


ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Coordinate system in a member (bar, beam, column, etc.)
The x axis is selected along the member axis, through the normal (force)
centre NC of the consecutive cross-sections. The y and z axis are chosen
parallel to the plane of a cross-section.

Normal and shear forces
σij is the stress on a plane with the normal in the i direction (i = x, y, z),
and acting in the j direction. σij is a normal stress when i = j and a shear
stress when i �= j . The positive directions are shown in the figure.

Relationship between section forces and stresses in the cross-section
Normal force Shear forces Bending moments

N =
∫

A

σxx dA Vy =
∫

A

σxy dA My =
∫

A

yσxx dA

Vz =
∫

A

σxz dA Mz =
∫

A

zσxx dA

Positive directions of N , Vz and Mz

The figure below shows the positive directions of the normal force N ,
shear force Vz = V and bending moment in the xz plane Mz = M .



A Number of Formulae and (Sign) Conventions

Relationship between section forces and load
dN

dx
+ qx = 0, N = −

∫
qx dx,

dVz

dx
+ qz = 0, Vz = −

∫
qz dx,

dMz

dx
− Vz = 0, Mz =

∫
Vz dx = −

∫ ∫
qz dx dx.

Deformation symbols
The deformation symbols for bending are given in the left-hand figure,
those for the shear forces are shown in the right-hand figure.

Cable equation

H
d2z

dx2
= −qz.

Centre of force

ez = Mz

N
, see figure below.

Area A and centroid (+) of a number of simple shapes

Shape Area A Figure

Rectangle bh a

Right-angles triangle 1
2bh b

Parabola (concave) 1
3bh c

Parabola (convex) 2
3bh d
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Preface

This Volume is the first of a series of two:

• Volume 1 : Equilibrium
• Volume 2 : Stresses, deformations and displacements

Volume 1 introduces the fundamentals of structural and continuum mechan-
ics in a comprehensive and consistent way. All theoretical developments are
presented in the text and by means of an extensive set of figures. Numerous
examples support the theory and provide a link to engineering practice.
Combined with an extensive set of problems in each chapter, students are
given ample opportunities to exercise.

The book consists of distinct modules, each divided into sections which
are conveniently sized to be used as lectures. Both formal and intuitive
(engineering) arguments are used in parallel to derive the important princi-
ples, for instance in bending moment diagrams and shear force diagrams.
An important feature of the book is the straightforward and consistent sign
convention, based on the stress definitions of continuum mechanics which
will be used in Volume 2.

The modular content of the book shows a clear order of topics, starting
with the introduction of forces and equilibrium of a particle followed by
the extension to moments and the equilibrium of rigid bodies. An important

aspect that is used throughout the series is the interaction between rigid
bodies and the forces that act upon rigid bodies. These forces play an impor-
tant role in Chapter 4, where structural elements and support conditions are
introduced, followed by Chapter 5, which deals with the interaction forces
and support reactions. A comprehensive chapter on loads gives an overview
not only of the origin of loads, but also provides an introduction how to
treat loads in engineering codes and in structural calculations. Examples
of specific loads from gases, from liquids and from soils can be found in
Chapters 7 and 8. These chapters can be regarded as an introduction in
soil and fluid mechanics, and can be omitted when treating only structural
mechanics.

After the basic theory of equilibrium of rigid bodies, boundary conditions
and the method of calculating the reactions, the focus shifts to the sec-
tion forces (internal forces) in trusses (Chapter 9), and beam and frame
structures (Chapters 10 to 13). The formal treatment of the beam theory of
Chapter 11 uses as little mathematics as possible and shows the fundamen-
tal relations between bending moments, shear forces and distributed loads.
This fundamental approach is supported with an extensive intuitive ap-
proach based on the visual use of bending moment diagrams and shear force
diagrams. Chapters 12 and 13 are therefore the most important chapters,
and use all previously introduced definitions and sign conventions.
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The last part of Volume 1 consists of some special topics like cables (Chap-
ter 14), virtual work and influence lines (Chapters 15 and 16). Virtual work
is introduced as an alternative to the ordinary equilibrium conditions as
used in the first part of this book. Using the principle of virtual work proves
to be a fast method to calculate sectional forces and reactions in statically
determinate structures. The theory of virtual work is also needed to obtain
influence lines. Chapter 16 can therefore only be used in combination with
Chapter 15.

Although the books introduce the fundamentals of engineering mechanics,
not much mathematical knowledge is required. Examples in which use is
made of integral calculus or differential equations can be omitted, although
they contribute to the mathematical explanation of the relations between
bending moments, shear forces and distributed loads. The educational value
is therefore not only fundamental knowledge. It is also a demonstration how
to translate physical problems into abstract models, which can be solved
with mathematical tools.

Finding the right balance between the abstract fundamentals and practical
application should be the challenge for the lecturer.

Coenraad Hartsuijker
Hans Welleman
Delft, The Netherlands
July 2006



Foreword

Structural or Engineering Mechanics is one of the core courses for new
students in engineering studies. At Delft University of Technology a joint
educational program for Statics and Strength of Materials has been devel-
oped by the Koiter Institute, and has subsequently been incorporated in
the curricula of faculties like Civil Engineering, Aeronautical Engineering,
Architectural Engineering, Mechanical Engineering, Maritime Engineering
and Industrial Design.

In order for foreign students also to be able to benefit from this pro-
gram an English version of the Dutch textbook series written by Coenraad
Hartsuijker, which were already used in most faculties, appeared to be nec-
essary. It is fortunate that in good cooperation between the writers, Springer
and the Koiter Institute Delft, an English version of two text books could
be realized, and it is believed that this series of books will greatly help the
student to find his or her way into Engineering or Structural Mechanics.

Indeed, the volumes of this series offer some advantages not found
elsewhere, at least not to this extent. Both formal and intuitive approaches
are used, which is more important than ever. The books are modular and can
also be used for self-study. Therefore, they can be used in a flexible manner
and will fit almost any educational system. And finally, the SI system

is used consistently. For these reasons it is believed that the books form a
very valuable addition to the literature.

René de Borst
Scientific Director, Koiter Institute Delft



1Introduction

Figure 1.1 Model of our Galaxy and its globular star clusters.
Source: Natuur en Techniek 89/10, p. 757.

This chapter provides a number of definitions and describes various con-
cepts. Following a brief description of the field of mechanics in Section 1.1,
Section 1.2 addresses the character of a number of important quantities in
mechanics, and the units in which they are expressed. Quantities of a mag-
nitude and direction that meet the conditions of the so-called parallelogram
rule are called vectors, which are covered in Section 1.3.

Newton’s three Laws of Motion and his Law of Gravitation were an impor-
tant step forward in the development of mechanics. We look at these laws
at the end of the chapter in Section 1.4.

1.1 Mechanics

1.1.1 Examples from the field of mechanics

Mechanics is the subdivision of physics which addresses equilibrium and
the motion of matter.

Mechanics therefore includes for example:
• The description of the movement of natural and artificial heavenly bod-

ies. Figure 1.1 is a schematic representation of our Galaxy. The vast
majority of all stars are in a flat disk. Above and below this disk, there
are some 200 globular star clusters that revolve in ellipsoidal orbits
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Figure 1.2 The forces exerted on a swimming shark. Source:
Natuur en Techniek 90/02, p. 136.

Figure 1.3 A surfer balancing on his board. Source: Leidraad voor
surfers, Vereniging Zeilscholen Nederland.

around the centre of the Galaxy.
• A calculation of the forces exerted on a swimming shark. In Figure 1.2a,

in which the shark is at rest, the shark is subject to forces resultant from
its weight W and the upward force A caused by the water pressure.
As a result, the animal tips over (see Figure 1.2b). If the shark’s tail
generates a thrust T , vertical forces are generated that keep the shark in
vertical equilibrium (see Figure 1.2c).

• Balancing on a surfboard (see Figure 1.3).
• A calculation as to the deformation of an oil platform at sea subject to

wave action. Figure 1.4 shows a concrete platform designed for the Nor-
wegian Troll field with a water depth of 340 metres. The seabed consists
of extremely weak clay. The sea conditions are extremely rough with
waves over 10 metres in height. The mass of the deck is 60,000 tons
(60 × 106 kg).

• The description of water currents in a river, estuary, or sea. Figure 1.5
represents a current model for the North Sea. The arrows indicate the
direction and strength of the current for certain areas. This type of
model can be used to investigate the distribution of toxic materials.

• The investigation of stresses in prostheses, such as an artificial hand,
hip joint or knee joint. As shown in Figure 1.6, the attachment of the
prosthesis in a knee joint is extremely important. Figure 1.7a shows the
magnitude of the forces calculated by using an arithmic model. Major
tensile stress occurs at the end of the prosthesis (black area). This stress
can lead to fractures in the cement (adhesive) as shown in the X-ray in
Figure 1.7b.

• Finding the right shape for a high tower by effectively transferring the
loading by wind and its dead weight onto the foundation. Figure 1.8
shows the 300-metre Eiffel Tower, completed in 1889 and the first
1000-foot tower, built for the 1889 World Exhibition in Paris. The tower
is constructed of wrought iron.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 1.5 A current model for the North Sea. Source: Natuur en
Techniek 90/04, p. 292.

Figure 1.6 Open knee prosthesis. Source: Heron 1986, no. 1,
p. 100.

Figure 1.4 Design of a concrete platform in 340-metre deep water.
Source: Heron 1986, no. 1, p. 86.



4 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 1.7 In the model of the knee prosthesis (a) the grey shades
indicate the size of the stress according to an arithmetic model. The
largest tensile force occurs in the black area near the end of the
prosthesis. The X-ray (b) shows a fracture in the cement at that
point. Source: Heron 1986, no. 1, p. 105.

• Water flow through a dam. In Figure 1.9, you can see stream lines and
equipotential lines for a dam on an impermeable subsoil. They are per-
pendicular to one another and form a so-called flow net. The EF section
of the slope is known as the seepage surface. Here the water leaves the
dam and flows down along the slope.

• Closing the Maeslant barrier (see Figure 1.10).
The Maeslant barrier, the storm barrier in the Nieuwe Waterweg in the
west of the Netherlands, consists of two 22-metre high sector doors
shaped like an arc with an arc length of 214 metres. The doors are
turned towards each other afloat from docks. When closed, the doors
are sunk onto a threshold by the inlet of water. The water pressure on
the doors is diverted to foundation blocks by means of two 260-metre
truss arms. The truss arm and the foundation block are joined by means
of a ball-and-socket joint with a 10-metre diameter.

1.1.2 Subdivisions within mechanics

Mechanics’ extensive field of operation can be subdivided in various ways.

A subdivision addressed in the given description of mechanics is based on
the perspective of rest and movement:
• Statics, or the study of material at rest.
• Dynamics, or the study of moving material.
A subcomponent of dynamics is kinematics, the study that describes the
displacement of bodies, without addressing the cause of the movement.

Another subdivision of mechanics is that which describes the degree of
deformability of matter:
• Theoretical mechanics, the mechanics of particles and rigid (non-

deformable) bodies.
• Solid mechanics, the mechanics of solid deformable bodies.
• Fluid mechanics.
• Gas mechanics.
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Figure 1.9 Stream lines and equipotential lines in a dam on an
impermeable subsoil.

Figure 1.10 The Maeslant barrier – a storm barrier in the Nieuwe
Waterweg near Rotterdam in the Netherlands.

Figure 1.8 The Eiffel tower (1889) was the world’s first 1000-foot
tower. Photograph: Hans Welleman.
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Figure 1.11 The Oosterschelde barrier; the subsoil has to be able
to bear the structure.

1.1.3 Applied mechanics

In principle, the mechanics of structures addresses both the statics and
dynamics of structures. This book solely covers the statics of structures.

Mechanics allows us to investigate to what degree a structure, both in its en-
tirety and with respect to its individual components, is effective and reliable
regarding strength, stiffness, and stability.1

For structures made of solid, deformable materials (concrete, wood, syn-
thetics, or metals such as steel or aluminium), the field of mechanics is also
known as applied mechanics.

The part of applied mechanics which focusses on calculating the forces
in a structure is known as structural mechanics. The part in which the
focus is on stress and deformation (strength and stiffness) is known as
mechanics of materials. The division between structural mechanics and the
mechanics of materials is only effective for so-called statically-determinate
structures,2 or structures in which the force flow can be determined di-
rectly from the equilibrium. For calculations relating to structures other
than those that are statically-determinate (so-called statically-indeterminate
structures) one has to use elements from both structural mechanics and the
mechanics of materials.

The behaviour of a structure must be investigated “beyond the base”. For
example, it is important that the slides in the Oosterschelde barrier in Fig-
ure 1.11 are sufficiently strong, but it is equally important that the structure
can be properly carried by the subsoil. Since the behaviour of soil clearly

1 Stability is defined as the reliability of the equilibrium. Since the stability of the
equilibrium depends on the stiffness of the structure, the stability demand can
also be interpreted as a stiffness demand.

2 The concepts statically-determinate and statically-indeterminate are covered in
more detail in Chapter 4.
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differs from that of regular solid material, the investigation into the forces
and deformations in soil is part of a separate field of expertise known as
soil mechanics.

1.1.4 Theory and experiment

Mechanics, as a part of physics, is a science that addresses the determina-
tion of laws and patterns that can be used to describe natural phenomena
and, more importantly, that can be used to predict them. As such, mechanics
is an empirical science: it aims to formulate the phenomena investigated
and their mutual relationship as accurately as possible. In doing so, it is not
the results from the calculations that are decisive, but rather their agree-
ment with what we learn from observation and experimentation. After all,
we want to be able to predict with a certain degree of accuracy whether a
satellite we launch will end up in its orbit, or whether a bridge is sufficiently
strong and rigid.

Reality is however far too complex to be described fully. For this reason,
one always has to work with a model, a simplified representation of reality,
and one which addresses only a limited number of factors concurrently.

are used, depends on the objective in question.

1.1.5

vant issues. When investigating the movement of the earth around the sun,
the dimensions of the earth are of subsidiary importance, and we schema-
tize the earth as a particle. If, however, one is looking to investigate the
rotation of the earth around its axis, we do have to take the dimensions of
the earth into consideration.

When calculating the force flow in a framework, it is common practice
to schematize the columns and beams as so-called line elements, and to

Which aspects are addressed and which schematisations (simplifications)

Schematisation

Schematisation is an abstraction that at the same time includes all the rele-
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Figure 1.12 When performing calculations for a building, the
columns and beams are generally modelled as so-called line el-
ements; the column-beam joints are thereby reduced to particles,
with negligible dimensions.

Figure 1.13 When detailing the column-beam joints, like here in
reinforced concrete, the dimensions are no longer negligible.

represent the joints between the columns and beams as particles (see Fig-
ure 1.12). If we want to find out more about the interaction of forces in a
column-beam joint, for example in the case of a concrete structure to be
able to determine where the reinforcement has to be placed, the dimen-
sions of the joint can no longer be ignored, and one has to use another

For example, dimensions are ignored for particles, while for rigid bodies
deformation is ignored. Another concept is that of stress, in which a con-
tinuous structure of matter is assumed, while in reality (on a micro level)
this is discrete, with molecules and atoms. You should be aware of these

Much knowledge within mechanics is set down using mathematical for-

sequently offers a language that enables us to formulate and solve the
problems, and interpret the solution unambiguously. We can then use the
findings to make predictions relating to the behaviour of a structure. It
is from this predictive capactity that the science of mechanics derives its
practical use.

results are exact; for this reason, mechanics is often called an exact science.

1.2 Quantities, units, dimensions

1.2.1 Quantities and their units

Mechanics involves measurable, physical quantities. A quantity X is gen-
erally characterised by a numerical value {X} and a unit [X]. This can be
symbolically described as

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

schematisation for the joint (see Figure 1.13).

mulas, based on certain schematisations and modelling. Mathematics sub-

Within a given schematisation, mathematical models are used, and the

Mechanics uses a range of concepts that offer a schematisation of reality.

schematisations.
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Table 1.1 Basic quantities and basic units.

Basic quantity Basic unit

Name Symbol Name Symbol

length � metre m

mass M kilogram kg

time T second s

electric current I amp A

thermodynamic temperature T Kelvin K

amount of material N mol mol

luminosity I candela cd

Table 1.2 Supplementary quantities and units.

Supplementary quantity Supplementary unit

Name Symbol Name Symbol

(plane) angle α radian rad

solid angle � steradian sr

quantity = numerical value × unit

X = {X} × [X].

The unit [X] is the degree to which the quantity X is measured.

In mechanics, one uses the International Units System (Système Inter-
national d’Unité), abbreviated in all languages to SI. The SI includes
• seven basic units (Table 1.1);
• two supplementary units (Table 1.2);
• and a large number of derived units.
Basic units, critical in the structural mechanics, are length, mass and time.

Length (�)
A measure for measuring distances in space. Space is defined as the
geometric area in which people live and work and in which they build their
structures. The basic unit of length is the metre [m].

Mass (m)
A measure for the characteristic of a body that it resists a change in its
movement. This characteristic is known as the inertia of the body. The
basic unit for mass is the kilogram [kg] (not grams!).

Time (t)
A measure for the sequence of events. The fundamental unit for time is the
second [s].

SI derivative units are obtained from the definitions of the derived basic
quantities as products and quotients of powers of basic units. A number
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Table 1.3 Derived units with their own name and symbol.

Derived quantity Derived unit

Name Symbol

area square metre m2

volume, content cubic metre m3

frequency Hertz Hz = s−1

force Newton N = kgm/s2

pressure, tension Pascal Pa = N/m2

work, energy, amount of warmth Joule J = Nm

capacity, energy flow Watt W = J/s

Table 1.4 Common SI prefixes.

Prefix Symbol Factor

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro μ 10−6

nano n 10−9

of derived units have their own names and their own symbols. You will find
a number of these units in Table 1.3.

1.2.2 Prefixes

If numbers are either very large or very small, you can use a prefix for the
unit. Frequently used prefixes are shown in Table 1.4.

Example:

1 MPa = 106 Pa = 106 N/m2 = 1 N/mm2.

For derived units as a product of a number of units, we can join up the
symbol group, unless this gives rise to confusion. In the latter case, place
a multiplication point between the units. In this vein, Nms could either be
Newton-metre-second or Newton-milliseconds. Depending on what one is
trying to say, you should therefore write Nm·s or N·ms.

1.2.3 Dimensions

Besides the unit [X] in which a quantity X is expressed and the associated
numerical value {X}, a quantity also has a dimension dim(X). The dimen-
sion indicates the type of quantity without saying anything about the choice
of unit or the magnitude of the numerical value.

The dimensions of the basic quantities are called the basic dimensions. For
the basic dimensions of length (�), mass (m), and time (t) one writes

dim(�) = L,

dim(m) = M,

dim(t) = T .
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Table 1.5 Examples of derived quantities and their dimensions.

Type of Definition Dimension SI unit

quantity formula

velocity v = du/dt LT−1 m/s

force F = m · a LMT−2 N = kgm/s2

energy, work E = A = F · � L2MT−2 J = kgm2/s2

You will find a number of examples of derived quantities and their
dimensions in Table 1.5.

Dimension formulas can be used to determine whether inaccuracies have
occurred in deriving a physical relationship. This is known as a dimen-
sion check. They can be used to check that the expressions to the left and
the right of the equals sign have the same dimensions. The same can be
achieved by checking whether the products of all the units, expressed in
terms of the basic units, are the same on both sides.

The radian and solid angle are considered dimensionless quantities. When
performing a dimension check, we must assign the symbols for rad and sr
the dimension 1.

1.3 Vectors

1.3.1 Scalars and vectors

Certain physical quantities are fully determined by a numerical value with
the associated unit. These include length, mass, time, temperature, work
and energy, and are referred to as scalar quantities, or scalars. Other phys-
ical quantities can be fully described only if, in addition to the magnitude
(determined by a number and a unit), one also defines in which direction
in space the quantity is oriented. If these quantities with a magnitude and
direction meet the conditions of the so-called parallelogram rule (see Sec-
tion 1.3.4), they are known as vectors. Vectors include motion, velocity,
impulse, acceleration, and force.

In order to distinguish vectors from scalars, the symbols for a vector are
printed in bold (a) or we place an arrow over the symbol (�a).
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Figure 1.14 A right orthogonal coordinate system.

Figure 1.15 A right orthogonal coordinate system in two other
positions, with the positive direction of rotation in the coordinate
planes.

Other physical quantities besides scalars and vectors are tensors1 (of the
second order and above). Tensors are not covered in this book.

1.3.2 Coordinate system

Vectors are quantities with a direction in space. Space is seen as three di-
mensional and Euclidian (after Euclid2). When describing phenomena in
space, one uses a right orthogonal coordinate system. This is a system of
three mutually perpendicular axes x, y and z, that are oriented in such a
way that they meet the conditions of the so-called right-hand rule: if you
make a fist with the fingers of your right hand, as shown in Figure 1.14,
and you point the free thumb in the z direction, the bent fingers in your fist
have to point in the direction of a rotation with the smaller angle of the x

axis to the y axis. This direction of the rotation with the smaller angle of
the x axis to the y axis is called the positive direction of rotation in the xy

plane (about the z axis). In this description, x, y and z can be exchanged
cyclically (see Figure 1.14).

Figure 1.15 shows two more examples of such coordinate systems, with the
positive directions of rotation in the various coordinate planes.

An orthogonal coordinate system is called Cartesian (after Descartes3) if
equal units are chosen along the coordinate axes.

1 Scalars and vectors can be seen as members of the family of tensors. Vectors are
also known as tensors of the first order. Scalars are tensors of the zero order. Sec-
ond order tensors in mechanics include strain tensor, stress tensor, and bending
stiffness tensor. Tensors can be recognised by the transformation rules for their
components when rotating the coordinate system.

2 Euclid (approx. 300 BC), Greek mathematician in Alexandria.
3 René Descartes (Cartesius) (1596–1650), French mathematician and philoso-

pher. Main work: “Discours de la méthode” (1637).
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Figure 1.16 Fixed vector with point of application A.

Figure 1.17 Sliding vector with line of action �.

Figure 1.18 Free vector.

If equal unit vectors are chosen along the axes, this is referred to as an
orthonormal coordinate system (contraction of orthogonal and normalised).

1.3.3 Types of vectors

In a diagram, a vector in space can be represented by an arrow. The direc-
tion of the arrow represents the direction of the vector. The length of the
arrow (in a particular scale) can be drawn to represent the magnitude of the
vector.

There are three types of vector:
• Fixed vectors

Fixed vectors, in addition to their magnitude and direction, also have a
point of application (see Figure 1.16).
Example: a force on a deformable body.

• Sliding vectors
Sometimes the location of the point of application is of no importance
and may be moved in the direction of the vector. This is called a sliding
vector. Sliding vectors do not have a fixed point of action, but have only
a line of action (see Figure 1.17).
Example: the force on a rigid body.

• Free vectors
When the place of the line of action of a vector is not important either,
one refers to a free vector.
Example: The translation of a rigid body. All points of the body are
subject to the same displacement. The free vector stands for the entire
collection of displacement vectors (see Figure 1.18).

Comment:
If we want to investigate the equilibrium (or the motion) of a body as a
whole, the body can often be considered a rigid (non-deformable) body,
with the forces as sliding vectors. After all, it does not make a difference
for rigid bodies whether it is kept in equilibrium by a force from above or
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Figure 1.19 For the equilibrium of a rigid body, it is not relevant
whether a force is moved along its line of action. It certainly makes
a difference with respect to internal phenomena.

Figure 1.20 Vector addition using the parallelogram rule.

Figure 1.21 The vector addition illustrated using a sailor walking
on a moving ship.

below (see Figure 1.19). On the other hand, if one is looking to investigate
deformations or internal phenomena within the body, the points of appli-
cation of the forces do play a role and the forces must be considered fixed
vectors. For phenomena inside bodies (such as human bodies), it certainly
makes a difference whether the body is hung from above or is supported
from below!

1.3.4 Parallelogram rule

We can add two vectors with the same point of application into a single
vector using the so-called parallelogram rule in Figure 1.20. The parallel-
ogram rule is easy to understand if one imagines, as in Figure 1.21, the
movement of a sailor walking on a moving ship. The displacement �u of
the sailor with respect to the earth consists of the sum of the displacement
�u1 of the ship with respect to the earth and his own displacement �u2 with
respect to the ship. In the same way, one can also add up velocity vectors
and forces.

For the vector addition, as shown in Figure 1.20, one writes

�u = �u1 + �u2.

In reverse, we say that �u2 is the difference between �u and �u1, or

�u2 = �u − �u1.

1.3.5 Vector components and scalar components

We often describe a vector by means of its so-called components. If �ex , �ey

and �ez are the unit vectors along respectively the x, y and z axis (vectors
directed along the axes and with a length equal to 1), the vector can also be
defined as the vector sum of its three components (see Figure 1.22):
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Figure 1.22 The vector components �ax , �ay , �az of vector �a.

Figure 1.23 It is possible to add two vectors by adding their asso-
ciated scalar components.

Figure 1.24 Vector notation (a) and visual notation (b).

�a = �ax + �ay + �az = ax �ex + ay �ey + az�ez.

The vector quantities �ax , �ay and �az are known as the vector components of
vector �a. The scalar quantities ax , ay and az are the scalar components1 of
vector �a.

In this book we will usually take the word component to mean scalar
component.

The magnitude or norm2 of the vector �a is:

a = |�a| =
√

a2
x + a2

y + a2
z (a ≥ 0).

To add two vectors given by their components we add the respective com-
ponents. The sum of two vectors �a and �b with components ax , ay and az,
respectively bx , by and bz, is:

�a + �b = (ax + bx)�ex + (ay + by)�ey + (az + bz)�ez.

This is illustrated in Figure 1.23 for two vectors in the xy plane (with
az = bz = 0).

1.3.6 Formal and visual notation of a vector

So far in the figures, the arrow for a vector included the vector symbol
(letter with an arrow above). In addition to this formal notation there is also
a visual notation. Both notations are shown in Figure 1.24.

1 The scalar components ax ; ay ; az of vector �a are not scalars: they depend on the
coordinate system that is used.

2 The magnitude or norm a of vector �a is a scalar: it is independent of the
coordinate system that is used.
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Figure 1.25 In visual notation, the arrow depicted should be seen
as a unit vector that has to be multiplied by the depicted value.

Figure 1.26 The forces �F1 and �F2 resolved into their components.

Figure 1.27 If we want to define the components of force �F2 as
Fx;2 and Fy;2 in a visual model, we have to place a minus sign next

to Fx;2, the x component of �F2.

In the visual notation, each arrow shown reflects a unit vector, which has
to be multiplied by the value shown with the arrow. If this value is neg-
ative, the vector works in the direction opposite to the one shown (see
Figure 1.25). Since in visual notation the emphasis lies on “seeing what
is happening”, it is preferred to not include a negative value alongside a
vector arrow.

The visual notation is frequently used in mechanics for manual calculations.
When setting up manual calculations, the visual aspect plays an important
role as one generally links the calculation to a “picture” on the basis of
which one can better imagine what is happening.

In Figure 1.26, forces �F1 and �F2 have been resolved into components along
the x and y axis. All the forces have been drawn in the directions in which
they operate and include their magnitude.

If one wants to name the components in the xy coordinate system shown,
one has to imagine that Fx and Fy relate to the (not shown) unit vectors in
the coordinate system, respectively �ex and �ey .

Therefore1

Fx;1 = +3 kN; Fy;1 = +4 kN;
Fx;2 = −3 kN; Fy;2 = +4 kN.

The x component of force �F2 opposes the x direction (is opposite to the
direction of the unit vector �ex) and is therefore negative. If one wants to
denote the components of �F1 and �F2 by Fx and Fy in a visual represen-
tation, as in Figure 1.27, one must place a minus sign next to Fx;2, the x

1 The direction indices x and y always precede the other indices. It is common
practice to separate the indices by a semicolon. Sometimes the separator is
omitted.
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Figure 1.28

component of force �F2.

Forces are vectors. In the formal notation they are indicated with an arrow
over the symbol: �F . In structural mechanics the visual notation is generally
used. In that case it is usual to indicate a force by its magnitude F = | �F |.
In this book we will principally use the visual notation for a force.

1.3.7 Vector properties

Quantities can be imagined as vectors if they meet the calculation rules for
vectors. These rules include the commutative property for addition:

�a + �b = �b + �a

and the associative property for addition:

(�a + �b) + �c = �a + (�b + �c).

These properties indicate that the vector sum is independent of the order in
which the vectors are added.

Not every quantity that is defined by a magnitude and a direction is a vector.
For example, the rotation of a body, a quantity with a magnitude and a
direction, is not a vector, as the quantity does not meet the commutative
and associative properties of the addition. This can be checked for a book
in the xz plane by first rotating it through 90◦ about the y axis and then
through 90◦ about the z axis. As shown in Figure 1.28, the final position
changes if the rotation is performed in a different order.

If the order changes when adding (finite) rotations, the
end result also changes.
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1.4 Newton’s Laws

1.4.1 Basic laws

The basic laws for the displacement of a particle (a body with negligibly
small dimensions but with some mass) were first formulated by Newton
(1687).1 Newton’s three laws are as follows:

• First law or law of inertia.
Every particle persists in its state of rest or uniform motion in a straight
line unless it is compelled to change that state by forces imposed on it.

• Second law or law of motion.
The rate of change in momentum of a particle (the product of mass and
velocity) is equal to the force applied to it, and has the direction of that
force.

• Third law or the law of action and reaction.
If particle (1) exerts a force on particle (2), particle (2) will exert an
equal and opposite force on particle (1).

Law of inertia

The first law states that a particle at rest will remain at rest if no force
is exerted on it, and that a particle that is in motion in a straight line at
a constant speed, will continue that movement at that same speed in the
same straight line if no forces are exerted on it. The property with which a
particle resists a change in its state of rest or movement is called its inertia.
Newton’s first law is therefore also known as the law of inertia.

1 Sir Isaac Newton (1642–1727), an English mathematician and physicist, pub-
lished his laws at the age of 44 in his book “Philosophiae naturalis principia
mathematica”, also known as “Principia”. In his laws, Newton uses the word
body. Later developments in mechanics showed that it must relate to a body
without dimensions, here referred to as a particle. A body with finite dimensions
can still perform rotations, which are not mentioned by Newton.
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Law of motion

The second law is defined by the following formula:

�F = d(m�v)

dt
.

Here, �F is the force on the particle, m its mass, and �v its velocity.1 The
notation with vectors shows that the change in momentum has the same
direction as the force.

If the mass of the particle does not change during the motion, the second
law can also be written as

�F = m�a,

in which �a represents the acceleration of the particle:

�a = d�v
dt

.

It should be noted that the first law is actually a special case of the second
law: if the force on the particle is zero, its acceleration is also zero.

By not including a proportionality constant in the mathematical formulation
of the second law (the formulation in words only refers to proportionality
between force and a change in momentum), we actually define the unit
of force as the force that gives a mass of 1 kilogram an acceleration of
1 metre per second squared. This unit of force is the Newton (symbol N,

1 One of the essential distinctions in mechanics is between speed and velocity:
speed is a scalar and velocity is a vector. The speed v is the magnitude of the
velocity �v: v = |�v|. If a particle traverses, say, a circle, with constant speed v,
then its velocity �v will change, because its direction is changing.
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Figure 1.29 Newton’s law of action and reaction in (a) vector
notation (“action = –reaction”) and (b) visual notation (“action =
reaction”).

see Section 1.2.2):

1 N = 1 kg · m/s2.

Law of action and reaction

The third law is the so-called law of action and reaction. If one defines the
force that body (1) exerts on body (2) by �F (2)

i and the force which body (2)

exerts on body (1) by �F (1)
i , the third law states that1

�F (1)
i = − �F (2)

i .

According to the law of action and reaction, forces always act in pairs of
equal and opposite forces. The law of action and reaction is depicted in
Figure 1.29 in both vector notation and visual notation.

In the vector notation in Figure 1.29a one would say

“action = −reaction”.

In the visual notation in Figure 1.29b one would rather say

“action = reaction”.

In both cases, the meaning is the same. In the visual notation it can clearly
be seen that the interaction between both bodies occurs between the pair of
forces Fi.

1 The upper index denotes the body on which the force is exerted, the lower index
is the i of interaction.
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1.4.2 Law of gravitation

Newton also formulated the law that describes the attraction between two
bodies. This Law of Universal Gravitation states that the force between two
particles with masses m1 and m2 at a distance r apart is an attraction that
operates along the joining line of the two particles, with magnitude

F = G
m1m2

r2
.

Here, G is a universal constant, which is the same for all pairs of parti-
cles. The value of G, the gravitation constant, has been experimentally
determined as

G = 66.71 × 10−12 Nm2/kg2.

In general, all attractive forces on earth between bodies are dominated by
the attractive force of the Earth on those bodies, as the mass of the Earth is
so much greater (5.975 × 1024 kg) than that of any other body.

On the basis of Newton’s second law and the law of gravitation, it follows
that in the event of a free fall near the surface of the earth, all masses (in the
absence of friction) are subject to the same acceleration (denoted by g, the
gravitational acceleration).

Assuming that one can imagine the mass of the earth as concentrated in its
centre, this gives

g = GM

R2 ,

whereby M is the mass of the earth and R is the distance from the particle
to the centre.

Since the Earth is flattened at the poles, the exact value of g depends on the
location on earth. At the equator, g is approximately 9.790 m/s2, at the poles
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it is approximately 9.832 m/s2, while in the Netherlands (52◦ lattitude) it is
9.813 m/s2.

For simplicity, in building practice, we assume

g = 10 m/s2.

The 2% error is minor if one considers all the uncertainties in, for example,
the magnitudes and points of application of the loads, the dimensions of the
structural elements, and the properties of the materials.

Since 1 N = 1 kg·m/s2, we can also say:

g = 10 N/kg.

In the gravitational field, a mass of 1 kg therefore weighs 10 N. The
gravitational acceleration g is also known as the gravitational field strength.



2Statics of a Particle

If several forces are exerted on a particle, they can be compounded as de-
scribed in Sections 1.3.4 and 1.3.5 for vectors. The sum of all the forces
is called the resultant force, or resultant. Since all the forces have the
same point of application, namely the particle, the resultant also acts on
that point. Section 2.1 addresses compounding and resolving forces on a
particle in a plane. Section 2.2 looks at compounding and resolving forces
on a particle in space. In Section 2.3 we show how to derive the equilibrium
equation from the motion equation for a particle at rest.

2.1 Coplanar forces

We will first address compounding forces. Compounding is possible both
analytically (Section 2.1.1) and graphically (Section 2.1.2). We will then
show how to resolve a force into components with given directions. Here

graphical approach (Section 2.1.4).

2.1.1 Compounding forces analytically

We can compound forces analytically by adding together the respective
components in each of the coordinate directions, see Section 1.3.5. This

we can choose between an analytical approach (Section 2.1.3) and a
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Figure 2.1 (a) Particle loaded by three forces and (b) the resultant
R of the three forces.

is illustrated on the basis of an example.

Example
In Figure 2.1a, the three forces F1, F2 and F3 located in the xy plane act
on the particle P. Their magnitudes and directions can be derived using the
squares from the figure.

Note: As you can see from the figure, here we use the visual notation for
force vectors (see Section 1.3.6).

Question:
What is the magnitude and direction of the resultant R?

Solution: In the coordinate system shown, the components of the resultant
R of the three forces are

Rx = Fx;1 + Fx;2 + Fx;3 = (3 kN) + (2 kN) + (−2 kN) = 3 kN,

Ry = Fy;1 + Fy;2 + Fy;3 = (0 kN) + (3 kN) + (4 kN) = 7 kN.

Be careful with respect to the signs of the x and y components: they are
related to the (not shown) unit vectors in the coordinate system!

The magnitude of the resultant is

R =
√

R2
x + R2

y =
√

(3 kN)2 + (7 kN)2 = √
58 kN.

From the angle α between the line of action of R and the x axis, it follows
that

tan α = Ry

Rx

= 7 kN

3 kN
= 2.33 ⇒ α = 66.8◦ + k × 180◦.
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Figure 2.2 Graphical representation of the vector addition by
repeatedly applying the parallelogram rule.

Figure 2.3 By placing the forces F1 to F3 head-tail behind each
other you get an open force polygon.

Figure 2.4 Graphical representation of the resultant using a force
polygon.

The direction of R is determined by

sin α = Ry

R
= 0.919 and cos α = Rx

R
= 0.394 ⇒ α = 66.8◦.

The resultant R and its components are shown in Figure 2.1b.

2.1.2 Compounding forces graphically; force polygon

If all the forces are in the same plane, the vector addition can easily be
performed graphically by repeatedly implementing the parallelogram rule
(see Section 1.3.4) or by drawing a so-called force polygon. Two examples
are given below.

Example 1
Figure 2.2 shows the result of the graphical approach for the example in
the previous section. First, we determine the resultant of F1 and F2, after
which we compound it with F3. Using the square canvas the resultant R is

R = √
58 kN.

When compounding forces graphically, it is not necessary to draw all the
parallelograms fully. A drawing in which all the forces with magnitudes and
directions are drawn behind one another suffices, as shown in Figure 2.3.
This type of drawing is called a force polygon.

If, as in the example, the starting point A (the tail of the arrow for the first
force F1) does not coincide with the end point B (the point of the arrow for
the last force F2), one refers to an open force polygon.

The starting point and the end point of the force polygon determine the
direction and magnitude of the resultant R for all forces: the arrow for R

runs from starting point A to end point B (see Figure 2.4). The magnitude
and direction of R can be measured or calculated using the drawing. If you
look closely, you will recognise the force polygon in Figure 2.2.
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Figure 2.5 The end result is not influenced by the order in which
the forces in a force polygon are exerted.

Figure 2.6

Figure 2.7 The forces drawn to scale in (a) a parallelogram and
(b) force polygon.

Figure 2.5 shows all the forces in changing order in a force polygon.
The order clearly does not influence the end result (the vector addition is
associative and commutative, see Section 1.3.7).

Example 2
Two forces F1 and F2 are acting on the ring in Figure 2.6. Their directions
are shown in the figure. The forces are not shown to scale.

Question:
Find the magnitude and direction of the resultant force on the ring if

F1 = 1000 N,

F2 = 750 N.

Solution:
In Figure 2.7, the forces have been drawn to scale, with 1 cm =̂ 250 N.
Using the parallelogram rule in Figure 2.7a or the force polygon in Fig-
ure 2.7b, we can construct the resultant R. Through measuring we find that
R has a length of approximately 5.95 cm, so that

R ≈ 5.95 × 250 N = 1488 N.

With a protractor, we find that the line of action of R makes an angle γ of
approximately 22.5◦ with the vertical.

Check:
The magnitude and direction of the resultant R can also be calculated from
the force triangle ABC. In doing so, we use the cosine rule and the sine
rule, as shown in Figure 2.8.

In the triangle ABC in Figure 2.7b

α = 180◦ − (50◦ + 15◦) = 115◦.

A ring subject to two forces.
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Figure 2.8 The cosine and sine rules.

Figure 2.9 The force F in P has to be resolved into two compo-
nents with given lines of action a and b.

Using the cosine rule we find that

R =
√

F 2
1 + F 2

2 − 2F1F2 cos α

=
√

(1000 N)2 + (750 N)2 − 2 × (1000 N)(750 N) cos 115◦

=
√

2.196 × 106 N2 = 1482 N.

The angle β in triangle ABC can be calculated using the sine rule:

R

sin α
= F2

sin β
,

sin β = F2

R
sin α = 750 kN

1482 kN
sin 115◦ = 0.459

so that

β = 27.3◦.

The angle γ that the resultant R makes with the vertical is therefore

γ = 50◦ − β = 22.7◦.

The values measured in Figure 2.7 correspond well with the values we have
calculated.

2.1.3 Resolving a force in two given directions analytically

In a plane, we can resolve a force F into two components with given lines
of action.

Example
The force F = √

34 kN in Figure 2.9a has to be resolved into two forces
Fa and Fb with the given lines of action a and b.
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Figure 2.10 Resolving a force in two given directions graphically
using (a) the parallelogram rule and (b) a force polygon.

Solution:
Figure 2.9b shows the forces Fa and Fb on the lines of action a and b. Along
a and b the directions of the forces can be chosen freely. In the analytical
approach, we calculate Fa and Fb on the basis of the condition that the sum
of the components from Fa and Fb is equal to the corresponding component
of F in each of the coordinate directions

Fx;a + Fx;b = Fx,

Fy;a + Fy;b = Fy.
(a)

For the components of F in the coordinate system shown in Figure 2.9b

Fx = 5 kN; Fy = 3 kN

and for the components of Fa and Fb respectively:

Fx;a = 1
2

√
2 × Fa; Fy;a = − 1

2

√
2 × Fa,

Fx;b = 1
10

√
10 × Fb; Fy;b = + 3

10

√
10 × Fb.

Substitution in (a) gives two equations with Fa and Fb as unknowns:

1
2

√
2 × Fa + 1

10

√
10 × Fb = 5 kN,

− 1
2

√
2 × Fa + 3

10

√
10 × Fb = 3 kN.

The solution is

Fa = 3
√

2 kN,

Fb = 2
√

10 kN.
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Figure 2.11 A trestle is loaded by a (tensile) force of 30 kN that
has to be resolved into components along the lines a and b.

Figure 2.12 The forces drawn to scale in a force polygon.

The fact that Fa and Fb are both positive means that they act in the direc-
tions we chose in Figure 2.9b. If we had chosen the directions of Fa and Fb
in the opposite sense, we would have found that Fa and Fb were negative.

2.1.4 Resolving a force in two given directions graphically

A force F can be resolved graphically into two components Fa and Fb, with
given lines of action a en b using the parallelogram rule in Figure 2.10a or
the force polygon in Figure 2.10b. The graphical approach has the advan-
tage that you can at once see in which directions the components Fa and Fb
are working.

Example
A force F = 30 kN acts on the trestle in Figure 2.11a. This has to be
resolved into the components Fa and Fb with lines of action a and b.

Solution:
In Figure 2.12, the force has been resolved using a force polygon. The force
scale is 1 cm =̂ 5 kN. By measuring, you find (in the force polygon) Fa and
Fb have lengths 5.7 cm and 6.3 cm respectively, so that

Fa ≈ 5.7 × 5 kN = 28.5 kN,

Fb ≈ 6.3 × 5 kN = 31.5 kN.

In Figure 2.11b forces Fa and Fb are shown as they act on the trestle. It is
clear that force Fa is pulling on the beam while force Fb is pushing against
it. Together, they exert the same load as the single force F . The forces Fa
and Fb are statically equivalent (equal in an equilibrium consideration) to
their resultant F .
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Check: The magnitude of Fa and Fb can also be calculated from the force
triangle by using the sine rule (see Figure 2.12):

Fa

sin 55◦ = Fb

sin 65◦ = F

sin 60◦

so that:

Fa = F · sin 55◦

sin 60◦ = 28.4 kN,

Fb = F · sin 65◦

sin 60◦ = 31.4 kN.

The values measured in Figure 2.12 correspond closely to the calculated
values.

2.2 Forces in space

If not all the forces are in the same plane, the analytical approach is gener-
ally simpler than the graphical approach. For example, for the components
Rx , Ry and Rz of the resultant �R:

Rx = ∑
Fx,

Ry = ∑
Fy,

Rz = ∑
Fz.

The summation symbol means that all the forces exerted on the particle
have to be added together.

Figure 2.12 The forces drawn to scale in a force polygon.
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Figure 2.13 The resultant R, with its components Rx , Ry , Rz and
the angles αx , αy , αz that R makes with the coordinate axes.

For the magnitude R of �R therefore

R =
√

R2
x + R2

y + R2
z .

The direction of �R is determined by the angles αx , αy and αz which �R
makes with respectively the x, y and z axis, see Figure 2.13:

cos αx = Rx

R
; cos αy = Ry

R
; cos αz = Rz

R
.

The quantities cos αx , cos αy and cos αz are called the direction cosines.
Regardless of the direction of �R, the angles αx , αy and αz are always
between 0◦ and 180◦.

When defining a vector, such as the force �R, we need three numbers (and
a unit). The three numbers could be the values of the three components
Rx , Ry and Rz, or, for example, the magnitude of �R and two of the three
direction cosines. In the latter case, the third direction cosine is given by
the other two as

cos2 αx + cos2 αy + cos2 αz = 1.

Working with forces in space is illustrated using two examples. The first
example relates to resolving a force into its components (Section 2.2.1).
The second example relates to compounding forces (Section 2.2.2).

2.2.1 Resolving a force into its components

In order to be able to resolve a force into its x, y and z component, we first
have to calculate the direction cosines. This is illustrated by means of an
example.
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Figure 2.14 A secured mast.

Figure 2.15 The (tensile) force �F that the rope AC exerts on the
foundation block in C.

Example
In Figure 2.14, a mast is being kept upright by three ropes. Rope AC is
subject to a tensile force of 35 kN.

Question:
Find the x, y and z component of force �F that the rope exerts on the
foundation block in C (see Figure 2.15).

Note that here we use the formal vector notation.

Solution:
The force �F that is working on the foundation block has the same direction
as the vector CA (directed from C to A). This vector, which indicates the
direction of �F is hereby referred to as �d ,1 see Figure 2.15. �F and �d have
the same direction cosines, so that

cos αx = Fx

F
= dx

d
,

cos αy = Fy

F
= dy

d
,

cos αz = Fz

F
= dz

d
.

Figure 2.15 shows that

dx = −8 m,

dy = +24 m,

dz = +12 m.

The x component of �d is negative as it is pointing in the negative x

1 Remember the d of direction.
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Figure 2.16 The components of �F .

Figure 2.17 Schematisation of the situation surrounding a salvage
operation. The wreckage of a crashed lorry is located on a slope at
A, and is being salvaged with the cables AB and AC and winches
in B and C.

direction. The magnitude (length) d of �d is

d =
√

d2
x + d2

y + d2
z =

√
(−8 m)2 + (24 m)2 + (12 m)2 = 28 m.

Using this information, we can calculate the components of �F :

Fx = F
dx

d
= (35 kN) × −8 m

28 m
= −10 kN,

Fy = F
dy

d
= (35 kN) × 24 m

28 m
= +30 kN,

Fz = F
dz

d
= (35 kN) × 12 m

28 m
= +15 kN.

Figure 2.16 shows the components of �F as they are working on the foun-
dation block.

2.2.2 Compounding forces

In order to determine the resultant of the forces on a particle in space, we
first resolve all the forces into their x, y and z component, and then add all
the associated components together. This is illustrated in an example.

Example
Figure 2.17 shows the schematised situation in a salvage operation. A
shows the wreckage of a crashed lorry on a slope. People are trying to sal-
vage the wreckage using cables AB and AC and winches in B and C. Cable
AB is pulling on the wreckage with a force of magnitude F1 = 7.5 kN;
cable AC is pulling on the wreckage with force of magnitude F2 = 10 kN.

Question:
Find the resultant force being exerted by the cables on the wreckage.
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Table 2.1 Calculation of the components of the resultant �R.

dx dy dz d F Fx Fy Fz

�d1 = AB, �F1 –18 +20 +16 31.30 7.5 –4.31 +4.79 +3.83

�d2 = AC, �F2 –18 +15 –24 33.54 10 –5.37 +4.47 –7.16

∑ = –9.68 +9.26 –3.33

Figure 2.18 (a) The components of the resultant �R that the cables
exert on the wreckage and (b) the angles αx , αy , αz that this force
makes with the coordinate axes.

Solution:
First, we have to resolve the forces �F1 and �F2 into their components in
the same way as described in the previous section: Fx = Fdx/d , etc. The
calculation is shown in Table 2.1 (d in m and F in kN).

The components of the resultant force �R on the wreckage are therefore

Rx = ∑
Fx = −9.68 kN,

Ry = ∑
Fy = +9.26 kN,

Rz = ∑
Fz = −3.33 kN,

so that

R =
√

R2
x + R2

y + R2
z

=
√

(−9.68 kN)2 + (9.26 kN)2 + (−3.33 kN)2 = 13.80 kN.

Figure 2.18a shows the components of the resultant �R as they act on the
wreckage. Figure 2.18b shows the angles that the resultant makes with the
coordinate axes. The angles are calculated as follows:

cos αx = Rx

R
= −9.68 kN

13.80 kN
= −0.701 ⇒ αx = 134.5◦,

Figure 2.17 Schematisation of the situation surrounding a salvage
operation. The wreckage of a crashed lorry is located on a slope at
A, and is being salvaged with the cables AB and AC and winches
in B and C.
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Figure 2.19 If the forces on a particle form a closed force polygon
then the particle is in equilibrium.

Figure 2.20 The force F4 that closes the force polygon from F1 to
F3 – and ensures equilibrium – is equal and opposite to the resultant
R from F1 to F3.

cos αy = Ry

R
= +9.26 kN

13.80 kN
= +0.671 ⇒ αy = 47.8◦,

cos αz = Rz

R
= −3.33 kN

13.80 kN
= −0.241 ⇒ αz = 104.0◦.

2.3 Equilibrium of a particle

According to Newton’s first law, if the resultant of all the forces on a particle
is zero, it will remain at rest if it was at rest originally. This means that the
particle is in equilibrium.

If the particle is to be in equilibrium, then

∑ �F = �0.

This (vector) equation is called the equilibrium condition for the particle.
The summation symbol means that all the forces acting on the particle have
to be added together.

2.3.1 Graphical: closed force polygon

In a force polygon, the equilibrium condition means that all the forces
acting on the particle have to form a closed force polygon: the resulting
force is then zero.

An example of this is given in Figure 2.19. The four coplanar forces acting
on the particle form a closed force polygon; the particle is therefore in
equilibrium.

In Figure 2.20a, the particle is subject to the three coplanar forces F1, F2
and F3. Together they form an open force polygon. The particle is not
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in equilibrium. Due to the resultant force R (Figure 2.20b), a change in
momentum occurs (Newton’s second law): the resultant R on the particle
will cause its velocity to change.

The force F4 that closes the open force polygon (Figure 2.20c) is the force
that brings the given forces into equilibrium. F4 has the same magnitude,
but opposite direction to the resultant R of the forces F1, F2 and F3.

