
the CG) and weight must lie in the same straight line as the rotor
force. This direction being fixed in space, the attitude of the
fuselage depends entirely upon the CG position. A forward location
results in a more nose-down attitude than an aft location. The
effect of a direct rotor moment is illustrated in Fig. 8.2 for a
forward CG location. Now the rotor thrust and resultant force of
drag and weight, again equal in magnitude, are not in direct line
but must be parallel, creating a couple which balances the other
moments. A similar situation exists in the case of a net moment
from the tailplane and airframe. For a given forward CG position,
the direct moment makes the fuselage attitude less nose-down than
it would otherwise be. Reverse results apply for an aft CG position.
At high forward speeds, achieving a balanced state may involve
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Fig. 8.2 Fuselage attitudes in forward flight.

excessive nose-down attitudes unless the tailplane can be made to
supply a sufficient restoring moment.

Turning to the balance of lateral forces, in hover the main rotor
thrust vector must be inclined slightly sideways to produce a force
component balancing the tail rotor thrust. This results in a hovering
attitude tilted two or three degrees to port (Fig. 8.3). In sideways
flight the tilt is modified to balance sideways drag on the helicopter:
the same applies to hovering in a crosswind. In forward flight the
option exists, by sideslipping to starboard, to generate a sideforce
on the airframe which, at speeds above about 50 knots, will balance
the tail rotor thrust and allow a zero-roll attitude to be held.

With the lateral forces balanced in hover, the projection of the
resultant of helicopter weight and tail-rotor thrust will not generally
pass through the main-rotor centre, so a rolling couple is exerted
which has to be balanced out by a direct rotor moment. This
moment depends upon the angle between disc axis and shaft axis
and since the first of these has been determined by the force
balance, the airframe has to adopt a roll attitude to suit. For the
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usual situation, in which the line of action of the sideways thrust
component is above that of the tail-rotor thrust, the correction
involves the shaft axis moving closer to the disc axis, that is to say
the helicopter hovers with the fuselage in a small left roll attitude.
Positioning the tail rotor high (close to hub height) minimizes the
amount of left roll angle needed.

Yawing moment balance is provided at all times by selection of
the tail-rotor thrust, which balances the combined effects of main-
rotor torque reaction, airframe aerodynamic yawing moment due
to sideslip and inertial moments present in manoeuvring.

The achievement of balanced forces and moments for a given
flight condition is closely linked with stability. An unstable aircraft
theoretically cannot be trimmed, because the slightest disturbance,
atmospheric or mechanical, will cause it to diverge from the orig-
inal condition. A stable aircraft may be difficult to trim, because
although the combination of control positions for trim exists, over-
sensitivity may make it difficult to introduce any necessary fine
adjustments to the aerodynamic control surfaces.

8.2 Treatment of stability and control

As with a fixed-wing aircraft, both static stability and dynamic
stability contribute to the flying qualities of a helicopter. Static
stability refers to the initial tendency of the aircraft to return to its
trimmed condition following a displacement. Dynamic stability
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considers the subsequent motion in time, which may consist of a
dead-beat return, an oscillatory return, a no-change motion, an
oscillatory divergence or a non-return divergence; the first two
signifying positive stability, the third neutral stability and the last
two negative stability (instability). A statically unstable motion is
also dynamically unstable but a statically stable motion may be
either stable or unstable dynamically.

The subject of stability and control in totality is a formidable
one. The part played by the rotor is highly complicated, because
strictly each blade possesses its own degrees of freedom and makes
an individual contribution to any disturbed motion. Fortunately,
however, analysis can almost always be made satisfactorily by
considering the behaviour of the rotor as a whole. Even so it is
useful to make additional simplifying assumptions: those which pave
the way for a classical analysis, similar to that made for a fixed-
wing aircraft, come essentially from the work of Hohenemser' and
Sissingh® and are the following:

(1) in disturbed flight the accelerations are small enough not to
affect the rotor response, in other words the rotor reacts in
effect instantaneously to speed and angular rate changes;

(2) rotor speed remains constant, governed by the engine;

(3) longitudinal and lateral motions are uncoupled so can be treated
independently.