2.3.2 Analytical: equilibrium equations

A particle is and stays at rest if the resultant of all the forces acting on the
particle is zero.

∑ �F = �0

resolves into three algebraic equations in space:

∑
Fx = 0,∑
Fy = 0,∑
Fz = 0.

These are referred to as the three equations for the force equilibrium of the
particle in the x, y, and z direction respectively. If a particle is to be in
equilibrium, each of the three components of the resultant must be zero.

If all the forces are coplanar, the number of equations for the force
equilibrium is reduced to two. This is illustrated by two examples.

Example 1
Investigate whether the particle P in Figure 2.21, subject to the forces F1 to
F4 in the xy plane is in equilibrium.

Figure 2.20 The force F4 that closes the force polygon from F1 to
F3 – and ensures equilibrium – is equal and opposite to the resultant
R from F1 to F3.

The vector equation for the force equilibrium

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 2.21 Is particle P in equilibrium?

Figure 2.22 The forces acting on joint A when unloading a con-
tainer.

Solution (forces in kN):

Rx = ∑
Fx = Fx;1 + Fx;2 + Fx;3 + Fx;4 = +6 − 2 − 1 − 3 = 0,

Ry = ∑
Fy = Fy;1 + Fy;2 + Fy;3 + Fy;4 = −1 − 4 + 6 − 1 = 0.

The particle is in equilibrium since the resultant is zero: the forces F1 to F4
therefore together form an equilibrium system.1

Example 2
In Figure 2.22, a container with mass 880 kg is being unloaded. Forces F1,
F2 and F3, act on joint A. Here, F3 stands for the weight of the container.
In the figure, the system is in equilibrium. The gravitational field strength
is g = 10 N/kg.

Question:
How large are F1 and F2?

Solution:
The weight of the container is

F3 = mg = (880 kg)(10 N/kg) = 8800 N.

The unknown forces F1 and F2 are obtained from the two equations for the
force equilibrium in the x and y directions:

∑
Fx = F1 · sin 3◦ − F2 · cos 20◦ = 0,∑
Fy = F1 · cos 3◦ − F2 · sin 20◦ − (8800 N) = 0.

Here we have two equations with two unknowns, namely the magnitude of

1 It is incorrect to say that “the forces neutralise one another” as the forces con-
tinue to exist.
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Figure 2.23 A rough sketch of the closed force polygon for the
force equilibrium of joint A.

the forces F1 and F2. We can write the equations as

0.0523 × F1 − 0.9397 × F2 = 0,

0.9986 × F1 − 0.3420 × F2 = 8800 N,

so that:

F1 = 8984 N,

F2 = 500 N.

Alternative solution:
We also can calculate the forces on the basis of the closed force polygon for
the equilibrium of junction A. A rough sketch of the force polygon, such as
that in Figure 2.23, suffices.

According to the sine rule this gives

F1

sin 110◦ = F2

sin 3◦ = F3

sin(180◦ − 110◦ − 3◦)
= F3

sin 67◦ .

With F3 = 8800 N this means that

F1 = F3 · sin 110◦

sin 67◦ = 8983 N,

F2 = F3 · sin 3◦

sin 67◦ = 500 N.

The fact that F1 is 1 N less than before is the result of rounding off
the goniometric function values (to four decimal places) in the previous
solution.
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2.4 Problems

Compounding coplanar forces (Sections 2.1.1 and 2.1.1)

2.1 Which combination of forces has the smallest resultant?

2.2 Two forces are acting on a particle, of which the magnitude and
direction are shown in the figure.

Question:
Determine the magnitude and direction of the
resultant for both forces:
a. graphically (choose a scale of 5 mm ≡ 1 kN);
b. analytically.

2.3 Two forces are acting on a particle, of which the magnitude and
direction are shown in the figure. The resultant is R.

Question:
Calculate the components Rx and Ry :
a. analytically;
b. graphically (choose a scale of 5 mm ≡ 1 kN).

2.4 Two forces are acting on a particle. The values are included in kN. The
directions are: tan α = 3/5 and tan β = 1/2.

Question:
a. Calculate the resultant of the two

forces graphically.
b. Check the result analytically.

2.5 Four forces are acting on particle P. The directions of the forces are
shown in the figure. The forces are not drawn to scale.

F1 = 15
√

5 kN, F2 = 10
√

5 kN, F3 = 30 kN and F4 = 5
√

17 kN.

Question:
Determine the magnitude and direc-
tion of the resultant of these four
forces:
a. graphically (choose a scale of

1 mm ≡ 1 kN);
b. analytically.

2.6 A number of coplanar cables are attached to a console. They exert the
forces as shown in the figure.
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Question:
Determine the magnitude and direc-
tion of the resultant force on the
console.

2.7 A boat is kept in the middle of a river by means of two cables. The
direction in which the boat pulls on both cables is shown by the dashed
arrow.

Question:
Calculate F2 if F1 = 1000 N.

2.8 A vessel is being pulled in the direction of its longitudinal axis by two
tugs with a force of 20 kN. The directions of the forces F1 and F2 as exerted
by the tow lines on the vessel are shown in the figure.

Question:
a. Determine F1 and F2 if α = 45◦.
b. The value of α whereby F2 is minimal.

How large in this case are F1 and F2?

Resolving coplanar forces (Sections 2.1.3 and 2.1.4)

2.9 A vertical force F on a sloping roof has to
be resolved into components perpendicular to and
parallel to the surface of the roof.

Question:
Determine these components.

2.10 A force F perpendicular to a sloping roof
has to be resolved into the components Fx and
Fy , parallel to the x and y axis respectively.

Question:
Determine these components.

2.11 Resolve the force of 1.5 kN on the
surface of the roof into:
a. components perpendicular to and par-

allel to the surface of the roof;
b. components in the x and y direction.

2.12 Resolve the force of 1414 N on the
surface of the roof into:
a. components perpendicular to and par-

allel to the surface of the roof;
b. components in the x and z direction.
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2.13 Resolve the force of 10 kN shown at A into components perpendicular
to and parallel to the bar axis s:

a. graphically (mention the scale used for
the forces);

b. analytically.

2.14 At the end A of the bar, the forces of 6 and 18 kN as shown in the
diagram are exerted on the cross-section d.

Question:
Resolve the resulting force at A into:
a. components perpendicular to and par-

allel to cross-section d;
b. the components Fx and Fy .

2.15 The resultant R of the two forces shown is resolved into the compo-
nents Ra and Rb, parallel to the directions a and b.

Question:
a. Draw the lines of action of Ra and Rb.
b. Determine Ra and Rb.
c. Draw Ra and Rb on their lines of action (in the directions in which they

are acting) and record their values next to them.

2.16 A console is subject to a force F = 1000 N.

In addition: α = β = 30◦.

Question:
Resolve these forces into compo-
nents in respectively:
a. the a and b direction;
b. the c and d direction;
c. the a and c direction;
d. the b and c direction.
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2.17 As 2.16 but now with α = 20◦ and β = 30◦.

2.18 A trestle is subject to a tensile force F with an angle α.

Question:
Resolve this force into the components Fa and Fb along the lines of action
a and b, for:
a. α = 20◦ and F = 38.0 N;
b. α = 35◦ and F = 36.8 N;
c. α = 50◦ and F = 43.3 N.

2.19 A force F at P is resolved into the components Fa and Fb.

Question:
Determine the magnitude and direc-
tion of Fb if F = 5 kN and Fa =
1 kN:
a. graphically (choose a scale of 5

mm ≡ 1 kN);
b. analytically.

2.20 As 2.19, but now with F = Fa = 5 kN.

Resolving a force in space into its components (Section 2.2.1)

2.21 Question:
a. Determine the components in

the x, y and z direction for force
F shown when F = 35 kN.

b. Calculate the angles αx , αy and
αz that F makes with respec-
tively the x, y and z axis.

2.22 Question:
For the forces shown, determine the components in the x, y and z direction
and the angles αx , αy and αz that they make with respectively the x, y and
z axis:
a. F1 = 1250 N.
b. F2 = 1500 N.
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2.23 Question:
For the forces shown, determine the components in the x, y and z direction
and the angles αx , αy and αz that they make with respectively the x, y and
z axis:
a. F1 = 6.5 N;
b. F2 = 17.7 N.

2.24 Cable AB exerts a tensile force F = 8.4 kN at A on the console.

Question:
Determine the x, y and z component of the
force at A.

2.25 A prefabricated concrete wall is temporarily kept in place by cables.

Question:
a. If there is a tensile force

of 3.5 kN in cable AB,
determine the compo-
nents of the force that
cable AB exerts on the
wall in A.

b. If there is a tensile force
of 4.5 kN in cable BC,
determine the compo-
nents of the force that
cable BC exerts on the
wall in C.

Resultant of the forces on a particle in space (Section 2.2.2)

2.26 The components of a force are

Fx = +7.5 kN, Fy = +17.5 kN and Fz = −10 kN.

Question:
Determine the magnitude and direc-
tion of this force.
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2.27 The components are given in the table below for three forces F1, F2
and F3.

Fx (kN) Fy (kN) Fz (kN)

F1 –60 20 100

F2 30 50 –80

F3 90 20 –60

Question:
Determine the magnitude and direction of the resultant of these three forces.

2.28 Three forces Fa, Fb and Fc in the origin O of the xyz coordinate
system are aimed respectively at the points A(−1, 2, 4), B(3, 0,−3) en
C(2,−2, 4).

Question:
Determine the magnitude and direction of the resultant of these three forces
if Fa = 200 N, Fb = 50 N and Fc = 150 N.

2.29 A prefabricated
concrete wall is kept in
place temporarily by cables.
There is a tensile force in
the cables AB and BC of
respectively 7.0 kN and
6.0 kN.

Question:
Determine the magnitude
and direction of the force
that the cables AB and BC
exert jointly on anchor B.

2.30 Three forces are exerted on D(5, 10, 0), namely F1 = 3 kN,
F2 = 4 kN and F3 = 5 kN. Coordinates in m.

F1 is aimed at A(10, 0, 0),
F2 is aimed at B(0, 0,−3) and
F3 is aimed at C(0, 2, 4).

Question:
Determine the magnitude and direction of the resultant of these three forces.

2.31 A force F is acting on the origin O of the xyz coordinate system. The
force has an angle of 150◦ with respect to the z axis. The components in
the x and y direction are respectively Fx = 4 kN and Fy = 3 kN.

Question:
a. Determine F .
b. Determine the component Fz.
c. Determine the direction cosines for F .
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2.32 A narrow steel mast is supported at its top by three tight cables. There
is a tensile force of 5.9 kN in cables 1 and 2. Cable 3 makes an angle of
30◦ with the mast. The forces that the three cables exert on the mast have a
vertical resultant. Assume that all the forces are aimed at a single point.

Question:
a. Determine the magnitude of the

tensile force in cable 3.
b. Determine where cable 3 is an-

chored at ground level.

Equilibrium of a particle in a plane (Sections 2.3.1 and 2.3.2)

2.33 Particle P is subject to five forces, four of which are shown. The
particle is in equilibrium. F1 = 40 kN and F2 = 20 kN.

Question:
The fifth force is acting:
a. top right;
b. top left;
c. bottom right;
d. bottom left.

2.34 As 2.33, but now with F1 = F2 = 35 kN.

2.35 As 2.33, but now with F1 = 10 kN and F2 = −15 kN.

2.36 A particle is subject to three forces F1, F2 and F3 with resultant R.
The body is kept in equilibrium by an additional force P .

Question:
Which of the force polygons for F1, F2 and F3 and R is correct?

2.37 Cable ABC is carrying a block in C with mass m = 50 kg. At point
B of the cable the forces F1, F2 and Fw are exerted. Fw represents to the
weight of the block. The system is in equilibrium.

Question:
a. Determine F1 if tan α = 0.5.
b. Determine F1 as a function of α; represent this in a graph.
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2.38 A lamp with mass 200 N is hung from two wires.

Question:
a. Determine and draw all the

forces exerted on joint A.
b. Draw the force polygon for the

equilibrium in joint A.

2.39 Three forces are exerted on the joint of a truss. The system is in
equilibrium.

Question:
a. Draw the force polygon for the equilibrium in the joint.
b. Determine the forces N1 and N2. Are they tensile or compressive

forces?

2.40 Four forces act on the joint of a truss. The system is in equilibrium.

Question:
a. Draw the force polygon for the

equilibrium of the joint.
b. Determine forces N2 and N4.

Are they tensile or compressive
forces?

2.41 A pulley is hanging on two bars. A weight of 3 kN is hanging on a
cable that is fed over the pulley. The tensile force in the cable is equal on
both sides of the pulley (this can be shown with knowledge from Chapter 3).

Question:
From the force equilibrium of the
pulley, determine the forces that the
bars exert on the pulley in the situa-
tion shown.

2.42 Top A of the crane is schematised as a particle. The tensile force
in the cable is equal on both sides of the pulley (this can be shown with
knowledge from Chapter 3). The force that jib AB exerts on particle A has
a line of action along AB.
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Question:
Draw the particle and determine
and draw all the forces that are
acting on it. Also draw the force
polygon for the equilibrium of the
particle.

Equilibrium of a particle in space (Section 2.3.2)

2.43 Three bars joined at A can transfer forces only in the direction of their
axes. Joint A is loaded by the force shown of 4.9 kN, with its line of action
through E.

Question:
Determine the forces that the bars
exert on joint A. Are the forces in
the members tensile or compressive
forces?

2.44 A derrick AB is mounted as a hinge in A(0, 0, 6) and is supported in
B(3, 2, 0) by two horizontal wires BC and BD, parallel to the x and y axis
respectively. The vertical loading in B is 18 kN. Coordinates in m.

Question:
Determine the forces exerted
by AB, BC and BD on joint
B if their lines of action are
along the axes shown.

2.45 The hoisting device consists of three 4.5-metre poles. The three feet
are in an equilateral triangle with sides of 3.9 metres. The device bears
a vertical load of F = 13 kN. The poles can transfer forces only in the
direction of their axes.

Question:
Determine the compressive forces
in the poles.
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2.46 Three bars linked at A can
transfer forces only in the direction
of their axes. Joint A is loaded by
the two forces shown F1 = 3.75 kN
and F2 = 5.25 kN, parallel to the x

and z axis respectively.

Question:
Determine the forces that the bars
exert on joint A. Are the forces in
the members tensile or compres-
sive?

2.47 Three bars linked at D can
transfer forces only in the direction
of their axes. Joint D is loaded by a
vertical force of 30 kN.

Question:
Determine the forces that the bars
exert on joint D. Are they tensile or
compressive?

2.48 A load of weight G = 9 kN is hanging at C on the cables AC and BC.
The cables are joined to the corners of a vertical wall. A horizontal force
F , perpendicular to the wall keeps the block in the position shown.

Question:
a. Determine the magnitude of force F on the basis of the equilibrium in

joint C.
b. Determine the forces in the cables.
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2.49 At D, a weight of
750 N is hanging from three
wires. The points of attach-
ment A and B are in the
horizontal xy plane; point of
attachment C is 1 metre be-
low.

Question:
Determine the forces in the
wires.

2.50 The hoisting device consists of three bars joined at A that can transfer
forces only in the direction of their axes. Joint A is loaded by a vertical
force F . The compressive force may be no larger than 12 kN in any of the
bars.

Question:
a. Determine the maximum load

the device can bear.
b. Determine the forces in the bars

under this maximum load; are
they tensile or compressive?



3Statics of a Rigid Body

So far, we have discussed the behaviour of a particle with negligibly small
dimensions, for which one can assume that all forces act on the particle at
the same point. In this chapter, we will show that for the equilibrium of a
rigid body with certain dimensions, the point of application (or actually the
lines of action) of the various forces are of critical importance.

The equilibrium of a particle demands that the resultant of all forces be
zero. This condition is also necessary for a body, but is not sufficient. Forces
on a body can together form a couple that will try to turn it. In this chapter,
we will define the moment of a couple as well as the moment of a force.
Equilibrium demands that a body does not rotate. In addition to the force
equilibrium of a body, if it is to be in equilibrium, it must also be in moment
equilibrium.

In the first instance, in order to keep the discussion simple, we will look
only at coplanar forces. Section 3.1 addresses compounding and resolving
forces and moments, while Section 3.2 looks at the equilibrium of a body
in a plane.

When considering equilibrium, we can consider forces as sliding vectors.
In the spatial discussion in Section 3.3, we will talk about the fact that
moments of a force and of a couple are vectors. The chapter ends with
Section 3.4, in which we look at equilibrium equations for a body in space.
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Figure 3.1 An element from the so-called “nabla beam” over the
Haringvliet sluices, part of the Delta works in the Netherlands.

The discussions relate to rigid bodies. In reality, there are no rigid bodies,
as all solids are deformable. Most construction material deforms so little,
however, that for equilibrium of a body, it can often be considered as non-
deformable.1

3.1 Coplanar forces and moments

3.1.1 Motion of a rigid body

If several forces act on a body with particular dimensions, they can have
various points of application. For the motion (the equilibrium) of a body,
it is certainly important where the forces act. For example, with a billiard
ball, it makes a difference whether one strikes the ball on the left or on
the right. And if you want to lift the construction element in Figure 3.1, it
makes a great difference whether you lift it from one of the upper corners
or from the middle. Only in the latter case, on the basis of symmetry, can
you expect the construction element not to rotate.

The movement of a rigid body differs from that of a particle in the sense
that we also have to take the rotation of the body into consideration.

If we investigate the free motion of a rigid body, under the action of forces
with zero resultant, there is a particular point that moves with uniform speed
in a straight line (or is and stays at rest). This point about which the body

1 There are exceptions. For example, a stability investigation – an investigation
into the reliability of the equilibrium – investigates how the distribution of forces
changes as a result of deformation of the structure. In such cases, one has to
relate the equilibrium to the deformed geometry, however small the deformations
might be, and the structure may no longer be considered rigid. This topic falls
outside the scope of this book.
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Figure 3.2 Equilibrium or motion of a body subject to forces:
(a) equilibrium, (b) translation, (c) rotation about MC; (d) rotation
and translation.

can perform further rotations is called the mass centre, MC.1

Without addressing the theory, we will cover four examples of how a rigid
body, which originally is at rest, starts to move if it is subject to forces. In
order to keep the discussion simple, we will confine our attention to cases
in which all the forces are coplanar.

1. The body is subject to two equal and opposite forces with the same line
of action, see Figure 3.2a. The state of movement does not change: if
the body is at rest it remains at rest. The two forces are in equilibrium.
The equilibrium is not influenced by the location of the points of
application of the forces on their common line of action. The forces
can be moved along their lines of action without any effect on the
motion.

2. The body is subject to a force of which the line of action passes
through the mass centre MC (see Figure 3.2b).
The mass centre MC will move in a straight line as if it were a particle
in which the entire mass is concentrated. No rotation occurs: the body
performs a translation. The effect of the force does not change when
the point of application is chosen elsewhere on the line of action of the
force.

3. The body is subject to two equal and opposite forces with parallel lines
of action (see Figure 3.2c).
The mass centre MC remains at rest, but the body starts to rotate about
an axis through MC perpendicular to the plane in which the forces are
applied. For the progression of the movement, it now matters whether
the forces maintain their direction, or turn with the body.

1 Since in a homogenous gravitational field the centre of gravity and mass centre
of a body are the same, both names are often used interchangeably.
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Figure 3.3 Forces that maintain their direction during rotation are
fixed vectors: the final position depends on the location of the points
of application.

If the forces turn with the body, it does not matter where they are exerted
on their lines of action and they can be moved along their lines of action.
If the forces maintain their direction, such as forces resultant from the
gravitational field, they cannot be moved along their lines of action.

In Figure 3.3 this is illustrated by a plate subject to a pair of forces. One
of the forces acts on the middle of the plate, the other on a point on the
edge. Under the influence of these forces, the plate will move to a state
of equilibrium, in which the lines of action coincide. The final position
depends on where the forces are applied.

If one limits oneself to the so-called instantaneous movement of the body,
or in other words the movement immediately after the application of the
forces when the rotations are still very small, then the difference noted
disappears, and the forces may be moved along their lines of action. The
difference also disappears if one investigates the equilibrium of a body at
rest, a situation without rotation.

Conclusion: For the equilibrium (or instantaneous movement) of a rigid
body, it does not matter at which point of its line of action a force is applied.
The force on a rigid body can therefore be seen as a sliding vector. Although
physically impossible, one can therefore also allow a force to “apply itself”
to a point outside the body.

Note: In investigating the deformation or phenomena inside a body, one
cannot move a force along its line of action, and the force must be
considered as a fixed vector.

Figure 3.2 Equilibrium or motion of a body subject to forces:
(c) rotation about MC; (d) rotation and translation.

4. A force acts on a body, and the line of action does not pass through the
mass centre MC (see Figure 3.2d).
The mass centre will start to move as if the force were applied directly
to MC, and the body will also rotate about MC. The body experiences
both a translation and a rotation.
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Figure 3.4 When considering equilibrium, one can shift forces
along their lines of action. This is not permitted for considerations
of what happens “internally”.

Figure 3.5 Compounding two forces using the parallelogram rule.

Figure 3.6 Compounding two forces using (a) line of action figure
and (b) force polygon.

In the bar in Figure 3.4, one can clearly see what happens if one changes
the points of application of the two equal and opposite forces F1 = F

and F2 = F , with a common line of action. As far as the equilibrium is
concerned, it is irrelevant where F1 and F2 are applied, while it certainly
makes a difference to what happens “internally” and for the deformation of
the bar: the upper bar is loaded by a tensile force and will lengthen, while
the lower bar is loaded by compression, and will shorten.

3.1.2 Graphical composition of non-parallel forces

In the previous section it was stated that when considering the (instanta-
neous) movement and equilibrium of a rigid body, one can shift the forces
along their lines of action. This means that it is possible to determine the
resultant R of the two forces F1 and F2 in Figure 3.5 graphically by shifting
them both to the intersection of their lines of action, and then applying the
parallelogram rule. The resultant R is an imaginary force that with respect
to the equilibrium of the body has the same effect as the two forces F1 and
F2 together. We say that R is statically equivalent to F1 and F2.

Besides the magnitude and direction of the resultant, we also find the
location of its line of action �. It is pointless talking about the point of
application, only its line of action is fixed.

The magnitude and direction of the resultant can also be determined in a
force polygon (see Figure 3.6). The line of action is determined by realis-
ing that it has to pass through the intersection of the lines of action of the
forces to be compounded. Note that here the line of action of the resultant
is entirely outside the body!

If several forces have to be compounded together, this can be done in phases
by first determining the resultant of two forces, then compounding it with
the third force, and so forth. This procedure is shown in Figure 3.7a.
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Figure 3.7 Compounding several forces using (a) a line of action
figure and (b) force polygon.

Figure 3.8 Compounding two parallel forces F1 and F2 graphi-
cally by adding the equilibrium system P1 = P and P2 = P . Here
we use for the forces the visual notation.

The magnitude and direction of the resultant can also be found quickly
using a force polygon, as in Figure 3.7b. The force polygon does not provide
information about the location of the line of action, however. To find the line
of action, one would have to revert to Figure 3.7a. This figure is referred to
as the line of action figure.

For more than two forces, using the line of action figure becomes laborious,
and the analytical approach is clearly preferable (see Section 3.1.7). To
determine the magnitude and direction of the resultant, the force polygon
can still be useful.

3.1.3 Graphical composition of parallel forces

If the forces F1 and F2 are almost parallel, or parallel, one can determine the
magnitude and direction of the resultant R graphically in a force polygon,
although the graphical construction of its line of action (the line of action
figure) becomes difficult as the intersection of the lines of action is far away
or even at infinity.

In Figure 3.8, F1 and F2 are two parallel forces. The body on which the
forces act is not shown. A graphical construction of the line of action is
possible by having two equal yet opposite forces P1 = P and P2 = P apply
to point A on the line of action of F1, and to point B on the line of action
of F2, with AB as their common line of action. The magnitude of P can be
chosen arbitrarily.

Since P1 and P2 together form an equilibrium system, the combined effect
of the forces F1, F2, P1 and P2 is equal to that of only F1 and F2.

If R1 is the resultant of F1 and P1, and R2 is the resultant of F2 and P2,
then the line of action of the resultant of all the forces, that is the resultant
R of F1 and F2, passes through the intersection of the lines of action of R1
and R2.

From the graphical construction, one can see that the line of action of the
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Figure 3.9 The resultant R of two parallel forces F1 and F2, in
(a) the same and (b) opposite directions.

Figure 3.10 The pair of forces F forms a couple. a is the couple
arm. The product Fa is the moment of the couple.

resultant R of two parallel forces F1 and F2, acting in the same direction, is
between their lines of action, nearer the larger force, and such that the dis-
tances a and b to the lines of action of F1 and F2 respectively are reversed
proportionally to the magnitudes of these forces (see Figure 3.9a):

a

b
= F2

F1
.

If the two parallel forces F1 and F2 have opposite directions, then the re-
sultant R has the same direction as the larger of the two forces, and the
line of action of R is outside the lines of action of F1 and F2 on the side
of the larger force. Now too, the distances a and b from the line of action
of R to the lines of action of F1 and F2 are reversed proportionally to the
magnitude of these forces (see Figure 3.9b).

In conclusion, for the resultant R of two parallel forces F1 and F2:
• R is in the direction of the larger force;
• the line of action of R is closer to the larger force;
• R is between F1 and F2 if these forces are in the same direction;
• R is outside F1 and F2 if these forces have opposite directions.

3.1.4 Moment of a couple

Figure 3.10 shows the special case of two equal and opposite parallel forces
F1 = F and F2 = F . If we want to graphically compound these forces in
the way described above, using two equal and opposite additional forces
P1 = P and P2 = P , with the common line of action AB, we again find
two equal and opposite parallel forces R1 and R2 (see Figure 3.11).

It is impossible to compound the pair of forces F into a single force. We
call such a pair of forces a couple. The product of the magnitude of F of the
forces and the distance a between the lines of action is called the moment
of the couple. As symbol for this quantity we use the letter T :

T = Fa.
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Figure 3.11 The result of a couple does not change if one replaces
it by another couple with the same moment and the same direction
of rotation: Fa = Rb.

a is referred to as the couple arm and is always measured perpendicularly
to the lines of action.

The two forces R1 = R and R2 = R also form a couple. Here the moment
of the couple is

T = Rb,

b is the couple arm.

Since P1 = P and P2 = P form an equilibrium system, the effect of the
couple caused by the forces R with arm b is equal (statically equivalent) to
the effect of the couple formed by the forces F with arm a. The moment of
the couple is therefore the same for both:

T = Fa = Rb.

This can also be derived from line of action figure in Figure 3.11.

Consider triangle ABC; its area is

area ABC = 1
2a · AC = 1

2b · BC,

so that

a

b
= BC

AC
.

Triangle ABC, from the line of action figure, is geometrically similar to
force triangle A′B′C′, so that the corresponding sides are proportional:

BC

AC
= B′C′

A′C′ = R

F
.
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Figure 3.12 Three times the same couple: (a) Tz = −12 kNm,
(b) Ty = +12 kNm, (c) the couple using visual notation.

On combining these two equations we deduce that

a

b
= R

F
,

which is equivalent to

Fa = Rb.

Conclusion: The effect of a couple on the equilibrium of a body does not
change if you replace it by another couple with the same moment and the
same direction of rotation.

The magnitude of the moment of a couple determines the state of rotation
of the body. In addition to a magnitude, the moment also has a direction of
rotation. The sign for the direction of rotation is linked to the coordinate
system, see the sign convention in Section 1.3.2.

In the xy coordinate system shown, the moment of the couple in Fig-
ure 3.12a is

Tz = −Fa = −12 kNm.

The letter T is given the index z, which indicates the normal of the plane in
which the couple acts.

In Figure 3.12b the moment of the same couple is in another coordinate
system:

Ty = +Fa = +12 kNm.

In Figure 3.12c, the couple is represented by a curved arrow. In this visual
notation the arrow indicates the direction of rotation of the moment and
includes a value. The same conventions apply as for the visual notation of
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a force (see Section 1.3.6).

Couples can be compounded in many different ways. In Figure 3.13, the
couples operating in the xy plane, T1, T2 and T3, have been compounded
by replacing them by equal couples of which the forces have common lines
of action. If T1 = 12 kNm, T2 = 6 kNm and T3 = 10 kNm, and the distance
a between the lines of action is 4 m, then, in the coordinate system shown,

Tz;1 = +T1 = +12 kNm = F1a ⇒ F1 = Tz;1/a = +3 kN,

Tz;2 = +T2 = +6 kNm = F2a ⇒ F2 = Tz;2/a = +1.5 kN,

Tz;3 = −T3 = −10 kNm = F3a ⇒ F3 = Tz;3/a = −2.5 kN.

Note: The force F3 has the value 2.5 kN and acts opposite to the direction
shown in Figure 3.13.

The moment of the resultant couple is

Tz = Ra = (F1 + F2 + F3) · a =
3∑

i=1
Tz;i = 8 kNm.

If all the couples are exerted in the same plane, the moment of the resultant
couple is found by compounding the couple moments simply by adding
them together.

The example shows that the couples form an equilibrium system if the sum
of their moments is zero (because R = 0).

3.1.5 The moment of a force about a point

The moment of a force about a point A is defined as the product of magni-
tude F of the force and the perpendicular distance a from point A to the line
of action of the force. The sign of the moment is plus or minus, depending

Figure 3.13 The moment of the resultant couple is found by
adding the moments of the couples to be compounded (algebra-
ically).
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Figure 3.14 The moment of a force with respect to a point
is defined as the product of the magnitude of the force and the
perpendicular distance to its line of action.

Figure 3.15 The moment of the force F about point A is equal
to the moment of the couple that one has to add to the force if one
shifts it parallel to its line of action through A.

on whether the force F turns the body in the positive or negative direction
of rotation about A.

For Figure 3.14, the moment of force F with respect to A is seen as positive
as F causes a rotation about A in the positive direction of rotation in the xy

plane:

Tz|A = +Fa = +(10 kN)(4 m) = +40 kNm.

The same force F causes the body to rotate about B in the negative direction
of rotation. The moment of F about B is therefore negative:

Tz|B = −Fb = −(10 kN)(5 m) = −50 kNm.

The moment of the force F about a point C located on its line of action, is
zero:

Tz|C = 0.

For a force, in contrast to a couple, one has to specify the point about which
the moment is being calculated. Here, this is done by including the point in
question, after a vertical line, in the expression for the moment.

Figure 3.15 shows a single force F acting at point B. Now introduce two
equal and opposite forces F1 = F and F2 = F acting at point A. Since
F1 and F2 together form an equilibrium system, the single force F at B is
statically equivalent to the three forces F at B and F1 and F2 at A. F at
B and F2 = F at A together form a couple with moment Fa. The force
F = 7 kN at B is therefore statically equivalent with a force F = 7 kN at
B and a couple with moment Fa = 21 kNm.

Conclusion: The moment of a force F about a point A is equal to the mo-
ment of the couple one has to add when moving the force parallel to its a
line of action to A.
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Figure 3.16 The moment of the force F about point A is
equal to the sum of the moments about A of its components:
Tz|A = Fa = Fyrx − Fxry .

Figure 3.17 The moment of a force does not change if the force
is shifted along its line of action: Tz|A = Fa = Fyp = Fxq.

The moment of a force F in the xy plane about a point A in the same plane
can be calculated in a variety of ways (see Figure 3.16). The components
of F are

Fx = F cos α,

Fy = F sin α.

If the force is applied in a point B, then

rx = xB − xA,

ry = yB − yA.

From the figure one can derive

a = rx sin α − ry cos α.

For the moment of F about A applies

Tz|A = Fa = F(rx sin α − ry cos α) = Fyrx − Fxry.

Fyrx is the moment of the component Fy about A, and −Fxry is the
moment of the component Fx about A. This shows that the moment of a
force F about a point A is equal to the sum of the moments about A of its
components.

Since the moment of a force does not change if the force is moved along its
line of action, it is sometimes useful to shift the force to point C or D (see
Figure 3.17). In this case, the moment of F about A is

Tz|A = Fa = Fyp = Fxq.
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Figure 3.18 The moment about A of the force at B can be calcu-
lated in various ways.

Figure 3.19 The sum of the moments of F1 and F2 about an
arbitrary point A is equal to the moment of the resultant R about
that point A. This is known as Varignon’s First Theorem.

Example
The moment about A of the force at B in Figure 3.18 can now be calculated
as follows:
• Force multiplied by the distance to its line of action:

Tz|A = −(2
√

5 kN)(2
√

5 m) = −20 kNm.

• Force in B resolved into its components:

Tz|A = −(4 kNm)(3 m) − (2 kNm)(4 m) = −20 kNm.

• Force shifted to C:

Tz|A = −(2 kN)(10 m) = −20 kNm.

• Force shifted to D:

Tz|A = −(4 kN)(5 m) = −20 kNm.

3.1.6 Moment theorems

In Figure 3.19, R is the resultant of the forces F1 and F2:

Rx = Fx;1 + Fx;2,

Ry = Fy;1 + Fy;2.

In order to be able to determine the moment of F1 and F2 about an arbitrary
point A, both forces are shifted to the intersection of their lines of action.
In the previous section, it was shown that the moment of a force about an
arbitrary point is equal to the sum of the moments of its components about
that point. Therefore, for the moment of F1 and F2 about A it is true that:∑

Tz|A = (Tz|A due to F1) + (Tz|A due to F2)

= (Fy;1rx − Fx;1ry) + (Fy;2rx − Fx;2ry)

= (Fy;1 + Fy;2)rx − (Fx;1 + Fx;2)ry
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Figure 3.20 A body loaded by couples Tz;i and forces Fi , with
components Fx;i and Fy;i , at points i (i = 1, 2, 3, . . . ).

= Ryrx − Rxry

= Tz|A due to R.

Conclusion: If two forces F1 and F2 have a resultant R, the sum of the
moments of F1 and F2 about an arbitrary point A is equal to the moment of
the resultant R about that point A. This is called Varignon’s First Moment
Theorem.1 The theorem also applies if F1 and F2 have parallel lines of
action.

If the two forces F1 and F2 together form a couple, the sum of the moments
of F1 and F2 is independent of the point with respect to which the moment
is determined. This sum of moments is equal to the moment of the couple.
This is known as the Varignon’s Second Moment Theorem.

Varignon’s momentary theorems can be applied repeatedly if several forces
act in the same plane. This results in the following General Moment Theo-
rem:
The sum of the moments of a number of forces distributed in a plane, about
an arbitrary point A in that plane, is either equal to the moment of the
resultant force about that point or equal to the moment of the resultant
couple.

3.1.7 Compounding forces and moments analytically

Compounding coplanar forces and couples analytically is now relatively
simple. Each of the forces Fi (i = 1, 2, . . .) can be resolved into the com-
ponents Fx;i and Fy;i , and for each of these forces, we can now determine
the moment about an arbitrary point A. In fact, this means that all the forces
are shifted to point A with addition of a couple (see Section 3.1.5). If we
place the origin O of the coordinate system at A, and xi and yi are the

1 Pujol Varignon (1654–1722) was a French mathematician.

Figure 3.19 The sum of the moments of F1 and F2 about an
arbitrary point A is equal to the moment of the resultant R about
that point A. This is known as Varignon’s First Theorem.
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Figure 3.21 (a) The resultant force R at O and the associated
couple

∑
Tz|O are statically equivalent to (b) a force R at a distance

a = (
∑

Tz|O)/R from O.

coordinates of the point of application of force Fi (or of another point on
the line of action of Fi ), then (see Figure 3.20)

Rx = ∑
Fx;i = ∑

Fi cos αi,

Ry = ∑
Fy;i = ∑

Fi sin αi,∑
Tz|O = ∑ {(Fy;ixi − Fx;iyi) + Tz;i}.

The sum of the moments also includes the moments of the (concentrated)
couples Tz;i that may be applied on the body.

For the (instantaneous) movement or the equilibrium of a rigid body, one
may replace the force system by a single resultant force R at O together
with a couple

∑
Tz|O (see Figure 3.21a).

The resultant force R at O can be compounded with the couple
∑

Tz|O
into a single force R by shifting it parallel to itself to a line of action at a
perpendicular distance a from O (see Figure 3.21b):

a =
∑

Tz|O
R

.

The line of action of R can also be found as follows. Imagine that (x, y) is
an arbitrary point on the line of action of R (see Figure 3.21b). According
to the moment theorem,

∑
Tz|O = Ryx − Rxy.

The values for
∑

Tz|O, Rx and Ry are known, while those of x and y are
unknown. This expression therefore also provides the equation for the line
of action of R. The line of action of R intersects the x axis at
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x =
∑

Tz|O
Ry

; y = 0,

and the y axis at

x = 0; y = −
∑

Tz|O
Rx

.

A special case is when R = 0 and
∑

Tz|O �= 0. In this case, there is no
resultant force, while there is a resultant couple. When also

∑
Tz|O = 0,

then there is equally no resultant couple and the forces together form an
equilibrium system.

To summarise, with respect to the resultant of a system of forces and
couples, one can distinguish the following cases:

• R �= 0 and
∑

Tz|O �= 0
There is a resultant force, and the line of action does not pass through O.

• R �= 0 and
∑

Tz|O = 0
There is a resultant force of which the line of action passes through O.

• R = 0 and
∑

Tz|O �= 0
There is no resultant force, but there is a resultant couple.

• R = 0 and
∑

Tz|O = 0
The forces and couples together form an equilibrium system.

Example
Three forces and a couple are exerted on the triangular block in Fig-
ure 3.22a. The magnitude and the direction of the forces can be found in
the diagram, as can the direction of couple T . The magnitude of the couple
is 30 kNm.

Figure 3.21 (a) The resultant force R at O and the associated
couple

∑
Tz|O are statically equivalent to (b) a force R at a distance

a = (
∑

Tz|O)/R from O.
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Figure 3.22 (a) A triangular block subject to three forces and a
couple; (b) the resultant force R on the block, determined using a
force polygon.

Question:
Determine the magnitude, direction, and line of action of the resultant force
on the block.

Solution:
For convenience sake, the units (kN and/or m) are not always shown in the
interim calculations. For the components of the resultant force R applies

Rx =
3∑

i=1
Fx;i = −10 + 30 + 0 = +20 kN,

Ry =
3∑

i=1
Fy;i = 0 + 20 − 40 = −20 kN

so that

R =
√

R2
x + R2

y =
√

202 + (−20)2 = 20
√

2 kN.

The magnitude and direction of R and of its components can of course also
be determined graphically by using a force polygon (see Figure 3.22b).

The moment about O of the three forces and the couple is

∑
Tz|O = +10 × 6 (for F1)

+(20 × 6 − 30 × 3) (for F2, resolved into its components)

−40 × 4 (for F3)

+30 (for T )

= −40 kNm.
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Figure 3.23 The resultant force R at a point (x, y) of its line of
action: (a) in its components Rx and Ry and (b) in components as
they act in reality.

Figure 3.24 The resultant R and its line of action.

The resultant R must have the same moment about O as the three forces
and the couple. Imagine (x, y) is a point on the line of action of R, with
components Rx and Ry (see Figure 3.23a). Then

∑
Tz|O = −40 kNm = Ryx − Rxy.

With Rx = +20 kN and Ry = −20 kN, this gives the following equation
for the line of action of the resultant R:

−40 kNm = (−20 kN)x − (+20 kN)y ⇒ x + y = 2 m.

Of course it is also possible to depict Rx and Ry as in Figure 3.23b, accord-
ing to the actual magnitude and direction. This figure immediately gives the
expression shown above fore the line of action of R. Figure 3.24 shows the
resultant R with its line of action.

Note: If one performs the calculation using a picture, all the unknown
quantities that are related to the coordinate system in that picture have to
be shown positively. In Figure 3.23a that would be x, y, Rx and Ry , in
Figure 3.23b this only relates to x and y.

3.1.8 Resolving a force along given lines of action graphically

A force F , with given magnitude, direction, and line of action, can be re-
solved along three given lines of action a, b and c, which do not intersect in
one point, into the forces Fa, Fb and Fc (see Figure 3.25a).

Here

�F = �Fa + �Fb + �Fc,
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Figure 3.25 Resolving the force F graphically along three given
lines of action; (a) line of action figure and (b) force polygon.

Figure 3.26 Resolving the force F graphically along three given
lines of action; (a) line of action figure and (b) force polygon.

( �F − �Fa) = ( �Fb + �Fc).

( �F − �Fa) and ( �Fb + �Fc) are equal and therefore have the same line of action.
The line of action of ( �F − �Fa) passes through the intersection A of the lines
of action of �F and �Fa. The line of action of ( �Fb + �Fc) passes through the
intersection Sab of the lines of action b and c. Therefore, ASbc is the line of
action of both ( �F − �Fa) and ( �Fb + �Fc). �F at A can now be resolved into �Fa
with line of action a and ( �Fb + �Fc) with line of action ASbc. Subsequently
( �Fb + �Fc) at Sbc can be resolved into �Fb and �Fc. This is shown graphically
in Figure 3.25b in a single force polygon.

The order in which �F is resolved is irrelevant. In Figure 3.26 �F is first
resolved at B into �Fb and ( �Fa + �Fc) and subsequently ( �Fa + �Fc) at Sac, the
intersection of the lines of action a and c, is resolved into �Fa and �Fc. The
force polygon now has a different shape, as the forces were resolved in a
different order, but the result is the same.

The name Culmann1 is associated with this graphical method in the
literature.

3.1.9 Resolving a force along given lines of action analytically

Resolving F into three forces Fa, Fb and Fc along given lines of action
a, b, and c, can of course also be done analytically. Of the many possible
methods, the method below is based on Varignon’s first moment theorem:

1 Karl Culmann (1821–1881), a German engineer, was involved in the design
and construction of important railway bridges and was especially known for his
graphical methods for calculating structures.

so that
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Figure 3.27 Analytically resolving force F along three given lines
of action.

the moment of F about an arbitrary point is equal to the sum of the moments
of Fa, Fb and Fc about that same point.

In Figure 3.27, the directions of the as yet unknown forces Fa, Fb, and
Fc have been assumed. In addition, a coordinate system has been assumed
in order to be able to indicate the sign of the moments (the direction of
rotation).

If the moment theorem is applied with respect to Sbc, the intersection of the
lines of action of Fb and Fc, then these forces do not contribute to the sum
of the moments, and one can determine Fa directly:

∑
Ty |Sbc = −F ·p = −Fa·ha ⇒ Fa = p

ha
F.

Note: The signs are related to the xz coordinate system shown.

By applying the moment theorem in the same way with respect to Sac and
Sab respectively, we also find Fa and Fc directly.

Since the direction of rotation of F about Sab is opposite to that of Fc about
Sab the value of Fc will be negative. This means that the force Fc works
opposite to the direction assumed in Figure 3.27.

The analytical approach can also be used for resolving a couple into three
forces along given lines of action.

Example
The block in Figure 3.28a is subject to the three forces Fa, Fb and Fc,
along given lines of action a, b and c. The resultant is the couple T with the
direction shown in the figure.

Question:
Determine the three forces if T = 80 kNm.
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Figure 3.28 Resolving a couple into three forces along given lines
of action: (a) the couple T and the lines of action a, b and c; (b) the
assumed directions of the forces Fa, Fb and Fc; (c) the forces as
they have to act on the block in reality if they are to be statically
equivalent to the couple.

Solution:
In Figure 3.28b an assumption was made with respect to the directions of
the forces. In the coordinate system given

∑
Tz|A = − 4

5Fa × (4 m) = −T = −80 kNm ⇒ Fa = +25 kN,∑
Tz|B = +Fb × (4 m) = −T = −80 kNm ⇒ Fb = −20 kN.

The minus sign in the latter answer shows that the force Fb acts in the
opposite direction to that assumed in Figure 3.28b.

From
∑

Tz|C = −80 kNm we can derive Fc directly. Finding the location
of C, the intersection of the lines of action, takes some calculation. The
force Fc is therefore easier to find since the resultant force is zero:

∑
Fx = 3

5Fa + Fc = 3
5 × (25 kN) + Fc = 0 ⇒ Fc = −15 kN.

Apparently the direction of Fc was also falsely assumed. Figure 3.28c
shows the forces as they are actually exerted on the block. It would indeed
not be difficult to determine the correct directions of the forces prior to
making the calculation.

3.2 Equilibrium of a rigid body in a plane

For the (instantaneous) motion of a rigid body, the system of forces ex-
erted on it can be replaced by a single force at an arbitrary point and
a couple. When considering the motion of the body, it is preferable to
choose the mass centre as that point, as the motion can then be split
into a translation due to the force, and a rotation due to the couple (see
Section 3.1.1).

From the above, it follows that a rigid body is in equilibrium if for all the
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forces exerted on it, the resultant force and the resultant couple are zero.
The equilibrium conditions for a rigid body, only subject to forces in the xy

plane, are:

∑
Fx = 0,∑
Fy = 0,∑
Tz = 0.

The summation symbol means that all contributions of the forces acting on
the body have to be added.

The first two equations stand for the force equilibrium in respectively the
x and y direction, and express that there is no resultant force. The third
equation stands for the moment equilibrium, and expresses that the forces
together do not form a resultant couple. Here, the moment with respect to
an arbitrary point has to be determined for all the forces, and the moments
have to be added together.

If (concentrated) couples are applied to the body, schematically represented
by curved arrows, their moments of course also have to be included in
the moment summation. The equations for the force equilibrium are not
influenced by these couples.

For particles (with negligibly small dimensions), the force equilibrium is a
necessary and sufficient condition for equilibrium. For rigid bodies (with
finite measurements) the force equilibrium is a necessary but not sufficient
condition for equilibrium; since a body can rotate, another condition is
required, namely the moment equilibrium.

3.2.1 Equilibrium equations

In a plane, the equilibrium of a body is assured if it meets two conditions
for the force equilibrium and one condition for the moment equilibrium:
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Figure 3.29 The relationships
∑

Tz|A = 0 and
∑

Tz|B = 0
imply that there is no resultant couple and that, if there is a resultant
force R, its line of action is along AB.

∑
Fx = 0,∑
Fy = 0,∑
Tz = 0.

These equilibrium equations in a plane can be replaced by three arbitrary
linear combinations, on the condition that these combinations are inde-
pendent. Three of these combinations are mentioned separately below:

1. The condition of force equilibrium in two mutually perpendicular
directions can be replaced by the condition that of all the forces, the
sum of the components in two arbitrary directions is zero.

2. The equilibrium can also be described by three moment conditions with
respect to three points A, B and C that are not in a straight line:∑

Tz|A = 0,∑
Tz|B = 0,∑
Tz|C = 0.

That these three equations are sufficient to ensure equilibrium can be
shown as follows (see Figure 3.29). Each system of coplanar forces and
couples can be replaced by either a resultant force, or a resultant couple. If∑

Tz|A = 0, there is no resultant couple. There could still be a resultant
force of which the line of action must pass through A. If

∑
Tz|B = 0, the

line of action of the resultant force must also pass through B. If C is not
located on AB (the line of action of the resultant force), and

∑
Tz|C = 0,

the resultant force can only be zero.

3. The equilibrium can also be formulated by two moment conditions with
respect to two points A and B and an equation for the force equilibrium
in a direction that is not perpendicular to AB:
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Figure 3.30 Corner joint in a frame; the three unknown section
forces M , V and N can be deduced from the equilibrium.

∑
Tz|A = 0,∑
Tz|B = 0,∑
Fx = 0 (the x direction may not be perpendicular to AB).

The relationships
∑

Tz|A = 0 and
∑

Tz|B = 0 imply that there is no resul-
tant couple and that, if there is a resultant force, its line of action coincides
with AB (see Figure 3.29). The resultant force is zero if the condition for
force equilibrium is met in the direction AB, or in another direction that is
not perpendicular to AB.

The equilibrium conditions can therefore be formulated in various ways.
For a manual calculation, one always has to look for equilibrium equations
that are as simple as possible in order to limit the amount of calculation.
When using a computer for the calculation, the systematics and the general
applicability of the set up of the calculation (the program) are more impor-
tant than the number of calculations involved and the laborious character of
the calculations.

Example
Figure 3.30 shows the corner joint of a frame. The joint is loaded at C
by a vertical force of 5 kN. So-called section forces act on the cross-
sectional planes a and b. They act in the centre lines shown. The system
is in equilibrium.

Question:
Determine the three unknown section forces M , V and N (with the correct
sign for the directions shown).1

1 M (bending moment), V (shear force) and N (normal force) are section forces.
Their nomenclature and sign conventions will be revealed in Chapter 10.

Figure 3.29 The relationships
∑

Tz|A = 0 and
∑

Tz|B = 0
imply that there is no resultant couple and that, if there is a resultant
force R, its line of action is along AB.
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Figure 3.31 The closed force polygon represents the force
equilibrium for the corner joint in the frame.

Solution:
The two unknown section forces V and N are determined using the two
equations for the force equilibrium. For the coordinate system shown,

∑
Fx = +(4 kN) − 2

5

√
5 × V + 1

5

√
5 × N = 0,∑

Fy = +(2 kN) − (5 kN) − 1
5

√
5 × V − 2

5

√
5 × N = 0.

These are two equations with two unknowns. The solution is

V = +√
5 kN and N = −2

√
5 kN.

It would also be possible to construct a closed force polygon and to derive
the forces from there. This is shown in Figure 3.31. The force of 2

√
5 kN

on the line of action of N is active in an opposite direction to that shown in
Figure 3.30. That is why there is a minus sign in the expression for N .

M is found using the equation for the moment equilibrium about an arbi-
trary point. If A is selected, the contribution of V and N to the moment is
zero, and M can be found even if V and N are still unknown:

∑
Tz|A = −M − (4 kN)(1 m) − (2 kN)(1.5 m) +

+(5 kN)(0.5 m) + (16 kNm) = 0 ⇒ M = 11.5 kNm.

If M had been calculated first, one would be able to derive V directly
afterwards from, for example, the moment equilibrium about C:

∑
Tz|C= −(11.5 kNm) − (2 kN)(1 m) − V × (1

2

√
5 m

)+ (16 kNm) = 0.

This again gives V = +√
5 kN. As such, there are several ways to derive

the unknown forces.
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Figure 3.32 A body subject to two forces at two points.