Given these important simplifications, the mathematics of helicopter
stability and control are nevertheless heavy (Bramwell, Chapter 7),
edifying academically but hardly so otherwise, and in practice
strongly dependent upon the computer for results. In this chapter
we shall be content with descriptive accounts, which bring out the
physical characteristics of the motions involved.

No absolute measure of stability, static or dynamic, can be
stipulated for helicopters in general, because flying qualities depend
on the particular blend of natural stability, control and autostabil-
ization. Also, stability must be assessed in relation to the type of
mission to be performed.

8.3 Static stability

We consider the nature of the initial reaction to various forms of
disturbance from equilibrium. Longitudinal and lateral motions are
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treated independently. The contributions of the rotor to forces and
moments arise from two sources, variations in magnitude of the
rotor force vector and variations in the inclination of this vector
associated with disc tilt, that is with blade flapping motion.

8.3.1 Incidence disturbance

An upward imposed velocity (for example a gust) increases the
incidence of all blades, giving an overall increase in thrust magnitude.
Away from hover, the dissimilarity in relative airspeed on the
advancing and retreating sides leads to an incremental flapping
motion, which results in a nose-up tilt of the disc. Since the rotor
centre lies above the aircraft CG, the pitching moment caused by
the change of inclination is in a nose-up sense, that is destabilizing
and increasingly so with increase of forward speed. In addition, the
change in thrust magnitude itself generates a moment contribution,
the effect of which depends upon the fore-and-aft location of the
CG relative to the rotor centre. In a practical case, the thrust
vector normally passes ahead of an aft CG location and behind a
forward one, so the increase in thrust magnitude aggravates the
destabilizing moment for an aft CG position and alleviates it for a
forward one. The important characteristic therefore is a degradation
of longitudinal static stability with respect to incidence, at high
forward speed in combination with an aft CG position. This is also
reflected in a degradation of dynamic stability under the same
flight conditions.

It should be noted that these fundamental arguments relate to
rigid blades. With the advent of modern composite materials for
blade construction, judicious exploitation of the distribution of
inertial, elastic and aerodynamic loadings allows the possibility of
tailoring the blade aeroelastic characteristics to alleviate the in-
herently destabilizing features just described.

Of the other factors contributing to static stability, the fuselage
is normally destabilizing in incidence, a characteristic of all stream-
lined three-dimensional bodies. Hinge offset, imparting an effective
stiffness, likewise aggravates the incidence instability. The one
stabilizing contribution comes from the horizontal tailplane. Figure
8.4 represents the total situation diagrammatically. The tailplane
compensates for the inherent instability of the fuselage, leaving the
rotor contributions as the determining factors. Of these, the stiffness
effect for an articulated rotor is generally of similar magnitude to
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the thrust vector tilt moment. With a hingeless rotor (Section 8.5)
the stiffness effect is much greater.

8.3.2 Forward speed disturbance
An increase in forward speed leads to incremental flapping, resulting
in a change in nose-up disc tilt. The amount of change is reckoned
to be about one degree per 10m/s speed increase, independently
of the flight speed. The thrust vector is effectively inclined rear-
wards, supported by the nose-up pitching moment produced, pro-
viding a retarding force component and therefore satic stability
with respect to forward speed. This characteristic is present in the
hover but nevertheless contributes to a dynamic instability there
(Section 8.4.2)

Speed increase increases the airframe drag and this contributes,
increasingly with initial forward speed, to a positive speed-stability
characteristic for the helicopter, except in the hover.

8.3.3 Angular velocity (pitch or roll rate) disturbance

The effect of a disturbance in angular velocity (pitch or roll) is
complex. In brief, a gyroscopic moment about the flapping hinge
produces a phased flapping response and the disc tilt resulting from
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this generates a moment opposing the particular angular motion.
Thus the rotor exhibits damping in both pitch and roll. Moments
arising from non-uniform incidence over the disc lead to cross-
coupling, that is rolling moment due to rate of pitch and vice versa.

8.3.4 Sideslip disturbance

In a sideslip disturbance, the rotor ‘sees’ a wind unchanged in
velocity but coming from a different direction. As a result the
direction of maximum flapping is rotated through the angle of
sideslip change and this causes a sideways tilt of the rotor away
from the wind. There is therefore a rolling moment opposing the
sideslip, corresponding effectively to the dihedral action of a fixed-
wing aircraft. In addition the sideslip produces a change in incidence
of the tail-rotor blades, so that the tail rotor acts like a vertical fin
providing ‘weathercock’ stability.

8.3.5 Yawing disturbance

A disturbance in yaw causes a change of incidence at the tail rotor
and so again produces a fin damping effect, additional to that of
the actual aircraft fin. Overall, however, basic directional stability
tends to be poor because of degradation by upstream flow separations
and wake effects.

8.3.6 General conclusion

It is seen from the above descriptions that longitudinal static stability
characteristics are significantly different from, and more complex
than, those of a fixed-wing aircraft, whilst lateral characteristics of
the two types of aircraft are similar, although the forces and
moments arise in different ways.

8.4 Dynamic stability

8.4.1 Analytical process

The mathematical treatment of dynamic stability given by Bramwell
follows the lines of the standard treatment for fixed-wing aircraft.
Wind axes are used, with the X-axis parallel to the flight path, and
the stability derivatives ultimately are fully non-dimensionalized.
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The classical format is useful because it is basic in character and
displays essential comparisons prominently. The most notable dis-
tinction which emerges is that whereas with a fixed-wing aircraft,
the stability quartic equation splits into two quadratics, leading to a
simple physical interpretation of the motion, with the helicopter
this unfortunately is not so, and as a consequence the calculation
of roots becomes a more complicated process.

Industrial procedures for the helicopter tend to be on rather
different lines. The analysis is generally made with reference to
body axes, with origin at the CG. In this way the X-axis remains
forward relative to the airframe, whatever the direction of flight or
of relative airflow. The classical linearization of small perturbations
is still applicable in principle, the necessary inclusion of initial-
condition velocity components along the body axes representing
only a minor complication. Force and moment contributions from
main rotor, tail rotor, airframe and fixed tail surface are collected
along each body axis, as functions of flow parameters, control
angles and flapping coefficients and are then differentiated with
respect to each independent variable in turn. Modern computational
techniques provide ready solutions to the polynomials. Full non-
dimensionalization of the derivatives is less useful than for fixed-
wing aircraft and a preferred alternative is to ‘normalize’ the force
and moment derivatives in terms of the helicopter weight and
moment of inertia respectively.

8.4.2 Special case of hover

In hovering flight the uncoupled longitudinal and lateral motions
break down further. Longitudinal motion resolves into an uncoupled
vertical velocity mode and an oscillatory mode coupling forward
velocity and pitch attitude. In a similar manner, lateral motion
breaks down into an uncoupled yaw mode and an oscillatory mode
coupling lateral velocity and roll attitude. Both of these coupled
modes are dynamically unstable. The physical nature of the longi-
tudinal oscillation is illustrated in Fig. 8.5 and can be described as
follows.

Suppose the hovering helicopter to experience a small forward
velocity as at (a). Incremental flapping creates a nose-up disc tilt,
which results in a nose-up pitching moment on the aircraft. This is
as described in Section 8.3.2, (the important overall qualification
being that there is no significant aircraft drag force). A nose-up
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Fig. 8.5 Longitudinal dynamic instability in hover.

attitude develops and the backward-inclined thrust opposes the
forward motion and eventually arrests it, as at (b). The disc tilt and
rotor moment have now been reduced to zero. A backward swing
commences, in which the disc tilts forward, exerting a nose-down
moment, as at (¢). A nose-down attitude develops and the backward
movement is ultimately arrested, as at (d). The helicopter then
accelerates forward under the influence of the forward inclination
of thrust and returns to the situation at (a). Mathematical analysis
shows, and experience confirms, that the motion is dynamically
unstable, the amplitude increasing steadily if the aircraft is left to
itself.