Figure 3.33 The left section of the three-hinged frame ABC, as
an example of a body subject to two forces at two points.

Figure 3.34 Two-force members are straight bars that can transfer
forces only along their so-called bar axes.

The various guises of the equilibrium equations offer an important opportu-
nity for performing control calculations. Checking results is necessary not
only for manual calculations, but also for computer calculations.

3.2.2 Particular cases of equilibrium

In the analysis of the transfer of forces in structures, certain equilibrium
systems are quite common. For a good insight into the behaviour of a
structure, it is important to be able to quickly recognise three more or less
particular cases of equilibrium. They are covered below.

1. A body subject to two forces at two points (see Figure 3.32).

A body subject to two forces can be in equilibrium only if both forces:
• have the same line of action,
• have the same magnitude, and
• have opposite directions.
If these three conditions are not all met, the two forces together form ei-
ther a resultant force or a resultant couple, and the system will not be in
equilibrium.

Figure 3.33 shows the left part AB of a so-called three-hinged frame. The
foundation exerts a force FA at A on AB, while the right part BC of the
frame exerts a force FB at B on AB. If we neglect the weight of the frame,
the part AB of the frame is in equilibrium only if both forces FA and FB
are equal and opposite, with AB as the common line of action.

Certain construction elements are intentionally designed to this type of
force transfer. These are straight bars, only subject to a force at both ends
(see Figure 3.34). Such bars, which can transfer forces only along their so-
called bar axis, are called two-force members. Depending on whether they
are loaded by tensile or compressive forces, they are also referred to as
tension members or compression members.
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Figure 3.35 (a) The truss as a structure of two-force members; (b)
the forces at the ends of compression member CD are the resultants
of several forces.

Figure 3.36 The body, subject to two forces FA and FB at A and
B, is in equilibrium if these forces are equal and opposite and have
the common line of action AB.

When analysing structures, one must be able to recognise two-force mem-
bers quickly. Structures made solely of two-force members are called
trusses. Figure 3.35 is an example of a truss. In this truss, bar CD is loaded
by compression. Calculating the forces in a truss is covered in detail in
Chapter 9. It can be noted at this stage that, in a joint, the bars that come
together exert forces on one another on the basis of the law of action and
reaction. It is therefore possible for several forces to be exerted concur-
rently on the end of a bar. For example, the two compression forces on
the ends of bar CD in Figure 3.35 are in fact the resultants of several
forces.

Example
Two forces are exerted on the body in Figure 3.36a: FA is exerted on A, FB
is exerted on B. Of FA, only the horizontal component of 28 kN is given.
The body is in equilibrium.

Question:
The magnitude and direction of FB.

Solution:
If two forces are exerted on a body, the body can only be in equilibrium
if the two forces have a common line of action, an equal magnitude and
an opposite direction. In vector notation: �FA = − �FB. From the moment
equilibrium about A, it follows that the common line of action of FA and
FB is along AB (see Figure 3.36b). In that case, the horizontal compo-
nent of FB is (4/5)FB. From the horizontal force equilibrium, it follows
that:

∑
Fx = −(28 kN) + 4

5FB = 0 ⇒ FB = 35 kN.
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Figure 3.37 A body subject to three forces at three points:
(a) moment equilibrium exists; (b) there is no moment equilibrium;
(c) the closed force polygon shows that both bodies are in force
equilibrium.

Figure 3.38 The right part of the three-hinged frame ABC as an
example of a body subject to three forces at three points: (a) moment
equilibrium exists because the lines of action pass through a single
point and (b) there is force equilibrium because the forces form a
closed force polygon.

2. A body subject to forces at three points (see Figure 3.37).

A body that is subject to three forces can be in equilibrium only if
• the three forces are coplanar,
• the forces form a closed force polygon (force equilibrium),1 and
• their lines of action pass through a single point (moment equilibrium).

The same closed force polygon (c) is applicable for both bodies (a) and
(b) in Figure 3.37: there is therefore force equilibrium in both cases. In
case (a) there is moment equilibrium. This is easily checked by determining
the moment of the three forces about the intersection of the three lines of
action: none of the forces contribute to the sum of the moments. There is
no moment equilibrium in case (b). The system of forces forms a resultant
couple. The magnitude of the couple is determined by deriving the sum of
the moments about the intersection of two lines of action.

Figure 3.38 shows the right-hand part BC of the three-hinged frame, men-
tioned earlier. This part of the frame is loaded by the vertical force F shown.
In addition, the left frame part AB is exerting a force FB at B on BC and
the foundation is exerting a force FC at C on BC. Moment equilibrium is
only possible if the lines of action of the three forces F , FB and FC pass
through a single point. The force equilibrium exists if the three forces form
a closed force polygon.

Example
The block in Figure 3.39, loaded by two forces in C, is kept in equilibrium
by the three forces Ah, Av and Bv.

Question:
Determine these three forces and check the moment equilibrium and the

1 It should be noted that three forces in space can only form a closed force polygon
if they are acting in the same plane. The first condition is therefore actually
superfluous as a result of the second.
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Figure 3.39 A block, loaded by two forces at C, is kept in
equilibrium by the three forces Ah, Av and Bv.

Figure 3.40 (a) Forces are exerted on the block at three points of
which the lines of action pass through a single point, so that there
is moment equilibrium; (b) since all the forces exerted on the block
form a closed force polygon there is also force equilibrium.

force equilibrium graphically.

Solution:
The three unknown forces are determined using the three equilibrium
equations:

∑
Fx = Ah + (4 kN) = 0,∑
Fy = Av + Bv − (6 kN) = 0,∑
Tz|A = +Bv × (6 m) − (6 kN)(8 m) − (4 kN)(3 m) = 0.

The first equation gives Ah = −4 kN, the third gives Bv = 10 kN, and the
second equation gives Av = −4 kN.

Av can also be found directly from the moment equilibrium about B:

∑
Tz|B = −Av × (6 m) − (6 kN)(2 m) − (4 kN)(3 m) = 0 ⇒ Av = −4 kN.

The fact that Ah and Av are negative means that they act in a direction
opposite to the directions given in Figure 3.39.

In Figure 3.40a, the forces are depicted as they act on the block in reality.
The block is subject to forces at three points:
• the resultant of the two forces at C, with line of action c,
• the force Bv at B, with line of action b, and
• the resultant of the forces Ah and Av at A, with line of action a.

Graphical check of the moment equilibrium (see Figure 3.40a):
For a body subject to three forces, the lines of action of the three forces
have to pass through a single point. This condition is met.

Graphical check of the force equilibrium (see Figure 3.40b):
There is force equilibrium if all the forces acting on the block form a closed
force polygon. This is the case.
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Figure 3.41 A body subject to several forces. (a) All the lines
of action pass through a single point: there is moment equilibrium.
(b) All the lines of action are parallel: there is force equilibrium in
the direction perpendicular to these lines of action.

Figure 3.42 Both bodies are in force equilibrium; (a) there is
moment equilibrium; (b) there is no moment equilibrium: the forces
together form a couple (anti-clockwise) with magnitude 3Fa.

3. A body subject to several forces of which the lines of action all pass
through a single point (Figure 3.41a) or are all parallel (Figure 3.41b).

If for all the forces on a body the lines of action intersect at a single point,
the moment equilibrium of the body is assured (see Figure 3.41a). The force
equilibrium needs further investigation.

If for all the forces on a body the lines of action are parallel, the force
equilibrium is assured in the direction perpendicular to the lines of action
(see Figure 3.41b).

The force equilibrium in other directions, and the moment equilibrium
needs further investigation.

Example
In Figure 3.42, both bodies are in force equilibrium. If one investigates the
moment equilibrium by determining the sum of the moments of the forces,
for example about A, it turns out that in case (a) the system is in moment
equilibrium, while it is not in moment equilibrium in case (b). In case (a)
the forces form an equilibrium system. In case (b), the forces form a couple
acting anti-clockwise with magnitude 3Fa. Nothing can be said about the
sign associated with the direction of the couple until a coordinate system is
chosen.

3.3 Forces and moments in space

So far, we looked at the equilibrium of a body only in the simple case in
which all the forces and couples act in one plane. The moment was taken
about a point in the same plane. In this section we look at the general three
dimensional case. Here we have to define the concept of moment of forces
and couples more generally.
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Figure 3.43 The moment of the force �F about a point A is defined
as the vector product �T = �r × �F ; the moment vector �T is perpen-
dicular to the plane through �r and �F .

Figure 3.44 The direction of moment vector �T is determined by
the corkscrew rule or the right-hand rule.

3.3.1 Moment of a force about a point

Imagine a force �F in space, with point of application B (see Figure 3.43).
The moment �T of this force about point A is now defined as the vector
product (cross product) of the position vector �r , from A to B, and the force
vector �F :

�T = �r × �F .

The vector product of two vectors �r and �F is a vector with magnitude
rF sin θ and perpendicular to both �r and �F . Here r and F are the mag-
nitudes of �r and �F respectively, and θ is the smaller angle between the
vectors �r and �F when both are drawn outwards from the same point.

There are two useful rules for finding the direction of the moment vector �T .
The first is that it corresponds to the direction in which a corkscrew (with a
right-hand screw) moves when the handle is turned from the first vector �r to
the second vector �F through the angle θ (that is the direction of the rotation
that the moment will cause about A) (see Figure 3.44). If necessary, the
vectors will have to be shifted to the intersection of their lines of action. An
alternative for finding the direction of �T is the so-called right-hand rule: if
one bends the fingers of the right hand to form a fist in the direction of the
rotation that �F would cause about A, then the thumb points in the direction
of the moment vector.

In Figure 3.44, the vectors �r and �F are in the xy plane. The moment vector
�T is then parallel to the z axis. The figure also shows the perpendicular line
AC from point A to the line of action of �F . The length of line segment
AC is r sin θ , and the magnitude of the vector product is therefore equal
to the product of the magnitude of the force and the distance from point A
to the line of action of the force.1 This corresponds to the definition of the

1 Note that �T is again independent of the location of the point of application B on
the line of action of �F .
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Figure 3.45 The unit vectors �ex , �ey and �ez.

moment of a force about a point, as given in Section 3.1.5. In that section,
the limitation to forces and points in the same plane was essential. Here the
definition is more general.

In order to distinguish a moment vector from a force vector in an illustra-
tion, the moment vector is often given a double arrow point.

The vector product can also be effectively described by defining vectors
according to components. For example:

�r = rx �ex + ry �ey + rz�ez,

�F = Fx �ex + Fy �ey + Fz�ez.

For the vector products of the mutually perpendicular unit vectors as
shown in Figure 3.45, the following relationships apply on the basis of the
definition of a vector product:

�ex × �ey = −�ey × �ex = �ez,

�ey × �ez = −�ez × �ey = �ex,

�ez × �ex = −�ex × �ez = �ey,

and

�ex × �ex = �ey × �ey = �ez × �ez = 0.

The components of �T = �r × �F are therefore

Tx = ryFz − rzFy,

Ty = rzFx − rxFz,

Tz = rxFy − ryFx.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 3.46 The line of action � of force F = 65 kN passes
through the points A(4, 0, 0) and B(0, 12, 3). The question relates
to the moment of the force about point C(2, 6, 6). The coordinates
are expressed in metres.

This definition for the components of the moment vector �T is a generalisa-
tion of the definition of Tz as given in Section 3.1.5.

For the moment vector �T and its components Tx , Ty and Tz it is again
preferable to mention the point A about which the moment was determined,
such as �T |A, Tx |A, and so forth.

An alternative notation for the moment vector �T is

�T = �r × �F =

∣∣∣∣∣∣∣
�ex �ey �ez

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣∣ .

The components of �T are found by developing the determinant.

Example
For the force F = 65 kN in Figure 3.46, the line of action � passes through
the points A(4, 0, 0) and B(0, 12, 3). The coordinates are expressed in
metres.

Question:
Determine the moment of the force about point C(2, 6, 6).

Solution:
The units used are kN and m; they are not always shown in interim cal-
culations.

First the components Fx , Fy and Fz are determined (see Section 2.2.1).
Vector AB (pointing from A to B) has the same direction as the force �F . If
AB is hereafter referred to as �d, then

�d = dx �ex + dy �ey + dz�ez = (−4�ex + 12�ey + 3�ez) m,
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Figure 3.46 The line of action � of force F = 65 kN passes
through the points A(4, 0, 0) and B(0, 12, 3). The question relates
to the moment of the force about point C(2, 6, 6). The coordinates
are expressed in metres.

and

d = | �d| =
√

(−4)2 + 122 + 32 = 13 m.

Since the direction cosines of �F and �d are equal

cos αx = Fx

F
= dx

d
⇒ Fx = F

dx

d
= 65 × −4

13 = −20 kN,

cos αy = Fy

F
= dy

d
⇒ Fy = F

dy

d
= 65 × 12

13 = +60 kN,

cos αz = Fz

F
= dz

d
⇒ Fz = F

dz

d
= 65 × 3

13 = +15 kN.

�F can now be defined according to its components:

�F = (−20�ex + 60�ey + 15�ez) kN.

Imagine �F is exerted at point A, then

�r = CA = rx �ex + ry �ey + rz�ez = (+2�ex − 6�ey − 6�ez) m,

and for the moment of �F with respect to C

�T |C = �r × �F =

∣∣∣∣∣∣∣
�ex �ey �ez

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
�ex �ey �ez

+2 −6 −6

−20 +60 +15

∣∣∣∣∣∣∣ .

This gives the following components:

Tx |C = ryFz − rzFy = (−6 m)(+15 kN) − (−6 m)(+60 kN)

= +270 kNm,
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Figure 3.47 The components of vector �T for the moment of �F
about point C. The moment vector �T is perpendicular to plane ABC.

Ty |C = rzFx − rxFz = (−6 m)(−20 kN) − (+2 m)(+15 kN)

= +90 kNm,

Tz|C = rxFy − ryFx = (+2 m)(+60 kN) − (−6 m)(−20 kN)

= 0 kNm.

To show that the moment of force �F with respect to C is independent of
the point of application on its line of action, the following represents an
example in which �F is exerted at B. In that case

�r = CB = (−2�ex + 6�ey − 3�ez) m.

The result of

�T |C = �r × �F =

∣∣∣∣∣∣∣
�ex �ey �ez

rx ry rz

Fx Fy Fz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
�ex �ey �ez

−2 +6 −3

−20 +60 +15

∣∣∣∣∣∣∣
does indeed give the same values:

Tx |C = ryFz − rzFy = (+6 m)(+15 kN) − (−3 m)(+60 kN)

= +270 kNm,

Ty |C = rzFx − rxFz = (−3 m)(−20 kN) − (−2 m)(+15 kN)

= +90 kNm,

Tz|C = rxFy − ryFx = (−2 m)(+60 kN) − (+6 m)(−20 kN)

= 0 kNm.

Figure 3.47 shows the components of the moment vector in C. The moment
vector �T lies in the horizontal plane through C. Further consideration shows



86

Figure 3.48 The moment of the force �F about line m is de-
fined as the moment �Tm of the projection �F//V of �F on a plane
V perpendicular to m about point A, the intersection of V and m.

that �T is indeed perpendicular to plane ABC. The magnitude of the resultant
moment about C is

T |C =
√

2702 + 902 = 90
√

10 = 284.6 kNm.

3.3.2 Moment of a force about a line

Figure 3.48 shows a force �F with line of action �, and a line m. The lines �

and m will generally cross one another and not be perpendicular. Imagine
V is an arbitrary plane perpendicular to m. The lines � and m intersect the
plane V at B and A respectively. In Figure 3.48, it has been assumed that �F
is applied at B. As shall become clear in a moment, �F may also be applied
elsewhere on �.

�F can be resolved into a component �F⊥V perpendicular to plane V and
so parallel to m, and a component �F//V in plane V . If �F is not applied
at B, �F//V is the projection of �F on V . The line of action of �F//V is the
projection of the line of action � of �F on V . Wherever one places the plane
V perpendicular to m, the line of action of �F//V always remains the same.

The moment �Tm of the force �F about line m has now been defined as the
moment of the projection �F//V of �F on a plane V perpendicular to m with
respect to the intersection A of V and m.

For the components of �T |A, the moment of �F about point A in a xyz

coordinate system, we have earlier derived that

Tx |A = ryFz − rzFy,

Ty |A = rzFx − rxFz,

Tz|A = rxFy − ryFx.

Here one recognises the moment about three lines through A, parallel to the

Figure 3.47 The components of vector �T for the moment of �F
about point C. The moment vector �T is perpendicular to plane ABC.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 3.49 A curved beam AB is loaded at B by the three
components of a force.

Figure 3.50 The moment of the couple about a point A is
�T = �r × �F . This moment is independent of the location of point A.

x, y and z axis respectively.

Comment:
For a moment about the origin O of the coordinate system or a moment
about one of the coordinate axes, the point O is generally omitted in the
representation of the moment.

Example
The curved beam AB in Figure 3.49 is loaded at B by a force of which
the components are defined with respect to magnitude and direction in the
figure.

Question:
Find the moment about the x, y and z axis respectively of the force(s) at B.

Solution:

Tx = +(25 kN)(3 m) − (50 kN)(1 m) = +25 kNm,

Ty = +(40 kN)(1 m) − (25 kN)(2 m) = −10 kNm,

Tz = +(50 kN)(2 m) − (40 kN)(3 m) = −20 kNm.

3.3.3 Moment of a couple

Two parallel forces that are equal and opposite form a couple (see Sec-
tion 3.1.4). Figure 3.50 shows two forces �F1 = �F and �F2 = − �F , forming
a couple in space.1

For the moment of the couple about a point A we have

�T |A = �r1 × �F1 + �r2 × F2 = �r1 × �F + �r2 × (− �F) = (�r1 − �r2) × �F
= �r × �F .

1 There is no resultant force, for �F1 + �F2 = 0.



88 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 3.51 (a) The components of a resultant force
∑ �F in O

and a resultant couple
∑ �T . (b) The resultant force vector and the

resultant moment vector need not necessarily have the same direc-
tion. (c) By shifting the resultant force

∑ �F parallel to itself one
can provide that the resultant moment vector has the same direction
as the force vector. The combination of a force and a moment of
which the vectors have the same direction is called a screw.

The moment of the couple is equal to the moment of the one force about
an arbitrary point on the line of action of the other force. The moment
is independent of the location of point A about which it was originally
determined. This means that the moment of a couple is a free vector. The
moment vector of the couple is perpendicular to the plane in which the
couple acts.

3.3.4 Compounding forces and couples

Compounding forces and couples in space is analytically relatively simple.
Each of the forces Fi (i = 1, 2, . . . , n) can be resolved into the components
Fx;i ; Fy;i; Fz;i and for each of these forces, one can determine the moment
with respect to an arbitrary point A. In fact, this means that all the forces
with the addition of a couple, are shifted to that point A (see Section 3.1.5).

If we place the origin O of the coordinate system at A, and xi , yi , zi are the
coordinates of the point of application of force Fi (or of another point on
the line of action of Fi ), then:

∑
Fx =

n∑
i=1

Fx;i ,
∑

Tx =
n∑

i=1
{(yiFz;i − ziFy;i) + Tx;i},

∑
Fy =

n∑
i=1

Fy;i ,
∑

Ty =
n∑

i=1
{(ziFx;i − xiFz;i) + Ty;i},

∑
Fz =

n∑
i=1

Fz;i ,
∑

Tz =
n∑

i=1
{(xiFy;i − yiFx;i) + Tz;i}.

The moment sum also includes the moments of any (concentrated) couples
Ti that act on the body.∑

Fx ,
∑

Fy and
∑

Fz are the components of the resultant force
∑ �F in

O while
∑

Tx ,
∑

Ty and
∑

Tz are the components of a resultant couple∑ �T (see Figure 3.51a). The resultant force vector
∑ �F at O and the resul-
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Figure 3.52 (a) A flat slab of 6 × 5 m2 in the horizontal xy

plane is loaded by six vertical forces. The grid lines are 1 m apart.
(b) The system of forces is statically equivalent with a vertical force
R = 30 kN at O pointing downwards, together with two couples of
150 kNm and 60 kNm of which the moment vectors are along the
x and y axis respectively, or (c) with only a force R = 30 kN at the
point (x = 5 m, y = 2 m).

tant moment vector
∑ �T need not necessarily have the same direction (see

Figure 3.51b).

By shifting the resultant force
∑ �F parallel to itself one can provide that

the resultant force vector and moment vector have the same direction (see
Figure 3.51c). The combination of a force and a moment of which the
vectors have the same direction is called a screw.1

The following represents three examples that relate to the determination of
the resultant of a number of forces and/or couples.

Example 1
A flat slab of 6 × 5 m2 in the horizontal xy plane is loaded by six vertical
forces (see Figure 3.53a). The grid lines are 1 m apart.

Question:
Determine the resultant force R as to magnitude and direction and the
location at which it acts on the slab.

Solution:
The units used are kN and m. The units are omitted in the interim cal-
culations.

The x and y components of all the forces given are zero, as are their mo-
ments about the z axis, therefore

∑
Fx = 0,∑
Fy = 0,∑
Tz = 0.

1 Reducing a system of forces and couples into a screw is an interesting academic
problem, but is of little practical use and therefore not covered in further detail.
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In addition,

∑
Fz = +15 + 20 − 40 + 30 − 30 + 35 = +30 kN,∑
Tx = −40 × 1 + 30 × 1 + 35 × 2 + 20 × 3 + 15 × 4 − 30 × 4

= +60 kNm,∑
Ty = 15 × 0 − 20 × 1 + 40 × 2 − 30 × 4 + 30 × 4 − 35 × 6

= −150 kNm.

So the system of forces can be replaced by a downward force R = 30 kN
at O, together with two couples of 150 kNm and 60 kNm of which the
moment vectors are along the x and y axis respectively (see Figure 3.53b).

Since the moment vectors are perpendicular to force R, they can be elim-
inated by shifting R to another point of application. Imagine (x, y) is the
new point of application (see Figure 3.53c). We can find (x, y) from the
condition that R = 30 kN has to generate the same moment about the x

and y axis as all the forces together, so that

∑
Tx = Ry = 60 kNm ⇒ y = 60 kNm

R
= 60 kNm

30 kN
= 2 m,

∑
Ty = −Rx = −150 kNm ⇒ x = 150 kNm

R
= 150 kNm

30 kN
= 5 m.

Figure 3.52 (a) A flat slab of 6 × 5 m2 in the horizontal xy

plane is loaded by six vertical forces. The grid lines are 1 m apart.
(b) The system of forces is statically equivalent with a vertical force
R = 30 kN at O pointing downwards, together with two couples of
150 kNm and 60 kNm of which the moment vectors are along the
x and y axis respectively, or (c) with only a force R = 30 kN at the
point (x = 5 m, y = 2 m).
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Figure 3.53 (a) A flat slab of 6×5 m2 in the horizontal xz plane is
loaded by five vertical forces. The grid lines are 1 m apart. (b) There
is no resultant force, but there is a resultant couple of which the
moment vector is in the xz plane. The resultant couple acts in a
plane perpendicular to the moment vector.

Example 2
In Figure 3.53a, a flat slab of 6 × 5 m2 in the horizontal xy plane is loaded
by five vertical forces. The distance between the grid lines is 1 m.

Question:
Determine the resultant of this set of forces.

Solution:
The units used are kN and m. The units are omitted in the interim cal-
culations.

When determining the resultant of this system of parallel forces, only the
force sum in the z direction and the moment sum about the x and y axis are
relevant:

∑
Fy = +25 − 15 + 20 − 45 + 15 = 0 kN,∑
Tx = 25 × 0 + 15 × 1 − 20 × 3 − 15 × 4 + 15 × 4 + 45 × 4

= +75 kN,∑
Tz = +25 × 6 − 15 × 2 + 20 × 5 − 45 × 3 + 15 × 1

= +100 kN.

There is no resultant force, but there is a resultant couple T of which the
moment vector is in the xy plane (see Figure 3.53b). Its magnitude is

T =
√

752 + 1002 = 125 kNm.

The resultant couple acts in a plane perpendicular to the moment vector.



92 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 3.54 A junction of three coplanar tubes that are rigidly
connected at equal angles of 120◦. The tubes are loaded (by torsion)
by the couples TA, TB and TC.

Figure 3.55 (a) The couples acting on the junction represented by
their moment vectors. (b) If there is no resultant couple, the three
moment vectors must form a closed polygon.

Example 3
Figure 3.54 shows a junction of three coplanar tubes that are rigidly con-
nected at equal angles of 120◦. The tubes are loaded (by torsion) by the
couples TA, TB and TC. The resultant couple on the junction is zero.

Question:
How large are the couples TA and TB if TC = 75 Nm?

Solution:
In Figure 3.55a, the couples are represented by their moment vectors. The
three vectors are in the xy plane, the plane in which the tubes are lo-
cated. The resultant moment on the junction is zero if the three vectors
form a closed polygon, analogous to the closed force polygon for force
equilibrium. The equilateral triangle in Figure 3.55b gives

TA = TB = TC = 75 Nm.

This can of course also be determined analytically. If there is no resultant
couple, then

∑
Tx = − 1

2TA − 1
2TB + TC = − 1

2TA − 1
2TB + (75 Nm) = 0,∑

Ty = + 1
2TA

√
3 − 1

2TB
√

3 = 0.

The result of these two equations is again

TA = TB = 75 Nm.
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3.4 Equilibrium of a rigid body in space

Generalising the equilibrium equations for a rigid body is relatively simple.
After all, equilibrium demands that both the resultant force and the resultant
moment about an arbitrary point A are zero. This means that the following
requirements have to be met by the forces and moments exerted on a rigid
body at rest:

∑
Fx = 0,∑
Fy = 0,∑
Fz = 0,∑
Tx |A = 0,∑
Ty |A = 0,∑
Tz|A = 0.

The first three equations state that there is force equilibrium in the x, y

and z directions respectively, and that the body is therefore not subject
to translation acceleration. The latter three equations define that there is
moment equilibrium at A about lines parallel to respectively the x, y and z

axis, and that the body is not subject to rotational acceleration.

The following examples address the equilibrium of a body in space.
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Figure 3.56 A structure consisting of a system of mutually
perpendicular beams in the horizontal xy plane that is loaded
perpendicularly to its plane by a number of forces and couples.
The unknown forces Av, Bv and Cv have to be derived from the
equilibrium.

Example 1
The structure in Figure 3.56 consists of a number of mutually perpendicular
beams in the horizontal xy plane that are loaded at the locations shown by
three vertical forces of respectively 40, 60 and 100 kN and by two couples
of 30 and 50 kNm. The structure is kept in equilibrium by the three vertical
forces Av, Bv and Cv.

Question:
Determine these three unknown forces.

Solution:
Since all the forces are parallel to the z axis,

∑
Fx = 0 and

∑
Fy = 0.

The moment vectors of both couples are in the xy plane, so that in addition

∑
Tz = 0.

To determine the three unknown forces, we can use the following three
equilibrium equations:

∑
Fz = 0,

∑
Tx = 0 and

∑
Ty = 0.

By choosing the equilibrium equations carefully, and by applying them in a
carefully chosen order, it is sometimes possible to cut back on the amount
of calculation needed.

Cv is derived directly from
∑

Ty = 0:

∑
Ty = −(30 kNm) − (40 kN) × (1 m) + Cv × 2 = 0

⇒ Cv = +35 kN.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 3.57 The forces Av, Bv and Cv as they are actually acting
on the structure.

Figure 3.58 A cube with edge length a and weight G is kept in
equilibrium by six forces F1 to F6. For the angle α between the
lines of action of the forces applies tan α = 3/4.

Next, we find Av directly from
∑

Tx = 0:

∑
Tx = −Av × (5 m) + (60 kN) × (3 m) + (50 kNm)

−Cv × (3 m) + (100 kN) × (1 m) + (40 kN) × (1 m) = 0

⇒ Av = +53 kN,

after which Bv follows directly from
∑

Fz = 0:

∑
Fz = +{(100 + 40 + 60) kN} − Av − Bv − Cv = 0

⇒ Bv = +112 kN.

Figure 3.57 shows the forces Av, Bv and Cv as they act on the structure in
reality.

To check, one could also have a look at the moment equilibrium at a point
other than the origin, such as point A:

∑
Tx |A = −{(60 − 35) kN} × (2 m) + (50 kNm) −

−{(100 + 40) kN} × (4 m) + (112 kN) × (5 m) = 0.

The moment equilibrium is also met about a line through A parallel to the
x axis.

Example 2
In Figure 3.58, a cube with edge length a and weight G is kept in equilib-
rium by the six forces F1 to F6. For the angle α between the lines of action
of the forces applies tan α = 3/4.

Question:
Determine the six forces F1 to F6 if a = 1 m and G = 24 kN.
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Figure 3.59 All the forces acting on the cube projected on the
three coordinate planes.

Solution:
When writing down the equilibrium equations, it can sometimes be useful
to project all the forces on the three coordinate planes (see Figure 3.59). In
doing so, the forces F2, F4 and F6 are resolved into components according
to the coordinate directions. Using Figure 3.59 one finds

∑
Fx = 3

5F2 + 3
5F6 = 0, (a)

∑
Fy = F1 + 4

5F2 + F3 + 4
5F4 + F5 + 4

5F6 = 0, (b)

∑
Fz = 3

5F4 − G = 0, (c)

∑
Tx =

(
F1 + 4

5F2 + F3

)
· a − G · 1

2a = 0, (d)

∑
Ty = 3

5F2 · a − 3
5F4 · a + G · 1

2a = 0, (e)

∑
Tz = −

(
F3 − 4

5F4 + F5

)
· a = 0. (f)

Equation (c) gives

F4 = 5
3G = 40 kN.

Using this, one finds from equation (e)

F2 = 5
6G = 20 kN

and then from equation (a)

F6 = − 5
6G = −20 kN.

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 3.60 The forces (in kN) as they are acting on the cube.

Determining the forces F1, F2 and F3 from the three remaining equations
(b), (d) and (f) demands some arithmetic. Sometimes one can reduce the
amount of calculation by looking at the moment equilibrium about another
point. Also here:

∑
Tz|P = −

(
F1 + 4

5F2 + 4
5F6

)
· a = 0 (g)

so that

F1 = 0.

Equation (d) now gives

F3 = − 1
6G = −4 kN.

Finally, equation (f) gives

F5 = − 7
6G = −28 kN.

Figure 3.60 depicts the forces (in kN) as they are acting on the cube in
reality. The forces F3, F5 and F6 act in directions opposite to those shown
in Figure 3.58.

By using alternative equilibrium equation (g), equation (b) for the force
equilibrium in y direction was not used, and can be used as a check. With
the forces expressed in kN this gives

∑
Fy = F1 + 4

5F2 + F3 + 4
5F4 + F5 + 4

5F6

= 0 + 4
5 × 20 − 4 + 4

5 × 40 − 28 − 4
5 × 20 = 0.

The conditions for force equilibrium in y direction are met.
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Figure 3.61 The cube, which has been halved diagonally, is sub-
ject to a couple of 80 kNm in plane ABEF and a couple of 60 kNm
in plane BCDE. The body is kept in equilibrium by a couple on the
diagonal plane ACDF.

Figure 3.62 (a) If there is moment equilibrium, the moment vec-
tors form a closed polygon. (b) Top view of the diagonally-halved
cube with the moment vectors acting on it.

Example 3
The cube that has been halved diagonally in Figure 3.61 is subject to a
couple of 80 kNm in plane ABEF and a couple of 60 kNm in plane BCDE.
The directions are shown in the figure. The body is kept in equilibrium by
a couple on the diagonal plane ACDF.

Question:
Determine the magnitude of that couple and resolve it into a component in
plane ACDF and a component perpendicular to plane ACDF.

Solution:
There is moment equilibrium if the moment vectors form a closed polygon.
The polygon in Figure 3.62a shows that a couple of 100 kNm is acting on
plane ACDF. Of this couple, the moment vector has a component perpen-
dicular to plane ACDF of 10

√
2 kNm and a component along plane ACDF

of 70
√

2 kNm. Figure 3.62b shows the top view for the halved cube, with
all the moment vectors that act on it.

When interpreting these results, one should remember that the moment
vector is perpendicular to the plane on which the couple is exerted. The
component of the couple that is acting in the diagonal plane has a moment
vector perpendicular to that plane and is 10

√
2 kNm. The component of the

couple that is acting perpendicular to the diagonal plane has its moment
vector in that plane and is 70

√
2 kNm.
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3.5 Problems

Compounding forces graphically (Sections 3.1.2 and 3.1.3)

3.1 The line of action of the resultant of
the two forces F and the weight G = 2F

of the block intersect the right-hand side
of the block at a distance a from the top.

Question:
How large is a?

3.2: 1–2 The forces shown are exerted in the web and flange of a thin-
walled profile. Length scale: 1 square ≡ 25 mm.

Questions:
a. Using a force polygon deter-

mine the magnitude and direc-
tion of the resultant of these
forces.

b. How large are the components
of the resultant in the yz coor-
dinate system shown?

c. Using a line of action figure, de-
termine the location of the line
of action of the resultant; where
does this line of action intersect
the y axis?

3.3 The forces F1 and F2 are exerted on a body at points A and B. The
body is not shown. Force scale: 1 square ≡ 5 kN. Length scale: 1 square ≡
1 m.

Question:
Using a force polygon, determine the magnitude and direction of the resul-
tant of both forces graphically, and in a line of action figure determine the
location of the line of action.
Hint: use additional forces at A and B of magnitude 15 kN.

3.4 The two parallel forces F1 and F2 are exerted on a body at A and B.
The body is not shown. Force scale: 1 square ≡ 10 kN. Length scale: 1
square ≡ 1 m.

Question:
Determine graphically (using a
force polygon), the magnitude and
direction of the resultant of both
forces, and (using a line of action
figure) the location of the line of ac-
tion.
Hint: use additional forces at A and
B of magnitude 40 kN.
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Moment of a couple (Section 3.1.4)

3.5 A block is subject to four couples in the xy plane. Force scale: 1 square
≡ 1 kN. Length scale: 1 square ≡ 1 m.

Question:
Find in the xy coordinate
system the moment of:
a. the couple formed by

the pair of forces F1;
b. the couple formed by

the pair of forces F2;
c. the couple formed by

the pair of forces F3;
d. the couple T if T =

10 kNm;
e. the resultant couple.

Moment of a force about to a point (Section 3.1.5)

3.6 F1 and F2 are statically equivalent to a
couple.

Questions:
a. How large is the distance e between both

forces if the moment of F1 about A is
+2160 Nmm and the moment of F2 about
A is −1620 Nmm.

b. How large is the distance e between both forces if the moment of F1
about a point B is +2160 Nmm and the moment of F2 about the same
point B is +1620 Nmm.

3.7 A force F is exerted on the
body at A. Force scale: 1 square ≡
1 kN. Length scale: 1 square ≡ 1 m.

Question:
In four ways (!), calculate the mo-
ment of F with respect to the ori-
gin O of the xy coordinate system
shown.

3.8 Find the forces F1 and F2
have magnitudes 250 and 180 kN
respectively. Length scale: 1 square
≡ 0.5 m.

Question:
The moment about A, B, and C
respectively of:
a. F1;
b. F2;
c. the resultant of F1 and F2.

3.9 For rigid bodies, a force may be shifted parallel to its line of action
with the addition of a couple. Force scale: 1 square ≡ 1 kN. Length scale:
1 square ≡ 1 m.

Question:
How large is the moment of that
couple if the force F at P is shifted
respectively to:
a. A.
b. B.
c. C.
d. O.
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3.10 A console in a column is loaded at A by a vertical force of 70 kN.

Questions:
a. Replace the force at A by a

force at B and a couple.
b. Replace the force at A by a

force at C and a couple.

3.11 A console is subject to a horizontal force of 4 kN and a vertical force
of 5 kN. In order to calculate the forces on the bolts A and B, the load is
shifted to a point exactly halfway between A and B with the addition of a
couple.

Question:
Determine the magnitude and
direction of the couple.

3.12 The console shown is fixed to a column by three bolts. In order to
calculate the bolted connection, the load on the console is replaced by a

horizontal and a vertical force at the point of the middle bolt, together with
a couple.

Question:
The magnitude and direction of the
forces and of the couple.

3.13: 1–2 In the left-hand and right-hand figures, a cross-section is subject
to an eccentrically-applied tensile force. This force is statically equivalent
to a normal force N and a bending moment M . The positive directions of
N and M are shown in the middle figure.

Question:
Determine N and M , with the correct sign. Also depict N and M as they
act in reality, and include their values.

Comment: N (normal force) and M (bending moment) are so-called section
forces. Their nomenclature and sign conventions will be discussed further
in Chapter 10.
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3.14: 1–3 As problem 3.13.

3.15 The section forces N = 150 kN and M = 21 kN are acting in a
cross-section. They can be replaced by a single force acting at a distance
ez from the x axis, whereby it is assumed that ez is positive if this force is
acting on the positive side of the x axis (z > 0).

Questions:
a. Depict N and M as they are

acting on the cross-section in
reality and include their values.

b. Determine ez with the correct
sign.

c. Depict the force that is stati-
cally equivalent to N and M .
Include its magnitude, direction
and point of application.

3.16: 1–2 As problem 3.15, but with
1. N = −1 kN and M = +150 Nm.
2. N = +42 kN and M = −10.5 kNm.

3.17 The section forces N = −35 kN and M = +10.5 kNm are acting in
a cross-section. They can be replaced by a single force acting at a distance
ez from the x axis, whereby it is assumed that ez is positive if this force is
acting on the positive side of the x axis (z > 0).

Questions:
a. Depict N and M as they are act-

ing in the section in reality and
include their values.

b. Determine ez with the correct
sign.

c. Depict the force that is stati-
cally equivalent to N and M .
Include its magnitude, direction
and point of application.

3.18: 1–2 As problem 3.17, but with
1. N = −25 kN and M = −20 kNm.
2. N = +42 kN and M = −10.5 kNm.

3.19 A is subject to a force
F = 100 kN. The moment of this
force about O is Tz|O = 300 kNm.

Question:
Where does the line of action in-
tersect the x axis and the y axis
respectively?



3 Statics of a Rigid Body 103

3.20 For a force F the line of action passes through the points A and B.
The moment of F about O is Tz|O = 6 kNm.

Question:
Determine the components Fx and
Fy .

Compounding forces and couples analytically (Section 3.1.7)

3.21: 1–2 The two forces are equivalent to a single force R. Force scale:
1 square ≡ 5 kN. Length scale: 1 square ≡ 1 m.

Question:
Where does the line of action R intersect the x axis?
a. x = −1 m,
b. x = +1 m,
c. x = +6 m,
d. x = +14 m.

3.22 The resultant of the three parallel forces exerted on the body is R.

Question:
Determine the distance of the line
of action of R to point A.

3.23: 1–2 The forces shown act on a thin-walled cross-section.

Question:
Determine the line of action, magnitude, and direction of the resultant of
these forces.

3.24: 1–4 A number of forces act on a block. In case (2), there is also a
couple T = 36 kNm. Force scale: 1 square ≡ 1 kN. Length scale: 1 square
≡ 1 m.
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Question:
Determine the resultant.

3.25: 1–4 A block is subject to three forces. The forces are not drawn to
scale; the values are shown in kN. Length scale: 1 square ≡ 1 m.

Question:
Determine the resultant.

Resolving a force (couple) along three given lines of action (Sections 3.18
and 3.19)

3.26 The force F is replaced by the three forces Fa, Fb and Fc with given
lines of action a, b and c.

Question:
Determine the forces Fa, Fb and Fc:
a. graphically;
b. analytically.

3.27 Force F is resolved into the components Fa, Fb and Fc with given
lines of action a, b and c.
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Question:
Find the magnitudes and directions of Fa, Fb and Fc.

3.28: 1–2 The force F = 60 kN is replaced by a force along line of action
a and a force through point B, respectively point C.

Question:
Determine the magnitudes and directions of these forces.

3.29 The force F = 28 kN is resolved into two parallel forces F1 and F2
with lines of action �1 and �2.

Question:
Determine the magnitudes and directions of the forces F1 and F2.

3.30 A couple T = 110 kNm is resolved into the forces Fa, Fb and Fc with
given lines of action a, b and c. Length scale: 1 square ≡ 1 m.

Question:
Determine Fa, Fb and Fc.

3.31 The couple T = 60 kNm is the resultant of four forces Fa, Fb, Fc and
Fd with given lines of action a, b, c, and d. The magnitude and direction of
the force Fa is given: Fa = 30

√
2 kN.

Question:
Determine Fb, Fc and Fd.



106 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Equilibrium of a rigid body in a plane (Section 3.2)

3.32 A block is subject to the forces shown in the horizontal plane. The
north direction is shown.

Question:
Which of the following statements
about the forces exerted on the
block is true?
a. They comply with the three

equilibrium conditions.
b. They form a couple together.
c. Their resultant points south-

west.
d. Their resultant points east.

3.33 The three forces shown are exerted on the body.

Question:
Which statement about the body is
true?
a. There is moment equilibrium.
b. There is force equilibrium.
c. There is no equilibrium.
d. There is equilibrium.

3.34 A body is subject to two parallel forces F .

Question:
Which statement is true?
a.

∑
Fx �= 0.

b.
∑

Fy �= 0.
c.

∑
Tz �= 0.

d. The body is in equilibrium.

3.35 For two of the bodies shown, the equilibrium depends on the magni-
tude of the forces. For the other two, it is absolutely certain that they are
not in equilibrium (the weights of the bodies are neglected).

Question:
Which of the two bodies are
definitely not in equilibrium?
a. A and B.
b. A and C.
c. A and D.
d. B and C.

3.36 A triangular plate ABC is subject to four forces each with magnitude
F (in the plane of the plate) that are not in equilibrium with one another. A
fifth force is required to ensure equilibrium.

Question:
The line of action of the fifth force
passes through:
a. A.
b. B.
c. C.
d. None of the points A, B and C.

3.37: 1–4 The forces shown act on the edges of the triangular plate ABC.
Their points of application are in the middle of the edges. The system is in
equilibrium.
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Question:
Determine F//AB and F⊥AB, with the correct sign. Also depict how the
forces are acting in reality and include their values.

3.38 Of the six forces that act on the middle of the edges of the triangular
plate ABC, one is known.

Question:
Which of the remaining five forces
can be determined?

3.39 Of the six forces that act on the middle of the edges of the triangular
plate ABC, three are given.

Question:
Determine the other three forces.

3.40: 1–2 A roof structure, loaded by the forces shown of 7 kN and 3.5 kN,
is kept in equilibrium by the forces Av, Bv and Bh. Length scale: 1 square
≡ 0.5 m.

Question:
Determine the forces Av, Bv and Bh.
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3.41: 1–4 The part isolated (cut) from a so-called truss shown in the figure
is in equilibrium. The truss is subject to the forces shown. The values are in
kN. Length scale: 1 square ≡ 1 m.

Question:
Determine the forces:
a. Nt in top chord member t;
b. Nd in diagonal member d;
c. Nb in bottom chord member b.

Comment: Trusses and calculating the truss forces N are covered in further
detail in Chapter 9.

3.42: 1–6 The part isolated from a so-called truss shown in the figure is in
equilibrium under the influence of the forces shown. The values are shown
in kN. Length scale: 1 square ≡ 1 m.

Question:
Determine the forces:
a. Nt in top chord member t;
b. Nd in diagonal member d;
c. Nb in bottom chord member b.
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3.43: 1–4 A segment AB of length 1 m is isolated (cut away) from a beam.
The section forces shown act in cross-section A. The forces are shown in
kN and the couples (so-called bending moments) in kNm. The segment is
in equilibrium.

Question:
Determine the section forces N , V and M in cross-section B if:
a. the beam is not loaded between A and B;
b. the beam is loaded in the middle of AB by a vertical force F of 10 kN.

Comment: N (normal force), M (bending moment) and V (shear force)
are so-called section forces. Their nomenclature and sign conventions are
covered in further detail in Chapter 10.

3.44: 1–3 The body shown has been cut away from a column with console.
The section forces N , V and M act at the central axis of the column. The
console is subject to a force of 4 kN. The body is in equilibrium. Length
scale: 1 square ≡ 0.1 m.

Question:
Determine the unknown section forces.
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3.45 The section forces shown act on the cross-sections of the corner iso-
lated from a portal frame. They act at the centre lines. The corner joint is in
equilibrium. There is no loading between the cross-sections.

Questions:
a. determine the (normal) force N1;
b. determine the (normal) force N2;
c. determine the (shear) force V2.

3.46 The section forces shown act on the cross-sections of the corner
isolated from a portal frame. They act at the centre lines. The corner is
additionally loaded by a vertical force F of 4 kN.

Questions:
a. determine the (normal) force N1;
b. determine the (normal) force N2;
c. determine the (shear) force V2.
d. Which of the three forces N1, N2 and V2 is independent of the

magnitude of the vertical load F on the corner? Provide reasoning for
the answer.



4Structures

To construct is to put together structural elements to create a structure, a
cohesive whole that meets previously-determined demands. The structural
elements are linked to one another by means of joints. The structure is
linked to its normally fixed environment through supports. In this chapter,
we will address a number of types of structural elements, joints, supports
and structures. We will consider only two-dimensional structures.

In addition to the user requirements, which relate to the function of the
structure, there are also mechanical demands (strength and stiffness), re-
quirements relating to the structure itself (such as rate of construction,
availability of the material), design requirements (representation), require-
ments relating to the physical components of the structure (such as climate
control, warmth and sound insulation), and last but not least, economic
requirements. Any contradictory requirements have to be weighed against
one another wisely. To do so, a methodical approach is needed. Designing
a structure is therefore anything but a random process.

As far as the mechanical section of a structure is concerned (strength and
stiffness), an attempt must always be made to make the most efficient use
of the specific properties of the structural elements.

In Section 4.1, we distinguish between a particle element, a line element, a
surface element, and a spatial element.
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Section 4.2 addresses the joints between structural elements, and more
particularly the hinged joint and the rigid joint. We will also look at the
total number of unknown interaction forces, so that at a later stage we can
identify whether or not the forces in a structure can or cannot be calculated
using solely the equilibrium equations.

As far as supports are concerned, we will look at the number of degrees
of freedom (possible movement) in the support, and at the support reac-
tions that a support can generate. Section 4.3 looks at bar supports, roller
supports, hinged supports, and fixed supports.

Many spatial structures can be seen as a system of planar structures con-
structed from line elements. Investigating such planar frames is therefore
certainly worth the effort. Based on matters such as the type of loading,
the nature of the joints, and the external appearance, Section 4.4 defines a
number of planar frames.

Structures are supported in such a way that all free movement is restricted.
This type of structure is referred to as a kinematically determinate or im-
movable structure. If there are too few supports, or if they are not applied
effectively, the structure, or a part of it, will have a degree of freedom that
cannot be restrained. The structure is no longer immmovable. The struc-
ture is then said to be kinematically indeterminate, or is referred to as a
mechanism.

If it is possible to define all the support reactions and interaction forces
in a structure using solely equilibrium equations, it is called a statically
determinate structure. If there are too many unknown forces to determine
them based on the equilibrium, the structure is said to be statically indeter-
minate. To determine the forces in a statically indeterminate structure, the
deformation of the structure must be taken into account, which is beyond
the scope of this book.

The last part of the chapter, Section 4.5, looks at the kinematic/static
(in)determinacy of planar structures.
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Figure 4.1 Structural elements: (a) particle element, (b) line
element, (c) surface element (d) spatial element.

4.1 Structural elements

As far as structural mechanics is concerned (strength and stiffness), one
always tries to make the most efficient use of the specific properties of
a limited number of building blocks, or structural elements. The way of
modelling in structural mechanics allows one to distinguish the following
four types of structural elements:
• Particle element (see Figure 4.1a)

All dimensions of the element are negligibly small with respect to those
of other elements.

• Line element (see Figure 4.1b)
Two of the dimensions of the element (those of the cross-section) are
considerably smaller than the third dimension (the length).

• Surface element (see Figure 4.1c)
One dimension of the element (the thickness) is considerably smaller

• Spatial element (see Figure 4.1d)
All the dimensions of the element are of the same order of magnitude
as those of other elements and are therefore not negligible.

4.1.1 Particle element

A particle element (Figure 4.1a) is a zero-dimensional structural element:
all dimensions are negligibly small with respect to those of other elements.
The dimensions of the element play a subordinate role. This is addressed
further in Section 4.1.5. Also, see Section 4.2, in which particle elements
are used for modelling hinged and fixed joints.

4.1.2 Line element

A line element (Figure 4.1b) is a one-dimensional structural element: two of
the dimensions of the element (those of the cross-section) are significantly
smaller than the third dimension (the length).

than the other two dimensions (the length and width).
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Figure 4.2 The model of a structure made of line elements; the
joints between the line elements are particle elements (joints).

Figure 4.3 A (rigid) curved line element is called an arch.

Figure 4.4 A (rigid) curved surface element is called a shell.

By using simplified assumptions in the smallest directions (those of the
cross-section), all the properties of the line element can be assigned to a
single line, the so-called axis of the line element. In mechanics, a bar which
in reality is three-dimensional, can often be modelled by a one-dimensional
member; the member is depicted by a single line: the bar axis.

Figure 4.2 represents the mechanical diagram of a structure constructed
from line elements.

Line elements with a straight axis as known by a wide range of names,
such as bar, beam, joist, girder, column, post and member. The nomencla-
ture sometimes relates to the position of the line element in the structure:
horizontal (beam, joist, girder) or vertical (column, post, stay). Hereafter,
we will refer to a line element in general as a member.

An (inflexible) curved line element is known as an arch, see Figure 4.3.
A line element without a particular shape is a cable: cables adapt to the
loading.

4.1.3 Surface element

A surface element (Figure 4.1c) is a two-dimensional structural element:
one dimension (the thickness) is small with respect to the other two
dimensions (the length and width).

The behaviour of this element, which in reality is three-dimensional, can
be described sufficiently accurately by means of a two-dimensional model
by making simplified assumptions with respect to the thickness. In the
two-dimensional model, all the properties of the element are assigned to
a plane. This reference plane is sometimes also called the central plane. In
a mechanical diagram, only the reference plane (without thickness) of the
surface element is depicted.

With plates, the reference plane is a flat plane. With shells, the reference
plane is curved (see Figure 4.4). If the reference plane does not have its
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Figure 4.5 In a detailed study, a joint should be modelled as a
spatial structural element.

own shape, but adapts to the loading, it is called a membrane or film. Plates
are also given other names, such as slab, floor, wall and disc.

4.1.4 Spatial element

A spatial element (Figure 4.1d) is a three-dimensional structural element:
all the dimensions are of the same order of magnitude as those of other
elements. In a more general sense, a spatial element can be defined as an
element for which the model of a particle, line, or surface element does not
suffice.

4.1.5 Modelling structural elements

It was stated above that the difference between the four kinds of struc-
tural elements is the result of the modelling method, and that this strongly
depends on the information sought by the research or calculation.

To illustrate, refer to the concrete bar structure and its model in Figure 4.2.
The model has been created to investigate the mechanical behaviour of the
structure as a whole. The lines in the diagram represent the beams and
columns, which have been schematised as line elements. The beams and
columns are rigidly joined to one another. In the model, these joints are
represented as particle elements (capable of transferring both forces as well
as concentrated couples).

In Figure 4.5, the circled joint between the beam and outer column has been
elaborated. Further investigation shows that there is a complex interplay of
forces in the joint; the concrete transfers the compressive forces, and the
reinforcement bars transfer the tensile forces. This type of investigation is
critical for detailed modelling of the joint. Can the concrete transfer the
compressive forces; how much reinforcement is required for transferring
the tensile forces, and where should this reinforcement be placed?

When we are studying the behaviour of a structure as a whole, we can



116 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

model joints as particle elements. When we are studying detailed behaviour
of a joint, it must be modelled as a spatial element.

In principle, all structural elements are three-dimensional, and therefore
are spatial elements; modelling them as particle, line, or surface elements
always means that some information and accuracy is lost. This is acceptable
as long as the model of the structure gives results close enough to the
actual structure. If there is too much discrepancy, the model will have to
be modified to include more detail.

The justification of the models used below derives from satisfactory results
obtained over many years.

4.2 Joints between structural elements

Two bodies can be joined together in a wide variety of ways. For joints
between structural elements, in the same plane, there are two kinds:
• Hinged joints (hinges);
• Fixed joints (entirely rigid or infinitely rigid joints).

In a hinged joint, or hinge, the joined parts cannot translate with respect to
one another, but can rotate freely with respect to one another. In a rigid
joint, the joined parts cannot translate with respect to one another, nor
can they rotate with respect to one another. The forces that the structural
elements exert on one another in a joint are referred to as interaction forces
or joint forces.

Hinges will always have a certain amount of resistance to rotation, even if
only due to the occurrence of friction. If this resistance is limited, the joint
can be idealised as a frictionless hinge. When the resistance to rotation in
a joint is very large, the joint tends to be represented as infinitely stiff. The
reality will always lie between these two extremes.
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Spring joints are joints in which the magnitude of the acting interaction
forces is related to the deformation in the joint. These will not be covered
here.

Figure 4.6a (a) Two bodies joined in a hinge at S.

Figure 4.6b The forces acting on each body at the hinged joint S.

Figure 4.6c In hinged joint S, not only have both bodies been iso-
lated, but so has joint S which should be seen as a particle element.
The forces shown are the interaction forces between the two bodies
and joint S.

4.2.1 Hinged joints

In Figure 4.6a, the bodies (1) en (2) are joined by a hinge at S. In the figure,
the hinge is depicted as a small open circle. The bodies are able to rotate
freely with respect to one another about the hinge S, but cannot translate
with respect to one another. The bodies can exert only forces on one another
at S; they cannot exert any couple.

Dissecting a body into its joints, and at the same time depicting the forces
that are exerted on the body in the joints, is referred to as isolating the body;
the diagram so formed is called the free body diagram.

In Figure 4.6b, both bodies have been isolated from one another and the
forces that the bodies exert on one another in the joint are shown. Based
on Newton’s third law of action and reaction, these interaction forces are
equal and opposite (see Section 1.4.1). In other words: S(1) = S(2) = S.

In the hinged joint shown, there are two unknowns: the magnitude of the
hinge force1 S and the direction of its line of action. We could also select
the two components Sh and Sv as unknowns.

A joint comes about by some means of joining. In hinged joints, this could
be a pin or axis, perpendicular to the plane shown, about which both bodies
can rotate, and through which they can exert forces on one another.

In Figure 4.6c, the pin has also been isolated in S for both bodies (1) and
(2). The pin is seen as a particle, even though it is shown as a body in

1 Although we are talking about a hinge force S (singular) in reality it concerns a
pair of forces (plural).
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Figure 4.7 Three bodies hinged together at joint S.

the figure, in this case a circle. This circle is also known as the connection
between the bodies (1) and (2).

Imagine F
(1)
x;S; F

(1)
y;S and F

(2)
x;S; F

(2)
y;S are the forces exerted through the con-

nection (pin S) in the xy coordinate system given on body (1) and body (2)
respectively.1 This makes four unknown forces. Based on Newton’s third
law, equal and opposite forces are exerted on the connection. If the system
of bodies is in equilibrium, then each of the parts must be in equilibrium,
including the connection. The force equilibrium of the connection therefore
gives

Figure 4.8a Two bodies joined rigidly at P.

∑
Fx = −F

(1)
x;S − F

(2)
x;S = 0,

∑
Fy = −F

(1)
y;S − F

(2)
y;S = 0.

There are therefore two linear relationships between the four unknown
forces F

(1)
x;S, F

(1)
y;S, F

(2)
x;S and F

(2)
y;S, so that two of the four unknowns can be

eliminated, leaving two independent interaction forces in the hinged joint:

F
(1)
x;S = −F

(2)
x;S (= Sh),

F
(1)
y;S = −F

(2)
y;S (= Sv).

The formal approach described here to determine the number of unknown
(independent) interaction forces in a hinged joint seems rather complicated
if you compare it to the simple approach in Figure 4.6b. The formal ap-
proach, however, offers clear benefits if more than two bodies are joined
together at the hinge.

1 The upper index indicates the body on which the force is exerted.

Figure 4.6c In hinged joint S, not only have both bodies been iso-
lated, but so has joint S which should be seen as a particle element.
The forces shown are the interaction forces between the two bodies
and joint S.
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For example, in Figure 4.7, three bodies are joined at a hinge S. Six inter-
action forces act on the hinge. The force equilibrium of the hinge gives two
linear relationships between these six unknowns, so that we are left with
6 − 2 = 4 independent interaction forces in S.

Figure 4.8b The three interaction forces between both bodies
isolated at P.

Figure 4.9a

Figure 4.9b The interaction forces between the three bodies and
the joint P shown as a particle element.

4.2.2 Fixed joints

Fixed joints are also referred to as rigid joints.1

The two bodies (1) and (2) in Figure 4.8a are rigidly joined at P. The fixed
joint is depicted in the figure as a thickening at P. The joint at P ensures that
the bodies cannot translate nor rotate with respect to one another. The joint
could be realised as a pin that, in the plane of the figure, is stuck into both
bodies.

Both bodies have been isolated in Figure 4.8b. Three unknown interaction
forces Ph, Pv and Pm are exerted in P. Although Pm stands for the two equal
and opposite couples, it is referred to as a force when generalising.

If more than two bodies are rigidly connected at a joint, as in Figure 4.9a,
the easiest way of finding the number of unknown (independent) interac-
tion forces is the formal approach, in which the joint is also isolated. The
joint is seen as a particle that in addition to forces can now also transfer
concentrated couples.

In Figure 4.9b, the bodies (1), (2) and (3) and the joint have been isolated.
Since it can transfer couples, the connection has been depicted as a square.

In the xy coordinate system shown, F
(e)
x;P, F

(e)
y;P and F

(e)
z;P are the (gener-

alised) forces that are exerted through the connection at P on body (e)

(e = 1, 2, 3). Based on Newton’s third law, equal and opposite forces are
exerted on the connection, making a total of nine unknown forces. If the

1 This is actually an incomplete definition. It is preferable to refer to an infinitely
stiff joint.

Three bodies rigidly conneced at P.
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Figure 4.10 The interaction forces in a support are pairs of forces.
The forces that act on the foundation are called support forces or
support actions, and the equal and opposite forces acting on the
structure are called support reactions.

Figure 4.11 (a) A two-force member is a straight bar that is joined
at both ends with a hinge to its surroundings and is loaded only
by forces at its ends. A two-force member can transfer only forces
of which the line of action passes through both hinges. (b) A bar
support. (c) Model of a bar support.

system of bodies is in equilibrium, the connection is also in equilibrium.
There are three equilibrium equations for the connection: two for the force
equilibrium and one for the moment equilibrium. These equilibrium equa-
tions give three linear relationships between the nine unknowns, so that
9 − 3 = 6 independent interaction forces remain at the fixed joint between
the three bodies.

4.3 Supports

Most structures are not free-floating, but are joined to a fixed environ-
ment. The joints between the structure and its fixed environment are called
supports.

The interaction forces that act in the supports on the structure are known
as support reactions. They act in the direction in which displacement of
the structure is prevented. The forces that the structure exerts on the sup-
ports (for example on the foundation) are called support forces or support
actions. The support forces are equal and opposite to the support reactions
(see Figure 4.10).

We will look at four types of supports:
• bar supports;
• roller supports;
• hinged supports;
• (fully) fixed supports.

4.3.1 Bar supports

A two-force member is a straight bar which is joined to its environment at
both ends by a hinge, and is loaded only by forces at the ends. From the
moment equilibrium it follows that such members can transfer forces only
when the line of action passes through both hinges (see Figure 4.11a).
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Figure 4.12 The two-force member, isolated from the body and
support, with the interaction forces.

Figure 4.13 (a) If the body moves, the bar AB forces point A to
follow a circular path with centre B. (b) If the motion remains small
with respect to the length of the bar, the arc can be approximated by
the tangent at A to the circle.

In a bar support the two-force member is used as a link between the struc-
ture and the immovable environment (see Figure 4.11b). Figure 4.11c is a
model of the bar support: the bar support is depicted as a single line between
the two hinges. The immovable environment is generally shown by means
of a hatched area.

In Figure 4.12, the two-force member has been isolated at hinges A and B.
The position of the two-force member (the line joining both hinges) fixes
the line of action of the interaction forces F . Only the magnitude of F (with
its sign for the correct direction) is unknown.

When the body moves, point A is forced to follow a circle with centre B
by the two-force member (see Figure 4.13a). If the displacement remains
very small with respect to the length of the two-force member (which is
generally the case), then the arc is almost the same as the tangent at A to the
circle (Figure 4.13b). Note that the diagram of the structure is much smaller
than the actual structure, and also the displacement is strongly magnified in
the diagram.

The bar support at A prevents displacement in the direction of the bar. Dis-
placement in the direction perpendicular to the bar is free (Figure 4.13b),
as is a rotation of the body about A.

Imagine that in the free displacement of the body, ux;A and uy;A are dis-
placements of A in the x and y directions, and that ϕz;A is the rotation of
the body about A. Generalising, the rotation is called a motion. For a bar
support at A (with the bar in the y direction) the generalised motions are:

ux;A = unknown (free motion),

uy;A = 0 (prescribed motion),

ϕz;A = unknown (free motion).

The bar support prevents free motion of point A by exerting forces on it.
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Figure 4.14 (a) The bar support has (b) two degrees of freedom (a
rotation and a displacement perpendicular to the bar) and gives (c)
one support reaction (a force in the direction of the bar).

Figure 4.15 Model of a roller support.

Figure 4.16 (a) The roller support has (b) two degrees of freedom
(a rotation and a movement along the rolling surface) and generates
(c) one support reaction (a force perpendicular to the roller track).

For the generalised forces at A in the given coordinate system:

Fx;A = 0 (prescribed force),

Fy;A = unknown (free force),

Tz;A = 0 (prescribed force).

The free (freely adjustable) motions are called the degrees of freedom at
the support; the free (freely adjustable) force is the support reaction. A bar
support therefore has two degrees of freedom and generates one support
reaction.

If a motion is prescribed, the associated force is unknown, and vice versa.
This is true not only for bar supports but also for all other supports discussed
below. The total number of degrees of freedom and support reactions is
therefore always three for a support (in a plane). In Figure 4.14 the de-
grees of freedom and support reactions are shown. Sometimes, motions
are depicted by means of open arrows, while forces are depicted by closed
arrows.

4.3.2 Roller supports

Figure 4.15 is a schematic representation of a roller support. For a roller
support at A, the body can move parallel to the so-called roller track, and
can also rotate freely about A. Only motion of A perpendicular to the roller
track is prevented; this is the direction in which the interaction force is
exerted.

For the roller support in Figure 4.16, with the roller track parallel to the x

axis, the following applies for the motion at A:

ux;A = unknown (free motion),

uy;A = 0 (prescribed motion),

ϕz;A = unknown (free motion).

ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM
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Figure 4.17 (a) An example of a simple roller support. (b) If
the roller is large enough and the movements and rotations remain
small, a large part of the roller can be omitted. The roller support
changes into a bar support.

Figure 4.18 A steel roller support.

The following applies for the forces in A in the coordinate system given:

Fx;A = 0 (prescribed force),

Fy;A = unknown (free force),

Tz;A = 0 (prescribed force).

The roller support therefore has two degrees of freedom and generates one
support reaction. Note the parallel with a bar support!

Figure 4.18 shows a steel roller support used in older bridge structures.
Due to the continuous sideways movement, the roller can end up askew
after a while. To prevent this happening, the roller is provided with a tooth
structure on its sides (comparable to a cogwheel). In order to prevent dis-
placement in the z direction, a groove is sometimes cut into the roller that
fits over an open ridge in the rail and bearing pedestal.

This example of a steel roller support provides a good picture of how it
works. Roller supports can be made of materials other than steel, but then
as sliding supports. Examples include supports made of rubber or plastics
(neoprene), occasionally in combination with Teflon to reduce friction.

The roller support shown can transfer only compressive forces and no ten-
sile forces. This is not a problem as long as the loading generates only
compressive forces in the support. Such a load could be, for example, the
ever-present weight of the structure. Generally speaking, the weight of a
structure, such as a bridge, is sufficiently large to ensure that the roller
support is continuously loaded by compressive forces. If a roller support
also has to be able to transfer tensile forces, special structural provisions
have to be made.

It is assumed here that a roller support can transfer both tensile and
compressive forces.
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Figure 4.19 (a) The hinged support has (b) one degree of free-
dom (a rotation) and generates (c) two support reactions (the two
components of a force).

Figure 4.20 Simple example of a hinged support.

Figure 4.21 A steel hinged support, previously used in smaller
bridges. The horizontal movement is prevented by the pin.

4.3.3 Hinged supports

A hinged support is a hinge between the structure and its immovable envi-
ronment (see Section 4.2.1). A hinged support is modelled in Figure 4.19a
(the open circle is often omitted). In a hinged support at A, the displacement
of the body at A is prevented and the body can only rotate about A. The
support cannot transfer a couple, but can transfer a force. The interaction
force is unknown with respect to both magnitude and direction.

For the hinged support in Figure 4.19 with the coordinate system shown,
the following applies for motion at A:

ux;A = 0 (prescribed motion),

uy;A = 0 (prescribed motion),

ϕz;A = unknown (free motion).

and for the forces at A:

Fx;A = unknown (free force),

Fy;A = unknown (free force),

Tz;A = 0 (prescribed force).

A hinged support therefore has one degree of freedom (a rotation) and
generates two support reactions (the two components of a force).

Figure 4.22 A steel hinged support as still found in many bridges today.
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Figure 4.23 (a) The fixed support has no degrees of freedom and
generates (b) three support reactions (the two components of a force
and a fixed-end moment).

Figure 4.24 Examples of fixed supports: (a) a balcony and (b)
a concrete column that forms a single monolithic whole with the
concrete foundation.

Figure 4.20 is a good example of a hinged support. Figure 4.21 shows how
a steel hinged support can be used in small bridges. Horizontal motion is
prevented by a pin. The steel hinged support in Figure 4.22 can transfer
large forces and is an example of what is used in larger bridges. Like roller
supports, hinged supports can be made from materials other than steel, or
from a combination of materials Although the supports in Figures 4.21 and
4.22 can transfer only compressive forces, it is assumed below that hinged
supports can also transfer tensile forces.

4.3.4 Fixed supports

A fixed support is an infinitely stiff or rigid joint between a body and its
environment, see also Section 4.2.2. Figure 4.23a is a model of a fixed
support (the dotted line is generally omitted). At A, the fixed support pre-
vents both the displacement and rotation of the body. In fixed supports, all
motion is prescribed: fixed supports therefore have no degrees of freedom.
A fixed support has three support reactions, see Figure 4.23: two forces and
a so-called fixed-end moment.

The balcony (cantilever beam) in Figure 4.24a is an example of a fixed
supported structure. Another example is the support in Figure 4.24b of
a concrete column on a concrete foundation, constructed as a single,
monolithic whole.

In many cases, a fixed support will not fully prevent rotation. Such a support
is incomplete and is referred to as a spring support if the magnitude of
the rotation is related to the magnitude of the fixed-end moment. We will
always refer to a fully fixed support below.

4.3.5 Free support

Frequently, a beam, such as a floor beam, is placed directly on the masonry
or concrete. Here, a roller support or hinged support described above is not
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Figure 4.25 The simply supported beam modelled as a beam with
a hinged and roller support.

Figure 4.26 A beam supported on rubber blocks and loaded by a
horizontal force.

used. Sometimes, the function of the roller is fulfilled by a slide layer of
steel felt, Teflon, or other suitable material.

In practice, this sort of beam is often referred to as freely supported or
simply supported, and is generally modelled as a beam on a hinge and a
roller (see Figure 4.25).

In the event of vertical loading, it is arbitrary on which side the roller or
hinge is placed. The model of a freely supported beam must however be
performed with the necessary reserve if it relates to support reactions as a
result of a horizontal load. For example, in the beam in Figure 4.26, that is
supported on rubber blocks at both ends and which is loaded by a horizon-
tal brake force, the model of a free support leads to incorrect (horizontal)
support reactions.

4.4

A spatial structure can often be viewed as a system of planar structures
composed of line elements. It is therefore certainly worth investigating the
properties of such planar structures in more detail. Based amongst other
things on the nature of the joints and the external appearance, various types
of planar structures can be distinguished.

4.4.1 Modelling structures

In mechanics, a structure is a three-dimensional cohesive whole of struc-
tural elements that has to be able to resist external influences (the loads).

In many cases, structures appear to have been designed and built in such
a way that the loads are transferred to the foundation via certain planes.
In such cases, the three-dimensional structure can be modelled as a sys-
tem of so-called planar structures (or two-dimensional structures). This is
illustrated using two examples.

Planar structures
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Figure 4.27 (a) A trough bridge, composed of surface elements;
(b) the same bridge with the walls replaced by trusses.

Figure 4.28 (a) An apartment building constructed of only surface
elements; (b) the same building with the main load-bearing structure
constructed of beams and columns.

The first example is the bridge in Figure 4.27a. The loading by the traf-
fic is transferred from the plane of the road deck to the vertical walls.
These walls are in practice the spanning structure and transfer the load
via the supports to the abutments, which subsequently transfer it to the
foundation.

Surface elements (plates) can be used for the road deck and the walls;
and together they form a so-called trough bridge. If the transverse mea-
surements of the bridge are small compared to the span, the bridge
can be modelled as a line element, or in other words, a bar with a
U-section.

In order to limit the use of material and thereby reduce the self-weight that
has to be carried, the surface elements can be replaced by planar structures
made of line elements, as has been done in Figure 4.27b for the vertical
walls.

The second example is the apartment building in Figure 4.28a. The struc-
ture consists of only surface elements. The vertical floor loading is trans-
ferred to the vertical walls and from there is transferred to the foundation.
The horizontal wind loading is also distributed across the floors via the
walls to the foundation.

Figure 4.28b represents the same building, but now all the horizontal
and vertical surface elements in the main load-bearing structure have
been replaced by planar structures made up of beams and columns. Al-
though the structure now consists of only line elements, the transfer of
forces is mostly unchanged and occurs through the same planes as in Fig-
ure 4.28a.

These examples illustrate that spatial structures can be composed of planar
structures that consist of line elements. It is therefore certainly worth the
effort of further investigating these types of planar structures.
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Figure 4.29 (a) A truss with by definition solely hinged joints and
(b) a frame with by definition exclusively rigid joints.

Figure 4.30 If there are also hinged joints in a frame, these have
to be clearly indicated by means of open circles.

Figure 4.31 A beam grillage.

4.4.2 Planar trusses and frames

Planar trusses and frames are planar structures that are loaded in their plane
(see Figure 4.29).

The difference between a truss and a frame is determined by the nature of
the joints in the connections.
• in a truss, the bars are joined together by hinges at all the connections;1

• in frames, all the joints are fixed and entirely stiff.

The truss in Figure 4.29a appeared in the bridge in Figure 4.27b. The open
circles, which represent the hinged joints, are generally omitted as in a truss
all the joints are by definition hinged. The structure in Figure 4.29b is a
frame. You will recognise part of the building in Figure 4.28b here, with
the vertical floor loading and the horizontal wind loading. Sometimes the
stiffnesses of the joints are accentuated by thickenings in the connections,
but generally they are omitted. If there are also hinged joints in a frame,
they have to be clearly depicted by means of open circles. This is the case
in Figure 4.30, which could represent a building made of concrete, on which
a steel floor was placed at a later stage.

4.4.3 Beam grillages

Beam grillages are planar structures that are loaded normal to their plane,
see Figure 4.31. A beam grillage consists of two cooperative beam lay-
ers: beams and girders. The beams and girders are generally placed in two
mutually perpendicular directions.

Beams grillages are often used as floor structures in bridges and buildings.
Lock doors are also sometimes built as a system of beams and girders. A

1 In Chapter 9, which addresses calculations related to trusses, another demand is
covered, namely that the load has to be exerted only at connections.
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Figure 4.33 Examples of two-hinged frames.

Figure 4.34 Examples of three-hinged frames.

Figure 4.35 (a) A two-hinged arch and (b) a three-hinged arch.

façade made of posts and girders (columns and beams), with perpendicular
wind loading, can sometimes also be seen as a beam grillage.

Calculating the forces and deformations in a beam grillage is in fact a three-
dimensional problem. For information about the spatial character, refer to
Section 3.3.4, examples 1 and 2.

4.4.4 Frames

Frames are planar, bent beams structures that are loaded in the plane of
the structure. Such structures are often used to cover a space (warehouse,
sports arena, and so forth).

Figure 4.32 shows a number of simple examples of frames. In Figure 4.33,
both fixed supports have been replaced by hinged supports, so that the struc-
ture is now referred to as a two-hinged frame. If the structure with hinged
supports itself consists of two parts joined by a hinge, this is referred to as
a three-hinged frame (see Figure 4.34). If the beam structure is not bent but
arched, then the structure in Figure 4.35a is called a two-hinged arch, and
the structure in Figure 4.35b a three-hinged arch.

Figure 4.32 Examples of fixed frames.
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Figure 4.36 A shored frame.

Figure 4.37 Examples of trussed beams.

4.4.5 Special structures

It will be clear that a wide range of planar structures can be constructed
using line elements. Two types of structure not mentioned in the earlier
categories are shown here. The structure in Figure 4.36 is called a shored
frame. The structures in Figure 4.37 go by the name of trussed beams.

Although the structures in Figures 4.36 and 4.37 include hinges at all the
connections, none of these structures are trusses. A characteristic of a truss
is that all the ends of the members that merge in a connection are hinged
together. This is not the case in the circled connections. Here the hinge is
attached to the outside of a so-called continuous beam, and is not fitted
internally in the beam.

4.5 Kinematic/static (in)determinate structures

Structures are supported in such a way that all free movements are pre-
vented. This type of structure is known as kinematically determinate or
immovable. If there are too few supports, or if they are not applied effec-
tively, the structure, or part of the structure, will have a certain freedom of
movement that is not resisted. The structure is then no longer immovable.
This type of structure is called kinematically indeterminate, or is called a
mechanism. If it is possible to calculate all the support reactions and interac-
tion forces for a kinematically determinate structure using only equilibrium
equations, it is called a statically determinate structure. If there are too
many unknown forces to be able to determine them from the equilibrium,
the structure is said to be statically indeterminate. In order to determine
the forces in a statically indeterminate structure, the deformation of the
structure must be taken into account.



4 Structures 131

Figure 4.38 In a plane, a rigid body has three degrees of freedom;
(b) due to the bar support at A this number is reduced to two; (c) two
bar supports act as a hinged support at the centre of rotation RC, the
point of intersection of the two bars; there is only one degree of
freedom left: the rotation about RC; (d) with three bar supports, the
body is immovable or kinematically determinate.

4.5.1 Kinematically (in)determinate supported rigid structures

A dimensionally stable structure or self-contained structure is a structure
that, isolated from its supports, retains its shape. If we neglect the defor-
mations that occur, a self-contained structure can be seen as a rigid body.
In a plane, a rigid body has three degrees of freedom: two components of a
translation and one rotation, see Figure 4.38a.

In Figure 4.38b, the block is supported by a bar (two-force member) and
is free to move in the direction perpendicular to the bar (on the condition
that the movements remain small, see Section 4.3.1) and can rotate about
A. The bar support at A reduces the three degrees of freedom of the body
to two.

The freedom of movement can be limited further with a second bar support,
for example at B (see Figure 4.38c). The movement that the body can now
perform, with (minor) movement at A and B perpendicular to the bars, can
be interpreted as a rotation about the so-called (instantaneous) centre of
rotation RC, which is located on the intersection of the two bars.1 With
two bar supports the number of degrees of freedom of the block has been
reduced to one.

The last degree of freedom, the rotation about RC, can be removed with a
third bar support, for example at C (see Figure 4.38d). The three bars now
prevent all possible movement. However the body is pulled or pushed, it
remains where it is. This is referred to as the body having an immovable or
kinematically determinate support.

Three bar supports (at least) are required for an immovable or kinematically

1 The fact that the centre of rotation RC is a fixed point is true only if the rotation
is still small. When considering Figure 4.42, one should not be confused by the
fact that the displacements have been drawn to a large scale with respect to the
dimensions of the structure.
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Figure 4.39 Examples of movable or kinematically indeterminate
supports: the support permits (a) a rotation about RC and (b) a
movement perpendicular to the supporting bars.

Figure 4.40 Examples of immovable or kinematically determinate
supports with (a) three rollers, (b) a roller and a hinge, and (c) a fixed
support.

determinate support of a rigid body. The bars may not all intersect in one
point, or all be parallel, as is shown in Figure 4.39. In the support in Fig-
ure 4.39a, all bars intersect at the rotation centre RC, allowing the body to
rotate. This support is movable or kinematically indeterminate. The support
in Figure 4.39b, in which all bars are parallel to one another (intersect at a
point at infinite distance), is also kinematically indeterminate, as the body
is free to move in the direction perpendicular to the bar supports.

The similarities between bar supports and roller supports were repeatedly
pointed out in Section 4.2. Figure 4.38c also shows that two bar supports
act as a hinged support at the rotation centre RC, the intersection of the two
bars.

An immovable support of a rigid body is therefore also possible with three
roller supports, as in Figure 4.40a, or with a roller and hinged support, as
in Figure 4.40b. It should be clear that a fixed support of a rigid body, as in
Figure 4.40c, also is an immovable support.

4.5.2 Statically (in)determinate supported rigid structures

Instead of investigating the freedom of movement of a body, it is possible
to determine also how many support reactions would be needed to keep the
body in equilibrium under all imaginable loading conditions.

The support reactions adapt to the loading (the action) until equilibrium
is reached. The unknown support reactions must therefore meet the condi-
tions of the three equilibrium equations (in a plane) that apply to a rigid
body. With three support reactions, there is an equal number of unknowns
as equilibrium equations and, with the exception of a number of special
cases which will be addressed later on, the support reactions can be deduced
directly from the equilibrium. The support is then referred to as statically
determinate.
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Figure 4.41 (a) A block supported by three bars; (b) the isolated
block.

An example is the rectangular block in Figure 4.41a, supported by three
bars (two-force members). The resultant of the loading on the block is the
force R, with components Rx and Ry (not shown).

In Figure 4.41b the block has been isolated from its supports and the un-
known support reactions F1, F2, and F3 are shown. For equilibrium, the
following have to apply:

∑
Fx = − 1

2

√
2 · F1 + Rx = 0,∑

Fy = − 1
2

√
2 · F1 − F2 − F3 + Ry = 0,∑

Tz|D = −F3 · b + R · a = 0.

To keep the equation for the moment equilibrium transparent, it has been
related to the intersection D of the lines of action of F1 and F2; here a is
the perpendicular distance from D to the line of action of R.

In matrix notation, the three equilibrium equations are

⎡
⎢⎢⎣

1
2

√
2 0 0

1
2

√
2 1 1

0 0 b

⎤
⎥⎥⎦
⎡
⎢⎢⎣

F1

F2

F3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Rx

Ry

R · a

⎤
⎥⎥⎦ .

We could wonder whether this system of three linear equations with three
unknowns has a unique solution under all imaginable loading (i.e. for all
possible values of R and a).

One way to find out is simply to try to solve the set of equations; we find
that

F1 = Rx

√
2,
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Figure 4.42 (a) A block supported by three bars; (b) the support
is kinematically indeterminate as no moment equilibrium about D
is possible.

Figure 4.43 The support is kinematically indeterminate as no
horizontal force equilibrium is possible.

F2 = −Rx + Ry − a

b
R,

F3 = +a

b
R.

The values of F1 to F3 exist for all values of a and R. The support is
therefore kinematically determinate (equilibrium is possible with any ar-
bitrary loading) and statically determinate (the support reactions can be
determined from the equilibrium).

A more general answer is found in linear algebra: there is a unique solution
if the determinant of the coefficient matrix is not equal to zero. This is
indeed the case in this example:

Det = 1
2

√
2 · b �= 0.

The set of equations cannot be solved if the determinant of the coefficient
matrix is zero. The figures in the coefficient matrix are determined by the
manner in which the body is supported. The fact that the determinant is
zero means that, from a physical perspective, the support is kinematically
indeterminate.

In order to illustrate this, the bar support (3) in Figure 4.42 has been placed
at an angle. With this type of support, the three equilibrium conditions can
be represented by

⎡
⎢⎣

1
2

√
2 0 0

1
2

√
2 1 + 1

2

√
2

0 0 0

⎤
⎥⎦
⎡
⎢⎣

F1

F2

F3

⎤
⎥⎦ =

⎡
⎢⎣

Rx

Ry

R · a

⎤
⎥⎦ .

The determinant of the coefficient matrix is now zero.

In the last equilibrium equation, the moment equilibrium about D, the
condition R · a �= 0 cannot be met. Neither can the support reactions for
R · a = 0 be determined. The method of support in Figure 4.42 allows a
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Figure 4.44 With less than three support reactions, the support is
kinematically indeterminate: (a) moment equilibrium is not possible
about A; (b) horizontal force equilibrium is not possible.

Figure 4.45 If the support of a rigid body or self-contained
structure has more than three support reactions, then the support
is statically indeterminate.

rotation about D and is therefore kinematically indeterminate. This is in
line with what we determined in the previous section for a support on three
bars that pass through a single point.

The support in Figure 4.43, on three parallel bars, is also kinematically in-
determinate. No force equilibrium is possible in the direction normal to the
bars and the block is able to move in that direction. With less than three sup-
port reactions, there are more equilibrium equations than unknowns. Here
the support is also kinematically indeterminate: the conditions for all three
equilibrium equations cannot be met for arbitrary loading. In Figure 4.44 in
case (a) moment equilibrium is not possible and a rotation occurs about A.
In case (b) horizontal force equilibrium is not possible, and the block will
move horizontally.

With more than three bar supports, such as in Figure 4.45, which do not
all pass through a single point and are not all parallel, the support is im-
movable or kinematically determinate. The number of unknown support
reactions is now larger than the available number of equilibrium equations
and a unique solution is impossible. In fact, there is an infinity of solutions
that satisfy the equilibrium equations. An immovable support of a rigid
body or self-contained structure with more than three support reactions is
therefore referred to as being statically indeterminate (or hyperstatic). In
a statically indeterminate support, the support reactions cannot be deduced
directly from the equilibrium, and the deformation of the structure will also
have to be included in the consideration.

To summarise, for a rigid body or self-contained structure with r support
reactions:
r < 3 the support is kinematically indeterminate (movable);
r ≥ 3 the support is kinematically determinate (immovable), unless all the

support reactions pass through a single point or are parallel to one
another.

r ≥ 3 is therefore a necessary, but not sufficient condition for kinematically
determinate support of a rigid body or self-contained structure.
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Figure 4.46 The relationship between the number of bar supports
r (support reactions) and the kinematic/static (in)determinacy of the
support of a rigid body or self-contained structure.

Figure 4.47 Compound structures: (a) with 6 degrees of freedom;
(b) with 4 degrees of freedom.

If the support is kinematically determinate, the following distinctions are
also possible:
r = 3 the support is statically determinate: all the support reactions follow

directly from the equilibrium;
r > 3 the support is statically indeterminate: the three equilibrium equa-

tions are not enough to determine all the support reactions.

The statements above are summarised in Figure 4.46.

4.5.3 Kinematically/statically (in)determinate supported
compound structures

So far, we have looked only at dimensionally stable structures or self-
contained structures. In this section, we will look at dimensionally unstable
structures or compound structures. Isolated from its supports, compound
structures are unable to retain their shape, as the composite parts can move
with respect to one another.

Figure 4.47 shows two examples of compound structures, without their
supports. The structures consist of a number of rigid (or self-contained)
parts (sub-structures), which are capable of rotating with respect to one
another at the hinged joints S. For immovable or kinematically determinate
supports, more than three bar supports (support reactions) are now required.
The immovable support of the compound structure in Figure 4.47a needs at
least six bar supports. Body (1) can be fixed with three bars (Figure 4.48a).
Here, S1 has become a hinged support for the bodies (2) and (3). For each
of these bodies, one bar is sufficient to fix them (Figure 4.48b). Now only
body (4) can still rotate around S2, which can be prevented with a sixth
bar (Figure 4.48c). To achieve an immovable support, more than six bar
supports could also be used of course; six is the minimum required.

The number of bar supports (support reactions) required for an immovable
support can also be deduced, as in Section 4.5.2, by analysing the equi-
librium and comparing the number of unknowns (support reactions and
interaction forces) with the number of equilibrium equations available.
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Figure 4.48 Each effectively applied bar support reduces the
number of degrees of freedom by one.

Imagine

r = number of support reactions,

v = number of interaction forces,

e = number of equilibrium equations,

and

n = r + v − e.

n is equal to the difference between the number of unknowns (r + v) and
the number of available equilibrium equations e.

If all the support reactions have been applied effectively, the following two
cases can be distinguished:
• n < 0 – the structure is kinematically indeterminate

The total number of unknown forces r + v is smaller than the number
of available equilibrium equations e. This means that the equilibrium
equations cannot be solved for arbitrary loading. The structure may
move under certain loads. The number of support reactions r is too
small to remove all the degrees of freedom. The support is therefore
kinematically indeterminate (movable). A kinematically indeterminate
structure is also referred to as a mechanism.
The negative value of n is equal to the number of degrees of freedom
(movement possibilities) of the structure (or the mechanism).

• n ≥ 0 – the structure is kinematically determinate
For an immovable support (or kinematically determinate structure) it
would seem that n ≥ 0.

For kinematically determinate structures (n ≥ 0), one can distinguish
between two cases:
• n = 0 – the structure is statically determinate

The number of unknown forces r+v is equal to the number of available
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Figure 4.49 Summary of the kinematic/static (in)determinacy of
a structure.

Figure 4.50 When isolating a compound structure, it falls apart
into a number of (self-contained) sub-structures and a number of
hinged joints.

equilibrium equations. All the support reactions and interaction forces
can be determined on the basis of the equilibrium. The structure is
statically determinate.

• n > 0 – the structure is statically indeterminate
The number of unknowns is greater than the number of available
equilibrium equations. An infinity of solutions satisfy the equilibrium
equations. The structure is statically indeterminate. The value of n is
called the degree of static indeterminacy.

Figure 4.49 provides a summary of these statements.

For the compound structure in Figure 4.47a, we will now determine with
how many (effectively placed) support reactions the structure can be sup-
ported in an immovable way. To do so, it will be assumed that the
self-contained sub-structures do not directly exert forces on one another,
but that they do so via the joints. When isolated, the compound structure
therefore falls apart into a number of sub-structures and a number of joints
(see Figure 4.50).

There are two interaction forces at every joint between a sub-structure and a
(hinged) joint. In the figure, the connections are shown by dotted lines, and
the number of interaction forces is shown. There are a total of five joints,
which brings the total number of unknown interaction forces to

v = 5 × 2 = 10.

Each self-contained sub-structure gives three equilibrium equations (force
equilibrium and moment equilibrium) and each hinged joint gives two equi-
librium equations (only force equilibrium). These numbers are included in
the circles in Figure 4.50.

With four sub-structures and two joints, the total number of available
equilibrium equations becomes
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Figure 4.51 This structure, with three hinges in line at A, S and
B, allows (minor) movement at S, and is therefore kinematically
indeterminate.

e = 4 × 3 + 2 × 2 = 16.

Without support reactions (r = 0) this gives

n = r + v − e = 0 + 10 − 16 = −6.

The compound structure in Figure 4.47a therefore has six degrees of
freedom.

The minimum number of required support reactions r for a kinematically
determinate structure follows from the condition n = 0:

n = r + v − e = 0 ⇒ r = e − v = 16 − 10 = 6.

For an immovable support, six effectively applied bar supports (support re-
actions) are therefore sufficient. This is in line with what was found earlier
(see Figure 4.48c): for, each bar support removes one degree of freedom.

We have frequently used the phrase effectively applied bar supports. In Fig-
ure 4.48c, all the bars have been applied effectively. If in Figure 4.48 the bar
supports were not placed effectively, for example by using all the bars to
support body (1), the structure would remain kinematically indeterminate
even though the condition n ≥ 0 is met.

The condition n ≥ 0 for a kinematically determinate structure is not a
sufficient condition, as it is always possible to apply the supports (ineffec-
tively) so that the structure remains kinematically indeterminate. One must
be aware of this.

An example of the above is the structure in Figure 4.51, in which three
hinges are on a straight line. Imagine that the hinged joint S and both bodies
are isolated. The hinged joint gives two equilibrium equations and each
body gives three. The total number of available equilibrium equations is
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then

e = 2 + 2 × 3 = 8.

The number of interaction forces between joint S and both bodies is

v = 4.

A hinged support can provide two support reactions. For two hinged
supports (A and B), it therefore applies that

r = 4.

This gives

n = r + v − e = 4 + 4 − 8 = 0.

Further investigation shows however that in case of a load normal to the line
through the three hinges, the conditions for moment equilibrium cannot be
met. For example, a vertical force at S can never create an equilibrium with
the horizontal(!) support reactions at A and B. For such a load, the structure
in S will allow (minor) movement. The structure is therefore kinematically
indeterminate, even though n = 0.

4.5.4 Static (in)determinacy of a frame

A frame is a structure constructed of members that are connected to one
another at rigid or hinged joints. In order to be able to determine the static
(in)determinacy for a kinematically determinate frame, we use the proce-
dure based on a consideration of equilibrium from the previous section: all
members and joints in the structure are isolated. Joints are also assumed at
the supports.

Figure 4.51 This structure, with three hinges in line at A, S and
B, allows (minor) movement at S, and is therefore kinematically
indeterminate.
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Figure 4.52 (a) A structure of which in (b) all the members and
joints have been isolated. Joints have also been assumed at the sup-
ports. Joints only subject to forces are shown as circles; joints that
can also be subject to couples are shown as squares.

This is illustrated in Figure 4.52a; all bars and joints have been isolated in
Figure 4.52b.

Each member gives three equilibrium equations (force equilibrium and
moment equilibrium).

Two different types have to be distinguished as far as the joints are
concerned:
• Joints on which only forces can be exerted (fully hinged1 joints);

they are shown as circles, and give two equilibrium equations (force
equilibrium).

• Joints on which both couples and forces can be exerted (rigid2 and
incompletely hinged3 joints); they are shown as squares, and give three
equilibrium equations (force equilibrium and moment equilibrium).

The number of equilibrium equations that the members and joints introduce
is included as a circled value in Figure 4.52b.

The four bars therefore give 4 × 3 = 12 equilibrium equations, the two
fully hinged joints give 2×2 = 4 equilibrium equations while the other two
joints give 2 × 3 = 6 equilibrium equations. The total number of available
equilibrium equations is therefore

e = 12 + 4 + 6 = 22.

The connections between the members and the joints are shown in Fig-
ure 4.52b by means of dashed lines; also the number of interaction forces
is shown. Here, we have to distinguish between the following:

1 All the bars that meet at the joint are connected to the joint by a hinge.
2 All the bars that meet at the joint are connected to the joint rigidly.
3 Of all the bars that meet at the joint, some are connected to the joint by a hinge,

and some are connected rigidly.
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• Hinged connections between the end of the member and the connection
– two interaction forces are acting here, and

• Rigid connections between the end of the bar and the joint – three
interaction forces are acting here.

With four hinged connections between member and joint and four rigid
connections, the total number of interaction forces is

v = 4 × 2 + 4 × 3 = 20.

In Figure 4.52b the support reactions that can act on joints A and B are also
shown. The roller support provides one support reaction, and the hinged
support provides two. The total number of support reactions is therefore

r = 1 + 2 = 3.

For the difference n of the number of unknown forces (support reactions
and interaction forces) and the number of available equilibrium equations,
we arrive at

n = r + v − e = 3 + 20 − 22 = 1.

This means that the structure is statically indeterminate to the first degree:
there is one unknown too many to be able to derive all the support reactions
and interaction forces directly from the equilibrium.

By isolating the structure into all its smallest parts (members and joints) the
procedure used can be laborious and prone to calculation errors. The static
indeterminacy can often be found more quickly and with fewer calculations
by releasing the structure into a number of larger parts. This is illustrated
with help of the frame in Figure 4.53a.

With the section in Figure 4.53b, the structure falls apart into two self-
contained parts. There are three equilibrium equations available per part.

Figure 4.52 (a) A structure of which in (b) all the members and
joints have been isolated. Joints have also been assumed at the sup-
ports. Joints only subject to forces are shown as circles; joints that
can also be subject to couples are shown as squares.
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Figure 4.53 (a) An internally statically indeterminate frame;
(b) to (d) with the sections shown, all the sub-structures are
singly-cohesive; (e) with the section shown, the frame remains
multiply-cohesive; (f) with these two sections, the frame becomes
singly-cohesive.

Together both parts give e = 2 × 3 = 6 equilibrium equations. The section
was introduced across three members. Three unknown interaction forces
are acting in each section. The total number of interaction forces is there-
fore: v = 3 × 3 = 9. The hinged support gives two support reactions and
the roller support gives one. Together that makes r = 2 + 1 = 3 unknown
support reactions. The numbers of interaction forces and support reactions
are shown in the figure.

The degree of static indeterminacy (the number of unknowns too many) is
therefore

n = r + v − e = 3 + 9 − 6 = 6.

More generally speaking we can say that

n = r + v − 3s

in which

r = number of support reactions,

v = number of interaction forces in the section(s) applied,

s = number of rigid sections (sub-structures).

In this way, we find in Figure 4.53c that

n = (3 + 4 × 3) − 3 × 3 = 6.

And for the three sections in Figure 4.53d

n = (3 + 7 × 3) − 3 × 6 = 6.

A condition for an accurate result is that the section(s) has/have to be ap-
plied in such a way that the sub-structures are singly-cohesive. This means



144 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 4.54 (a) A frame structure; (b) with the section shown the
sub-structures are not self-contained; (c) with a section across the
hinges, the sub-structures are self-contained.

that the cohesion in the sub-structure has to be such that for an arbitrary
section across any member, the sub-structure has to fall apart into two new
self-contained (or rigid) parts.

For example, it is not possible to determine the static indeterminacy for the
section in Figure 4.53e. The structure is not singly-cohesive, as the extra
‘cut’, in Figure 4.53f does not make the structure fall apart into two new
self-contained (or rigid) parts. In contrast, the static indeterminacy can be
found for the two ‘cuts’ in Figure 4.53f. This structure is singly-cohesive,
as each extra ‘cut’ over any member makes the structure fall apart into two
new parts.

The degree of static indeterminacy is

n = (3 + 2 × 3) − 3 × 1 = 6.

Note that the support reactions of the six-fold statically indeterminate
structure in Figure 4.53 can be found directly from the equilibrium equa-
tions. The support of the structure therefore is statically determinate. A
statically indeterminate structure for which one can find the support reac-
tions directly from the equilibrium is also said to be internally statically
indeterminate.

If, as in Figure 4.54a, there are hinged joints in a structure, you have to
be aware whether the parts into which you split the structure are self-
contained and retain their shape. In that respect, the section in Figure 4.54b
is not effective. You should choose the section across the hinges here, see
Figure 4.54c. The degree of static indeterminacy is

n = (4 + 4) − 3 × 2 = 2.

There is no simple recipe to determine the degree of static indetermi-
nacy quickly. The approach depends on the insight into how forces are
transferred within structures; this insight develops with experience.

Figure 4.53 Internally statically indeterminated structure; (d) with
the sections shown, all the sub-structures are singly-cohesive; (e)
with this section, the frame remains multiply-cohesive; (f) with
these two sections, the frame becomes singly-cohesive.
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4.6 Problems

Joints between structural elements (Section 4.2)

4.1 Two bodies are joined in hinge A.

Question:
How many (independent) interac-
tion forces are there at A?

4.2 Three bodies (1), (2), and (3) are connected at B by a hinge. The bodies
exert forces on one another via joint B. The joint is modelled as a particle
element.

Question:
a. Isolate the bodies at B, draw

all the interaction forces acting
between the bodies and joint
B, and name them in the xy

coordinate system shown.
b. How many equilibrium equa-

tions are available for the joint?
c. How many independent inter-

action forces are there at B?

4.3 In joint C, j bars are connected by a hinge.

Question:
Derive the relationship between the
number of joined bars j and the
number of independent interaction
forces i at C.

4.4 In A, two bodies are connected rigidly.

Question:
How many (independent) interac-
tion forces are there at A?

4.5 The three bodies (1), (2), and (3) are rigidly connected at B. The bodies
exert forces on one another via joint B. The joint is modelled as a particle
element.

Question:
a. Isolate the bodies at B, draw all

the interaction forces between
the bodies and joint B, and
name them in the xz coordinate
system shown.

b. How many equilibrium equa-
tions are there for the joint?

c. How many independent inter-
action forces are there at B?

4.6 At joint C, j bars are rigidly connected.

Question:
For joint C, derive the relationship
between the number of independent
interaction forces i and the number
of rigidly joined bars j .
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4.7: 1–5 A number of bars are connected in a variety of ways at a joint.

Question:
a. Determine the number of connection forces between each of the bar

ends and the joint.
b. Determine the number of equilibrium equations available for the joint.
c. Determine the number of independent connection forces at the joint.

Supports (Section 4.3)

4.8 A square block ABCD is supported at its four corners as shown. If the
block is loaded, it will deform.

Question:
a. How many displacements, and

in which directions, do the sup-
ports at the corners permit?

b. How many displacements, and
in which directions, are pre-
scribed at the corners by the
supports?

c. How many and which forces can develop freely at the supports?
d. How many and which forces are prescribed in the corners by the

supports?

4.9: 1–11 A number of structures are shown.

Question:
a.
b. How many and which support reactions will these supports supply?

What types of support are being used?
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Kinematic/static (in)determinacy of structures (Section 4.5)

4.10 A block is supported in four different ways.

Question:
Which support method is not effective?

4.11: 1–16 A rectangular block is supported in a variety of ways.

Question:
a. Determine whether the support is kinematically determinate (kd) or

kinematically indeterminate (ki).

Do so in two different ways:
− first investigate the freedom of movement for the method of support

given, and
− secondly count the number of support reactions present, and if there

are enough, determine whether the support reactions are situated
properly (and can form an equilibrium system with an arbitrary
loading).

b. If the support is kinematically indeterminate, give the number of
degrees of freedom v.

c. If the support is kinematically determinate, indicate whether the sup-
port is statically determinate (sd) or statically indeterminate (si).

d. If the support is statically indeterminate, give the degree of static
indeterminacy n.
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4.12: 1–16 A rigid truss is supported in a variety of ways.

Question:
a. For each of the cases, determine whether the support is kinematically

determinate (kd) or kinematically indeterminate (ki).
b. If the support is kinematically indeterminate, give the number of

degrees of freedom v.
c. If the support is kinematically determinate, indicate whether the sup-

port is statically determinate (sd) or statically indeterminate (si).
d. If the support is statically indeterminate, give the degree of static

indeterminacy n.

4.13 Which of the following statements is true for the beam shown?

The beam is:
a. Kinematically determinate.
b. Statically determinate.

c. Statically indeterminate to the
fourth degree.

d. Statically indeterminate to the
seventh degree.

4.14 A bridge beam is resting on roller supports at A and F, and on bar
supports at B, C, D, and E.

Question:
What is the degree of static indeterminacy of this structure?
a. 2.
b. 3.
c. 4.
d. 5.

4.15: 1–3

Which statement applies to the structure shown? The structure is:
a. Statically determinate.
b. Statically indeterminate to the first degree.
c. Statically indeterminate to the second degree.
d. Statically indeterminate to the third degree.
e. Statically indeterminate to the fifth degree.
f. Statically indeterminate to the sixth degree.
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4.16: 1–12 A number of beams and hinged beams are supported as shown.

Questions:
a. Is the structure kinematically determinate or indeterminate? If the

structure is kinematically indeterminate, show the movement (dis-
placements) that can occur freely. If the structure is kinematically
determinate, go to question b.

b. Is the structure statically determinate or indeterminate? If the structure
is statically indeterminate, give the degree of static indeterminacy n.

4.17 Question:
Which structure is kinematically determinate and statically indeterminate?

4.18 Question:
Show that for a kinematically determinate support of the two blocks
connected by a hinge, four support reactions are required.
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4.19: 1–6 Two square blocks are connected by a hinge and supported in a
variety of ways.