This longitudinal divergent mode and its lateral-directional
counterpart constitute a fundamental problem of hovering dynamics.
They require constant attention by the pilot, though since both are
usually of low frequency, some degree of instability can generally
be allowed. It remains the situation, however, that ‘hands-off’
hovering is not possible unless a helicopter is provided with an
appropriate degree of artificial stability.

8.5 Hingeless rotor

A hingeless rotor flaps in similar manner to an articulated rotor
and both the rotor forces and the flapping derivatives are little
different between the two. Terms expressing hub moments, how-
ever, are increased severalfold with the hingeless rotor so that, as
has been said, compared with the 3% to 4% hinge offset of an
articulated rotor, the effective offset of a hingeless rotor is likely to
be 12% to 16% or even higher. This increased stiffness has an
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adverse effect on longitudinal static stability; in particular the pitch
instability at high speed is much more severe (Fig. 8.4). A forward
CG position is an alleviating factor, but in practice the CG position
is dominated by role considerations. The horizontal tailplane can
be designed to play a significant part. Not only is the stabilizing
influence a direct function of tailplane size but also the angular
setting to the fuselage affects the pitching moment balance in trim
and can be used to minimize hub moment over the critical part of
the operational flight envelope. Despite this, however, the stability
degradation in high-speed flight normally remains a dominant
feature.

8.6 Control

Control characteristics refer to a helicopter’s ability to respond to
control inputs and so move from one flight condition to another.
The inputs are made, as has been seen, by applying pitch angles to
the rotor blades so as to generate the appropriate forces and
moments. On the main rotor the angles are made up of the collective
pitch 6y and the longitudinal and lateral cyclic pitch angles B; and
Aj as introduced in Chapter 4. The tail rotor conventionally has
only collective pitch variation, determined by the thrust required
for yawing moment balance.

A word is required here about rate damping. When the heli-
copter experiences a rate of pitch, the rotor blades are subjected to
gyroscopic forces proportional to that rate. A nose-up rotation
induces a download on an advancing blade, leading to nose-down
tilt of the rotor disc. The associated offset of the thrust vector from
the aircraft CG and the direct rotor moment are both in the sense
opposing the helicopter rotation and constitute a damping effect or
stabilising feature. A similar argument applies to the gyroscopic
effects of a rate of roll.

Adequacy of control is formally assessed in two ways, by control
power and control sensitivity. Control power refers to the maximum
moment that can be generated. Normalizing this in terms of aircraft
moment of inertia, the measure becomes one of initial acceleration
produced per unit displacement of the cyclic control stick. Control
sensitivity recognizes the importance of a correlation between con-
trol power and the damping of the resultant motion; the ratio can
be expressed as angular velocity per unit stick displacement. High
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control sensitivity means that control power is large relative to
damping, so that a large angular velocity is reached before the
damping moment stabilizes the motion.

The large effective offset of a hingeless rotor conveys both
increased control power and greater inherent damping, resulting in
shorter time constants and crisper response to control inputs. Basic
flying characteristics in the hover and at low forward speeds are
normally improved by this, because the more immediate response
is valuable to the pilot for overcoming the unstable oscillatory
behaviour described in Section 8.4.2. _

A mathematical treatment of helicopter response is given by
Bramwell (pp. 231—249) and illustrated by typical results for a
number of different control inputs. His results for the normal
acceleration i)roduced by a sudden increase of longitudinal cyclic
pitch (B;) in forward-level flight at advance ratio 0.3 are reproduced
in Fig. 8.6. We note the more rapid response of the hingeless rotor
compared with the articulated rotor, a response which the equations
show to be divergent in the absence of a tailplane. Fitting a tailplane
reduces the response rates and in both cases appears to stabilize
them after three or four seconds.