Question:
Determine whether the number of two-force members for the given method
of support is sufficient.

4.20: 1–11 A number of kinematically determinate structures are shown.
Question:
a. Is the structure a truss or not?
b. Is the structure statically determinate or indeterminate?
c. If the structure is statically indeterminate, give the degree of static

indeterminacy.
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4.21: 1–11 A number of kinematically determinate bar structures are
shown.

Question:
a. Is the structure statically determinate or indeterminate?
b. If the structure is statically indeterminate, indicate the degree of static

indeterminacy.

4.22: 1–3 The structures shown are constructed from a number of planks.
All the joints are hinges.

Question:
a. Is the structure a truss?
b. Is the structure statically determinate or indeterminate?
c. If the structure is statically indeterminate, give the degree of static

indeterminacy.



5Calculating Support Reactions
and Interaction Forces

In this chapter, we will see how to calculate support reactions and interac-
tion forces in statically determinate bar-type structures from the equilibrium
equations using a number of examples.

For compound structures, if you write down all the available equilibrium
equations and then try to solve the system, you soon end up with a large
number of calculations. To prevent this, you have to select the equilibrium
equations in a sensible order, preferably in such a way that an unknown
force can be calculated directly with each new equilibrium equation.

The strategy for determining all the forces as efficiently as possible depends
to a large degree on the type of structure. For this reason, in addition to
self-contained structures, we will also look at compound and related struc-
tures, such as hinged beams, three-hinged frames (with or without tie-rods),
shored structures and trussed beams.

The loading remains limited to a few point loads. In one case, the structure
is loaded by a concentrated couple.
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Figure 5.1 (a) A light mast fixed at A with (b) the support reac-
tions.

5.1 Self-contained structures

In this section, we will use five examples to show how, for statically de-
terminate self-contained structures, it is possible to determine the support
reactions and interaction forces directly from the equilibrium.

Example 1
The light mast ABC in Figure 5.1a is fixed at A and is loaded at C by a
vertical force of 6 kN.

Question:
Draw the support reactions at A as they are expected to act and determine
them.

Solution:
No horizontal loading is being exerted on the mast. The horizontal support
reaction at A is therefore zero. The vertical support reaction at A must gen-
erate an equilibrium with the vertical force of 6 kN, and will therefore be
pointed upwards. In order to determine the fixed-end moment, the isolated
structure is considered to be pinned at A. The load causes a clockwise
rotation about A. The fixed-end moment has to prevent this rotation and
will therefore act counter-clockwise. The support reactions are shown in
Figure 5.1b. The equilibrium equations are

∑
Fx = Ah = 0,∑
Fy = −(6 kN) + Av = 0,∑
Tz|A = −(6 kN) × (1.5 m) + Am = 0.

The solution is

Ah = 0, Av = 6 kN and Am = 9 kNm.
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Figure 5.2 (a) A block supported on three bars; (b) the assumed
directions of the support reactions at A and B.

The fact that the solutions found are positive confirms the correctness of
the directions assumed for these support reactions.

Note that the support reaction Av and the force of 6 kN at C together form
a couple that is in equilibrium with the fixed-end moment Am.

Example 2
In Figure 5.2a, a block with a weight of 60 kN is supported on three bars.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces N(a), N(b) and N(c) in the bars1 with the correct

sign for tension and compression, based on the convention that a force
N as tensile force is positive and as compressive force is negative.

Solution (units in kN and m):
a. Figure 5.2b shows the support reactions. The directions of Ah and Av
are such that the line of action of their resultant coincides with two-force
member (a). For the others, the directions of the support reactions have been
assumed arbitrarily.

On the basis of the slope of bar (a), it follows that Ah/Av = 4/3, or
Ah = (4/3)Av. Av can be determined using the moment equilibrium about
B:

∑
Tz|B = −Av × 4 − 60 × 4 = 0 ⇒ Av = −60 kN

so that

Ah = 4
3Av = −80 kN.

1 The upper index indicates the relevant bar. The brackets can be omitted as they
do not create any confusion.
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Bh is found from the horizontal force equilibrium:

∑
Fx = Ah + Bh = −80 + Bh = 0 ⇒ Bh = 80 kN.

Bv follows from the vertical force equilibrium:

∑
Fy = Av + Bv − 60 = −60 + Bv − 60 = 0 ⇒ Bv = 120 kN.

Bv can also be determined from the moment equilibrium about A.

Figure 5.2 (b) The assumed directions of the support reactions
in A and B; (c) the support reactions as they are actually acting;
(d) the closed force polygon for the force equilibrium of joint B;
(e) isolated joint B with all the forces acting on it.

In Figure 5.2c, the support reactions are shown as they act in reality. Only
the direction of the support reactions at A was falsely assumed.

b. Figure 5.2c shows directly that a tensile force is acting in bar (a):

N(a) =
√

A2
h + A2

v =
√

802 + 602 = 100 kN.

The forces in the bars (b) and (c) can be determined from the force equilib-
rium of joint B. The force polygon in Figure 5.2d shows that bar (b) exerts a
force of 40 kN on joint B. This force “pushes” against the joint. Figure 5.2e
shows the interaction forces between bar and joint. In bar (b), there is a
compressive force N(b) = −40 kN. Bar (c) is exerting a force of 80

√
2 kN

on joint B, also a compressive force, so that N(c) = −80
√

2 kN.

Alternative solution (units in kN and m):
The questions a and b are now answered in reverse order.

b. In Figure 5.3a, the block has been isolated at A′ and B′. N(a), N(b)

and N(c) are the (tensile) forces that the bars are exerting on the block.
In Figure 5.3b, they have been resolved into their components.
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Figure 5.3 (a) The block isolated at A′ and B′, assuming that all
the bars are tension members; (b) the forces acting on the block
resolved into horizontal and vertical components; (c) the forces ac-
tually exerted by the bars on the block; (d) the support reactions at
A and B are found from the force equilibrium of the joints A and B.

N(c) follows from the moment equilibrium about A′:
∑

Tz|A′ = −60 × 4 − 1
2

√
2 N(c) × 3 = 0 ⇒ N(c) = −80

√
2 kN.

N(a) now follows from the horizontal force equilibrium:

∑
Fx = − 4

5N(a) − 1
2

√
2N(c)

= − 4
5N(a) − (−80) = 0 ⇒ N(a) = 100 kN.

Finally, N(b) can be derived from the vertical force equilibrium:

∑
Fy = −60 −

(
N(b) + 3

5N(a)
)

− 1
2

√
2N(c)

= −60 − (N(b) + 60) − (−80) = 0 ⇒ N(b) = −40 kN.

N(a) is a tensile force; N(b) and N(c) are compressive forces (see Fig-
ure 5.3c).

a. The support reactions at A and B now follow from the force equilibrium
of the joints A and B. Figure 5.3d shows the forces that the bars are exerting
on the joints. It is not difficult to see that the support reactions are acting in
the directions shown in the figure. This gives

Ah = 80 kN, Av = 60 kN, Bh = 80 kN and Bv = 40 + 80 = 120 kN.

Example 3
Figure 5.4 represents a schematisation of a retaining wall on piles shown as
a two-dimensional problem. Assume the piles are exclusively transferring
forces in their longitudinal direction. In that case they can be considered
two-force members. The resultant of the total loading carried by the piles
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Figure 5.4 A retaining wall on piles.

Figure 5.5 (a) The isolated retaining wall, in which it has been
assumed that all the piles exert tensile forces on the bottom plate;
(b) the pile forces as they really act on the bottom plate.

is a force of 60
√

2 kN, of which the direction and line of action are shown
in the figure.

Question:
Determine the pile forces, with the correct sign for tension and compres-
sion:
a. analytically;
b. graphically.

Solution:
a. Analytical method (units in kN and m):
In Figure 5.5a, the retaining wall has been isolated and the (tensile) forces
N(a), N(b) and N(c) that the piles exert on the bottom plate are shown. To
keep the picture simple, N(b) has been shifted somewhat along its line of
action.

N(b) follows from the horizontal force equilibrium:

∑
Fx = 1

10

√
10 N(b) + 60 = 0 ⇒ N(b) = −60

√
10 kN.

N(c) can be found from the moment equilibrium about A. One could also
take the moment equilibrium about intersection Sab of the piles (a) and (b),
which works faster in this case:

∑
Tz|Sab = −60

√
2 × √

2 − N(c) × 4 = 0 ⇒ N(c) = −30 kN.

Finally, N(a) can be derived from the vertical force equilibrium:

∑
Fy = −N(a) − 3

10

√
10 N(b) − N(c) − 60 = 0 ⇒ N(a) = +150 kN.

Figure 5.5b shows the forces as they act on the structure. In pile (a) there is
a tensile force while there is a compressive force in piles (b) and (c).
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Figure 5.6 Graphical method for finding the pile forces: (a) line
of action figure and (b) force polygon.

b. Graphical method (see Section 3.1.8):
The pile forces can also be found graphically. Imagine �F (a), �F (b) and �F (c)

are the forces that the piles exert on the structure. These forces have to be
in equilibrium with the load �F , so that:

�F (a) + �F (b) + �F (c) = �F
or

�F (a) + �F (b) = �F − �F (c).

In addition to the force equilibrium there also has to be moment equilib-
rium. Therefore ( �F (a)+ �F (b)) and ( �F − �F (c)) have a common line of action.
The line of action of ( �F (a)+ �F (b)) passes through Sab and that of ( �F − �F (c))

passes through P, see the line of action figure in Figure 5.6a. The common
line of action is therefore PSab.

Since ( �F (a)+ �F (b)) and �F (c) are in equilibrium with �F in P, ( �F (a)+ �F (b)) and
�F (c) can be obtained from a force polygon (see Figure 5.6b). ( �F (a) + �F (b))

can then be resolved in Sab into �F (a) and �F (b). The force polygon in
Figure 5.6b now shows:

�F (a) = 150 kN ↓; �F (b) = 60
√

10 kN ↑ and �F (c) = 30 kN ↑.

These are the forces that the piles exert on the retaining wall. Translated
into the pile forces with the correct sign for tension and compression one
now finds:

N(a) = +150 kN; N(b) = −60
√

10 kN and N(c) = −30 kN.
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Figure 5.7 (a) A beam loaded by a couple at joint B; (b) the
isolated beam with its support reactions.

Figure 5.8 (a) The interaction forces between joint B and mem-
bers AB and BC can be found from the equilibrium of these
members; (b) the interaction forces as they are actually acting; joint
B must meet the conditions of force and moment equilibrium.

Example 4
The simply supported beam ABC in Figure 5.7a consists of the members
AB and BC that are connected rigidly in joint B. The beam is loaded at joint
B by a couple of 30 kNm.

Question:
Isolate joint B and draw all the forces1 acting on it.

Solution:
From the horizontal force equilibrium, it follows that the horizontal support
reaction A is zero. Only vertical support reactions are therefore acting at A
and C. In order to find the direction of the vertical support reaction at C,
one considers the isolated beam to be pinned by a hinge at A. Due to the
couple of 30 kNm, beam ABC will try to rotate clockwise about A. The
vertical support reaction in C must prevent this rotation and therefore acts
upwards (see Figure 5.7b).

The vertical equilibrium requires that the vertical support reactions at A and
C must be of equal magnitude and opposite direction. The vertical support
reaction Av at A therefore acts downwards (see Figure 5.7b).

Cv and Av are found with the following equilibrium equations:

∑
Ty |A = −(30 kNm) + Cv × (5 m) = 0 ⇒ Cv = 6 kN,∑
Fz = −Av + Cv = 0 ⇒ Av = 6 kN.

In Figure 5.8a, the members AB and BC have been isolated at joint B.
In this figure, the calculated support reactions are shown, as are (without
indicating their direction) the currently unknown interaction forces2 be-

1 The forces are intended here in a generalised sense (see Section 4.2.2).
2 Remember that three interaction forces act at a rigid connection (see Sec-

tion 4.2.2).
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Figure 5.9 A structure of which the parts AC, BC and DC are
connected rigidly at joint C.

Figure 5.10 (a) Graphical check of the moment equilibrium: the
lines of action of the three resulting forces at A, B and D pass
through a single point; (b) graphical check of the force equilibrium:
all the forces form a closed force polygon.

tween the members and the joint. The forces that are exerted at B on the
member ends are found from the force and moment equilibrium of respec-
tively member AB and BC. The law of action and reaction requires that the
member ends exert equal and opposite forces on joint B. Figure 5.8b shows
the interaction forces according to their direction and magnitude (forces in
kN and moments in kNm).

Check: At joint B the force and moment equilibrium is satisfied.

Example 5
Of the bar-type structure in Figure 5.9, parts AC, BC and DC are rigidly
connected at joint C.

Questions:
a. Determine and draw the support reactions.
b. Graphically check the force and moment equilibrium.
c. Isolate AC, BC, and DC at joint C and draw all the support reactions

and interaction forces.

Solution:
a. The support reactions are found from the three equilibrium equations for
the structure as a whole. The result is shown in Figure 5.10a.

b. The lines of action of the three (resulting) forces at A, B and D intersect
at one point. This means that there is moment equilibrium. In Figure 5.10b
these forces form a closed force polygon; there is therefore also force
equilibrium.

c. In Figure 5.11a, all the parts connected at joint C have been isolated.
The forces acting at C on AC can be determined using the known support
reactions at A. Equal and opposite forces are acting on joint C. The forces
between joint C and the parts BC and CD can be calculated in the same
way. The result is shown in Figure 5.11b.

Check: At joint C, the force and moment equilibrium is satisfied.
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(a) The interaction forces between joint C and parts
AC, BC and DC can be found from the equilibrium of these parts;
(b) the interaction forces as they are really acting; joint C must meet
the conditions of the force and moment equilibrium.

Hinged beams.

5.2 Hinged beams

A hinged beam is a structure in which several beams are linked through
consecutive hinges. Figure 5.12 shows examples of hinged beams. Hinged
beams are found in roof girders and bridges.

In Figure 5.12, the beams with an overhang are depicted with (a). These
beams are referred to as being supported at fixed points. The beams (b) and
(c) are sometimes referred to as being supported at floating points, as they
rest on the non-fixed supporting points S1 and/or S2. Beam (c) is called a
suspended beam; it can be placed at a later stage during construction.

Statically determinate hinged beams are also known as Gerber beams after
the German Gerber,1 who first used this type of structure in the second half
of the 19th century.

1 Heinrich Gerber (1832–1912), German engineer.

Figure 5.11

Figure 5.12
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Figure 5.13 With too many hinges, or inadequate placement, the
structure becomes kinematically indeterminate and changes into a
mechanism.

Figure 5.14 Example of a hinge in a bridge structure.

Figure 5.15 (a) A hinged beam on three supports; (b) the assumed
directions for the support reactions.

By choosing an adequate place for the hinges, it is possible to influence the
force distribution in the structure positively. However, you have to make
sure that the structure does not become kinematically indeterminate, as for
example in Figure 5.13.

A possibility for hinge S1 in a bridge structure is shown in Figure 5.14.
The right-hand part (the suspended beam) is supported at a hinge on the
left-hand part. In this example, the hinge works only if the right-hand part
exerts a downward force onto the left-hand part. This requirement is usually
fulfilled as a result of the relatively large dead weight of the suspended
beam.

From now on we assume that all hinges in a hinged beam can transfer both
tensile and compressive forces.

Example 1
The hinged beam in Figure 5.15a consists of parts AS and CS, which are
connected at a hinge in S.

Questions:
a. Determine the support reactions.
b. Determine the forces exerted on hinge S.

Solution (units in kN and m):
a. There are three equilibrium equations available for the structure. With
the directions assumed for the support reactions in Figure 5.15b, the
following applies for the given xy coordinate system:∑

Fx = Ah = 0, (a)

∑
Fy = −40 − 60 + Av + Bv + Cv = 0, (b)

∑
Tz|A = −40 × 4 − 60 × 12 + Bv × 8 + Cv × 16 = 0. (c)

The moment equilibrium for the entire structure can also be applied for a
point other than A.
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Figure 5.15 (a) A hinged beam on three supports; (b) the assumed
directions for the support reactions. (c) The hinge forces in S.

The three equations (a) to (c) are insufficient for finding all the support re-
actions. A fourth equation is required. This equation relates to the property
that no couple can be transferred at hinge S. If parts AS and CS are isolated
at S, we are left with the interaction forces Sh and Sv (see Figure 5.15c).
The missing equation is now found from the moment equilibrium about S
of one of the individual parts.

For the left-hand part AS one finds1

∑
T (AS)

z |S = 40 × 6 − Av × 10 − Bv × 2 = 0 (d)

and for the right-hand part CS

∑
T (CS)

z |S = −60 × 2 + Cv × 6 = 0. (e)

Both equations (d) and (e) are of equal value, but it should be clear that
equation (e) is preferable as it is simpler.

The support reactions are therefore most easily found as follows:

(e)
∑

T (CS)
z |S = 0 ⇒ Cv = 20 kN,

(c)
∑

T (AC)
z |A = 0 ⇒ Bv = 70 kN,

(b)
∑

F (AC)
y = 0 ⇒ Av = 10 kN,

(a)
∑

F (AC)
x = 0 ⇒ Ah = 0.

It seems that the correct direction was assumed for all the support reactions.
The support reactions are shown in Figure 5.16.

1 In
∑

T
(AS)
z |S = 0, the upper index indicates the part AS to which the equilib-

rium equation relates. This notation is particularly useful if the equilibrium has
to be written down for the various parts of the same structure.
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Figure 5.16 The support reactions as they really act; the hinge
forces follow from the equilibrium of AS or CS.

Figure 5.17 The forces acting on the isolated hinged joint S.

Figure 5.18 The support reactions and interaction forces can also
be found by first working out the equilibrium of SC and then the
equilibrium of AS.

b. The hinge forces follow from the equilibrium of the separate parts.
Taking the right-hand part CS in Figure 5.16 we find

∑
F (CS)

x = −Sh = 0 ⇒ Sh = 0,∑
F (CS)

z = Sv − 60 + 20 = 0 ⇒ Sv = 40 kN.

The same values are found from the force equilibrium for the left-hand part
AS.

Sh and Sv are the forces that are acting at S on AS and CS. The forces acting
on the hinged joint S are the same magnitude, but of opposite direction (see
Figure 5.17).

Alternative solution:
The floating supported part CS can be seen as a beam, supported on a roller
and a hinge (see Figure 5.18). The support reactions at S and C follow from
the equilibrium of CS:

∑
F

(CS)
x = 0 ⇒ Sh = 0,

∑
T

(CS)
z |C = 0 ⇒ Sv = 40 kN,

∑
T

(CS)
z |S = 0 ⇒ Cv = 20 kN.

With Sh and Sv we now know the load on the overhang of ABS and we can
determine the support reactions at A and B:

∑
T

(AS)
z |A = 0 ⇒ Bv = 70 kN,

∑
T

(AS)
z |B = 0 ⇒ Av = 10 kN,

∑
F

(AS)
x = 0 ⇒ Ah = 0.
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Figure 5.19 (a) A hinged beam with four supports; (b) the as-
sumed directions of the support reactions; (c) the support reactions
as they really act.

Example 2
The hinged beam in Figure 5.19a is given.

Question:
Determine the support reactions.

Solution (units in kN and m):
In Figure 5.19b, the following applies for the assumed directions of the
support reactions in the given coordinate system, and for the system as a
whole:

∑
Fx = Dh = 0, (a)

∑
Fy = −40 − 60 + Av + Bv + Cv + Dv = 0, (b)

∑
Tz|A = −40 × 3 − 60 × 10

+Bv × 6 + Cv × 14 + Dv × 20 = 0. (c)

We have three equations with five unknowns. The two missing equations
are found from the condition that the hinges S1 and S2 cannot transfer
couples. Therefore the following applies for the isolated part S2D:

∑
T (S2D)

z |S2 = Cv × 2 + Dv × 8 = 0. (d)

and for the isolated part S1D:

∑
T (S1D)

z |S1 = −60 × 2 + Cv × 6 + Dv × 12 = 0. (e)

Here the moment equilibrium has been associated with the parts to the right
of the hinges. One could just as well look at the moment equilibrium of
the parts to the left of both hinges, although doing so would involve more
calculations.
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Figure 5.20 The support reactions can also be found by first work-
ing out the moment equilibrium of suspended beam S1S2 and then
the equilibrium of AS and DS.

To summarise, a good strategy for solving this is as follows:

(a)
∑

F (AD)
x = 0 ⇒ Dh = 0 kN,

(e)
∑

T (S1D)
z |S1 = 0

(d)
∑

T (S2D)
z |S2 = 0

⎫⎬
⎭ ⇒ Cv = 40 kN and Dv = −10 kN,

(c)
∑

T (AD)
z |A = 0 ⇒ Bv = 60 kN,

(b)
∑

F (AD)
y = 0 ⇒ Av = 10 kN.

Figure 5.19c shows the support reactions as they act in reality. Apparently,
only the direction of Dv was initially assumed falsely.

Alternative solution:
The most efficient approach however is to first look at the moment
equilibrium of the suspended beam S1S2 (see Figure 5.20):

∑
T (S1S2)

z |S1 = 0 ⇒ S2;v = 30 kN,∑
T (S1S2)

z |S2 = 0 ⇒ S1;v = 30 kN,

With S1;v and S2;v, we know the vertical forces that the suspended beam ex-
erts on the overhangs of beams AS1 and S2D. For these beams, the vertical
support reactions can be determined from the moment equilibrium:

∑
T (AS1)

z |B = 0 ⇒ Av = 10 kN,∑
T (AS1)

z |A = 0 ⇒ Bv = 60 kN,∑
T (S2D)

z |D = 0 ⇒ Cv = 40 kN,∑
T (S2D)

z |C = 0 ⇒ Dv = −10 kN,
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Figure 5.21 (a) A three-hinged frame with the hinge bearings at
different levels.

Finally, the horizontal force equilibrium for each of the structural members
gives

S1;h = S2;h = Dh = 0 kN.

5.3 Three-hinged frames

Figure 5.21a is an example of a three-hinged frame. The frame consists of
two self-contained parts AS and BS that are connected at S by means of a
hinge, and are supported at A and B by a hinge. The whole is statically
determinate. Three-hinged frames are often used as covering structures.
They were previously mentioned in Sections 3.2.2 and 4.4.4.

A three-hinged frame has four unknown support reactions. In order to be
able to calculate these, we need four equilibrium equations. Three of these
are found from the equilibrium of the structure as a whole. The fourth equa-
tion follows from the condition that the hinged joint at S cannot transfer a
couple.

Example 1
In the three-hinged frame in Figure 5.21a, the hinge bearings at A and B
are at different levels. The frame is loaded by a vertical force of 60 kN that
acts on the right-hand part BS.

Questions:
a. Determine the support reactions.
b. Determine the forces that parts AS and BS in S exert on one another.
c. Perform a graphical check of the equilibrium.

Figure 5.20 The support reactions can also be found by first work-
ing out the moment equilibrium of suspended beam S1S2 and then
the equilibrium of AS and DS.
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Figure 5.21 (b) The assumed directions for the support reactions;
(c) the support reactions as they really act.

Solution (units in kN and m):
a. For the given coordinate system and the directions assumed for the
support reactions in Figure 5.21b the following applies for the structure as
a whole:

∑
F (ASB)

x = Ah − Bh = 0, (a)

∑
F (ASB)

y = −60 + Av + Bv = 0, (b)

∑
T (ASB)

z |A = −60 × 6 − Bh × 2 + Bv × 8 = 0. (c)

The missing fourth equation is found from the moment equilibrium about
S of one of the separate parts AS or BS. For the left-hand part AS one finds

∑
T (AS)

z |S = Ah × 2 − Av × 4 = 0. (d)

For the right-hand part BS, one finds

∑
T (BS)

z |S = −60 × 2 − Bh × 4 + Bv × 4 = 0. (e)

The equations (d) and (e) are equivalent. Either of them is sufficient for
calculating the support reactions in combination with the equations (a) to
(c). The other equation can then be used to check the values found.

Equation (e) is preferable in finding the solution as, in combination with
equation (c), it leads directly to the support reactions at B:

Bh = 20 kN; Bv = 50 kN.

From (a) and (b) we find

Ah = 20 kN; Av = 10 kN.
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Figure 5.22 The interaction forces at S follow from the force
equilibrium of AS or BS.

Figure 5.23 (a) The left frame half AS is in equilibrium if the
two forces at A and S are equal and opposite and have a common
line of action; (b) the three-hinged frame is in moment equilibrium
if the lines of action of force F and the support reactions at A and
B intersect in a single point; (c) the three-hinged frame is in force
equilibrium if force F and the support reactions at A and B form a
closed force polygon.

The support reactions are shown in Figure 5.21c. Since there is only vertical
and no horizontal loading, the horizontal support reactions are equal and
opposite.

Check: The solution is true in equation (d).

b. The forces that parts AS and BS in S exert on one another (the interaction
forces at S) follow from the force equilibrium of one of the separate parts
AS or BS (see Figure 5.22). The force equilibrium for the left-hand part AS
gives

Sh = 20 kN and Sv = 10 kN.

The same values follow from the force equilibrium for the right-hand part
BS. This therefore offers an opportunity for checking.

c. Since the load only acts on one half of the frame, one can also easily
check the solution graphically (see Section 3.2.2).

Only two forces are acting on the left-hand part AS: the support reaction
at A and the hinge force at S. The left-hand part AS can be in equilibrium
only if the two forces that act on AS at A and S are equal and opposite.
Both forces must also have the same line of action (see Figure 5.23a). The
line of action of the support reaction at A will therefore pass through S and
is thus determined.

Three forces are acting on the entire frame (the two support reactions at
A and B and the load) that together have to form an equilibrium system.
This is possible only if the lines of action of the three forces intersect in a
single point (if not, there is no moment equilibrium). The line of action of
the support reaction at B must therefore pass through the intersection of the
line of action of the point load and the known line of action of the support
reaction at A (see Figure 5.23b).

With the known lines of action for both support reactions, the magnitude
and direction can be found by means of the force polygon in Figure 5.23c.
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Figure 5.24 (a) A three-hinged frame with the hinged supports at
the same level; (b) the assumed directions for the support reactions;
(c) the support reactions as they really act.

The figure shows that the support reactions at A and B correspond in
magnitude and direction with those calculated previously.

Example 2
The left-hand column of the three-hinged frame from the previous example
is extended in such a way that the hinge bearings at A and B are at equal
level (see Figure 5.24a). The load remains unchanged.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces that AS and BS at S exert on one another.
c. Determine the forces acting on joint D.

Solution (units in kN and m):
a. For a three-hinged frame with the hinge bearings at equal level, the
vertical support reactions can be determined directly from the moment
equilibrium of the structure as a whole.

With the directions assumed for the support reactions in Figure 5.24b the
following applies for the given coordinate system for the frame as a whole:

∑
T (ASB)

z |A = −60 × 6 + Bv × 8 = 0 ⇒ Bv = 45 kN, (a)

∑
T (ASB)

z |B = 60 × 2 − Av × 8 = 0 ⇒ Av = 15 kN. (b)

One of these equations for the moment equilibrium can be replaced by the
equation for the vertical force equilibrium.

The horizontal force equilibrium of the structure as a whole gives

∑
F (ASB)

x = Ah − Bh = 0. (c)

Since there is no horizontal loading, the horizontal support reactions are
equal and opposite. The magnitude of the horizontal support reactions
follow from the moment equilibrium about S of one of the parts AS or BS.
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Figure 5.25 The hinge forces at S follow from the force equilib-
rium of AS or BS.

Figure 5.26 (a) The interaction forces between joint D and mem-
bers SD and BD are found from the equilibrium of the separate
members; (b) the interaction forces as they really act.

If one selects the left-hand part AS, this gives

∑
T (AS)

z |S = Ah × 4 − Av × 4 = 0 (d)

or, if one assumes the right-hand part BS

∑
T (BS)

z |S = −60 × 2 − Bh × 4 + Bv × 4 = 0. (e)

Both equations are equivalent. The solution is

Ah = Bh = 15 kN.

All the support reactions are shown in Figure 5.24c.

b. The interaction forces in hinge S follow from the force equilibrium of
AS or BS (see Figure 5.25). The equilibrium of the left-hand part AS gives

Sh = Sv = 15 kN.

Check: For these forces, the left-hand part BS is also in equilibrium.

c. To find the forces acting on joint D, the joint is isolated (see Fig-
ure 5.26a). There are three interaction forces acting between joint D and
member SD. The magnitude of these forces is found from the equilibrium
of member SD. In the same way, one can use the equilibrium of BD to find
the magnitude of the three interaction forces between joint D and member
BD. The result is shown in Figure 5.26b.

Check: Joint D has to meet the conditions of force and moment equilibrium.
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Figure 5.27 (a) A vertical load on a three-hinged frame gives (b)
not only vertical but also horizontal support reactions; (c) by linking
the bearings A and B of the three-hinged frame by a tie rod, the
horizontal support reactions can be eliminated.

Figure 5.28 A three-hinged frame with tie rod, with a horizontal
and vertical load.

5.4 Three-hinged frames with tie-rod

The previous section shows that a vertical load on a three-hinged frame
generates not only vertical, but also horizontal support reactions (see Fig-
ures 5.27a and 5.27b). Horizontal forces on foundations in soft soil often
cause problems. To reduce the horizontal forces on the foundation, one can
decide to link the bearings A and B of the three-hinged frame by means
of a so-called tie-rod. In this way a self-contained structure is created
that can be supported by a roller and a hinge (see Figure 5.27c). This
is referred to as a three-hinged frame with tie-rod. Tie-rod AB ensures
that the roller support B stays in place and carries the horizontal sup-
port reactions. Vertical loading now generates exclusively vertical support
reactions.

Whether rod AB is subject to tension or compression depends on the load-
ing. The name tie-rod indicates that such a structure is used only if tension
can be expected in the rod.

Example
In Figure 5.28, a vertical and a horizontal load is acting on a three-hinged
frame with tie-rod.

Questions:
a. Determine the support reactions.
b. Determine the force in rod AB.
c. Determine the interaction forces at S.
d. Determine the forces acting on joint A.

Solution (units in kN and m):
a. In Figure 5.29a, the structure has been isolated from its supports. The
support reactions follow from the equilibrium of the structure as a whole.
For the directions assumed for Ah, Av and Bv we find
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Figure 5.29 (a) The assumed directions of the support reactions;
(b) the support reactions as they really act.

Figure 5.30 Three-hinged frame ASB and rod AB isolated from
one another, assuming that a tensile force N acts in rod AB.

∑
F (ASB)

x = 40 − Ah = 0 ⇒ Ah = 40 kN,

∑
F (ASB)

y = −60 − 60 + Av + Bv

= −60 − 60 + Av + 70 = 0 ⇒ Av = 50 kN,

∑
T (ASB)

z |A = −40 × 2 − 60 × 2

−60 × 6 + Bv × 8 = 0 ⇒ Bv = 70 kN.

The support reactions are shown in Figure 5.29b.

b. To calculate the force in rod AB, it is isolated from ASB in Figure 5.30.
We can immediately recognise a two-force member in rod AB: the rod is
loaded only by forces at its ends A and B and can therefore be in equilib-
rium only if these forces are equal and opposite with AB as common line
of action. It is assumed that a tensile force N acts in rod AB.

The magnitude of N follows from the moment equilibrium about S of one
of the parts AS or BS. In Figure 5.31a both parts have been isolated at S.
In order to simplify the calculation, N has been resolved into a horizontal
component Nh and a vertical component Nv:

Nh = 2
5

√
5 N,

Nv = 1
5

√
5 N.

Taking the right-hand part BS we find

∑
T (BS)

z |S = −60 × 2 + 70 × 4 − Nh × 6 + Nv × 4

= 160 − 8
5

√
5 N = 0
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Figure 5.31 (a) The magnitude of N follows from the moment
equilibrium of one of the frame halves about S, after which the in-
teraction forces at S follow from the force equilibrium of the frame
halves; (b) all the forces as they really act on the frame halves.

from which it follows that

N = 20
√

5 kN

and

Nh = 40 kN,

Nv = 20 kN.

Since N is positive, the force in rod AB is indeed a tensile force.

The equation for the moment equilibrium about S can be simplified by
shifting N along its line of action to a convenient position, for example
to the point vertically under S. In that case it follows that

∑
T (SB)

z |S = −60 × 2 + 70 × 4 − Nh × 4 = 0 ⇒ Nh = 40 kN.

Check: For the value determined for N , the left-hand part AS must also
satisfy the conditions for moment equilibrium:

∑
T (AS)

z |S = 0.

c. The hinge forces at S follow from the force equilibrium of the left-hand
or right-hand part of the frame. With the directions of Sh and Sv assumed
in Figure 5.31a we find for the right-hand part BS

∑
F (BS)

x = −Nh − Sh = −40 − Sh = 0 ⇒ Sh = −40 kN,∑
F (BS)

z = −60 + 70 + Nv + Sv

= −60 + 70 + 20 + Sv = 0 ⇒ Sv = −30 kN.

Clearly the wrong direction was assumed in Figure 5.31a for both hinge
forces. Figure 5.31b shows all the forces as they act in reality.
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Figure 5.32 The forces acting on joint A and frame half AS.

Figure 5.33 (a) This portal-like structure with only hinged joints
is kinematically indeterminate and can tilt. To prevent tilting one
can (b) fix the columns or (c) replace the hinged joints between the
columns and the beams by rigid joints.

Check: With the hinge forces calculated, the left-hand frame part AS must
also be in force equilibrium.

d. The following forces are acting on joint A:
• the support reactions Ah = 40 kN and Av = 50 kN;
• the force N exerted by the tie-rod AB, with components Nh = 40 kN

and Nv = 20 kN;
• the forces exerted by the left-hand frame part AS.

The last-mentioned forces can be found from the force equilibrium of joint
A. All the forces on the joint are shown in Figure 5.32.

Check: The part AS isolated from joint A has to be in force equilibrium.

Note that here the horizontal load of 40 kN is transferred via a long detour
to the support at A.

5.5

The portal-like structure in Figure 5.33a, with only hinged joints, is kine-
matically indeterminate. The structure can tilt. To prevent this, one can
fix one or more of the columns (Figure 5.33b). Or one can replace one
or more of the hinges between column and beam by rigid connections
(Figure 5.33c). It is also possible to prevent the construction from tilting
by applying so-called shoring bars, indicated in Figure 5.34 with the letter
s.

If the shoring bar s in Figure 5.34b can transfer only compressive forces,
a single shoring bar is not enough. The shoring bar applied does prevent
tilting to the left, as in Figure 5.33a (the shoring bar has to shorten and
therefore comes under pressure), but not tilting to the right (the shoring bar
would be subject to tensile pressure, and may fall or come loose). In that
case, two shoring bars would be required, as shown in Figure 5.34c.

Shored structures
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Figure 5.34 (a) A fixed end and (b) a rigid corner connection, both
created by using a shoring bar. (c) If the shoring bar can transfer
only compressive forces, two shoring bars are required to prevent
the tilting to the left and to the right.

Figure 5.35 (a) A Mansart truss with (b) the structural model.

The solution with shoring bars, also known simply as shoring, stems from
the time when stiff corner joints were hard to achieve. You will often find
them in (older) timber structures.

An example of this is the wooden roof structure in Figure 5.35a. This type
of structure, still often used at the turn of the century, is called a mansart
roof truss.1 Figure 5.35b gives the structural model.

Strut B ensures that the horizontal forces are transferred to the beam layer
that operates as a tie-rod. Strut B, in combination with the hammer beam
C, can be seen as a shore that ensures a certain restraint of rafter A, in the
same way as the shoring bar in Figure 5.34a, but in this case placed on the
inside. Brace G fixes the corner between rafter A and collar beam D. They
operate like the shoring bar in Figure 5.34b.

Figure 5.35a clearly shows that brace G is connected to rafter A and collar
beam D by means of toothed joints. Since toothed joints work only under
pressure, the upper struts can transfer only compressive forces. For the
shoring bars, one still often refers to bars that are loaded by compressive
forces.

Shoring bars are used not only to make a structure kinematically deter-
minate, but also to influence the force flow positively, as the shores F in
Figure 5.35. These shores provide additional support to rafter A, which can
therefore be made lighter.

Shoring is found not only in old structures. Shores are still used to influence
force flow positively, so that less material is required to meet the demands
of strength and rigidity.

1 Named after Jules Hardouin Mansart (1646–1708), French architect. He built
the Dôme des Invalides in Paris and major sections of the palace in Versailles.
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Figure 5.36 Examples of shored structures. In examples (e) to (f)
one refers to a tie rod rather than a shoring bar.

Figure 5.37 (a) A shored three-hinged frame. (b) A three-hinged
frame in principle consists of two self-contained parts that are
connected by a hinge at S and supported by hinges at A and B.

The following examples will be limited to statically determinate structures.
It is assumed that shoring bars can transfer both tensile and compressive
forces.

Figure 5.36 shows a number of statically determinate shored structures. In
cases (e) and (f) one refers to a tie-rod1 rather than to a shoring bar, even
though the tie-rod is actually fulfilling the role of a shore.

Example 1
The shored structure in Figure 5.37a is loaded by the force F = 50

√
2 kN.

Questions:
a. Determine the support reactions.
b. Determine the forces in the shoring bars (with the correct sign for

tension and compression).
c. Determine all the forces acting on bar SD.

Solution:
a. You will recognise a three-hinged frame in the structure. There are two
self-contained parts that are connected in a hinge at S and are supported
by hinges at A and B (see Figure 5.37b). The structure in Figure 5.37a
is therefore also referred to as a shored three-hinged frame. The support
reactions can be derived in the standard way for a three-hinged frame (see
Section 5.3). The calculation, which will be left to the reader, leads to the
support reactions shown in Figure 5.38.

b. The shoring bars are loaded only by forces at the end of the bars and
therefore act as two-force members. Suppose that a tensile force N(1) acts
in the left shoring bar (1) and a tensile force N(2) in the right shoring bar (2).
In Figure 5.39, AC and BD have been isolated. The unknown interaction
forces at C and D are not shown here.

1 Since the vertical weight causes tension in these bars.



5 Calculating Support Reactions and Interaction Forces 179

Figure 5.38 The support reactions of the frame as they really act.

Figure 5.39 The isolated columns AC and BD. The unknown
interaction forces at C and D are not shown here.

Figure 5.40 To see which forces the shoring bars and frame are
exerting on one another, they have been isolated.

It is now possible to deduce N(1) from the moment equilibrium of AC about
C:

∑
T (AC)

z |C = +(40
√

2 kN)(2
√

2 m) + N(1) × (
√

2 m) = 0

so that

N(1) = −80
√

2 kN.

There is a compressive force in shoring bar (1).

In the same way, one can find N(2) from the moment equilibrium of DB
about D:

∑
T (BD)

z |D = +(10
√

2 kN)(3
√

2 m) − N(2) × (
√

2 m) = 0

so that

N(2) = 30
√

2 kN.

Shoring bar 2 is a tension bar.

To demonstrate clearly how the shoring bars act on frame ASB, the frame
and the shoring bars have been isolated from one another in Figure 5.40.
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Figure 5.41 The forces acting on SD are found from the equilib-
rium of the isolated parts.

Figure 5.42 (a) A structure loaded by a vertical force of 40 kN on
the left-hand rafter, with (b) its support reactions.

c. The force acting at S on SD is equal to the support reaction at A. The
force that shoring bar (2) exerts on SD is also known. Still unknown are the
components of the force exerted on SD at D. These are found via the force
equilibrium of column BD (see Figure 5.41).

Check: SD must be in equilibrium.

Example 2
The structure in Figure 5.42a is loaded on rafter ACE by a vertical force
F = 40 kN.

Questions:
a. Determine the support reactions.
b. Determine the force in bar CD (with the correct sign for tension and

compression).
c. Determine the hinge force at E.

Solution:
a. The support reactions follow directly from the equilibrium of the struc-
ture as a whole. There are only vertical support reactions. They are shown
in Figure 5.42b.

b. Suppose the tensile force in CD is N(CD). In Figure 5.43, CD has been
isolated from AEB. The magnitude of N(CD) follows from the moment
equilibrium about E of one of the rafters AE or BE. The unloaded rafter
BE is simpler with respect to the amount of arithmetic:

∑
T (BE)

z |E = −N(CD) × (4 m) + (15 kN(6 m) = 0 ⇒ N(CD) = 22.5 kN

CD is a tension member.

c. The hinge force at E is subsequently found from the force equilibrium
of one of the rafters AE or BE. Again, the unloaded right-hand rafter BE
is preferable. In Figure 5.44a, BE has been isolated, and the result of the
calculation is shown.
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Figure 5.44 Graphical determination of the forces acting at D and
E on the right-hand rafter BDE: (a) line of action figure and (b) force
polygon.

Figure 5.45 The forces acting on the left-hand rafter ACE.

The forces acting on BDE at D and E can also be determined graphically.
The lines of action b and d are known (see Figure 5.44a). Line of action e of
the hinge force at E must pass through the intersection of b and d (moment
equilibrium of a body subjected to three forces). In a force polygon, one
can now determine the forces at D and E that ensure equilibrium with the
support reaction at B (see Figure 5.44b).

Check: The left-hand rafter ACE must also be in equilibrium. You can see
immediately that there is force equilibrium in Figure 5.45. To check the
moment equilibrium, write down the moment equation for all the forces
about an arbitrary point.

Figure 5.43 To see how rafter AEB and bar CD exert forces on
one another, they have been isolated.
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Figure 5.46 (a) A structure loaded by a vertical force of 40 kN
on the tie rod, with (b) its support reactions. For self-contained
structures the support reactions do not change if one shifts a loading
force along its line of action; on the other hand the interaction forces
do change.

Figure 5.47 (a) The interaction forces between the isolated parts
AE, BE and CD. The interaction forces Cv and Dv are found from
the moment equilibrium of CD.

Example 3
Figure 5.46a uses the same structure as in Example 2, except that this time,
the vertical force F = 40 kN has been shifted along its line of action to a
point of application on member CD.

Questions:
a. Determine the support reactions.
b. Determine the forces acting on the isolated parts ACE, BDE, and DE.
c. Perform a graphical check of the moment equilibrium for each of the

parts.

Solution:
a. The support reactions are the same as those in example 2. They are
shown in Figure 5.46b. Note that for a self-contained structure, the support
reactions do not change if one shifts a force along its line of action. The
forces within the structure do change, however, as is shown below.

b. In Figure 5.47a, the various structural parts have been isolated, and all
the interaction forces are shown.

First look at the equilibrium of CD. From the moment equilibrium about C
follows

Dv = 10 kN.

From the moment equilibrium about D follows

Cv = 30 kN.

The horizontal force equilibrium gives

Ch = Dh.
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Figure 5.47 (b) The equilibrium of AE and BE is then used to find
the other interaction forces.

Figure 5.48 Graphical check of the moment equilibrium of AE,
CD and BE: in all the cases, the lines of action of the three (resul-
ting) forces pass through a single point.

Next look at the right-hand rafter AE (see Figure 5.47b). The moment
equilibrium about E gives

Ch = 15 kN

so that

Dh = 15 kN.

The force equilibrium gives

Eh = −15 kN,

Ev = 5 kN.

The direction of Eh was obviously assumed falsely.

In Figure 5.48, all the interaction forces are shown as they act in reality.

Check: BE must also meet the conditions of the force and moment equi-
librium. Figure 5.48 shows that the force equilibrium conditions are
satisfied. Only the moment equilibrium has to be checked.

c. If three forces act on a body, there is moment equilibrium only if the lines
of action of the forces intersect at one point. In Figure 5.48, this check for
moment equilibrium has been performed for each of the structural parts.
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Figure 5.49 (a) A beam and (b) a trussed beam.

Figure 5.50 After a dividing wall has been demolished, the bear-
ing capacity of a beam can be restored by introducing intermediate
supports.

Figure 5.51 A statically determinate trussed beam.

5.6 Trussed beams

The bearing capacity of the beam in Figure 5.49a can be increased by in-
troducing intermediate supports. These structures are referred to as trussed
beams when these intermediate supports are realised by a bar system
applied directly to the beam (see Figure 5.49b).

Trussed beams are used in simple bearing structures and for auxiliary
structures in the construction industry (formwork bearers). You may also
see them in restoration activities when, for example, after a dividing wall
has been demolished, the bearing capacity of the floor beams is no longer
adequate, as a result of the enlarged span (see Figure 5.50).

In the examples given, the trussed beams are (internally) statically in-
determinate. In the following will address only statically determinate
structures.

Example
The trussed beam ASB in Figure 5.51 consists of the two beam segments
AS and SB joined by a hinge at S. The structure is loaded by a vertical force
of 50 kN.

Questions:
a. Determine the support reactions.
b. Determine the forces in the bars (a) to (e) (with the correct sign for

tension and compression).
c. Draw the forces acting on beam segments AS and SB.
d. Draw the forces acting on joint D.

Solution:
a. The support reactions follow directly from the equilibrium of the
structure as a whole. They are shown in Figure 5.52.
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Figure 5.52 The trussed beam, isolated from its supports, has been
“cut” across hinged joint S and bar (e). It has been assumed that bar
(e) is a tension member.

Figure 5.53 The forces in the bars (a) and (c) follow from the
force equilibrium of joint C′: in bar (a) there is a tensile force and
in bar (c) there is a compressive force.

Figure 5.54 The isolated beam segments AS and SB, with all the
forces as they really act.

b. The bars (a) to (e) are loaded only at their ends. They are therefore two-
force members. Note: ACS and SDB are not two-force members!

In Figure 5.52, the isolated structure has been dissected across bar (e) and
the hinged joint at S. Suppose there is a tensile force in bar (e) of N(e).
The magnitude of N(e) follows from the moment equilibrium about S of
the left-hand or right-hand part. The simpler equation is obtained with the
unloaded right-hand part:

∑
T (SB)

z |S = (20 kN)(6 m) − N(e) × (3 m) = 0 ⇒ N(e) = 40 kN.

Bar (e) is therefore a tension member.

The moment equilibrium of the left-hand part about S can be used to check
the solution.

The forces in the bars (a) and (c) follow from the force equilibrium of joint
C′. In Figure 5.53 these forces have been determined using a force polygon.
In bar (a) there is a tensile force, while there is a compressive force in bar
(c):

N(a) = 40
√

2 kN and N(c) = −40 kN.

In the same way, the force equilibrium of joint D′ gives

N(b) = 40
√

2 kN and N(d) = −40 kN.

c. Figure 5.54 shows all the forces acting on the beam segments AS and
SB. The components of the hinge force S follow from the force equilibrium
of the part to the left or to the right of S.
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Figure 5.55 (a) Joint D isolated from the beam segments SD and
DB. Three interaction forces are acting in the rigid connections.
These can be found from the equilibrium of the separate beam seg-
ments. (b) The interaction forces as they really act. Joint D satisfies
the conditions for force and moment equilibrium.

Figure 5.56 A beam (a) suspended from and (b) leaning upon a
strengthening bar system.

d. In Figure 5.55a, joint D has been isolated from SD and DB. Three inter-
action forces are acting in the rigid connections. The forces exerted by joint
D on SD and DB can be found from the equilibrium of these parts. Equal
and opposite forces act on joint D (see Figure 5.55b).

Check: Joint D is in force equilibrium and in moment equilibrium.

5.7 Strengthened beams

The strengthened beams in Figure 5.56 are in many ways comparable to
trussed beams. An important difference is that in here the strengthening
bar system is supported outside the beam. In Figure 5.56a the beam is
suspended from the strengthening bar system, in Figure 5.56b the beam
is leaning upon it.

These structures are used in bridges. They are used also as auxiliary
structures during building activities.

The structures in Figure 5.56 are statically indeterminate to the first degree.
In the following we will address only statically determinate examples.

Example
The structure in Figure 5.57 is loaded by a vertical force of 40 kN.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars (1) to (3) and (a) to (d).
c. Draw the forces acting on the hinged joint S.

Solution (units in kN and m):
a. This compound structure has five support reactions:
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Figure 5.57 A statically determinate strengthened beam.

Figure 5.58 Assuming that a tensile force N acts in bar (2), the
force equilibrium of the hinged joints S′, C′ and D′ can be used to
express the forces in the bars (a) to (d) and (1) and (3) in terms of
N .

• two at hinged support A,
• one at roller support B,
• one at hinge A′, and
• one at hinge B′.

The three equilibrium equations for the structure as a whole are not suffi-
cient for finding the five unknown support reactions. The solutions have to
be found by means of the strengthening bar system.

Bars (1) to (3) and (a) to (d) are all two-force members. If one of the
bar forces is known, all the others follow from the force equilibrium of
the joints S′, C′ and D′. This is shown graphically in Figure 5.58 on the
assumption that there is a tensile force N in bar (2):

N(2) = N.

The force equilibrium of joint S′ then gives

N(b) = N(c) = 1
2

√
17 N.

The force equilibrium of joint C′ gives

N(1) = 3
2N and N(a) = 2

√
2 N,

while the equilibrium of joint D′ gives

N(3) = 3
2N and N(d) = 2

√
2 N.
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Figure 5.59 (a) The isolated beam ASB. (b) All the forces acting
on the beam ASB as they really act. (c) The entire structure with all
the support reactions.

In Figure 5.59a, hinged beam ASB has been isolated and all the forces
acting on it are shown. The horizontal force equilibrium of the hinged beam
as a whole then gives

Ah = 0.

The vertical support reactions Av and Bv, and the unknown force N are
calculated in the same way as for a hinged beam (see Section 5.2).

For the beam as a whole applies

∑
Tz|A = 3

2N × 4 + N × 8 + 3
2N × 12 + Bv × 16 − 40 × 6

= 32N + 16Bv − 240 = 0.

(a)

For the right-hand section SB

∑
Tz|S = 4 × 3

2N + 8 × Bv = 0. (b)

These two equations with N and Bv as unknowns give

N = 12 kN and Bv = −9 kN.

The vertical support reaction at B therefore acts opposite to the direction
assumed in Figure 5.59a.

The vertical support reaction at A follows from the vertical force equilib-
rium of beam ASB as a whole:

∑
Fy = Av + 3

2N + N + 3
2N + Bv − 40 = 0
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Figure 5.60 (a) The hinged joint S isolated from the beam seg-
ments AS and SB. The interaction forces can be found from the
equilibrium of the segments AS and SB. (b) All the forces as they
really act. Joint S is in equilibrium.

so that

Av = −4N − Bv + 40 = −4 × 12 − (−9) + 40 = 1 kN.

Figure 5.59b shows all the forces on beam ASB as they really act.

b. The forces in the bars (1) to (3) and (a) to (d) were previously expressed
in terms of N (see Figure 5.58). With N = 12 kN the result is

N(1) = N(3) = 3
2N = 18 kN,

N(2) = N = 12 kN,

N(a) = N(d) = 2
√

2 N = 24
√

2 kN,

N(b) = N(c) = 1
2

√
17 N = 6

√
17 kN.

All bar forces are tensile forces.

Figure 5.59c gives the entire structure with all the support reactions.

Check: The structure as a whole satisfies the conditions of the force and
moment equilibrium.

c. In Figure 5.60a, the beam segments AS and BS and the hinged joint
S have been isolated. The values of all the known forces are shown. The
forces acting on joint S are found via the equilibrium of the segments AS
and SB. They are shown in Figure 5.60b.

Check: Joint S is in equilibrium.



190 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

5.8 Problems

Self-contained structures (Section 5.1)

5.1: 1–4 A block is supported on a roller at A and a hinge at B. The block
is loaded by a force F = 20

√
2 kN. Length scale: 1 square ≡ 1 m.

Question:
Determine the support
reactions at A and B:
a. analytically;
b. graphically.

5.2: 1–6 Given a number of fixed structures.

Questions:
a. In which directions would you expect the support reactions at A to act?
b. Determine the support reactions at A, working with the directions

assumed in (a).
c. For which support reactions did you assume the wrong direction?
d. Draw all the support reactions as they act in reality.

5.3: 1–10 A number of beams are supported on a hinge and a roller. The
dimensions are given in m, the forces are in kN.

Questions:
a. Determine the support reactions analytically.
b. Check the answers graphically (if possible).
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5.4: 1–5 A block is supported on a roller at A and a hinge at B. A number
of forces act on the block. In case 2, a couple T = 36 kNm also acts on the
block. Force scale: 1 square ≡ 1 kN; length scale: 1 square ≡ 1 m.

Question: Determine the support reactions at A and B.

5.5 A roof structure is loaded by
wind forces:

F1 = 5.6 kN,

F2 = 2.8 kN.

Question:
Determine the support reactions at
A and B.

5.6 A truss arch is loaded by wind forces: F1 = F2 = 750
√

2 kN,

F3 = F4 = 500
√

5 kN.

Question:
Determine the support reactions at A and B.

5.7: 1–8 The simply supported beam AB is loaded in various ways by
couples. The magnitude of the couples is shown in kNm. Length scale:
1 square ≡ 1 m.

Question:
Find the support reactions at A and B.
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5.8: 1–8 A number of beams simply supported at A and B are composed
of the segments AC and BC that are rigidly connected at C. The location of
joint C is shown in the figure by means of a vertical dash. The forces are
given in kN, the lengths in m.

Questions:
a. Determine the support reactions.
b. Determine the interaction forces at C; draw these forces as they act at

C on segments AC and BC.
c. Draw the forces as they really act on joint C.

5.9: 1–6 A number of cantilever beams, simply supported at A and B, are
composed of two segments that are rigidly connected at C. The location of
joint C is shown in the figure by means of a vertical dash. The forces are
given in kN, the lengths are in m.

Questions:
a. Determine the support reactions.
b. Determine the interaction forces at C; draw these forces as they act at

C on the segments AC and BC.
c. Draw the forces as they really act on joint C.

5.10 Question:
Determine the support reactions at
A and B.
a. graphically;
b. analytically.
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5.11 Questions:
For porch ACD determine
the support reactions at A
and B due to:
a. only F1;
b. only F2;
c. both F1 and F2.

5.12: 1–2 You are given a retaining wall on piles. Assume the piles are
only transferring forces in their longitudinal direction. The resultant of all
the loads that the piles have to bear is a force of 40

√
2 kN. The direction

and line of action are given in the figure. Length scale: 2 squares ≡ 1 m.

Question:
Find the pile forces with the correct signs for tension and compression (a
tensile force is positive and a compression force is negative).

5.13: 1–4

Questions:
a. Make a realistic assumption about the directions of the support reac-

tions at A, B and C.
b. Determine these support reactions.
c. Draw the support reactions as they really act and include relevant

values.
d. If possible, check the calculated support reactions graphically.
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5.14: 1–12 A beam, loaded by a force F = 30 kN, is supported by the
three bars a, b and c. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A, B and C.
b. Determine the forces in the beams, with the correct sign.
c. Isolate the beam, draw all the forces as they really act on it, and check

the equilibrium.

5.15: 1–10 A beam is supported by the bars a, b and c. The load of the
beam is expressed in the force F = 30 kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A, B and C.
b. Determine the forces in the bars, with the correct sign.
c. Isolate the beam, draw all the forces as they really act on it, and check

the equilibrium.
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Hinged beams (Section 5.2)

5.16: 1–16 The dimensions of the hinged beams are given in m, the forces
are in kN.

Questions:
a. Determine the support reactions.
b. Isolate all the beam segments and draw the forces as they really act on

these segments.
c. Check the force and moment equilibrium of the structure as a whole.

Three-hinged frames (Section 5.3)

5.17 Three-hinged arch ACB is loaded by a force F = 40 kN.

Questions:
Determine the support reactions at A and B:
a. graphically;
b. analytically.
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5.18: 1–9 The figure shows a number of three-hinged frames with loads
expressed in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Isolate both frame halves and draw all the forces as they really act on

them.

5.19: 1–11 The figure shows a number of three-hinged frames with the
loading expressed in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Graphically check the support reactions (if possible).
c. Isolate both frame halves and draw all the forces as they really act on

them.
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Three-hinged frames with tie rods (Section 5.4)

5.20 The structural parts AB, AS and BS are connected by hinges at A, B
and S. The load is in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the force in rod AB, with the correct sign.
c. Determine the forces acting on the isolated parts AB, AS and BS.
d. Determine the forces acting on the isolated joints A, B, and S.

5.21: 1–4 The structural parts AB, AS and BS are connected by hinges at
A, B and S. The load is given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the forces in rod AB, with the correct sign.
c. Determine the forces acting on the isolated parts AB, AS and BS.
d. Determine the forces acting on the isolated joints A, B and S.
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5.22: 1–12 The structural parts AB, AS and BS are connected by hinges
at A, B and S. The load is given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the forces in rod AB, with the correct sign.
c. Determine the forces acting on the isolated parts AB, AS and BS.
d. Determine the forces acting on the isolated joints A, B and S.

Shored structures (Section 5.5)

5.23: 1–3 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the force in the shoring bar, with the correct sign.
c. Determine the forces acting on the isolated joints B and C.

5.24: 1–3 The load is given in kN; length scale: 1 square ≡ 1 m.
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Questions:
a. Determine the support reactions at A and B.
b. Determine the force in bar BD, with the correct sign.
c. Isolate all bars and draw all the forces really acting on them.

Trussed beams (Section 5.6)

5.25: 1–5 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to e, with the correct sign.
c. Isolate the beam sections AS and BS and draw all the forces acting on

them.
d. Isolate joint B, draw all the forces really acting on it, and check the

force equilibrium using a force polygon.

5.26: 1–3 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to e, with the correct signs.
c. Isolate beam segments AS and BS and draw all the forces really acting

on them.
d. Isolate joint B, draw all the forces really acting on it, and check the

force equilibrium using a force polygon.
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5.27: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to c, with the correct signs.
c. Isolate beam segments AS and BS and draw all the forces really acting

on it.
d. Isolate joint A, draw all the forces really acting on it, and check the

force equilibrium using a force polygon.

5.28: 1–2 Trussed beam ASB is loaded by a vertical force F = 48 kN.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to e, with the correct signs.
c. Isolate beam segments AS and BS, and draw all the forces really acting

on them.

Strengthened beams (Section 5.7)

5.29: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to c, with the correct signs.
c. Isolate beam BC, draw all the forces really acting on it, and check the

force and moment equilibrium.
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5.30 The queen post truss is loaded at stay d by a vertical force of 60 kN.

Questions:
a. Determine the forces in bars a to e, with the correct signs.
b. Isolate beam segments AS and BS and draw all the forces really acting

on them.
c. Determine the support reactions at A and B.

5.31: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the forces in bars a to d and a′ to c′, with the correct signs.
b. Isolate beam segments AS and BS and draw all the forces really acting

on them.
c. Determine the support reactions at A, B, C and D.
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Various compound structures

5.32: 1–3 The forces are given in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Isolate all the structural members at the supports and hinged joints, and

draw all the forces really acting on them.

5.33: 1–6 The forces are given in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Isolate all the structural members at the supports and hinged joints, and

draw all the forces really acting on them.

5.34 Given a frame with the loads in kN. Length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Isolate all the structural members at the supports and hinged joints, and

draw all the forces really acting on them.
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5.35: 1–6 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in bars a to e, with the correct signs.
c. Determine the interaction forces at S, as they act on AS and BS.

5.36: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Graphically check the support reactions.

c. Determine the force in shoring bar a, with the correct sign.
d. Determine the hinge forces at S, as they act on CS and BS.

5.37: 1–4 The forces are given in kN; length scale: 1 square ≡ 1 m.

Questions:
a. Determine the support reactions.
b. Determine the force in bars 1 and 2, with the correct signs.
c. Isolate the circled joint and draw all the forces acting on it.
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All influences acting on a structure can be considered as loads. In me-
chanics, we generally restrict ourselves to loads that occur as a result
of forces and prescribed deformations or displacements. In doing so, we
make a distinction between static and dynamic loads. This is covered in
Section 6.1.

In vibration-sensitive structures, dynamic loads can generate far greater
forces and deformations than one would find from a static calculation.
Dynamic calculations are more complex than static calculations and are
beyond the scope of this book.

For traditional structures, regulations or codes are prescribed with re-
spect to loads and loading combinations. These are based on experience,
measurements and common sense. Section 6.2 briefly describes the loads
mentioned in the regulations. For special structures, the regulations are
often not sufficient, and loading analyses may demand extensive study.

Whereas up until now a load has consisted of one or more concentrated
forces, this chapter addresses distributed loads; we distinguish between
volume loads, surface loads, and line loads.

A system of forces on a structure (which is considered a rigid body) can,
for equilibrium purposes, be replaced by its resultant. The same applies for
a distributed load. Section 6.3 addresses how to calculate the resultant of a
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Figure 6.1 (a) A load that does not change with time is called
a static load. Dynamic loads are loads that change in time, such
as (b) periodic loads, (c) suddenly applied loads, (d) loads of short
duration and collision phenomena (impact loads), and (e) stochastic
loads.

distributed load. Line loads on a member will be treated more extensively.

How the load is determined depends to a great extent on the manner in
which a structure or structural element is modelled. For example, the dead
weight of a bar depicted as a line element is not treated as a volume load but
rather as a line load. In the same way, the dead weight of a slab (plane ele-
ment) is considered as surface load. This issue is illustrated in Section 6.4
using a simple building.

Section 6.5 addresses the concept of stress. The transfer of forces in and
between materials is the result of extremely small interactions between
adjacent particles. Spreading all the forces evenly over a section leads to
the concept of stress.

6.1 Loads in mechanics

6.1.1 Influences on structures

All influences that can act on a structure can be considered as loads. In
general, we distinguish between the following:
• Loads due to forces

This could for example be the weight of traffic on a bridge. In addition
to the traffic, the bridge must also be able to carry its dead weight.

• Loads due to prescribed deformations or displacements
The settlement of a support is an example of a prescribed displacement.
Other examples are the influences of temperature changes, shrinkage
and creep.

• Loads due to other influences
If the structure is located in an aggressive environment in which the
material is affected, this effect on the material can be seen as a load.
Fire is also seen as a load.

Structures have to be designed and constructed in such a way that they
offer sufficient resistance to all these influences so that the function of the
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Figure 6.2 (a) When a block is suspended by three wires, and one
of the wires suddenly breaks, there is a sudden change in the loading
on the remaining wires. (b) Model of the cableway used to close the
Haringvliet. Discarding a concrete block causes a sudden change in
the loading on the cable gondola.

structure is not endangered in any way.

In mechanics, we generally restrict ourselves to loading by forces, and pre-
scribed deformations and displacements. A further distinction here is that
between static and dynamic loads.

6.1.2 Static and dynamic loads

If a load due to forces or prescribed displacements does not change (or
changes very little) in time, as in Figure 6.1a, it is called a static load. In
contrast, dynamic loads do change with time, as in Figures 6.1b to 1e.

The wave action on a structure at sea and the forces exerted by a machine
on its foundations are examples of dynamic loading by forces. Another
example of a dynamic load is an earthquake. In an earthquake, one refers
to a prescribed displacement: the earth starts to move and the structure is
forced to follow the movement of the earth via its foundations.

In general, one can distinguish between four different types of dynamic
loading:
• Periodic loads (Figure 6.1b)

This type of load is caused, for example, by rotating machines, ringing
bells, eddies in a stream, or people jumping on a floor.

• Suddenly-applied loads (Figure 6.1c)
This could include a load resulting from a snapping wire (see Fig-
ure 6.2a). Another example is the cableway in Figure 6.2b, which was
used at the Haringvliet1 dam to unload concrete blocks.

• Loads of short duration and collision phenomena (impact loads) (Fig-
ure 6.1d)

1 A see arm. The enclosure of the Haringvliet is one of the Delta Works in the
Netherlands.
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Examples include explosions, wave impact, gusts of wind, or a falling
pile hammer on a pile.

• Stochastic loads (Figure 6.1e)
This includes loads of a variable and unpredictable character, such as
those resulting from wind, waves, traffic or earthquakes.

In vibration-sensitive structures, dynamic loads can generate much larger
forces and deformations than one would find from a static calculation. This
will be illustrated using the simply supported beam in Figure 6.3a, which
in the middle of the span has to carry a block with mass m and weight
G = mg. To simplify matters, the mass of the beam will be disregarded.

The block is suspended from the cable, and touches the beam without rest-
ing on it. If the block is carefully placed on the beam by letting out the
cable very slowly, both the vertical support reactions will slowly increase
to 1

2G, after which they do not change in time (see Figure 6.3b). The load is
static.

It would also be possible to have the weight of the block act on the beam
suddenly, not by slowly letting out the cable, but by cutting it. The beam
with the block will then start to vibrate around the static equilibrium posi-
tion (see Figure 6.3c). The vertical support reactions are now twice as large
(albeit of short duration) as in the case with the static loading.1 As a result
of the ever-present damping, the amplitude of the vibration will decrease
in time, and the block will finally come to rest in the static equilibrium
position, as indicated in Figure 6.3d.

Due to a suddenly applied load, the forces in the structure are twice as large
as would be determined by means of a static calculation. If the block is
dropped from a certain height, the acting forces are even larger.

In the case of a periodic load (soldiers walking in step across a bridge,
people jumping up and down on a floor, bells ringing in towers, foundations

1 The evidence cannot be given at this stage and is beyond the scope of this book.

Figure 6.1 (a) A load that does not change with time is called
a static load. Dynamic loads are loads that change in time, such
as (b) periodic loads, (c) suddenly applied loads, (d) loads of short
duration and collision phenomena (impact loads), and (e) stochastic
loads.
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(a) (b)

(c) (d)

Figure 6.3 (a) A simply supported beam has to carry a block with
weight G in the middle of the span. Initially the block is hanging
from a cable and touches the beam without resting on it. (b) The
vertical support reactions under static conditions after gently letting
out the cable. (c) If the cable is not let out slowly, but is cut, the
beam with the block starts to vibrate and the vertical support reac-
tions (albeit of short duration) are twice as large as they are under
static conditions. (d) As a result of the ever-present damping, the
amplitude of the vibration decreases in time, and the block finally
ends up at rest in the static equilibrium position.

for machines, turbines, engines, and so forth) the structure must be designed
in such a way that the natural frequencies1 of the structure clearly differ
from the frequency of the loading. If this is not the case, there is the danger
of resonance, in which the forces and deformations in the structure can
become extremely large.

Dynamic calculations are more complex than static calculations. In regula-
tions and codes, the dynamic influences have often been taken into account
by increasing the load so that a static calculation is enough. For example,
the static load of people on floors is approximately 3 kN/m2. Due to the
movement of the people, the load changes by frequencies of 1 to 2.5 Hz.2

The resulting forces are approximately twice the static value. Regulations
therefore prescribe that a static equivalent of about 6 kN/m2 has to be taken
into account.3

6.1.3 Volume loads, surface loads, line loads, and point loads

So far, we have always imagined that loads are concentrated forces that
have their points of application on the structure. In reality, a force never
acts on a single point, but acts across a particular area. The follow-
ing distinctions are made, depending on the dimension of the area of
application:
• Volume loads (forces per volume; N/m3)

For example: a material’s dead weight.
• Surface loads p (forces per surface area; N/m2)

1 A natural frequency is a frequency with which (part of) a structure can vibrate
freely.

2 The unit of frequency (Hz = hertz = s−1) is named after Heinrich Rudolf Hertz
(1857–1894), German physicist.

3 In the regulations, the value for the load is found from the characteristic load
by multiplying this by a load factor (see Section 6.2.5).
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Example: wind and snow loading, gas, liquid, and earth pressures.
• Line loads q (forces per length; N/m)

Example: the weight of a dividing wall on a floor.
• Point loads, or concentrated forces F (N)

Volume loads, surface loads, and line loads are referred to as distributed
loads. In equilibrium analysis, distributed loads may be replaced by their
resultant. Section 6.3 addresses the calculation of the magnitude and line
of action of this resultant.

6.2 Loads in regulations

For traditional structures, regulations or codes are prescribed with respect
to loads and loading combinations. These have been created on the basis
of experience, measurements and common sense. For special structures,
the regulations are generally insufficient and the load analysis may demand
extensive study.

In the regulations, two important main groups are generally distinguished:
• dead loads
• live loads

The live load due to the (vertical) traffic load on bridges is known as a
moving load.

6.2.1 Dead loads

Dead loads are loads that are always present for the entire lifecycle of
the structure. The dead load can often be determined quite easily and
accurately.

Examples of dead loads include:
• Dead weight

This is the weight of the (bearing) structural element under considera-
tion.
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Figure 6.4 Since it is unlikely that the floors in a building are
all maximally loaded at the same time, the live load may in certain
cases be reduced.

• Permanent loads
This is the weight of non-bearing elements that rest permanently on
the structural element under consideration, either directly or indirectly.
Examples include the weight of the insulation plates and waterproof
roofing material for a roof or the weight of the topping of a bridge
deck.

• Loads due to prestressing

The effect of the dead load can sometimes be most unfavourable during
construction, when the structure has not yet been completed and the dead
load is not yet present everywhere. A similar situation can occur when the
structure is being converted or demolished.

6.2.2 Live loads (buildings)

Live loads are loads that do not act permanently on the structural element
in question. At times, they are present, while at other times they are absent.
It is often not as easy to determine the magnitude of live loads as it is to
determine dead loads. The values prescribed in the regulations are the result
of many years of experience and research.

Live loads include snow on a roof, people on a dance floor, goods in a
warehouse or traffic on a bridge. Traffic loads are referred to as moving
loads (see Section 6.2.3).

In calculations, one has to assume the most unfavourable situation.

In order to simplify calculations, regulations often prescribe the live load
on floors, balconies, stairs, roofs, porches, and so forth, in three different
guises:
• A uniformly distributed surface load p;
• A uniformly distributed line load q;
• A concentrated load F (a force acting on a small area).

For the live load prescribed for floors, the weight of a standard inventory
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Figure 6.5 Wind loads are distributed loads. The direction of
the load is shown by means of an open arrow: (a) wind pres-
sure and wind suction, (b) wind friction, and (c) overpressure and
underpressure.

Figure 6.6 For flat roofs, one has to take the risk of water accumu-
lation into account: the deflection of the roof due to the rain water
allows the storage of an increasing amount of water. If the roof is
not sufficiently rigid, it may eventually collapse.

is included in addition to the weight of people. Furthermore, the dynamic
effects of walking, jumping, dancing, stamping, and so forth, are taken into
account as well. The line loads and concentrated loads are introduced as
they may occur during removals.

The live load has to be calculated separately for machines, archives, and so
forth.

Since it is unlikely that in a building all the floors are maximally loaded
at the same time, as in Figure 6.4, the live load can be reduced in certain
cases.

For roofs where local snow accumulation is possible, the associated
load concentration has to be taken into account. If the wind loading is
predominant, the snow as well as people or tools on the roof can be ignored.

Wind loading is also a live load, but is generally defined separately. A
distinction is made between:
• Wind pressure and wind suction (Figure 6.5a);
• Wind friction (Figure 6.5b);
• Overpressure and underpressure (Figure 6.5c).

For rainwater, the load of gutters and rainwater pipes filled with water as a
result of blockages have to be taken into account.

For flat roofs, the possibility that the water cannot drain away has to be
considered. This incurs the risk of water accumulation: the deflection of
the roof due to the water allows for the storage of an increasing amount of
water (see Figure 6.6). If the roof is not sufficiently rigid, this can result in
its collapse at times of continuing rainfall.

6.2.3 Live loads (bridges)

Vertical live loads on bridges due to traffic are referred to as moving loads.
In regulations, this load is a uniformly distributed surface load together with
a limited number of concentrated loads (see Figure 6.7).
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Figure 6.7 In regulations, the mobile load is seen as a uni-
formly distributed surface load together with a limited number of
concentrated loads.

Figure 6.8 For bridges, one has to take into account that certain
structural elements are loaded less favourably if the load is omitted
over a certain length. (a) The vertical support reaction at A as a
compressive force is a maximum when field AB is loaded and field
BC is unloaded. (b) Due to a full load, the support reaction at A
is half as large. (c) The largest tensile force that support A has to
transfer occurs when only field BC is loaded.

The uniformly distributed load is a representation of the actual load that
can occur over large lengths. This load becomes more important for longer
spans.

The system of point loads, with the underlying part of the uniformly dis-
tributed load, represents the load caused by a few very heavy trucks or
locomotives. This load is important for bridge elements of limited length.

It may occur that certain structural elements are loaded more unfavourably
if the load is omitted over a certain length. For this reason, the fact that
the traffic load on bridges may be missing along that length has to be
considered.

In the hinged beam in Figure 6.8, for example, the vertical support reaction
at A as a compression force has its maximum when field AB is loaded and
field BC is unloaded. In this case, the support reaction is qa. In the event of
full loading, the support reaction in A is half the magnitude. The maximum
tensile force that support A has to transfer is 1

2qa, and occurs when only
field BC is loaded.

For railway bridges, the train is always a continuous load, even though it
can consist partially of empty carriages. A lower load is prescribed for the
empty carriages.

The influence of impacts and vibrations are taken into account by multiply-
ing the moving loads by an impact factor S (S > 1).

In longer traffic bridges, it is increasingly less likely that the maximum
moving load occurs, unless there is a traffic jam. In that case, the impact
factor will lead to a too heavy load, and a reduction is justified. This re-
duction is achieved by multiplying the traffic loading by a load factor B

(B < 1).

For railway bridges, there is no load factor.
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In addition to the vertical traffic loads, horizontal loads such as brake forces
and wind loads have to be taken into account.

6.2.4 Limit states

For each structure, it has to be shown that it is reliable (safe), and will not
collapse prematurely, and that the structure meets the requirements related
to serviceability.

In order to be able to check a structure on these various aspects, the concept
of limit state was introduced. A limit state is a state in which the structure
just meets (or just does not meet) certain demands regarding the structure.
A distinction is made between two groups of limit states, which are directly
related to the concepts reliability and serviceability:
• ultimate limit states
• serviceability limit states

Ultimate limit states
If a load is gradually increased, a moment arises at which the structure will
collapse, for example because its strength limit is reached (exceeded), or
because its equilibrium is no longer reliable (instability). Limit states used
to test a structure for its reliability (or more generally speaking, structural
safety) are referred to as ultimate limit states, or also as failure states.

Serviceability limit states
If a structure is insufficiently rigid, this can negatively influence its ser-
viceability. Examples include doors that start to jam if the deformations
become too large, and windows that may shatter. Another example is a
floor that sags too much. This sort of floor elicits feelings of insecurity
and is unusable, even if there is no risk of failure. Annoying cracking
can also lead to a situation in which a structure is no longer serviceable
(leakage through the cracks or corrosion of the reinforcement in reinforced
concrete). Limit states used to check a structure for its serviceability are
referred to as serviceability limit states.
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Figure 6.9 The normal distribution or Gauss curve is characterised
by the mean value μ and standard deviation σ .

When checking ultimate limit states, the structure is subjected to an over-
load. When checking serviceability limit state, the load at serviceability
level is used.

The following section provides a brief summary of how, with design
codes, the loads (and strength) that have to be used in the calculations are
determined.

6.2.5 Characteristic values and design values

With loads and (material) strengths, it is not possible to indicate their pre-
cise values beforehand. In practice, they are subject to dispersion. One can
only indicate with what probability certain values will occur. Loads and
strengths are therefore stochastic quantities.1

Stochastic quantities can be defined by means of a probability density func-
tion, of which the normal distribution is the best-known. Most stochastic
quantities that play a part in the assessment of the behaviour of a structure
follow the normal distribution. Figure 6.9 shows the curve for the normal
distribution of a quantity x. This curve, also known as the Gauss curve,2 is
given by

f (x) = 1

σ
√

2π
e−(x−μ)2/2σ 2

.

The normal distribution is characterised by two parameters: the mean value
μ and the standard deviation σ . The curve is in the shape of a bell, with
a vertical symmetry axis and two points of inflection, and approaches zero
for x →−∞ and x →+∞. The mean value μ coincides with the symmetry

1 From the Greek στoχαξoμαι (to guess, to suspect).
2 Carl Friedrich Gauss (1777–1855), German mathematician and astronomer.
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Figure 6.10 The probability that the value of x is smaller than x1
is equal to the area under the curve for x < x1; the probability of a
value of x between x2 and x3 is equal to the area under the curve
between x2 and x3.

axis. The standard deviation σ is the distance from the symmetry axis to the
points of inflection.

The probability P(x < x1) that the value of x is smaller than x1 is equal to
the surface area under the Gauss curve for x < x1 (see Figure 6.10):

P(x < x1) =
∫ x1

−∞
f (x) dx.

There are tables available for this integral.

The probability of a value of x between x2 and x3 is equal to the area under
the Gauss curve between x2 and x3.

The total area under the curve is equal to 1: there is a probability of 100%
that the value of x lies between −∞ and +∞.

The probability P(x < x1) can be shown in various ways. The area under
the curve gives a value (smaller or equal to 1), such as

P(x < x1) = 0.0025 = 2.5 × 10−3.

This value can also be written as a ratio:

P(x < x1) = 1 : 400.

The probability is also often shown as the percentage of the total area under
the probability density curve (which is equal to 1). In this example, the
probability is

0.0025 × 100% = 0.25%.

The ultimate limit state is a check for strength. This means that, on the
one hand, the strength R of the structure has to be determined, and that on

Figure 6.9 The normal distribution or Gauss curve is characterised
by the mean value μ and standard deviation σ .
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Figure 6.11 (a) The characteristic strength Rk is the strength that
is exceeded with a 95% probability; in only 5% of all cases, the
strength is therefore less than the characteristic strength. (b) The
characteristic load Sk is the load that is not exceeded throughout
the lifecycle of the structure with 95% probability; only 5% of all
occurring loads are larger than the characteristic load.

the other, we have to determine the load S. In the building regulations, the
procedure used is based on the so-called characteristic values for strength
and load.

The characteristic strength Rk is defined as the strength that is exceeded
with a probability of 95%; in other words, the strength is therefore less than
the characteristic strength in 5% of all cases (see Figure 6.11a).

The characteristic load Sk is defined as the load that with a probability of
95% is not exceeded throughout the lifetime of the structure; only 5% of all
occurring loads are larger than the characteristic load (see Figure 6.11b).

The symbols R for strength and S for load are used internationally.1 They
have a broad meaning. Strength R (generally) relates to the largest forces
and stresses that can be transferred by a structure, such as the admissible
tensile force in a tie-rod, or the compressive strength of the material. Load
S (generally) relates to the force or stress exerted on the structure (or part
of a structure), or in other words, the acting tensile force in the tie-rod or
the acting compressive stress in the material.

The strength R must not be smaller than the load S. With respect to the
characteristic values, this means:

Rk ≥ Sk.

In this situation, however, the probability of failure is considered too great.
In order to reduce this probability, the calculation is not carried out with
the characteristic values, but with a lesser strength Rd and a larger load Sd,
known as the design values.2

1 From French: R of Résistance (resistance, stamina) and S from Sollicitation
(load).

2 The index d is derived from design.
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Figure 6.12 Distributed loads normal to the member axis: (a)
a distributed load q(x) as a function of x; (b) a distributed load
that changes direction at A; (c) a uniformly distributed load; (d) a
linearly distributed load.

The design value for strength is derived from the characteristic strength by
dividing it by a material factor γR:

Rd = Rk

γR
.

has a lower material factor than, for example, cast in situ concrete.

The design value of the load is derived from the characteristic load by
multiplying it by a load factor γS:

Sd = γSSk.

Amongst other things, the magnitude of the load factor depends on the type
of load (dead or live, and whether its effect is favourable or unfavourable),
the safety class (office building or shed), and the limit state in question.
To check an ultimate limit state, the structure is subjected to an overload,
and the design value of the load is larger than the characteristic value. To
check a serviceability limit state, the load at serviceability level is used:
in this case, the design value of the load is equal to the characteristic
value.

Structures are considered sufficiently strong if the design value of the
strength is not smaller than the design value of the load:

Rd ≥ Sd

or

Rk

γR
≥ γSSk.

Each limit state has its own load factor. For information concerning load

The material factor accounts for insecurities in construction. As such, steel
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Figure 6.13 A uniformly distributed load in the direction of the
member axis.

Figure 6.14 (a) A distributed load, at an angle to a member, can be
resolved into components (b) parallel, and (c) normal to the member
axis.

factors and material factors, please refer to the regulations, building codes
and relevant books.

In this book, all the examples use only design values.

6.3 Working with distributed loads

When working with a distributed load, it can sometimes be useful to replace
it (temporarily) by its resultant. This section addresses the calculation of the
resultant of a distributed load. Most attention is devoted to line loads on a
member.

6.3.1 Resultant of a line load on a member

Figure 6.12a provides a schematic representation of a line load q on (a part
of) a member. The direction of the distributed load is shown by means of
arrows. The load in Figure 6.12a is acting normal to the member axis and
is a function of x. Other examples of distributed loads acting normal to the
member axis are shown in Figures 6.12b to 6.12d.

In the special case that the distributed load is constant, we refer to a
uniformly distributed load (see Figure 6.12c).

The distributed load in Figure 6.12d is known as a linearly distributed load;
it varies linearly from q(x1) = 3 kN/m to q(x2) = 5 kN/m.

A distributed load can also act in the direction of the member axis. Fig-
ure 6.13, for example, shows the uniformly distributed load q on a column
as a result of its dead weight.

A distributed load q , acting at an angle to a member, can be resolved into
directions parallel to and normal to the member axis (see Figure 6.14). In
the xz coordinate system shown, qx = q cos α and qz = q sin α are called
the components of q .
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Figure 6.15 (a) An arbitrarily distributed load q(x) normal to the
member axis. A small force �R = q(x)�x acts on a small element
at length �x. The magnitude of the resultant R of the distributed
load is equal to the sum of all parallel forces �R. (b) The magnitude
of the resultant R is equal to the area of the load diagram; its line of
action passes through the centroid of the load diagram.

Figure 6.16 Magnitude and line of action of resultant R with (a) a
rectangular, and (b) a triangular load diagram.

Note: the distributed load has the dimension of force per length. So far, the
length was always measured along the member axis. With inclined mem-
bers, the distributed load is also sometimes expressed per length projected
on the (horizontal) ground surface, for example in the case of a snow load.
See Example 3 in this section.

When considering the equilibrium of a system of forces on a structure,
considered as a rigid body, we can replace the system of forces by its
resultant.

In Figure 6.15, an arbitrarily distributed force q(x) is acting normal to the
axis of member AB between x = x1 and x = x2. A small force �R is acting
on a small element at length �x:

�R = q(x)�x.

The magnitude of the resultant R of the distributed force is equal to the sum
of all small parallel forces �R:

R = ∑
�R = ∑

q(x)�x =
∫ x2

x1

q(x) dx.

Conclusion: The magnitude of R is equal to the area enclosed by the load
diagram.

The line of action of R is found using Varignon’s Moment Theorem: the
resultant R and the distributed load q(x) have to produce the same moment
about an arbitrary point. The moment about point A, for example, gives

aR = ∑
(x�R) =

∫ x2

x1

xq(x) dx

so that
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Figure 6.17 (a) A simply supported beam with a linearly dis-
tributed load. (b) The support reactions due to resultant R. (c) The
magnitude and line of action of resultant R of the distributed load
and the associated support reactions.

a =

∫ x2

x1

xq(x) dx

R
=

∫ x2

x1

xq(x) dx∫ x2

x1

q(x) dx

.

By definition, a is the x coordinate of the centroid of the load diagram.1

Conclusion: The line of action of R passes through the centroid of the load
diagram.

Figures 6.16a and 6.16b give the magnitude and location of the resultant
for a rectangular and triangular load diagram respectively.

Example 1
Determine the vertical support reactions at A and B of the simply supported
beam AB in Figure 6.17a, with a distributed load that increases linearly
from 4 kN/m at A to 12 kN/m at B.

Solution (units kN and m):
For the distributed load, with � = 6 m, applies

q(x) = 4 + 8
x

�
kN/m.

The resultant R of the distributed load is

R =
∫ �

0
q(x) dx =

∫ 6

0

(
4 + 8

x

6

)
dx =

(
4x + 4

x2

6

)∣∣∣∣∣
x=6

x=0

= 48 kN.

1 Volume 2, Stresses, Deformations, Displacements, addresses the calculation of
centroids. Here it is assumed that the reader is aware of the location of centroids
in simple figures.
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One can also determine R directly from the area of the trapezoidal load
diagram:

R = 1
2 × 6 × (4 + 12) = 48 kN.

In Figure 6.17b, the distributed load has been replaced by the resultant R.
The line of action of R is determined by:

aR =
∫ x2

x1

xq(x) dx =
∫ 6

0

(
4x + 8

x2

6

)
dx

=
(

2x2 + 8
x3

18

)∣∣∣∣
x=6

x=0
= 168 kNm

so that

a = 168

R
= 168

48 = 3.5 m.

The magnitude and location of the resultant R of the distributed load are
shown in Figure 6.17c.

The vertical support reactions at A and B are now found from the moment
equilibrium about B and A respectively:

∑
T |B = 0 ⇒ Av = 2.5

6 × 48 = 20 kN,∑
T |A = 0 ⇒ Bv = 3.5

6 × 48 = 28 kN.

A distributed load q may also be split up into loads q1 and q2, as in Fig-
ure 6.18, where the individual influences may be added. It always holds
that

Figure 6.17 (a) A simply supported beam with a linearly dis-
tributed load. (b) The support reactions due to resultant R. (c) The
magnitude and line of action of resultant R of the distributed load
and the associated support reactions.
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R =
∫ x2

x1

q(x) dx =
∫ x2

x1

q1(x) dx +
∫ x2

x1

q2(x) dx = R1 + R2

and

aR =
∫ x2

x1

xq(x) dx =
∫ x2

x1

xq1(x) dx +
∫ x2

x1

xq2(x) dx = a1R1 + a2R2.

The fact that the influences of the individual loads can be added is referred
to as the principle of superposition. This principle is based on the fact that
the relationships between the various quantities are linear.

If a load diagram can be split into a number of simpler diagrams, such as
a number of rectangles and triangles, the abovementioned approach often
leads to a result more quickly. This is illustrated in the next example.

Example 2
For the simply supported beam in Figure 6.19, the trapezoidal load diagram
has been split into triangles and/or rectangles in four different ways.

Question:
Show that the same support reactions at A and B are found in all four cases.

Solution (units in kN and m):
In Figure 6.19a, the trapezoidal load has been split up into two triangular
loads. The determination of the support reactions is shown below:

R1 = 1
2 × 6 × 4 = 12 kN,

R2 = 1
2 × 6 × 12 = 36 kN,

∑
T |B = 0 ⇒ Av = 4

6R1 + 2
6R2 = 8 + 12 = 20 kN,

∑
T |A = 0 ⇒ Bv = 2

6R1 + 4
6R2 = 4 + 24 = 28 kN.

Figure 6.18 Principle of superposition: One can (a) split a distrib-
uted load q into loads q1 and q2, with (b) resultants R1 and R2, and
(c) add their individual influences.

Figure 6.19 A simply supported beam with the trapezoidal load
diagram split up into two triangles.
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In Figure 6.19b, the trapezoidal load is divided into a rectangular and a
triangular load diagram:

R1 = 6 × 4 = 24 kN,

R2 = 1
2 × 6 × 8 = 24 kN,∑

T |B = 0 ⇒ Av = 3
6R1 + 2

6R2 = 12 + 8 = 20 kN,∑
T |A = 0 ⇒ Bv = 3

6R1 + 4
6R2 = 12 + 16 = 28 kN.

The trapezoidal load can be split into a uniformly distributed load and a
triangular load in many other ways, as for example in Figure 6.19c:

R1 = 1
2 × 6 × 8 = 24 kN,

R2 = 6 × 12 = 72 kN,∑
T |B = 0 ⇒ Av = − 4

6R1 + 3
6R2 = −16 + 36 = 20 kN,∑

T |A = 0 ⇒ Bv = − 2
6R1 + 3

6R2 = −8 + 36 = 28 kN.

If the trapezoidal load is split as shown in Figure 6.19d, it follows that

R1 = 1
3 × 3 × 4 = 6 kN,

R2 = 6 × 8 = 48 kN,∑
T |B = 0 ⇒ Av = − 5

6R1 + 3
6R2 + 1

6R1 = −5 + 24 + 1 = 20 kN,∑
T |A = 0 ⇒ Bv = − 1

6R1 + 3
6R2 + 5

6R1 = −1 + 24 + 5 = 28 kN.

Irrespective of how the load diagram is split, the support reactions are
always the same.

Figure 6.19 A simply supported beam with the trapezoidal load
split up in four different ways into triangles and/or rectangles to
determine the support reactions.
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Figure 6.20 (a) Part of a roof, modelled as a line element, is loaded
by (b) its dead weight, (c) snow, and (d) wind. The resultant and
support reactions due to (e) the dead weight, (f) snow load, and
(g) wind load.

Example 3
Part of a roof modelled as the line element in Figure 6.20a is supported by a
hinge at A, and a roller with vertical roller track at B. The member is loaded
by three uniformly distributed (line) loads, of which the load diagrams are
shown in Figures 6.20b to 6.20d:
• the dead weight qdw (vertical force per length measured along the

member axis);
• a snow load qsn (vertical force per horizontally measured length);
• a wind load qw normal to the member axis (force per length measured

along the member axis).

Unlike dead weight and wind load, the snow load is given as a load per
length projected on the horizontal ground plane. The load diagram for snow
in Figure 6.20c is drawn differently therefore.

Question:
Determine the support reactions at A and B for all three loads.

Solution:
When calculating the support reactions, we can replace the distributed loads
by their resultants. The dead weight and the wind load act over a length of
15a, while the snow load acts over a length of 12a, so that

Rdw = 15aqdw,

Rsn = 12aqsn,

Rw = 15aqw.

The resultants and their lines of action are shown in Figures 6.20e to 6.20g.
The same figures also show the associated support reactions.
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Table 6.1

R Av(↑) Ah(→) Bh(←)

dead weight Rdw = 15aqdw 15aqdw 10aqdw 10aqdw

snow Rsn = 12aqsn 12aqsn 8aqsn 8aqsn

wind Rw = 15aqw 12aqw 3.5aqw 12.5aqw

All the values are shown Table 6.1.

Example 4
The hinged beam in Figure 6.21a carries a uniformly distributed load of
6 kN/m over part CD.

Question:
Determine the support reactions.

Solution:
In an equilibrium system, a distributed load may be replaced by its resultant.
Therefore, when looking at the equilibrium of the hinged beam as a whole,
we can use the resultant of the entire distributed load (see Figure 6.21b).
For the directions assumed for the support reactions, this gives

∑
F (ASD)

x = −Ah = 0 ⇒ Ah = 0,∑
F (ASD)

z = −Av − Bv − Cv + (36 kN) = 0, (a)

∑
T ((ASD)

y |A = +Bv × (4 m) + Cv × (8 m) − (36 kN)(5 m) = 0. (b)

The two equations (a) and (b) are not sufficient to determine all vertical
support reactions. The additional equation required is found from the mo-

Figure 6.20 (a) Part of a roof, modelled as a line element, is loaded
by (b) its dead weight, (c) snow, and (d) wind. The resultant and
support reactions due to (e) the dead weight, (f) snow load, and
(g) wind load.

The reader is asked to verify the correctness of the support reactions.
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Figure 6.21 (a) Hinged beam with uniformly distributed load.
(b) For the equilibrium of the structure as a whole, the total distrib-
uted load can be replaced by its resultant. (c) For the equilibrium
of the separate parts, each part has its own resultant, and one may
no longer use the resultant of the total distributed load. (d) Support
reactions.

ment equilibrium of parts SA or SD about hinge S. In this case it is not
possible to work with the resultant in Figure 6.21b; this resultant has to be
replaced by the resultants of the distributed loads on the individual parts
(see Figure 6.21c).

With equations (a) and (b), an efficient way of obtaining results is to
consider the moment equilibrium of SD:

∑
T (SD)

y |S = +Cv × (2 m) − (12 kN)(1 m) = 0. (c)

From (c) we find

Cv = +6 kN

which then gives the following from (b) and (a)

Bv = +33 kN,

Av = −3 kN.

Figure 6.21d shows the support reactions in the directions in which they are
really acting. Only the direction of the vertical support reaction at A was
assumed falsely.

6.3.2 Resultant of a surface load on a plate

In Figure 6.22a, a plate in the xy plane is loaded normal to its plane by an
arbitrarily distributed load p(x, y).

The resultant of the distributed load on a small area �A is a small force
�R:

�R = p(x, y)�A.
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Figure 6.22 (a) A plate in the xy plane is loaded normal to
its plane by an arbitrarily distributed load p(x, y). A small force
�R = p(x, y)�A is acting on a small area �A. (b) The resultant
R of the distributed load and the location (xR, yR) where the line
of action of R intersects the xy plane. The magnitude of R is equal
to the volume of the load diagram. The line of action of R passes
through the centroid of the load diagram.

The magnitude of the resultant R of the distributed load is equal to the sum
of all parallel forces �R:

R = ∑
�R = ∑

p(x, y)�A =
∫

A

p(x, y) dA.

Conclusion: The magnitude of R is equal to the volume of the load diagram.

The location (xR, yR) of the line of action of R is found using Varignon’s
theorem1 (see Figure 6.22b):

∑
Ty = −xRR = −∑

(x�R) = −
∫

A

xp(x, y) dA,

∑
Tx = +yRR = +∑

(y�R) = +
∫

A

yp(x, y) dA

so that

xR =

∫
A

xp(x, y) dA

R
=

∫
A

xp(x, y) dA∫
A

p(x, y) dA

,

yR =

∫
A

yp(x, y) dA

R
=

∫
A

yp(x, y) dA∫
A

p(x, y) dA

.

By definition, xR and yR are the x and y coordinates of the centroid of the
load diagram.

1 See also Examples 1 and 2 in Section 3.3.4.
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Figure 6.23 (a) A rectangular plate in the xy plane is loaded
normal to its plane by a distributed load. (b) The resultant R of the
distributed load and the location (xR, yR) where the line of action
of R intersects the xy plane.

Conclusion: The line of action of R passes through the centroid of the load
diagram.

Example
In Figure 6.23a, a rectangular plate in the xy plane, with an area A = ab,
is loaded by a distributed load normal to its plane:

p(x, y) = p̂
x(b − y)

ab
.

Question:
Determine the magnitude of the resultant R and the coordinates (xR; yR)

where the line of action of R intersects the xy plane.

Solution:
The magnitude of the resultant R is equal to the volume of the load diagram:

R =
∫

A

p(x, y) dA =
∫ a

0

∫ b

0
p̂

x(b − y)

ab
dx dy

= p̂

ab

∫ a

0
x dx

∫ b

0
(b − y) dy

= p̂

ab

x2

2

∣∣∣∣
a

0

(
by − y2

2

) ∣∣∣∣∣
b

0

= p̂ab

4
.

The line of action of R passes through the centroid of the load diagram (see
Figure 6.23b). For the coordinates (xR, yR) of the centroid, the formulas
derived earlier can be used.
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It is also possible to start at once with Varignon’s theorem:

∑
Ty = −xRR = −

∫
A

xp(x, y) dA,

∑
Tx = +yRR = +

∫
A

yp(x, y) dA.

This gives

xR =

∫
A

xp(x, y) dA

R
=

p̂

ab

∫ a

0
x2 dx

∫ b

0
(b − y) dy

p̂ab

4

=
p̂

ab
× a3

3
× b2

2
p̂ab

4

= 2
3a,

yR =

∫
A

yp(x, y) dA

R
=

p̂

ab

∫ a

0
x dx

∫ b

0
(by − y2) dy

p̂ab

4

=
p̂

ab
× a2

2
× b3

6
p̂ab

4

= 1
3b.

Figure 6.23 (a) A rectangular plate in the xy plane is loaded
normal to its plane by a distributed load. (b) The resultant R of the
distributed load and the location (xR, yR) where the line of action
of R intersects the xy plane.
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Figure 6.24 (a) A simple concrete building consisting of two
frames, covered by roof slabs. (b) Each frame consists of an 8-metre
beam that at each end is simply supported on a column. The 5-metre
columns are rigidly joined to a square footing, which is located at a
certain depth below ground level.

Figure 6.25 (a) The total roof load is 2.8 kN/m2; (b) this generates
a uniformly distributed load on the beam equal to 5.6 kN/m.

6.4 Modelling load flow

How the load is taken into account depends greatly on the way in which a
structure or structural element is modelled. For example, the dead weight of
a member modelled as a line element is not considered as volume load, but
rather as a line load. In the same way, the dead weight of a plate (surface
element) will be taken into account as a surface load.

This will be demonstrated in an example using the simple concrete building
in Figure 6.24a. For this example we will investigate how the vertical loads
on the building are transferred to the foundation.

The building consists of two frames that, 4 metres apart, carry the roof
slabs. Figure 6.24b shows one of the frames. Each frame consists of an 8-
metre beam that is simply supported at both ends by a column. The 5-metre
columns are rigidly joined to a square footing, located at a certain depth
below ground level. The dead weight of the roof slabs is 2 kN/m2. The
weight of the waterproof roof covering and insulation is set at 0.3 kN/m2.
In addition, a live load of 0.5 kN/m2 is taken into account. The total load
on the roof slabs is therefore

p = (2 kN/m2) + 0.3 kN/m2) + (0.5 kN/m2) = 2.8 kN/m2.

Figure 6.25a shows a load of 2.8 kN acting on a square metre. If one takes
an arbitrary strip of the roof of 1-metre width, the total load on the strip
would be

(4 m)(1 m)(2.8 kN/m2) = 11.2 kN.

Each beam carries half of this, or in other words, 5.6 kN over a 1-metre
length, (see Figure 6.25b). Over the full length, the beam is therefore loaded
by a uniformly distributed load of 5.6 kN/m. We also have to include the
dead weight of the beam. If we assume a dead weight of 6 kN/m, the total
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Figure 6.26 All the forces acting on the isolated beam. The dis-
tributed load is composed of the roof load and a dead weight of
6 kN/m. The support reactions of 46.4 kN have to be provided by
the columns.

Figure 6.27 (a) The column dimensions and (b) all the forces
acting on the isolated column. The dead weight of the column is a
uniformly distributed load parallel to the column axis.

load on the beam is (see Figure 6.26)

q = (5.6 kN/m) + (6 kN/m) = 11.6 kN/m.

The beam is simply supported. The support reactions, which have to be
provided by the columns, amount to

1
2 × (11.6 kN/m)(8 m) = 46.4 kN.

Equal and opposite forces are acting on the columns.

Figure 6.27a shows the cross-sectional dimensions of the columns. With
mass density ρ = 2400 kg/m, the specific weight of concrete is

ρg = (2400 kg/m3) × (10 N/kg) = 24000 N/m3) = 24 kN/m3.

For the cross-sectional dimensions of the column in Figure 6.27a, the dead
weight per length is

(0.2 m)(0.4 m)(24 kN/m3) = 1.92 kN/m.

This is a uniformly distributed load acting in the direction of the column
axis (see Figure 6.27b).

The total dead weight of the column is

(5 m)(1.92 kN/m) = 9.6 kN.

At its base, the column has to be kept in equilibrium by a force of

(46.4 kN) + (5 m)(1.92 kN/m) = 56 kN.
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Figure 6.28 (a) The dimensions of the square footing. (b) On the
bottom of the footing, the earth pressure has to provide an equilib-
rium with the force of 56 kN from the column and the footing’s dead
weight of 4.6 kN. The resultant of the earth pressure is therefore
60.6 kN.

Figure 6.29 In reality, the earth pressure on the footing consists
of a very large number of small forces provided by the grains of
soil. Spreading all these forces evenly into a distributed surface load
implies an idealisation of reality.

An equally large, opposite force is acting on the footing of the column. If
the footing is square, and has the dimensions given in Figure 6.28a, the
dead weight of the footing is

(0.8 m)(0.8 m)(0.3 m)(24 kN/m3) = 4.6 kN.

The earth pressure on the bottom of the footing has to be in equilibrium
with the force of 56 kN from the column, and the footing’s dead weight of
4.6 kN (see Figure 6.28b)

(56 kN) + (4.6 kN) = 60.6 kN.