Roll response in hover is another important flying quality, part%cu—
larly in relation to manoeuvring near the ground. In an appropriate
example, Bramwell shows the hingeless helicopter reaching a con-
stant rate of roll within less than a second, while the articulated
version takes three or four seconds to do so. For a given degree of
cyclic pitch, the final roll rates are the same, because the control
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Fig. 8.6 Calculated rotor responsc to B, (after Bramwell).



130 BASIC HELICOPTER AERODYNAMICS

power and roll damping differ in roughly the same proportion in
the two aircraft.

Rotor response characteristics can be described more or less
uniquely in terms of a single non-dimensional parameter, the stiff-
ness number S, defined as

S =~ 1)n (8.1)

This expresses the ratio of elastic to aecrodynamic flapping moments
on the blade. A is the blade natural flapping frequency, having the

value 1.0 for zero blade offset and related generally to the per-
centage offset e by:

1+ je
2 _ 2
M=o (8.2)

Thus a 4% offset yields a value A = 1.03; for hingeless rotors the
values are generally in the range 1.09 to 1.15. In Equation (8.1), n
is a normalizing inertia number. Some basic rotor characteristics
are shown as functions of stiffness number in Fig. 8.7. Taking the

four parts of the diagram in turn, the following comments can be
made.

(a) Rotors have until now made use of only relatively restricted
parts of the inertia/stiffness plane.

(b) In the amount of disc tilt produced on a fixed hovering rotor
per degree of cyclic pitch, articulated and the ‘softer’ hinge-
less rotors are practically identical.

(c) On the phase lag between cyclic pitch application and blade
flapping, we observe the standard 90° for an articulated rotor
with zero hinge offset, decreasing with increase of off-set, real
or effective, to 15°—20° lower for a hingeless rotor.

(d) For the low stiffness numbers of articulated rotors, the principal
component of moment about the aircraft CG is likely to be
that produced by thrust vector tilt. Hingeless rotors, how-
ever, produce moments mainly by stiffness; their high hub
moment gives good control for manoeuvring but needs to be
minimized for steady flight, in order to restrict as much

as possible hub load fluctuations and vibratory input to the
helicopter.
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8.7 Autostabilization

In order to make the helicopter a viable operational aircraft, short-
comings in stability and control characteristics generally have to be
made good by use of automatic flight control systems. ‘The com-
plexity of such systems, providing stability augmentation, long-
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term datum-holding autopilot functions, automatically executed
manoeuvres and so on, depends upon the mission task, the failure
survivability requirements and of course on the characteristics of
the basic helicopter.

Autostabilization is the response to what is perhaps the commonest
situation, that in which inadequate basic stability is combined with
ample control power. The helicopter is basically flyable but in the
absence of automatic aids, continuous correction by the pilot would
be required — a tiring process and in some conditions (such as
flying on instruments) potentially dangerous. The corrective is to
utilize some of the available control power to generate moments
proportional to a given motion variable and thereby correct the
motion. An automatic signal is superimposed on the pilot’s manual
input, without directly affecting it. No signal feeds back to the
controls; the pilot merely experiences the changed flying character.

Autostabilizing systems have in the past used mechanical devices
integral to the rotor; typical of these are the Bell Stabilizer Bar and
the Lockheed Control Gyro. Alternatively, devices may be electro-
mechanical, operating on attitude or rate signals from helicopter
motion sensors. Electric or electronic systems are the more flexible
and multipurpose. An example is the attitude hold system, which
returns the helicopter always to the attitude commanded, even in
the disturbing environments such as gusty air. Naturally, the more
the stability is augmented in this way, the greater is the attention
that has to be paid to augmenting the control power remaining to
the pilot. The balance is often achieved by giving the pilot direct
control over the attitude datum commanded. The design of a
particular system is governed by the degree of augmentation desired
and the total control power available.
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