If the earth pressure is uniformly distributed, it equals

p = 60.6 × 103 N

(800 mm)(800 mm)
= 0.095 N/mm2.

In general, the earth pressure is not uniformly distributed. The value given
for p is then referred to as the average earth pressure.

How the load exerted by the footing is transferred further into the ground,
is a problem addressed by the special field of soil mechanics.

6.5 Stress concept; normal stress and shear stress

In reality, the earth pressure on the footing in Figure 6.29 consists of a very
large number of very small forces provided by the grains of soil. Spreading
all these forces evenly into a distributed surface load implies an idealisation
of reality: the soil as a discontinuous material is replaced by a continuous
material.
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Figure 6.30 (a) Force � �F is the resultant of all the forces acting
on a small yet finite area �A. (b) Stress vector �p with its com-
ponents. (c) Stress p (in visual notation) resolved into the normal
stress σ perpendicular to the section plane and the shear stress τ in
the section plane.

In fact, as a result of their atomic structure, all materials are discontinuous.
The force flow in and between materials is the result of a very large number
of small interactions between adjacent elementary particles.

Mathematically, the transfer of forces in and between materials is described
using the concept stress. This concept is explained using Figure 6.30, in
which a part of a body has been isolated from its environment.

Imagine that force � �F in Figure 6.30a is the resultant of all the small forces
acting on a small, but finite area �A. As �A is chosen to be smaller, � �F
is also smaller. The limit of the relationship between � �F and �A as �A

approaches zero is defined as the stress vector �p:

�p = lim
�A→0

� �F
�A

.

When introducing the stress concept, one uses an idealised model of reality
(a continuous material). The justification of this model is given post hoc
by the agreement between model and reality. This agreement only exists if
the stresses vary gradually. In areas with a major change in stresses (in the
surroundings of stress peaks), one has to take into account the differences
between model and reality.

The stress vector �p (in space) has three components: px , py and pz (see
Figure 6.30b).

The stress vector can also be resolved into a component σ normal to the
section plane and a component τ in the section plane. See Figure 6.30c,
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in which the visual notation is used. σ is known as normal stress and τ is
referred to as shear stress.1

In mechanics, it is common practice to define the normal stress σ in solids
as positive if it is a tensile stress. Sometimes, if dealing mainly with
compressive stresses, it can be useful to define compressive stresses as
positive. We often use a prime to indicate a change in sign. In such a case,
σ ′ = 300 N/m2 means the same as σ = −300 N/m2. However, be aware
that this notation is not always used, for instance in the cases of gas, liquid
and earth pressures.

1 The normal stress and shear stress are shown (for the present) as the compo-
nents of a stress vector. Using the normal stress and shear stress to describe
the interaction in the section plane, this presentation is not complete. In that
case the normal vector on the section plane has to be considered. The complete
definition is addressed in Chapter 10, where we look at the section forces in a
member. Here it becomes clear that also for the shear stress it is possible to have
an unequivocal sign convention.
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6.6 Problems

Resultant of a line load on a member (Section 6.3.1)

6.1: 1–3 The same simply supported beam AB is carrying three para-
bolically distributed loads.

Questions:
a. Determine the line of action and magnitude of the resultant of the

distributed load.
b. Determine the support reactions at A and B.

6.2: 1–4

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
c. Determine the interaction forces at C.

6.3: 1–6

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
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6.4

Question: Determine the support reaction at A.

6.5: 1–4

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.

6.6

Question:
For which length a of the cantilever is the support reaction at A zero for the
given load?

6.7 The same fixed beam is loaded in four different ways.

Question:
Determine the (peak value of the) distributed loads so that the fixed-end
moment in all four cases is the same.

6.8: 1–3 Three beams are given with a linearly distributed load. The peak
value of the distributed load is 1.8 kN/m for all cases.

Questions:
a. Determine the support

reaction at A.
b. Determine the support

reaction at B.
c. Determine the interac-

tion forces at C.
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6.9: 1–6 A number of beams are given with a linearly distributed load and
also a point load in two cases. The figures are not all shown to the same
scale. The top value of the linearly distributed load is 8 kN/m in all cases.
The magnitude of the point loads is given in the figure.

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
c. Determine the interaction forces at C.

6.10: 1–4

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
c. Determine the interaction forces at C.

6.11 The fixed member AB is loaded by an eccentric compressive force,
and a uniformly distributed horizontal load.

Question:
Determine the support reactions at A.
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6.12 The same shelter is loaded in four different ways.

Question:
In which case is the fixed-end moment at most?

6.13 Hinged beam ASB is fixed at A.

Question:
Determine the fixed-end moment at A.

6.14 The simply supported beam AB is carrying a uniformly distributed
load over the entire length and is also loaded by couples at the supports.

Questions:
a. Determine the support

reaction at A.
b. Determine the support

reaction at B.

6.15 You are given a hinged beam.

Questions:
a. Determine the support

reaction at A.
b. Determine the support

reaction at D.
c. Determine the other

support reactions.

6.16 You are given a hinged beam.

Questions:
a. Determine the support

reaction a A.
b. Determine the other

support reactions.

6 Loads
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6.17: 1–5 You are given five different hinged beams.

Question:
Determine the support reaction at A, B and C.

6.18 You are given a canopy roof ACD modelled as a line element.

Questions: Determine the horizontal and
vertical support reactions at A and the
force in member BC (with the correct sign)
due to the following uniformly distributed
loads on ACD:
a. Dead weight of 2 kN/m.
b. Wind load of 3 kN/m.
c. Snow load of 4 kN/m.

6.19 A uniformly distributed horizontal load is acting on the left-hand post
of the three-hinged frame ASB.

Questions:
a. Determine the support reactions

at A.
b. Determine the support reactions

at B.

6.20 A uniformly distributed load is acting on the left-hand side of the
three-hinged frame ASB.

Questions:
a. Determine the support reactions

at A.
b. Determine the support reactions

at B.
c. Determine the interaction forces

at C.

6.21 A three-hinged frame with tie-rod is carrying a uniformly distributed
load of 40 kN/m.

Questions:
a. Determine the support reaction

at A.
b. Determine the force in tie-rod

AB.
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6.22: 1–3 You are given three different three-hinged frames with unequal
post lengths.

Questions:
a. Determine the support reactions at A.
b. Determine the support reactions at B.
c. Determine the interaction forces at C.

6.23

Questions:
a. Determine the support reactions at A and B.
b. Determine the force in bar DE, with the correct sign.

6.24 For the structure in problem 6.23, the roller and hinged support are
exchanged.

Questions:
a. Determine the support reactions at A and B.
b. Determine the force in bar DE, with the correct sign.

6.25 Trussed beam ACB is carrying over its entire length a uniformly
distributed load of 8 kN/m.

Question:
Determine the force in bar CD. Is it a tensile force or a compressive force?

6.26 Trussed beam ASB is carrying over its entire length a uniformly
distributed load of 10 kN/m.

Questions:
a. Determine the force in bar 1.
b. Determine the force in bar 2.
c. Draw the closed force polygon for the equilibrium of joint B.

6 Loads



242 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

6.27 Trussed beam ASB is carrying over its entire length a uniformly
distributed load of 34 kN/m.

Questions:
a. Determine the force in bar 1.
b. Determine the force in bar 2.
c. Determine the force in bar 3.
d. Draw the closed force polygon

for the equilibrium of joint A.
e. Draw the closed force polygon

for the equilibrium of joint B.

6.28 You are given a queen post truss with a uniformly distributed load of
40 kN/m.

Question:
Determine the force in mem-
ber AB. Is this a tensile force
or a compressive force?

6.29 The dead weight of beam ABSCD is 125 kN/m.

Questions:
a. Determine the support reac-

tion at A due to this dead
weight.

b. Determine the other support
reactions.

6.30 In the compound structure shown, ED and DC are connected by a
hinge at D.

Questions:
a. Determine the vertical support reactions at A and B.
b. Determine the forces in the members AE and BC, with the correct signs.
c. Determine the forces in the members AG and BG, with the correct

signs.
d. Determine the horizontal support reactions at A and B.
e. Draw the closed force polygon for the equilibrium of joint A.
f. Draw the closed force polygon for the equilibrium of joint B.

Modelling load flow (Section 6.4)

6.31 Steel beams AA′, BB′ and CC′ are carrying roof slabs. The dead
weight of the roof slabs, together with the live load, equals 4 kN/m2. The
dead weight of the beams is estimated as 1 kN/m.
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Questions:
a. Determine the (uniformly) distributed line load which has to be taken

into account for beam AA′.
b. Determine the (uniformly) distributed line load which has to be taken

into account for beam BB′.

6.32 You are given a wooden joisting whereby the joists have a lateral
distance of 0.6 m. The joists have a mass of 10 kg/m, and the floor has a
mass of 10 kg/m2. The live load is 1.5 kN/m2. The load on an arbitrary
joist (no edge joist) is modelled by as a uniformly distributed line load q .
Let g = 10 N/kg.

Question:
How large is q?

6.33 For the building on spread foundation the following is given:

• Roof
Live load 500 N/m2

Dead load 300 N/m2

Dead weight 1500 N/m2

• Beams
Dead weight 3000 N/m

• Columns
Dead weight 1500 N/m

Question:
Determine the load on one of the footings.

6.34 You are given a concrete skeleton with the columns on a grid of
5.5 × 5.5 m2 and a height between floors of 3.25 m. The floors and the
roof are 0.25 m thick. All the columns have cross-sectional dimensions of
0.5 × 0.5 m2. The specific weight of concrete is 24 kN/m3. The dead load
is 1.5 kN/m2.

Question:
Determine the load on the lower columns of the skeleton (or make a good
estimation) due to the dead weight and dead load. Distinguish between:
a. a centre column,
b. an outer column, and
c. a corner column.

6 Loads
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6.35 A roof truss is loaded by the forces shown. The truss spacing is
a. The roof load (including the dead weight of the roof) is a uniformly
distributed surface load p.

Question:
Which combination of truss spacing a and load p occur according to the
given forces on the roof truss?

Truss spacing Load
a (m) p (kN/m2)

a. 4 22.5

b. 4 25

c. 3.75 20

d. 3 22.5

e. 3 25

6.36 For a concrete box girder bridge with a large number of spans, all the
spans have the same length of 42 m. The piers have a pile foundation. The
cross-sectional dimensions of the bridge and piers are shown in the figure.
The box girder bridge has the same wall thickness of 0.4 m everywhere.
The specific weight of concrete is 24 kN/m3.

Questions:
Due to the dead weight, determine:
a. The load on the bridge modelled as a line element.
b. The load on a centre pier.
c. The load on a pile under the centre pier (assuming all piles are loaded

equally).



7Gas Pressure and
Hydrostatic Pressure

Sometimes, an important part of the loading on a structure consists of gas
pressure (such as with an air-supported hall or pneumatic structure) or hy-
drostatic pressure (such as with lock-gates, barrages or reservoirs). We look
at this type of loading more closely in this chapter.

Because of the loose structure of material particles in stationary gases and
fluids, there are no shear stresses. As a result, the stresses in stationary
gases and fluids always act normal to any bounding plane.

In Section 7.1, we will show that, if there are no shear stresses, the stress
at a particular point is independent of the orientation of the plane on which
the stress is acting. This property is known as Pascal’s Law. Such a stress
situation is known as an isotropic or spherical state of stress.

Sections 7.2 and 7.3 provide examples of structures on which the loading
is caused by gas and hydrostatic pressures respectively. The difference be-
tween the two is that the pressure in a gas is constant within the closed space
in question.1 In a fluid, the pressure increases linearly with depth due to its
dead weight. The latter is referred to as a hydrostatic pressure distribution.

1 Other conditions apply when looking at the air pressure within the earth’s at-
mosphere, for example; it depends on the distance to the surface of the earth,
and is influenced by currents (wind).
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Figure 7.1 Because of the loose structure of the material particles
in stationary gases and fluids, there are no shear stresses.

Figure 7.2 A small, rectangular volume element isolated from a
gas or fluid, with compressive forces p1; p2; p3
Since there are no shear stresses, the stresses are normal to the sides
in question. Here, the arrows should not be interpreted as forces.

7.1 Pascal’s law – All-round pressure

Gases and fluids are distinct from solids in that they lack a solid shape. They
can flow and adapt their shape to the environment. As such, gases do not
have their own volume: all gas quantities distribute themselves through-
out the available space. One of the reasons for this is their loose particle
structure (see Figure 7.1).

Because of the weak bonding, gas and fluid particles can easily move with
respect to one another. As a result, we could (rather boldly) state that no
shear stresses can be transmitted in gases and fluids. This is, however, not
the case with flowing gases and fluids; because of the differences in speed
between adjacent layers, shear stresses can occur, although they are far
weaker than in solids.

Below, it is assumed that no shear stresses occur in gases and fluids at
rest. This means that the stresses in stationary gases and fluids always act
normal to any bounding plane.

In Figure 7.2, a rectangular volume element has been isolated from a gas or
fluid. Compressive stresses p1; p2; p3 act on the boundary of the element.
The volume element is so small that, for all the stresses on the boundary,
it can be assumed that they are uniformly distributed. In that case, one
does not have to draw the entire stress distribution, but a single arrow1 is
sufficient.

The condition that no shear stresses can act in the material implies that the
stresses on the boundary of the volume element have to be of the same
magnitude:

p1 = p2 = p3.

1 Note: the arrows here cannot be interpreted as forces.

on its boundaries.
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Figure 7.3 Stresses normal to the sides of a triangular volume
element.

Figure 7.4 Forces on the sides of the triangular volume element.

To demonstrate this, a small triangular part has been isolated from the
material parallel to the xy plane in Figure 7.3. The oblique side has an
area �A. The area of the vertical side is therefore �A cos α, while that
of the horizontal side is �A sin α. The triangular part is so small that, for
all the stresses on the boundary, it can be assumed that they are uniformly
distributed. Assume that a compressive stress p is acting on the oblique
side. This stress acts normal to the side as there is no shear stress.

In Figure 7.4, the forces (force = stress × area) on the edges of the tri-
angular part are shown. The lines of action of the forces pass through a
single point. This means that there is moment equilibrium in the xy plane.
Here it is assumed that the element is so small that its dead weight can be
neglected.

The equations for the force equilibrium in respectively the x and y direction
are

∑
Fx = p1�A cos α − p�A cos α = 0,∑
Fy = p2�A sin α − p�A sin α = 0,

so that

p1 = p2 = p3.

The result is independent of angle α.

In the same way, using the equilibrium of a triangular section parallel to the
xz plane, we derive

p1 = p3 = p.

This means that the stress at a particular point is independent of the orien-
tation of the plane that the stress acts on. This characteristic is known as
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Figure 7.5 (a) A pneumatic structure consists of a membrane that
maintains its shape through internal overpressure. (b) A strip with
width b from the circular cylindrical midsection in more detail.

Figure 7.6 A membrane can transfer forces only in the direction
of its curved plane.

Pascal’s Law.1 This state of stress is known as isotropic or spherical. With
gases and fluids, in which only compressive stresses occur, we also speak
of all-round pressure.

7.2 Working with gas pressures

The type of structure in Figure 7.5a which is sometimes used as a tennis
hall, is an air-supported hall or pneu. Pneu is an abbreviation of pneumatic
structure. This type of structure consists of a thin, flaccid skin (membrane),
which can transfer tensile forces only in its curved plane (see Figure 7.6).
The structure maintains its shape through internal overpressure.2 The same
holds, for example, for an inflated balloon, or the inner tube of a bike.
We will look at three examples for this type of structure. In the first two
examples the load is a gas pressure (the overpressure in the pneu). The
third example concerns a body subjected to an all-round pressure.

Example 1
The pneu in Figure 7.5a consists of a circular cylindrical midsection that is
closed by means of spherical ends. The diameter of the circular cylinder is
r , the aperture angle is α, and the internal overpressure is p.

Question:
Determine the distributed support reactions (forces per length) for the
circular cylindrical midsection of the pneu.

Solution:
In Figure 7.5b, a strip of width b has been isolated. This strip is modelled in
Figure 7.7a as a curved line element with a distributed load pb. In addition

1 Blaise Pascal (1623–1662), French mathematician, physicist and writer. With
Fermat, he was one of the founders of the theory of probability. As a writer he is
known for his Pensées, a collection of loose notes published posthumously.

2 This is the difference between the pressure inside and outside the structure.
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Figure 7.7 (a) A strip with width b from the cylindrical midsection
of the pneu, modelled as a line element. (b) The support reactions
at A and B. (c) The vertical component of the support reactions at
A and B are found from the vertical equilibrium of the “strip with
content”.

to the support reactions at A and B, no forces other than those shown in the
figure act in the plane of the drawing.

Since a membrane can transfer forces only in its (curved) plane, the support
reactions at A and B act along the tangents of the circular cross-section (see
Figure 7.7b). Because of mirror symmetry, the support reactions at A and B
are of equal magnitude. Assume these are tensile forces N . With an aperture
angle α, the horizontal and vertical components of N are:

Nh = N cos α,

Nv = N sin α.

The vertical component Nv can be derived from the vertical force equilib-
rium. In doing so, a tricky point is that the distributed load pb changes
direction. The calculation can, however, be considerably simplified by iso-
lating the structure from its surroundings, not “by itself ”, but “with content”
(see Figure 7.7c). The overpressure on plane AB (with width b) is equal to
pb. If the dead weight of the gas and the membrane can be ignored, the
equation for the vertical force equilibrium is

2Nv − pb · 2r sin α = 0

so that

Nv = pbr sin α.

The horizontal component of N is then

Nh = pbr cos α
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Figure 7.8 (a) The membrane force n = pr in the circumfer-
ential direction is independent of the aperture angle α. (b) The
formula n = pr is also referred to as the boiler formula as calcu-
lating the force in the walls of a steam boiler was an important field
of application.

Figure 7.9 A spherical pneu designed by Frei Otto to cover a
settlement in Antarctica.

and the resulting support reaction is

N = pbr.

The calculation relates to a strip with width b. The requested support
reactions per length are:1

n = N

b
= pr.

Note that the magnitude of the force n = pr is independent of the aperture
angle α (see Figure 7.8a). Obviously, in the circular cylinder pneu, the
(distributed) circumferential tensile forces have the same magnitude every-
where. The formula is also applicable for a closed ring (see Figure 7.8b,
where α = 180◦) and is known as the boiler formula, as calculating forces
in the walls of a steam boiler was an important field of application.

Example 2
The second example relates to a pneu designed by architect Frei Otto2 to
cover a settlement in Antarctica (see Figure 7.9). This design is discussed
in his book “Zugbeanspruchte Konstruktionen”.

The pneu is shaped like a segment of a sphere and rests on a concrete ring
beam. The diameter of the sphere is r = 2200 m. The diameter of the ring
beam is rbeam = 1000 m. The segment of the sphere is 240 m high (see
Figure 7.10). The weight of the roof is 82 N/m2. The pneu maintains its
shape through an internal overpressure of 350 N/m2.

1 It is the convention to use a lower case letter for distributed forces.
2 Frei Otto (1925), German architect. Renowned designer of pneumatic structures

and cable networks. One of his most famous designs was the roof of the Olympic
Stadium in Munich (1972). Also see Chapter 14, Section 14.3, Example 4.
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Figure 7.10 Dimensions of the spherical pneu.

Figure 7.11 The vertical component of the membrane force is
found from the vertical equilibrium of the sphere segment with
content. The membrane force acts on the circumference of the ring
beam. The overpressure p acts on the area within the ring beam.

Questions:
a. Determine the weight of the ring beam so that the foundation is not

subjected to tension.
b. Determine the compressive force in the ring beam.

Solution:
a. To calculate the forces in the pneu, it is assumed that the dead weight of
the roof acts in the direction of the centre of the sphere instead of the centre
of the earth. This assumption introduces only a minor discrepancy. In this
case, the resulting overpressure in the pneu is

p = 350 − 82 = 268 N/m2.

This overpressure generates tensile forces n (forces per length) in the mem-
brane. The vertical component nv can be deduced from the vertical force
equilibrium of the segment of the sphere “with content” (see Figure 7.11).
Here, nv acts on the circumference of the ring beam and the overpressure p

acts on the area within the ring beam. The equilibrium equation is

nv · 2πrbeam − p · πr2
beam = 0

so that

nv = p · πr2
beam

2πrbeam
= 1

2prbeam.

With nv = n sin α and rbeam = r sin α, the (distributed) tensile forces are

n = 1
2pr.

Here too, the (distributed) tensile forces are independent of the aperture
angle α. They are, however, half as large as the circumferential tensile
forces in the circular cylindrical pneu from the previous example.
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Figure 7.12 The forces acting on the ring beam.

Figure 7.13 (a) Due to the horizontal component of the membrane
force, the ring beam is pulled inwards on all sides. Here we can
recognise the analogy of a closed ring with underpressure. (b) Com-
pressive forces are generated in the ring. They can be determined
using the boiler formula, or directly from the equilibrium of half a
ring beam.

In this example

n = 1
2pr = 1

2 × (268 N/m2)(2200 m) = 295 kN/m.

The aperture angle α is (see Figure 7.11)

α = arccos

(
1960 m

2200 m

)
= 27◦.

At the ring beam, the horizontal and vertical components of n are

nh = n cos α = (295 kN/m) × cos 27◦ = 263 kN/m,

nv = n sin α = (295 kN/m) × sin 27◦ = 134 kN/m.

Figure 7.12 shows all the forces acting on the ring beam. These are the
distributed force n, which the pneu exerts on the ring beam, and the dead
weight qdw of the ring beam (also a force per length).

The vertical component nv tries to lift the ring beam. In order to prevent
this, the dead weight qdw has to be larger than nv = 134 kN/m. If the ring
beam is made of concrete, with a specific weight of 24 kN/m3, then the
cross-section A of the beam has to obey

qdw = A × (24 kN/m3) ≥ nv = 134 kN/m ⇒ A ≥ 134 kN/m

24 kN/m3
= 5.6 m2.

The cross-section of the ring beam has to be at least 5.6 m2.

b. Due to the horizontal forces nh, the ring beam is pulled inwards from all
sides (see Figure 7.13a). Here, you will recognise the loading case of the
closed ring from Figure 7.8b, but now with an underpressure instead of an
overpressure.
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Figure 7.14 A plane body loaded over its entire outline by a
uniformly distributed load normal to the body.

Figure 7.15 (a) As a result of the distributed load q, a small force
�F = q�s is acting on a small boundary element with length �s.
(b) The horizontal components of the load on the boundary elements
of a horizontal strip are equal and opposite. Together they form an
equilibrium system with zero resultant.

A compressive force N ′1 is formed in the ring. This can be calculated
using the boiler formula from the previous example, or directly from the
equilibrium of the half ring beam in Figure 7.13b:

N ′ = 2rbeamnh

2
= rbeamnh = (1000 m)(263 kN/m) = 263 MN.

Comment: This force is relatively large for a concrete cross-section of
5.6 m2. The compressive force in the ring may therefore call for a larger
cross-section.

Example 3
A uniformly distributed load q is acting on the plane body in Figure 7.14.
The load acts in the plane of the body along the entire outline and normal
to the body.

Questions:
a. Show that the resultant of the distributed load on the body is zero,

regardless of the shape of the body.
b. Determine the resultant of the load above section AB.

Solution:
a. In Figure 7.15a, a minor force �F is acting perpendicular to the given
boundary element with small length �s:

�F = q�s.

The horizontal and vertical components of �F are respectively

�Fx = q�s cos ϕ,

1 The convention is that N as tensile force is positive. The prime for a switch in
sign indicates that compressive forces are now positive (see Section 6.5).
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�Fy = q�s sin ϕ.

Since �s cos ϕ = �y and �s sin ϕ = �x, we can also write

�Fx = q�y,

�Fy = q�x.

The components �Fx and �Fy of force �F on boundary element �s are
equal to the product of the distributed load q and the projection of �s on
the y axis and the x axis respectively.

Figure 7.15b shows a horizontal strip from the body with a small width �y.
The horizontal components of the load on the boundary elements are equal
and opposite. They form an equilibrium system with resultant zero. Since
this applies to all the horizontal strips of which the body is composed, the
resulting horizontal load on the body is zero.

By dividing the body into vertical strips, and looking at the vertical com-
ponent of the load on the boundary elements, we can similarly deduce that
the resulting vertical load on the body is zero.

Conclusion: If a uniformly distributed load acts on a plane body in the
plane of the body along its entire outline, and everywhere normal to the
body, the load forms an equilibrium system with resultant zero.

One can show that this is also true in three-dimensional cases: If a uni-
formly distributed load acts on a body in space on its entire surface, and
everywhere normal to the body, the load forms an equilibrium system with
resultant zero.

b. In Figure 7.16a, the part of the body above section AB has been isolated.
Assume the resultant of the distributed load on the outside between A and
B is R.

Figure 7.15 (a) As a result of the distributed load q, a small force
�F = q�s is acting on a small boundary element with length �s.
(b) The horizontal components of the load on the boundary elements
of a horizontal strip are equal and opposite. Together they form an
equilibrium system with zero resultant.
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Figure 7.16 (a) The resultant R of the uniformly distributed load
on the outside AB is equal and opposite to (b) the resultant Rsection
of an equally large uniformly distributed load on section AB.

Figure 7.17 In a fluid at rest, the (all-round) pressure increases
linearly with depth as a result of its dead weight. This is derived
from the vertical force equilibrium of the fluid column.

If a uniformly distributed load q is also applied to section AB, as in
Figure 7.16b, the total load on the isolated part of the body forms an equilib-
rium system: the resultant R of the load on the outside of the body is equal
and opposite to the resultant Rsection of the load on the section. Therefore
R = Rsection = qa, in which a is the length of the section. The line of
action of R coincides with the perpendicular bisector of AB.

7.3 Working with hydrostatic pressures

In a fluid at rest, the (all-round or isotropic) pressure increases linearly with
depth. This can be derived from the vertical force equilibrium of the fluid
column in Figure 7.17. Using density ρ of the fluid and the gravitational
field intensity g = 10 N/kg the specific weight γ is

γ = ρg.

The weight �G of the fluid column, with height z and cross-section �A is

�G = γ z�A.

At the base of the fluid column, there is a compressive force p�A, the
resultant of the compressive stresses p on the area �A. The vertical force
equilibrium of the column (there are no shear stresses) now gives

p�A = �G

or

p = �G

�A
= γ z�A

�A
= γ z.
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Figure 7.18 Longitudinal section of a channel with the 4-metre
wide flap AB. The distribution of the water pressure is shown on
both sides of the flap.

The isotropic compressive stress p increases linearly with depth z. This is
referred to as a hydrostatic pressure distribution.

Below you will find a number of examples covering loads due to a hydro-
static pressure. We assume that in all cases the fluid is at rest and that the
pressure distribution is hydrostatic. At any point the hydrostatic pressure
is equally large in all directions (isotropic state of stress) and always acts
normal to the plane in question (as there are no shear stresses).

Example 1
Figure 7.18 shows the longitudinal section of a channel with a 4-metre wide
flap AB. The flap is supported at A by a hinge and is resting at B on a sill.
The support in B can be seen as a roller support. The water level on both
sides of the flap is shown in the figure. The density of water is 1000 kg/m3.
The gravitational field intensity is 10 N/kg.

Question:
Determine the support reactions at A and B due to the total water pressure.
The dead weight of the flap should be ignored.

Solution:
The linear distribution of the water pressure on both sides of the flap is
shown in Figure 7.18.

To the left of the flap, the water pressure at A is

(1000 kg/m3)(10 N/kg)(1 m) = 10 kN/m2

and at B it is

(1000 kg/m3)(10 N/kg)(4 m) = 40 kN/m2.

To the right of the flap, the water pressure at B is

(1000 kg/m3)(10 N/kg)(2 m) = 20 kN/m2.
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Figure 7.19 The 4-metre wide flap modelled as a line element
with (a) the water pressure normal to the flap and (b) the resulting
load diagram.

Figure 7.20 The load diagram split up into three areas for which
the resultants are easy to find with respect to their magnitudes and
lines of action.

In Figure 7.19a, the 4-metre wide flap is modelled as a line element, with
line loads due to the water pressures normal to it.

To the left of the flap, the distributed load varies linearly from

(4 m)(10 kN/m2) = 40 kN/m at A,

to

(4 m)(40 kN/m2) = 160 kN/m at B.

To the right of the flap, the load increases linearly from 0 at C to

(4 m)(20 kN/m2) = 80 kN/m at B.

Figure 7.19b represents the load diagram for the resulting water pressure.

The length of flap AB is (see Figure 7.18)

√
(3 m)2 + (0.96 m)2 = 3.15 m.

The distances BC and CA are respectively 2.10 m and 1.05 m.

To work quickly, the load diagram in Figure 7.20 has been placed horizon-
tally and is split up into a number of areas for which the resultants can be
easily calculated:

R1 = (2.10 m(80 kN/m) = 168 kN,

R2 = 1
2 × (1.05 m)(80 kN/m) = 42 kN,

R3 = 1
2 × (1.05 m)(40 kN/m) = 21 kN.
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Figure 7.21 A moveable dam consisting of a circular cylindrical
slide AB hinged at C and joined to an rigid vertical partition wall at
A. There is no water to the right of the dam.

The support reaction Ar at A is found from the moment equilibrium of the
flap about B:

Ar = (1.05 m) × R1 + (2.45 m) × R2 + (2.80 m) × R3

3.15 m
= 107.3 kN.

The support reaction Br in B is found from the force equilibrium:

Br = R1 + R2 + R3 − Ar = 123.7 kN.

Example 2
The moveable dam in Figure 7.21 consists of a circular cylindrical slide AB
hinged at C and joining a rigid vertical partition wall at A. There is no water
to the right of the dam. The specific weight of water is γw = 10 kN/m3. All
other information required can be found in the figure.

Question:
Find the magnitude and direction of the resultant water pressure on a 1-
metre strip from the circular cylindrical slide.

Solution:
In Figure 7.22, the 1-metre wide strip from the slide is modelled as a line
element. The figure also shows the water pressure, increasing from 14 kN/m
at top A of the slide to 40 kN/m near base B.

The water pressure is acting normal to the slide everywhere. In other words,
all the forces on the slide pass through C, the centre of arc AB. Therefore,
the resultant R of the total water pressure on the slide also passes through
C.

Figure 7.20 The load diagram split up into three areas for which
the resultants are easy to find with respect to their magnitudes and
lines of action.
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Figure 7.22 The distribution of the water pressure on a 1-metre
wide strip from the slide.

Figure 7.23 To calculate the resulting water pressure, all the data
has been shown as symbols.

To determine the resultant water pressure, please refer to Figure 7.23, which
shows all symbols used. The water pressure as a function of ϕ is

q(ϕ) = 1 + r sin ϕ

d
· q̂.

The resultant of the water pressure on a small part of the slide with length
r dϕ is a small force dF :

dF = q(ϕ) · r dϕ

with components

dFx = dF cos ϕ = q(ϕ)r cos ϕ dϕ,

dFy = dF sin ϕ = q(ϕ)r sin ϕ dϕ.

The components Rx and Ry of the resulting water pressure are found by
summing up all the contributions dFx , respectively dFy , over the length of
slide AB. This summation is done by integrating between the limits ϕ = 0
and ϕ = 60◦ = π/3 rad:

Rx =
∫ π/3

0
q(ϕ)r cos ϕ dϕ,

Ry =
∫ π/3

0
q(ϕ)r sin ϕ dϕ.

Using the previously deduced expression for q(ϕ) and the formulas in
Table 7.1, the integrals are elaborated:
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Table 7.1

∫
sin ϕ cos ϕ dϕ = 1

2 sin2 ϕ

∫
sin2 ϕ dϕ = − 1

4 sin 2ϕ + 1
2ϕ

Figure 7.24 The resultant of the water pressure on the circular
cylindrical slide passes through C, the centre of arc AB.

Rx = q̂r

d

∫ π/3

0
(a + r sin ϕ) cos ϕ dϕ = q̂r

d

[
a sin ϕ + 1

2r sin2 ϕ
]ϕ=π/3

ϕ=0

= q̂r

d
(a × 0.86 + r × 0.375),

Ry = q̂r

d

∫ π/3

0
(a + r sin ϕ) sin ϕ dϕ

= q̂r

d

[
−a cos ϕ + r

(
− 1

4 sin 2ϕ + 1
2ϕ

)]ϕ=π/3

ϕ=0

= q̂r

d
(a × 0.5 + r × 0.307).

By substituting q̂ = 40 kN/m, r = 3.0 m, d = 4.0 m and a = 1.4 m, we
find

Rx = 70.1 kN,

Ry = 48.6 kN.

The vertical component of the water pressure generates an upward force on
the slide.

The resulting water pressure R on the 1-metre strip from the slide is shown
in Figure 7.24:

R =
√

(70.1 kN)2 + (48.6 kN)2 = 85.3 kN.

The line of action, as shown earlier, passes through C and is at an angle of
α to the horizontal:

α = arctan

(
48.6 kN

70.1 kN

)
= 34.7◦.
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Figure 7.25 The resultant of the water pressure on the slide can
also be found by looking at the forces acting on the isolated slide
together with water mass ADB.

Alternative solution:
Since the shape of the slide is actually rather simple, the question can also
be answered without integrals. To do so, Figure 7.25 shows the isolated
slide including water mass ADB. Assume that Rh;w is the resultant of the
horizontal water pressure on AD and Rv;w is the resultant of the vertical
water pressure on BD:

Rh;w = 1
2 × (2.6 m){(14 kN/m) + (40 kN/m)} = 70.2 kN,

Rv;w = (1.5 m)(40 kN/m) = 60 kN.

Assume that Gw is the weight of the volume of water enclosed by ADB.
We are looking at a 1-metre wide strip from the slide:

Gw = γwA(ADB)(1 m).

Here A(ADB) is the area of ADB. This is equal to the area of trapezium
ADBC, reduced by the area of circle sector ABC. The area of trapezium
ADBC is

A(ADBC) = 1
2 × (2.6 m){(3.0 m) + (1.5 m)} = 5.85 m2.

The area of circle sector ABC, with an aperture angle of 60◦, is equal to
one sixth of the area of the entire circle:

A(ABC) = 60◦

360◦ × π(3.0 m)2 = 4.71 m2.

With

A(ADB) = A(ADBC) − A(ABC) = (5.85 m2) − (4.71 m2) = 1.14 m2
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Figure 7.26 The lines of action of the horizontal and vertical com-
ponent of the resulting water pressure on the slide. The horizontal
component Rx is independent of the shape of the slide and can
be directly found from the trapezoidal load diagram for the water
pressure on the vertical AD.

Figure 7.27 A storm barrier consisting of two sector doors with a
radius r = 250 m.

one finds

Gw = γwA(ADB)(1 m) = (10 kN/m3)(1.14 m2)(1 m) = 11.4 kN.

The resulting water pressure on the slide is

Rx = Rh;w = 70.2 kN,

Ry = Rv;w − Gw = (60 kN) − (11.4 kN) = 48.6 kN.

The results agree with those of the first calculation, with the exception of a
minor difference in the magnitude of Rx . This is because in the alternative
solution, the height of the slide (= r sin 60◦) was rounded off to 2.6 m.

From the alternative approach, one can conclude the following: The resul-
tant of the horizontal water pressure on the slide is independent of the shape
of the slide and is exclusively determined by the height of the slide and the
depth at which it is located under the water surface.

Figure 7.26 shows the lines of action of Rx and Ry . The line of action of
Rx can be found directly from the trapezoidal load diagram on AD.1

Example 3
At Hoek van Holland, near Rotterdam in the Netherlands, the Maeslant-
kering became operational in 1997. This storm barrier in the Nieuwe
Waterweg consists of two sector doors with a radius r = 250 m (see Fig-
ure 7.27). The arc length of AB is 209.5 m. The door is 22.5 m in height.
Figure 7.28 is a sketch of the longitudinal section of the door, with the water
levels on both sides. The specific weight of water is γw = 10.25 kN/m3.
To simplify the question, the part of the door within the parking dock is
ignored.

1 The calculation is left to the reader. See Section 6.3.1, Example 1.
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Figure 7.28 A sketch of the cross-section of the door, with the
water levels on both sides.

Figure 7.29 The distribution of the horizontal water pressure on
a 1-metre wide vertical strip from the door. The horizontal water
pressure is independent of the shape of the door.

In addition, it is assumed that the water levels in front and behind the dam
are present over the entire length of arc AB and that the pressure distribution
on both sides is hydrostatic.

Question:
Determine the resulting horizontal water pressure on part AB of the right-
hand sector door.

Solution:
With a specific weight of γw = 10.25 kN/m3, the water pressure increases
for each metre of depth by 10.25 kN/m2. At the base of the door, the water
pressure on the sea-side is

22 × (10.25 kN/m2) = 225.5 kN/m2,

while on the river-side it is

14 × (10.25 kN/m2) = 143.5 kN/m2.

Figure 7.29 shows the distribution of the horizontal water pressure on a 1-
metre wide vertical strip of the door. The horizontal water pressure on the
door is independent of the shape of the door.1 The resultant of the horizontal
water pressure on the 1-metre wide vertical strip is

1
2 × (22 m)(225.5 kN/m) − 1

2 × (14 m)(143.5 kN/m) = 1476 kN.

We have shown, therefore, that per metre in the circumferential direction,
the door is subject to a force of 1476 kN. In other words, the horizontal
water pressure on the door consists of a uniformly distributed load

1 See the previous example.
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Figure 7.30 A horizontal force of 1476 kN is acting on the door
per metre in the circumferential direction. In other words, the hori-
zontal water pressure on the door consists of a uniformly distributed
load qw = 1476 kN/m in radial direction.

Figure 7.31 A floating element of a two-track metro tunnel, ready
to be transported to the sinking site.

qw = 1476 kN/m in radial direction (see Figure 7.30).

With an arc length of 209.5 m for AB and a radius of r = 250 m, the
aperture angle α is

α = arc length AB

2πr
· 360◦ = 209.5 m

2π × (250 m)
× 360◦ = 48◦.

The resultant R of the horizontal water pressure on arc AB is equal to the
resultant of the horizontal water pressure on chord AB (see Section 7.2,
Example 2). This gives:

R = qwa = qw2r sin(α/2)

= (1476 kN/m) × 2 × (250 m) × sin 24◦ = 300 MN.

Example 4
Figure 7.31 represents an element of a floating two-track metro tunnel,
ready to be transported to its sinking site. The tunnel element is considered
a rigid body.

Dimensions: length � = 60 m, width b = 9 m and height h = 6 m.
Dead weight of the tunnel element: qdw = 524 kN/m.
Weight of each of the temporary bulkheads: Fhead = 235 kN.
Specific weight of water: γw = 10 kN/m3.

Questions:
a. Determine the water pressure at the base of the tunnel element.
b. Determine the resultant of the horizontal water pressure on a bulk-

head.
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Figure 7.32 The distribution of the water pressures on the tunnel
element.

Solution:
a. The total dead weight Rdw of the tunnel element is

Rdw = qdw� + 2Fhead

= (524 kN/m)(60 m) + 2 × (235 kN) = 31910 kN.

Figure 7.32 shows the distribution of the water pressures on the tunnel
element. With a specific weight γw, the water pressure pw at a depth d

is

pw = γwd.

The vertical water pressure on the base of the tunnel element gives an
upward force Rv;w:

Rv;w = pwb� = γwdb�.

The upward force is equal to the weight of the displaced water.

The tunnel element will sink in the water until the upward force is in equi-
librium with the total dead weight Rdw:

Rdw = Rv;w = γwdb�

so that

d = Rdw

γwb�
= 31910 kN

(10 kN/m3)(9 m)(60 m)
= 5.91 m.

The water pressure at the base of the tunnel element is therefore

pw = γwd = (10 kN/m3)(5.91 m) = 59.1 kN/m2.
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Figure 7.33 If the fluid is in equilibrium, the vertical component
of the hydrostatic pressures on the outside of a contained space has
to provide an upward force that equals the weight of the fluid within

b. The resultant Rh;w of the horizontal water pressure on a bulkhead is equal
to the volume of the load diagram (see Figure 7.32):

Rh;w = 1
2pwbd = 1

2 × (59.1 kN/m2)(9 m)(5.91 m) = 1572 kN.

In the calculation, it was noted that the vertical water pressure on the tunnel
element exerts an upward force that is equal in magnitude to the weight
of the displaced water. This is not a coincidence, but applies in general,
regardless of the shape of the body, and is known as Archimedes’ Law.1

The general proof can be found below.

Take a contained space of arbitrary shape within a fluid (see Figure 7.33). If
there is an equilibrium, the vertical component of the hydrostatic pressures
has to provide an upward force on the outside of the contained space that
equals the weight of the fluid within the contained space. The upward force
does not change if the contained space is taken up by a body.

Conclusion: A body in a fluid is exposed to an upward force that is equal to
the weight of the displaced volume of fluid.

Example 5
In the water-retaining wall in Figure 7.34 there is a circular partition of
radius r . The centroid C of the partition is at a depth zC.

Question:
Determine the resultant R of the water pressure on the partition.

Solution:
The water pressure on the partition varies linearly. At a depth z the water
pressure is ρgz, whereby ρ is the density of water, and g is the gravitational

1 Archimedes (287–212 BC), Greek scientist from Syracuse. He addressed issues
relating to integral calculus and was one of the founders of statics (equilibrium
of solids) and hydrostatics (equilibrium of fluids).

Figure 7.32 The distribution of the water pressures on the tunnel
element.

the contained space.
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Figure 7.34 A circular partition in a water-retaining wall.

Figure 7.35 (a) The water pressure on the partition increases lin-
early with the depth. (b) The water pressure is constant on a small
horizontal strip and is equal to ρgz.

Table 7.2

∫
(sin ϕ)2 dϕ = − 1

4 sin 2ϕ + 1
2 ϕ

∫
cos ϕ(sin ϕ)2 dϕ = − 1

3 (sin ϕ)3

field intensity (see Figure 7.35a).

For the partition, take a very narrow horizontal strip dz at depth z (see
Figure 7.35b). The width of the strip is b(z). The water pressure on this
narrow strip is constant and equal to ρgz. This contribution dR of the strip
to the resulting water pressure R on the strip is

dR = ρgz · b(z) · dz, (1)

whereby

b(z) = 2r cos ϕ, (2)

z = zC − r cos ϕ, (3)

dz = dz

dϕ
dϕ = r sin ϕ dϕ. (4)

Substitute (2) to (4) into (1) and we find

dR = 2ρgr2(zC − r cos ϕ)(sin ϕ)2 dϕ.

To find the resulting water pressure R, one has to sum up the contributions
of all the strips. This is done by integrating between the limits ϕ = 0 and
ϕ = π :

R = 2ρgr2
∫ π

0
(zC − r cos ϕ)(sin ϕ)2 dϕ.

Using the formulas in Table 7.2 we find∫ π

0
zC(sin ϕ)2 dϕ = zC

[
− 1

4 sin 2ϕ + 1
2ϕ

]ϕ=π

ϕ=0
= π

2
zC
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and ∫ π

0
r cos ϕ(sin ϕ)2 dϕ = r

[
− 1

3 (sin ϕ)3
]ϕ=π

ϕ=0
= 0

so that

R = ρgzC · πr2.

Conclusion: The resulting water pressure on the partition is equal to the
water pressure at the centroid, multiplied by the area of the partition.

Although derived for a circular partition, this characteristic is generally ap-
plicable. The proof can be provided easily if one knows that the z coordinate
of the centroid C of a plane figure with area A is defined as:1

zC =

∫
A

z dA

A
. (5)

The resultant of the water pressure on a small area dA at depth z is

dR = ρgz · dA.

The resulting water pressure is found by summing up all the contributions
dR for the entire area A. This is performed by integrating with respect to
the area A:

R =
∫

A

ρgz dA = ρg

∫
A

z dA. (6)

1 Volume 2, Stresses, Deformations, Displacements, addresses the definition and
calculation of centroids in detail. Here, it is assumed that readers know the
location of the centroid for simple plane figures.

Table 7.2

∫
(sin ϕ)2 dϕ = − 1

4 sin 2ϕ + 1
2 ϕ

∫
cos ϕ(sin ϕ)2 dϕ = − 1

3 (sin ϕ)3
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Definition (5) gives

∫
A

z dA = zCA. (7)

Substitute (7) in (6) and we find

R = ρgzC · A.

Conclusion: The resulting water pressure R on a plane figure is equal to
the water pressure ρgzC at the point of centroid C of the figure, multiplied
by the area A of the figure.

Note: This does not give the line of action of the resultant R which passes
through the centroid of the load diagram (see Section 6.3.2).

7.4 Summary

The various characteristics of gas pressures and hydrostatic pressures in
this chapter are summarised below.

1. Since there are no shear stresses, the compressive forces in a gas and
fluid always act normal to any bounding plane (see Section 7.1).

2. In a gas and fluid, the pressure at a particular point is independent of
the orientation of the plane on which the pressure acts. It is also said
that, in that point, the stress is of equal magnitude in all directions
(isotropic or spherical state of stress) (see Section 7.1).

3. Gas pressure is constant in a contained volume.

4. If a uniformly distributed force acts on the entire area of a body, and
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normal to that body, this load forms an equilibrium system, and the
resultant is zero (see Section 7.2, Example 3).

5. In a fluid, pressure increases linearly with depth (hydrostatic pressure
distribution) (see Section 7.3).

6. The resultant of the hydrostatic pressure on a flat plate is equal to the
pressure at the centroid of the plate, multiplied by the area of the plate
(see Section 7.3, Example 5).

7. The horizontal component of the resulting hydrostatic pressure on
a body is equal to the resultant of the hydrostatic pressure on the
horizontal projection of the body on a vertical plane (see Section 7.3,
Example 2).

8. The vertical component of the resulting hydrostatic pressure on a
body is an upward force that is equal to the weight of the volume
of water displaced by the body (Archimedes’ Law) (see Section 7.3,
Example 4).
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7.5 Problems

Remark: If necessary, assume that the gravitational field intensity is
g = 10 N/kg.

Working with gas pressures (Section 7.2)

7.1 A cylindrical pneu with a length of 40 m and a width of 16 m has a
semi-circular cross-section. The internal overpressure is 375 N/m2.

Questions:
a. Determine the support reactions

for the cylindrical part of the
pneu.

b. Determine the membrane force
in the circumferential direction
at the cylindrical pneu.

c. Determine the force in the lon-
gitudinal direction of the cylin-
drical pneu.

7.2 A spherical pneumatic hall is supported on a concrete ring beam. The
internal overpressure is 350 N/m2.

Questions:
a. Determine the membrane force in the pneu.
b. Determine the vertical forces that the pneu exerts on the ring beam.
c. Determine the horizontal forces that the pneu exerts on the ring beam.
d. Determine the (normal) force in the ring beam. Is it a tensile force or a

compressive force?

7.3 A pneumatic structure has the shape of a hemisphere with a radius of
15 m and an internal overpressure of 400 N/m2. The forces in the pneu are
transferred to a concrete ring beam. The weight of the ring beam ensures
that the pneu is not lifted. The specific weight of concrete is 24 kN/m3.

Questions:
a. Determine the membrane force in the pneu.
b. Determine the normal pressure in the ring beam.
c. Determine the required diameter of the ring beam to prevent the pneu

from lifting.
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7.4 In a spherical pneu with radius 16.5 m there is an overpressure of
350 N/m2. The horizontal support reactions are transferred by a ring belt
applied around the pneu.

Questions:
a. Determine the membrane force in the pneu.
b. Determine the vertical support reactions nv.
c. Determine the force in the ring belt.

7.5 A pneumatic structure, with a spherical shape, is connected to a
circular ring beam that rests freely on the ground. The overpressure in the
pneu is 400 N/m2. The dead weight of the pneu can be neglected.

Questions:
a. Determine the membrane force in the pneu.
b. How large must the weight per metre of the ring beam be to prevent

lifting?
c. Determine the normal force in the ring beam. Is this a tensile force or a

compressive force?

7.6 A (long) cylindrical pneu with an internal pressure of 400 N/m2 has
a circular cross-section as indicated in the figure with a radius of 12 m.
The weight of the concrete beams at A and B has to prevent the pneu
from lifting. Tie-rods have been applied between the beams A and B every
2.5 m. The specific weight of concrete is 24 kN/m3.

Questions:
a. Determine the membrane force (in the circumferential direction) in the

pneu.
b. Determine the required cross-section of the beams to prevent lifting.
c. Determine the force in a tie-rod between A and B.

7.7 Two spherical pneus with radius r = 11.55 m have been placed
adjacent to one another and joined. A cable has been placed over the pneus
at the connection. The overpressure in the pneu is 400 N/m2.
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Questions:
a. Determine the membrane forces in the pneu.
b. Determine the forces that the pneus exert on the cable.
c. Determine the tensile force in the cable.

7.8 Two spherical pneus with a radius of 14.20 m have been placed
adjacent to one another and joined. A cable has been laid over the pneus at
the line of joining. The overpressure in the pneu is 410 N/m2. The pneus
are attached to concrete foundation beams.

Questions:
a. Determine the membrane forces in the pneu.
b. Determine the vertical support reactions for the pneu.
c. Determine the (normal) force in the ring beams. Are they tensile forces

or compressive forces?
d. Determine the forces that the pneus exert on the cable.
e. Determine the tensile force in the cable.
f. Determine the (normal) force in beam CD. Is this a tensile force or a

compressive force?

Working with hydrostatic pressures (Section 7.3)

7.9 A steel sheet-pile wall is fixed in a concrete floor. There is 6 m of
water against one side of the wall, and 3 m on the other. Mass density of
water: 1000 kg/m3.

Questions:
a. Draw the distribution of the water pressure on the wall.
b. Determine the horizontal support reaction per metre wall.
c. Determine the fixed-end moment per metre wall.
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7.10 A steel sheet-pile wall is fixed in a concrete floor. There is 6 m of
water against one side of the wall with a mass density of 1000 kg/m3. On
the other side, there is 3 m of water with, due to a high silt content, a mass
density of 1400 kg/m3.

Questions:
a. Draw the distribution of the water pressure on the wall.
b. Determine the horizontal support reaction per metre wall.
c. Determine the fixed-end moment per metre wall.

7.11 Like the previous question, but now with the silty water to the left,
and the siltless water to the right of the wall. The mass density of the silty
water is 1200 kg/m3, and that without silt is 1000 kg/m3.

7.12 A steel sheet-piling is fixed in a concrete floor, and is retaining 6 m
of water. The mass density of the upper 3 metres is 1000 kg/m3. The lower
three metres have a mass density of 1400 kg/m3 as a result of the silt
present.

Questions:
a. Draw the distribution of the water pressure on the sheet-piling.

b. Determine the horizontal support reaction per metre of sheet-piling.
c. Determine the fixed-end moment per metre sheet-piling.

7.13 A water-retaining wall contains a square flap that is hinged at A, and
supported by a sill at B.

Questions:
a. Draw the distribution of the water pres-

sure against the wall.
b. Determine the resultant of the water

pressure on the flap.
c. Determine the line of action of this

resultant.
d. Determine the support reactions at A

and B.

7.14 What is the water depth h if the total water pressure on the square flap
from the previous question is 3.6 kN?

7.15 A connection between two reservoirs is sealed by means of a circular
valve.

Questions:
a. Draw the distribution of the water pressure on both sides of the wall.
b. Draw the resulting water pressure on the wall.
c. Determine the resulting water pressure on the sealing valve.
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7.16 A connection between two reservoirs is closed by means of a circular
valve.

Question:
Determine the resulting water pressure on the valve.

7.17 An opening in a water-retaining wall is closed by means of a slide.
The slide is 0.5 m high and 0.4 m wide.

Question:
Determine the resulting water pressures on the slide.

7.18 You are given a water-retaining wall with the triangular area ABC as
shown.

Questions:
a. Determine the resulting water pressure on triangle ABC
b. Determine the resulting water pressure on triangle ABC if base AB is

above top C.

7.19 You are given the longitudinal section and the cross-section of a
water trough.

Questions:
a. Determine the support reactions at A and B.
b. Determine the resultant of the water pressure on an end-partition.
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7.20 You are given a wooden mitre gate in a small lock. The depth of the
water outside the lock is 5 m and 3 m inside.

Questions:
a. Determine the resulting water pressures on door AC.
b. Determine the forces that the doors at A and B exert on the lock walls.
c. Determine the force that the doors at C exert on one another.

7.21 A barrage is made up of partitions that at base A are resting against
a groove and at top B against an I-section. The I-section beam is supported
in the walls of the barrage.

Questions:
a. Draw the distribution of the wa-

ter pressure on the walls.
b. Determine the support reactions

at A and B for a partition with a
width of 1.5 m.

7.22 A lock door is supported by a hinge at S and is pressed against sill C
by a force of 300 kN at A. There is only water to the right of the door. The
lock door has a width of 4 m. The weight of the door can be ignored.

Question:
At which water level will the door open?

7.23 A barrage contains a flap AB with a width of 1 m. The flap is resting
in a groove at A and is supported by a hinge at B.

Question:
Determine the vertical force F required to open flap AB.
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7.24 In a barrage, flap AS is resting at A on an entirely flat base and is
connected in a hinge at S with SB. The flap is 2.5 m wide. There is only
water to the left of the barrage.

Questions:
a. Determine the (total) support reaction at A.
b. Determine the horizontal and vertical component of the hinge force at

S. Also clearly indicate the directions.

7.25 A barrage with the shape shown is
located in a 1-m wide channel.

Questions:
a. Draw the distribution of the water pres-

sure on the barrage.
b. Determine the support reactions at A

and B.

7.26 A barrage contains a flap AB that can rotate about a hinge at S.

Question:
Determine the water level h at
which the flap will open.

7.27 A concrete sewer pipe with Ø400 mm and a wall thickness of 50 mm
is located in an area with sandy soil and a high water level. The pipe
is located below ground water level. The specific weight of concrete is
24 kN/m3.

Question:
Determine whether there is a danger of lifting if the weight of the soil above
the pipe is not taken into account as a load.
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7.28 A concrete tunnel element is afloat, waiting to be transported to the
sinking site. The element is 60 m long and has a cross-section of 25×9 m2.
The outer walls of the tunnel are 1.20 m thick, the inner walls are 0.75 m
thick. The two temporary bulkheads each have a weight of 1320 kN. The
specific weight of concrete is 25 kN/m3, while that of water is 10 kN/m3.

Questions:
a. How much is the tunnel above water level?
b. How many litres of water have to be used to fill the ballast tanks to sink

the tunnel element?

7.29 Once tunnel element IV has been sunk and placed at the correct level,
the space between the bulkheads A and B is pumped empty. The tunnel has
a rectangular cross-section of 25 × 9 m2. The specific weight of the water
is 10 kN/m3.

Question:
Determine the force that tunnel element IV exerts on element III?

7.30 At high tide, a barge with rectangular cross-section is 1.5 m above
the water and 3.0 m below the water. At low tide, the water level is 1.7 m
less, and the base of the barge ends up in a muddy layer of sediment. The
muddy layer has a mass density of 1400 kg/m3 and behaves like a liquid.
The water above the muddy layer has a mass density of 1050 kg/m3.

Question:
How much does the barge stick out of the water at low tide?

7.31 A 1-metre strip has been isolated from the length of a long barge and
is modelled as a line element. The dead weight of the isolated line element
(walls and base) is 10.5 kN/m.

Questions:
a. Determine depth h of the barge.
b. Draw the distribution of the water pressure on the walls and the base.
c. Isolate the base of the barge and draw all the forces acting on it.
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7.32 In the middle of the base of a long barge there is a continuous hinge.
There are bars between the walls of the barge three metres above its base.
The centre to centre distance of these bars is 2.5 m. The barge is filled with
petroleum up to 2 m. The dead weight of the petroleum is 7.5 kN/m3. A
1-metre strip has been isolated in the length of the barge and modelled as a
line element. The dead weight of the isolated line element (walls and base)
is 5 kN/m.

Questions:
a. Determine the depth h of the barge.
b. Draw the distribution of the hydrostatic pressures on walls and base.
c. Isolate a wall and draw all the forces acting on it.
d. Determine the force in a bar. Is it a tensile force or a compressive force?

7.33 A sketch is shown with a number of estimated thicknesses of a long
concrete channel for the transport of water. The water can rise to the upper
edge of the channel The specific weight of concrete is 24 kN/m3.

Questions:
a. Determine the centre to centre distance a of the cross-beams to an

accuracy of 0.1 m, such that the piles are not loaded by more than
600 kN.

b. Determine the section forces (interaction forces) per metre in cross-
section A–A of the channel.
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7.34: 1–3 A 1-metre strip has been isolated from a channel filled with
water and is modelled as a line element. There are three different shapes of
channel.

Questions:
a. Determine the support reactions.
b. Draw the distribution of the water pressure on the walls and the base.
c. Isolate the base and draw all the forces acting on it.

7.35 At a nursery, an open tank is being built to store water. The round tank
has a diameter of 12 m and a height of 2 m. The wall of the tank consists
of corrugated steel plates that are connected by means of bolts. The water
retention is achieved by means of a membrane.

Questions:
a. Determine the (normal) force in the circumferential direction if the tank

is three-quarters full. Is this a tensile force or a compressive force?
b. Determine the (normal) force in the circumferential direction if the

tank is filled to the top.
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7.36 You are given two curved weirs. The weirs are a semi-circle and have
a radius of 24 m. The bulging sides of the weirs are pointing downstream.
The water levels are shown in the figure.

Questions:
a. Determine the (normal) force in the circumferential direction of the

weir. Is this a compressive force or a tensile force?
b. Determine the total force that the weirs AB and BC exert on pier B.

7.37: 1–2 Sixty metres of water is standing against a circular storage dam
with a radius of 250 m and an aperture angle of 53.5◦. In case (1), the
transverse section of the closed valley is rectangular, while in case (2) it is
an isosceles triangle.

Question:
Determine the horizontal resultant of the water pressure on the dam.
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7.38: 1–4 A concrete wall is retaining 4.5 m of water. The support
reactions Fh and Fv exerted by the foundation provide equilibrium. The
specific weight of concrete is 24 kN/m3 and that of water is 10 kN/m3.

Questions (for 1 m retaining wall):
a. Determine support reaction Fh.
b. Determine support reaction Fv.
c. Determine the line of action of Fv.

7.39 The cross-section of a retaining wall is circular on the water-retaining
side.

Questions (for 1 m retaining wall):
a. Determine the vertical component of the water pressure.
b. Determine the horizontal component of the water pressure.
c. At which distance from A does the line of action of the resulting water

pressure intersect the base of the retaining wall?
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7.40: 1–4 A 5-metre wide dam is retaining a water level h. The dam
is composed of a flat vertical wall and a circular cylindrical wall. The
cross-section of the cylindrical wall is a quarter-circle with a radius of 3 m.

Question:
Determine the resultant of the water pressure on the 5-metre long circular
cylindrical wall, with its line of action, when:
a. h = 4.80 m.
b. h = 3.00 m.
c. h = 1.50 m.

7.41 A circular cylindrical slide with a length of 20 m, a radius of 7.5 m
and an aperture angle of 60◦, is retaining a water level h.

Question:
Determine the resultant of the water pressure on the slide, with its line of
action, if:
a. h = 8.0 m.
b. h = 6.5 m.
c. h = 4.0 m.



8Earth Pressures

All civil engineering structures eventually come into contact with the soil
for their foundations. For some structures, this contact is significant, such as
for retaining walls, diaphragm walls, lock chambers, culverts, open tunnel
sections, and tunnels. Here, an important part of the load consists of earth
pressures.

When calculating the stresses in soil, we assume that the grains in the
soil form a skeleton. The grain skeleton can transfer forces via the contact
points between the grains. Section 8.1 addresses the concept grain pressure.

In dry soil, the forces are transferred by means of the grain skeleton. In
wet soil, the water also plays a role. The water pressure combined with the
grain pressure is the earth pressure. Section 8.2 concerns the calculation of
vertical earth pressures.

In contrast to (stationary) gases and fluids, shear stresses do occur in soil.
The shear stresses are transferred by the grain skeleton. The horizontal
earth pressure is therefore in general not equal to the vertical earth pressure
(there is no isotropic stress state). Section 8.3 addresses the determination
of horizontal earth pressures.

The active and passive grain pressure are the two extreme values between
which the horizontal grain pressure can vary. These limits occur when a
slide plane develops and a soil mass slides (active grain pressure) or is
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Figure 8.1 A small part of the grain skeleton in dry soil. The
forces Fg are required to keep the grains on the section plane in
equilibrium.

Figure 8.2 (a) The grain stress pg is defined as the average grain
force over a small area that is large compared to the grain diameter.
(b) The grain stress pg has a normal stress component σg that acts
normal to the section plane and a shear stress component τg that
acts along the section plane.

upset (passive grain pressure). This is covered in Sections 8.3.1 and 8.3.2
respectively.

An intermediate value is the neutral grain pressure, the horizontal grain
pressure on an immovable rigid wall. The neutral grain pressure is covered
in more detail in Section 8.3.3.

The explanations in this chapter remain highly elementary. Soil is a com-
plex matter; its properties are so different from those of regular solids that
soil is not part of applied mechanics, but has its own discipline: soil me-
chanics. Please therefore refer to text on soil mechanics for more detailed
information.

8.1 Stresses in soil

Soil can be described as a collection of non-cohesive or mildly-cohesive,
generally small particles of mineral or organic origin, in which the voids
between the particles is entirely or partially filled with water or air. The
solid particles are called grains. This definition can be taken literally for
sand, but not too literally for clay or peat for example.

When calculating stresses in the soil, we assume that the grains in the soil
form a skeleton. The grain skeleton can transfer forces via the contact ar-
eas between the grains. In dry soil, the forces are transferred via the grain
skeleton; in wet soil, the water also plays a role.

To start with, we will look at dry soil. In Figure 8.1, part of the grain
skeleton has been isolated from dry soil. The section plane, with area A

cuts a number of grains. The forces Fg are required to keep the grains on
the section, and thus the isolated grain skeleton in equilibrium. The average
compressive grain force over a small area A, which is large compared to
the grain diameter, is defined as the grain pressure pg (see Figure 8.2a):
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Figure 8.3 In soil saturated with water, an all-round water pres-
sure σw acts on the grain. This load forms an equilibrium system,
regardless of the shape of the grain.

Figure 8.4 The water pressure on the grain skeleton in soil sat-
urated with water. The cut grains on the section plane remain in
equilibrium if the water pressure σw also acts on the grains in the
section plane. Since the water is also present in the pores between
the grains, there is an equal hydrostatic pressure σw across the entire
(horizontal) section plane.

�pg =
∑ �Fg

A
. (1)

The grain pressure pg has a normal stress component σg and a shear stress
component τg. The normal stress σg acts normal to the section plane, while
the shear stress τg acts in the section plane (see Figure 8.2b). For the sake
of clarity, neither of the stresses have been shown in the figure along the
entire length of the section.

Note that the convention from soil mechanics has been adopted, in which
compressive (normal) stresses in the soil are positive.

The grain pressure pg and the stress components σg and τg are a measure
for the forces that are transferred via the grain skeleton.

In soil that is fully saturated with water, water pressure acts on the grains,
in addition to the forces from the grain skeleton. If the contact surfaces
between the grains are modelled as points, the water pressure acts on the
entire surface of the grain. If the grains are so small that the difference
between the water pressures at the top and at the base of the grain is negli-
gible, it is said that the grain is subjected to an all-round water pressure σw.
This load, as shown in Figure 8.3 for a single grain, forms an equilibrium
system, regardless of the shape of the grain; see Section 7.2, Example 3
(Figure 7.14 and beyond).

In Figure 8.4, part of the grain skeleton has been isolated from the water-
saturated soil. Here too, the section cuts a number of grains. In the figure,
only the influence of the water pressure is shown. The forces in the grain
skeleton that lead to grain pressure pg have been omitted.

The cut grains on the horizontal section plane remain in equilibrium as
long as the water pressure σw also acts in the section plane on the grains,
as shown in Figure 8.4. Of course, the water pressure σw also acts in the
(horizontal) section plane in the pores between the grains. If the water is
stationary and all the pores are linked to one another, σw is the hydrostatic
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Figure 8.5 (a) The vertical earth pressure can be derived from the
vertical force equilibrium of a vertical soil prism. (b) The vertical
earth pressure σe;v increases linearly with depth z.

water pressure. This leads to the following conclusion:

Due to the water, the same hydrostatic water pressure σw acts over the
entire area of the (horizontal) section plane.

The water pressure σw combined with grain pressure pg, which represents
a measure for the forces in the grain skeleton, is called the earth pressure
pe. The earth pressure has a normal stress component σe and a shear stress
component τe:

σe = σg + σw, (2)

τe = τg. (3)

Note that the shear stresses in soil are exclusively transferred by the grain
skeleton!

8.2 Vertical earth pressures

In an extensive area with a horizontal ground level (GL), the vertical earth
pressures and grain pressures can be deduced from the vertical equilibrium
of a soil prism (see Figure 8.5a).

No shear stresses act on the vertical sides of the soil prism. This can be
deduced from symmetry considerations. In an unbounded region, each ver-
tical section is a section of mirror symmetry. Mirror symmetry implies
that if the shear stress is acting upward on the left-hand side, the shear
stress must at the same time be acting upward on the right-hand side, as
in Figure 8.6a. According to the principle of action and reaction, the shear
stresses must however be acting in opposite directions, as in Figure 8.6b.
Both conditions can be met only if these shear stresses are zero.
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Figure 8.6 There are no shear stresses acting in the vertical planes
of the soil prism. This can be deduced from the condition of mirror
symmetry in combination with the principle of action and reaction.
(a) Mirror symmetry means that if the shear stress is acting upwards
on the left-hand side of a vertical section, it must also act in an
upward direction on the right-hand side. (b) On the basis of the
principle of action and reaction, the shear stresses on the left-hand
and right-hand sides must have opposite directions. Both conditions
can be met concurrently only if these shear stresses are zero.

The weight �G of the soil prism in Figure 8.5a, with a height z and cross-
section �A is

�G = γez�A. (4)

Here, γe is the specific weight of the soil, including any water that may be
present. For the vertical earth pressure at a depth z one finds

σe;v = �G

�A
= γez. (5)

The vertical earth pressure increases linearly with depth z (see Figure 8.5b).

If the soil is entirely dry, the weight is carried entirely by the grain skeleton,
and the vertical grain pressure is equal to the vertical earth pressure:

σg;v = σe;v. (6)

If the soil is entirely saturated with water up to the ground level, the vertical
grain pressure is no longer equal to the vertical earth pressure:

σg;v �= σe;v. (7)

In that case, the vertical grain pressure σg;v is deduced from the vertical
earth pressure σe;v by reducing it by the water pressure σw:

σg;v = σe;v − σw.

If the water is stationary and all the pores are linked to one another, the
water pressure increases hydrostatically from zero at ground level to γwz at
a depth z:

σw = γwz
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Figure 8.7 In fully saturated soil, the vertical grain pressure σg;v
is found from the vertical earth pressure σe;v by subtracting it by the
water pressure σw. The vertical grain pressure is shown by means
of a hatching.

Figure 8.8 If in fully saturated soil the water level is increased to
above ground level, this influences the vertical earth pressure σe;v
but not the vertical grain pressure σg;v.

so that

σg;v = σe;v − σw = γez − γwz = (γe − γw)z. (8)

In Figure 8.7, the contribution of the vertical grain pressure σg;v in the
vertical earth pressure is shown by means of a hatching.

If, with fully saturated soil, the water level is raised to above the ground
level, this influences the vertical earth pressures, but not the vertical grain
pressures (see Figure 8.8):

σe;v = γwd + γez,

σg;v = σe;v − σw = γwd + γez − γw(d + z) = (γe − γw)z. (9)

An extensive, uniformly distributed load p on the ground level increases
both the vertical earth pressure and the vertical grain pressure by an amount
p. The water pressure does not change (see Figure 8.9):

σe;v = p + γez,

σg;v = σe;v − σw = p + (γe − γw)z. (10)

Example
Figure 8.10a shows a package with three soil layers. In the figure, the spe-
cific weight of the soil is given for each layer. The water level is 3 metres
below ground level. A uniformly distributed load of 15 kN/m2 is acting on
the ground level.

Question:
Determine the distribution of the vertical earth pressure and grain pressure.

Solution (units in kN and m):
First the vertical earth pressure σe;v = p + γez is determined. Second, we
determine the water pressure σw = γwz. The vertical grain pressure is found
by subtracting the water pressure from the earth vertical pressure.
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Figure 8.9 An extensive, uniformly distributed terrain load p on
the ground level increases both the vertical earth pressure and the
vertical grain pressure by an amount p. The water pressure does not
change.

Figure 8.10 (a) The specific weight of the soil is given for three
soil layers. The water level is 3 m below ground level. A uniformly
distributed load of 15 kN/m2 is acting on the ground level. (b) The
distribution of the vertical earth pressure, split into grain pressure
(hatched) and water pressure (not hatched). (c) The distribution of
the vertical grain pressure shown separately.

Table 8.1

z (m) σe;v (kN/m2) σw (kN/m2) σg;v = σe;v − σw (kN/m2)

0 15 0 15

3 15 + 16 × 3 = 63 0 63

8 63 + 20 × 5 = 163 10 × 5 = 50 113

10 163 + 18 × 2 = 199 10 × 7 = 70 129

The calculation is shown in Table 8.1.

Figure 8.10b shows the distribution of the vertical earth pressure, split ac-
cording to grain pressure (hatched) and water pressure (not hatched). If one
is only interested in the distribution of the vertical grain pressure, one can
also use the expression (10) given above:

σg;v = p + (γe − γw)z.

The calculation is summarised in Table 8.2.

Table 8.2

z (m) γe − γw (kN/m3) σg;v (kN/m2)

0 – p = 15

3 16 − 0 = 16 15 + 16 × 3 = 63

8 20 − 10 = 10 63 + 10 × 5 = 113

10 18 − 10 = 8 113 + 8 × 2 = 129

Figure 8.10c shows the distribution of the vertical grain pressure separately.
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Figure 8.11 The maximum shear stress τg;max that the grain
skeleton can transfer in a section is dependent on the normal stress
σg in that section according to τg;max = c + σg tan ϕ. Here c is the
cohesion and ϕ is the angle of internal friction.

Comment: In this section, the following were not taken into account:
• Deviation in the hydrostatic distribution of the water pressure due to

the presence of poorly-permeable layers;
• The influence of groundwater currents;
• The influence of time on a range of phenomena (time effects).

For these issues, please refer to the specialist field of soil mechanics.

8.3 Horizontal earth pressures

In contrast to (stationary) gases and fluids, shear stresses can occur in soil.
The shear stresses are transferred by the grain skeleton. The horizontal earth
pressure is therefore in general not equal to the vertical earth pressure (there
is no isotropic state of stress). To simplify the problem, we will for the
moment consider only dry soil. The grain pressures then remain equal to
the earth pressures.

It is often not easy to calculate the horizontal grain pressure. It is possible,
however, to indicate the limits to which it is bound. These limits are de-
termined by the maximum shear stress that the grain skeleton can transfer.
The maximum shear stress τg;max in a section depends on the normal stress
σg in that section:

τg;max = c + σg tan ϕ.

Here c is the cohesion1 and ϕ is the angle of internal friction. This rela-
tionship is shown in Figure 8.11.

1 Cohesion is the resistance to sliding resulting from a certain bond between the
soil particles because of sticking and tangling, the influence of capillary water,
and/or the hooking of particles with an irregular shape (hook resistance).
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Figure 8.12 The grain stresses on a triangular soil element.

Figure 8.13 The maximum shear stress τg;max is reached when
the soil slides. One can distinguish two cases: (a) the soil element
slides (moves downwards) and the shear stress in the slide plane PQ
works upwards, and (b) the soil element is upset (moves upwards)
and the shear stress in the slide plane PQ is directed downwards.
The condition after sliding or upsetting is shown with a dashed line.

To keep matters simple, we will consider only grainy matter, such as sand,
for which cohesion c is practically zero, so that

τg;max = σg tan ϕ.

In order to find the extreme values of the horizontal grain pressure, a
triangular slice OPQ is isolated from the soil (see Figure 8.12).

No shear stresses are acting on the vertical boundaries (section OP and the
front and back of the slice). This was shown by means of symmetry in
Section 8.2.

Suppose grain stresses σg and τg are acting on the oblique section PQ, and
horizontal grain pressure σg;h is acting in the vertical section OP. Vertical
grain pressure σg;v is acting on the horizontal section OQ. From the moment
equilibrium in the plane of the drawing, about the middle of PQ, it follows
that no shear stresses can be acting in the horizontal section OQ. Check it!

If shear stress τg on the oblique section PQ has reached its maximum τg;max,
the soil mass will slide. Here one can distinguish two situations, depending
on the direction in which the soil slides, and therefore the direction of the
shear stress τg;max. Figure 8.13 shows both cases; the situation after sliding
is shown by a dashed line.

The soil element in Figure 8.13a is sliding (moving downwards); the shear
stress in the slide plane PQ is acting upwards. In Figure 8.13b, the soil
element is upset (moving upwards) and the shear stress in the slide plane
PQ is directed downwards. For both cases with given σg;v we can look for
the angle α for which the horizontal grain pressure σg;h is extreme.

It is conventional to express the horizontal grain pressure in the vertical
grain pressure using a coefficient K:

σg;h = Kσg;v.
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Figure 8.14 The coefficient Ka and Kp for the active and passive
soil pressure respectively, shown on a number line.

The slide in Figure 8.13a leads to the so-called active earth pressure:

σg;h = Kaσg;v.

The active earth pressure is the largest horizontal pressure for which the
soil yields sideways (with smaller pressures the soil will certainly yield).

The upset in Figure 8.13b leads to the so-called passive earth pressure:

σg;h = Kpσg;v.

The passive earth pressure is the smallest horizontal pressures for which the
soil is upset (with larger pressure, the soil will certainly be upset).

The distinction between active and passive is derived from the way in which
the soil mass acts on its surroundings: active when (part of) a structure
yields under the influence of earth pressure, and passive when the soil offers
resistance to the displacement of (part of) a structure.

The active earth pressure on a wall has the same direction as the one
in which the wall yields; the passive earth pressure acts opposite to the
direction in which the wall moves.

Passive earth pressure can be expected to be greater than active earth pres-
sure. It will always require greater effort (pressure) to upset the soil (passive
earth pressure) than to resist sliding (active earth pressure). Figure 8.14
contains the coefficients for active and passive earth pressures on a number
line.

With the coefficients Ka and Kp for the active and passive earth pressures
respectively, we have determined the extreme limits for the horizontal earth
pressure (in dry soil). These limits occur when a slide plane can develop.
If this is not the case, the horizontal earth pressure lies somewhere between
both limits. One of the intermediate values is the neutral earth pressure.
This is the horizontal earth pressure on an entirely rigid wall, which does

Figure 8.13 The maximum shear stress τg;max is reached when
the soil slides. One can distinguish two cases: (a) the soil element
slides (moves downwards) and the shear stress in the slide plane PQ
works upwards, and (b) the soil element is upset (moves upwards)
and the shear stress in the slide plane PQ is directed downwards.
The condition after sliding or upsetting is shown with a dashed line.
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Figure 8.15 (a) The grain stresses on a triangular soil element
that is sliding (moving downwards). (b) The equations for the force
equilibrium in the plane of the drawing can be derived easily from
the fact that the force polygon is closed.

not move. This may include heavy retaining walls, lock walls, or tunnel
walls. One assumes that (in dry soil) the neutral earth pressure is also in pro-
portion to the vertical earth pressure, and refers to the associated coefficient
as K0.

The coefficients mentioned here for active, passive and neutral earth pres-
sure relate to the normal stresses in dry soil, or in other words, the normal
stresses in the grain skeleton (grain pressures). The earth pressure in soil
saturated with water is found by superposing the water pressure on the
normal stress in the grain skeleton.

The following sections address the magnitude of the coefficients for active,
passive, and neutral earth pressure.

8.3.1 Active earth pressure

The coefficient Ka for active earth pressure is derived using the triangular
slice of soil in Figure 8.15a.

If the area of side PQ is equal to �A, then the area of side OP is equal to
�A cos α and that of side OQ is equal to �A sin α. The forces on the three
sides of the soil element are therefore

OP: σg;h(�A cos α),

OQ: σg;v(�A sin α),

PQ: σg�A and τg;max�A.

The equations for the force equilibrium in the plane of the drawing are easy
to derive from the closed force polygon in Figure 8.15b.

Force equilibrium normal to PQ:

σg�A − σg;h(�A cosα) cos α − σg;v(�A sin α) sin α = 0.



296 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Force equilibrium parallel to PQ:

τg;max�A + σg;h(�A cosα) sin α − σg;v(�A sin α) cos α = 0.

From the two equations above, one can find the stresses in the slide plane
PQ:

σg = +σg;h cos2 α + σg;v sin2 α,

τg;max = −σg;h sin α cos α + σg;v sin α cos α.

Since the shear stress has its maximum, also

τg;max = σg tan ϕ.

In this expression, substitute those found before for σg and τg;max:

−σg;h sin α cos α + σg;v sin α cos α = (+σg;h cos2 α + σg;v sin2 α) tan ϕ.

This gives the coefficient for the active earth pressure1:

Ka = σg;h
σg;v

= 1 − 2 sin ϕ

sin(2α + ϕ) + sin ϕ
.

We are looking for the largest horizontal earth pressure for which the soil
slides. In other words, for which value of α does Ka have its maximum?

Ka has its maximum if the function

f = sin(2α + ϕ)

1 See Appendix 8.1 at the end of this chapter.

Figure 8.15 (a) The grain stresses on a triangular soil element
that is sliding (moving downwards). (b) The equations for the force
equilibrium in the plane of the drawing can be derived easily from
the fact that the force polygon is closed.
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Figure 8.16 A sheet-pile wall is located in a relatively imperme-
able layer of clay 4.5 m below ground level. The groundwater level
behind the sheet piling is 1.5 m below ground level. The specific
weight γe of the soil (dry and wet) behind the wall is given in the
figure.

is a maximum, therefore, 2α + ϕ = π
2 . For the angle α that the slide plane

PQ makes with the vertical, one finds

α = π

4
− ϕ

2
.

For this value of α

f = sin(2α + ϕ) = sin(π/2) = 1

which is a maximum. This also means that Ka and therefore the horizontal
earth pressure σg;h reaches a maximum for this value of α.

By substituting the value of α found in the derived expression for Ka, one
can immediately determine the value of the coefficient for the active earth
pressure:

Ka = 1 − sin ϕ

1 + sin ϕ
.

For sand, for example, with ϕ = 30◦, one finds

Ka = 1 − sin 30◦

1 + sin 30◦ = 1
3 .

In this case, the angle that the associated slide plane PQ makes with the
vertical is

α = 45◦ − 30◦

2
= 30◦.

Example
A sheet piling is located in an impermeable layer of clay 4.5 metres below
ground level (see Figure 8.16). The specific weight of the dry soil behind
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Figure 8.17 The distribution of (a) the vertical earth pressure and
(b) the horizontal earth pressure on the sheet piling when the earth
behind the sheet piling is entirely dry.

the sheet-pile wall is 16 kN/m3. The same soil, fully saturated with water,
has a specific weight of 20 kN/m3. The angle of internal friction is ϕ = 30◦.
There is no cohesion.

Question:
Determine the “shear force” V and the “bending moment” M acting in
cross-section A on a 1-metre wide vertical strip AB from the sheet piling.
The following two cases must be distinguished:
a. The soil behind the sheet piling (not as shown in Figure 8.16) is entirely

dry.
b. The groundwater level behind the sheet piling is 1.5 metres below the

ground level.

Solution:
a. Due to the deformation of the sheet piling caused by the earth pressure,
it will move slightly, and the soil may slide. The active earth pressure is
then acting on the dam wall. With ϕ = 30◦, the coefficient for active earth
pressure is

Ka = 1 − sin 30◦

1 + sin 30◦ = 1
3 .

If the soil behind the sheet piling is entirely dry, the earth pressures are
equal to the grain pressures. The horizontal earth pressure is 1/3 of the
vertical earth pressure, so that

σe;v = σg;v = γez,

σe;h = σg;h = Kaγez = 1
3γez.

Figure 8.17a shows the distribution of the vertical earth pressure, and
Figure 8.17b shows the distribution of the horizontal earth pressure. The
horizontal earth pressure on the sheet piling increases linearly from 0 at the
ground level to 1

3 × (16 kN/m3)(4.5 m) = 24 kN/m2 at A.

Figure 8.16 A sheet-pile wall is located in a relatively imperme-
able layer of clay 4.5 m below ground level. The groundwater level
behind the sheet piling is 1.5 m below ground level. The specific
weight γe of the soil (dry and wet) behind the wall is given in the
figure.
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Figure 8.18 The horizontal load on a vertical strip of sheet piling
that is 1-metre wide modelled as a line element for when the soil
behind the sheet piling is entirely dry. Shear force V and the bending
moment M in cross-section A are also shown.

Figure 8.19 If there is water behind the sheet piling, the soil
pressure is composed of a water pressure and a grain pressure.
(a) The distribution of the vertical earth pressure σe;v, including
the contribution of the water pressure σw. (b) If the water pressure
is subtracted from the vertical earth pressure, one finds the vertical
grain pressure σg;v. (c) The horizontal (active) grain pressure σg;h
is equal to the vertical grain pressure σg;v multiplied by Ka = 1/3.

Now isolate a vertical strip with a width of 1 metre from the sheet pile,
and model it as a line element. The horizontal load on the line element is
equal to the horizontal earth pressure multiplied by the width of 1 metre,
and therefore increases linearly from 0 at ground level to

(24 kN/m2)(1 m) = 24 kN/m

at A (see Figure 8.18).

The resultant R of the load is

R = 1
2

In cross-section A, there must be acting a shear force V and a (bending)
moment M . From the equilibrium of part AB cut from the wall, with the
directions as shown in Figure 8.18 we find

V = R = 54 kN,

M = (54 kN)(1.5 m) = 81 kNm.

These are the requested forces at A that act on the 1-metre wide vertical
strip AB isolated from the sheet piling.

b. If there is water behind the wall, the earth pressure is composed of a
water pressure and a grain pressure. Figure 8.19a shows the distribution
of the vertical earth pressure σe;v, including the contribution of the wa-
ter pressure σw. If the water pressure is subtracted from the vertical earth
pressure, it gives the vertical grain pressure σg;v (see Figure 8.19b). The
horizontal (active) grain pressure σg;h is equal to the vertical grain pressure
σg;v multiplied by Ka = 1/3 (see Figure 8.19c).

× (4.5 m)(24 kN/m) = 54 kN.
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Figure 8.20 (a) The horizontal earth pressure σe;h on the sheet
piling, composed of the horizontal water pressure σw and the hor-
izontal grain pressure σg;h. (b) The horizontal load on a 1-metre
wide strip of sheet piling modelled as a line element, together with
the shear force V and the bending moment M at A.

The sheet piling is subjected not only to the horizontal grain pressure, but
also to water pressure. Figure 8.20a shows the distribution of the horizontal
earth pressure σe;h, composed of the horizontal water pressure σw and the
horizontal grain pressure σg;h.

Figure 8.20b shows the horizontal load acting on a 1-metre strip isolated
from the sheet piling and modelled as a line element. The load diagram can
be split into a rectangle and two triangles, of which the resultants R and
their distances a to A are easy to calculate:

R1 = 0.5 × (1.5 m)(8 kN/m) = 6 kN, a1 = 3.5 m,

R2 = (3 m)(8 kN/m) = 24 kN, a2 = 1.5 m,

R3 = 0.5 × (3 m)(40 kN/m) = 60 kN, a1 = 1.0 m.

From the equilibrium of part AB of the sheet piling strip, we find with the
directions of V and M as shown in Figure 8.20b:

V = R1 + R2 + R3 = (6 + 24 + 60) kN = 90 kN,

M = R1a1 + R2a2 + R3a3

= (6 kN)(3.5 m) + (24 kN)(1.5 m) + (60 kN)(1 m) = 117 kNm.

These are the requested forces acting in A on the 1-metre wide vertical strip
AB from the sheet piling.

In practice, one often uses a method developed by Coulomb1 based on flat
slide planes. Here, one assumes that the pressure on the wall is caused by a

1 Charles Auguste de Coulomb (1736–1806), French scientist, known for his
experiments in friction and electrostatic forces.
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Figure 8.21 In practice, one often uses a method developed by
Coulomb based on flat slide planes. Here one assumes that the
pressure on the wall is caused by a triangular piece of soil that
slides along a flat slide plane. One can recognise the triangular soil
element from Figure 8.15a on the edge of the slide plane.

triangular piece of soil that slides along a flat slide plane (see Figure 8.21).
One can deduce that the most dangerous slide plane (in the active case of a
yielding wall) makes an angle

α = π

4
− ϕ

2

with the vertical. This turns out to be precisely the angle of the planes, as
derived earlier, in which the shear stress is a maximum. The magnitude
of the earth pressure according to Coulomb’s method also agrees with the
result above.

The agreement can best be understood by means of the sliding wedge of soil
in Figure 8.21, assuming that there are no shear stresses in the horizontal
and vertical planes (there is therefore also no wall friction). For simplicity,
we will again assume that the soil is entirely dry.

One can recognise the triangular soil element we dealt with earlier on the
edge of the slide plane, with stresses σg and τg;max on the oblique side. The
weight of the vertical soil column determines the vertical grain pressure
σg;v. The horizontal strip of soil transfers the horizontal grain pressure σg;h
to the wall.

The method with slide planes has the advantage that it is relatively easy to
see that a terrain load on ground level increases the horizontal earth pressure
on the wall only if it acts on the sliding soil wedge.

Comment: For the influence of wall friction, oblique walls, or oblique
ground levels, as well as the necessary nuances in the examples shown here,
please refer to a text book on the field of soil mechanics.
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Figure 8.22 (a) The grain stresses on a triangular soil element that
is upset (moving upwards). (b) The equations for the force equilib-
rium in the plane of the drawing can easily be derived from the fact
that the force polygon is closed.

8.3.2 Passive earth pressure

The coefficient Kp for passive earth pressure can be derived using the tri-
angular wedge of soil in Figure 8.22a, in the same way as the coefficient
for active earth pressure in Section 8.3.1.

The equations for the force equilibrium in the plane of the drawing can be
found from the closed force polygon in Figure 8.22b.

Force equilibrium perpendicular and parallel to PQ:

σg�A − σg;h(�A cos α) cos α − σg;v(�A sin α) sin α = 0,

τg;max�A − σg;h(�A cosα) sin α + σg;v(�A sin α) cos α = 0

so that

σg = +σg;h cos2 α + σg;v sin2 α,

τg;max = +σg;h sin α cos α − σg;h sin α cos α.

The shear stress is a maximum, therefore

τg;max = σg tan ϕ.

In this expression substitute the expressions found for σg and τg;max:

+σg;h sin α cos α − σg;v sin α cos α = (+σg;h cos2 α + σg;v sin2 α) tan ϕ.
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This gives the coefficient for passive earth pressure1:

Kp = σg;h
σg;v

= 1 + 2 sin ϕ

sin(2α − ϕ) − sin ϕ
.

We are trying to find the smallest horizontal earth pressure for which the
soil is upset. In other words, for which value of α is Kp a minimum?

Kp is a minimum if the function

f = sin(2α − ϕ)

is a maximum, therefore 2α − ϕ = π
2 . For the angle α that the slide plane

PQ makes with the vertical one finds

α = π

4
+ ϕ

2
.

For this value of α

f = sin(2α − ϕ) = sin(π/2) = 1

and f indeed is a maximum. This means that Kp and therefore the horizon-
tal grain pressure σg;h has a minimum for this value of α.

The value of the coefficient Kp for passive earth pressure is found directly
by substituting the value found for α in the expression derived for Kp:

Kp = 1 + sin ϕ

1 − sin ϕ
.

1 See Appendix 8.2 at the end of this chapter.
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Figure 8.23 A square anchor plate in dry soil.

With sand, for instance, with ϕ = 30◦, one finds

Kp = 1 + sin 30◦

1 − sin 30◦ = 3.

In this case the coefficient Kp for passive earth pressure is 9 times larger
than the coefficient Ka for active earth pressure! The angle α that the
associated slide plane PQ makes with the vertical is

α = 45◦ + 30◦

2
= 60◦.

Note that:
• The angle α that the slide plane makes with the vertical in the active

case (when the wall yields) is always smaller than 45◦ and in the
passive case (if the wall is upset) is always larger than 45◦.

• There is a relationship between the coefficients for active and passive
earth pressure, namely

KaKp = 1.

Example
A square anchor plate is located in entirely dry soil (see Figure 8.23). The
specific weight of the soil is 18 kN/m3. The angle of internal friction is 24◦.
There is no cohesion.

Questions:
a. Determine the maximum anchor force that the plate can provide.
b. Determine the influence of a vertical terrain load of 20 kN/m2 on the

magnitude of the maximum anchor force.

Solution:
a. Due to the anchor force, the plate will tend to move to the left. An
area of passive earth pressure develops in front of the plate, and an area
of active earth pressure develops behind the plate. The coefficients Kp and
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Figure 8.24 (a) The distribution of the vertical earth pressure
and (b) the distribution of the passive and active (horizontal) earth
pressure on the anchor plate.

Ka, respectively for the active and passive earth pressure, are

Kp = 1 + sin 24◦

1 − sin 24◦ = 2.37,

Ka = 1 − sin 24◦

1 + sin 24◦ = 0.42.

Figure 8.24a shows the distribution of the vertical earth pressure. Derived
from the vertical earth pressure, Figure 8.24b shows the distribution of
the (horizontal) passive and active earth pressure on the plate. Taking into
account the width of 2 metres of the plate, the resultants Rp and Ra of
respectively the passive and active earth pressure are

Rp = (2 m) × 0.5 × (85.32 kN/m2)(2 m) = 170.64 kN,

Ra = (2 m) × 0.5 × (15.12 kN/m2)(2 m) = 30.24 kN.

The maximum anchor force F that the plate can provide is

F = Rp − Ra = (170.64 kN) − (30.24 kN) = 140.4 kN.

b. Any terrain load p increases the vertical grain pressure in the soil and
therefore also increases the active earth pressure (resultant Ra) and the
passive earth pressure (resultant Rp).

Maximum anchor force means the anchor force that the plate can offer is
guaranteed. In fact, we are therefore looking for the smallest value of

F = Rp − Ra.

The least favourable condition occurs when Rp is a minimum (no terrain
load in the passive area) and Ra is a maximum (terrain load in the active
area).
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Figure 8.25 Using slide planes according to Coulomb’s method,
we quickly realise that a terrain load in the active area decreases the
anchor force: the passive earth pressure remains unchanged while
the active earth pressure increases across the entire plate.

Figure 8.26 The distribution of the passive and active earth pres-
sure on the anchor plate.

This unfavourable condition is shown in Figure 8.25, as well as the slide
planes according to Coulomb’s method. The associated distribution of the
passive and active earth pressure is shown in Figure 8.26. The passive earth
pressure remains unchanged, but the active earth pressure increases across
the entire plate by

Kap = 0.42 × (20 kN/m2) = 8.4 kN/m2.

The resultant Ra of the active earth pressure is now

Ra = (30.24 kN) + (2 m)(2 m)(8.4 kN/m2) = 63.84 kN

so that the maximum anchor force is

F = Rp − Ra = (170.64 kN) − (63.84 kN) = 106.8 kN.

The terrain load of 20 kN/m2 in the area where the active earth pressures de-
velop decreases the force that the plate can take by 33.6 kN, from 140.4 kN
to 106.8 kN.

Note: When calculating the anchor force, we assume that the soil is upset
over a width of 2 m (the width of the anchor plate). In reality, the width
of the soil that is upset will be greater. For this and other discrepancies
between the model and reality, please refer to a textbook on the field of soil
mechanics.

8.3.3 Neutral earth pressure

With the coefficients Ka and Kp for the active and passive earth pressure
respectively, we have defined the extreme limits of the horizontal earth
pressure. These limits occur when a slide plane can develop. If this is not
possible, the horizontal earth pressure is between these values.
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Figure 8.27 The coefficients Ka, Kp and K0 for the active, pas-
sive, and neutral earth pressure respectively, depicted on a number
line. The numerical values relate to soil with an angle of internal
friction ϕ = 30◦, like sand, for instance.

One of these intermediate values is the neutral earth pressure. This is the
horizontal earth pressure on an immovable wall, which may include heavy
retaining walls, lock walls, or tunnel walls.

One assumes that the neutral earth pressure is also proportional to the
vertical earth pressure σg;v and we call the associated coefficient K0:

σg;h = K0σg;v.

The value of K0 will be between K = Ka and K = 1 (when there are no
shear stresses). One often poses that:

K0 = 1 − sin ϕ.

Figure 8.27 shows the coefficients Ka, Kp and K0 on a number line. The
numerical values included relate to soil with an angle of internal friction
ϕ = 30◦, such as sand, for instance.

Appendix 8.1

Determining the coefficient Ka for active earth pressure:

Ka = sin α cos α − sin2 α tan ϕ

sin α cos α + cos2 α tan ϕ
= 1 − cos α2 tan ϕ + sin2 α tan ϕ

sin α cos α + cos2 α tan ϕ

= 1 − sin ϕ

cos α(sin α cos ϕ + cos α sin ϕ)
= 1 − sin ϕ

cos α sin(α + ϕ)

= 1 − 2 sin ϕ

sin(2α + ϕ) + sin ϕ
.
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To determine the coefficient, we used the two trigoniometric equations
shown below:

sin(α + β) = sin α cos β + cos α sin β,

2 sin α cos β = sin(α + β) + sin(α − β).

Appendix 8.2

Determining coefficient Kp for passive earth pressure:

Kp = sin α cos α + sin2 α tan ϕ

sin α cos α − cos2 α tan ϕ
= 1 + cos α2 tan ϕ + sin2 α tan ϕ

sin α cos α − cos2 α tan ϕ

= 1 + sin ϕ

cos α(sin α cos ϕ − cos α sin ϕ)
= 1 + sin ϕ

cos α sin(α − ϕ)

= 1 + 2 sin ϕ

sin(2α − ϕ) − sin ϕ
.

To determine the coefficient, we used the two trigoniometric equations
shown below:

sin(α − β) = sin α cos β − cos α sin β,

2 cos α sin β = sin(α + β) − sin(α − β).
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8.4 Problems

Unless indicated otherwise, the following apply for all questions:
• Specific weight of water: γwater = 10 kN/m3.
• Coefficient for active earth pressure: Ka = 1/3.
• Coefficient for passive earth pressure: Kp = 3.
• The soil has no cohesion.
• All levels are given in metres with respect to sea level (SL).

Vertical earth pressures (Section 8.2)

8.1 In an area with sandy soil, the groundwater is 1 m below ground level.
The specific weight of dry sand is 15 kN/m3. The pore volume of sand is
40%.

Questions:
a. Determine the specific weight of wet sand.

Draw the distribution to 3 m under the ground level of:
b. the vertical earth pressure.
c. the vertical grain pressure.
d. the water pressure.
e. How do the vertical earth pressure, grain pressure and water pressure

change if the groundwater rises by 0.5 m?
f. How do the vertical earth pressure, grain pressure and water pressure

change if the groundwater drops by 0.8 m?

8.2 As problem 8.1, but now with a terrain load of 5 kN/m2.

8.3 In an area with sandy soil, the groundwater is 1.2 m below ground
level. Specific weight of the wet sand is 18 kN/m3. The pore volume of the
sand is 35%.

Questions:
a. Determine the specific weight of dry sand.

Draw the distribution to 3 m under the ground level of:
b. the vertical earth pressure.
c. the vertical grain pressure.
d. the water pressure.
e. How do the vertical earth pressure, grain pressure and water pressure

change if the groundwater rises by 0.6 m?
f. How do the vertical earth pressure, grain pressure and water pressure

change if the groundwater drops by 0.8 m?

8.4 As problem 8.3, but now with a terrain load of 4 kN/m2.

8.5: 1–3 An area consists of various soil layers. The groundwater is 2 m
below ground level (GL).
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Material Specific weight (kN/m3)

dry sand 16

wet sand 20

wet peat 12

wet clay 18

Question:
Draw the distribution to 15 m under ground level of:
a. the vertical earth pressure.
b. the vertical grain pressure.
c. the water pressure.
e. How do the vertical earth pressure, grain pressure and water pressure

change if the groundwater rises by 1.0 m?
f. How do the vertical earth pressure, grain pressure and water pressure

change if the groundwater drops by 1.0 m?

8.6: 1–3 As problem 8.5, but now with a terrain load of 6 kN/m2.

8.7 Soil mechanical research showed that with traditional preparation of a
site for building works, one has to take into account a settlement of 2.0 m
after 17.5 years. For this reason, a settlement-free raise was selected, using
polystyrene.

Existing situation Level SL (m) Material Specific weight
(kN/m3)

ground level –1.50 peat/dry 12

groundwater level –2.10

New situation Specific weight (kN/m3)

Street level SL–1.00 m –

0.05 m concrete paving 23

0.15 m dry sand 14

foil –

0.10 m concrete with shrink mesh 24

??? m polystyrene 0.2

0.05 m wet setting sand 17.5

Question:
How thick does the layer of polystyrene have to be if the earth pressure
under the raise is the same as in the original situation?

8.8 Polystyrene is to be used for the construction of an access road in a
peat area. The road structure is as follows (see the table below):
The weight of foil and geo-textile are negligible. Assume that polystyrene
does not absorb water.
The ground level is at SL. The base of the slag layer is at the same height
as the ground level. The average groundwater level is SL–0.25. The terrain
load on the road is 6 kN/m2.
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Construction m Material Specific weight (kN/m3)

rolled asphalt 0.17 rolled asphalt 24

slag 0.25 slag 17

sand 0.10 dry sand 15

foil – wet sand 19

polystyrene ??? dry peat 13

sand 0.10 wet peat 15

geo-textile – polystyrene 0.2

peat –

Questions:
a. How thick, with the average water level, does the layer of polystyrene

have to be so that, for the road with the terrain load, the earth pres-
sure under the geo-textile is equal to the earth pressure in the original
situation?

b. To which height can the groundwater level rise so that the road (without
terrain load) does not rise up?

8.9 Two tubes of a tunnel for slow traffic under a river have been drilled
using a special drilling machine. The external diameter of the concrete tun-
nel tube is 8.3 m, the walls are 0.3 m thick. In the river, the tunnel has a
ground cover of 8.3 m. The riverbed consists of a layer of clay 1.5 m thick
on sand. From the ground level, the south bank has a 2.0 m thick layer of
clay on peat/sand. The groundwater level is 1.5 m under ground level. As
vertical load, only the soil directly above the tube is taken into account.

Material Specific weight (kN/m3)

dry clay 14

wet clay 17

wet peat/sand 15

wet sand 18

concrete 24

Questions:
a. Determine the upward and downward forces on an empty tunnel tube

under the riverbed, in kN/m (force per m length of the tunnel).
Check whether the tunnel will float.

b. How deep must the tunnel be built under the ground level of the south
bank so that the difference between the upward and downward forces
is 87.5 kN/m?
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8.10 Concrete diaphragm walls have been used to build an underground
railroad. The walls were poured into the clay. The clay layer is located
under a layer of sand from SL–16.00 to SL–30.00. The building pit is dug
to SL–17.00 and drained to SL–18.00. The groundwater is at SL–1.00.

Material Specific weight (kN/m3)

dry sand 14

wet sand 18

wet clay 17

Questions:
a. How thick must the clay layer be so that after digging and draining in

the building pit there is a grain pressure of 5 kN/m2 at the base of the
clay layer?
Hint: clay is highly impermeable.

b. At which thickness of the clay will the building pit burst?

Horizontal earth pressures (Section 8.3)

8.11: 1–3 You are given a sheet-pile wall alongside a quay. There are three
different soil profiles.

Material Specific weight (kN/m3)

dry sand 16

wet sand 20

wet peat 12

wet clay 18

Questions:
a. Up to SL–15.00, draw the distribution of the horizontal water pressure

to the left and the earth pressure to the right of the sheet pile. Split the
earth pressure up into grain pressure and water pressure.

b. Draw the distribution of the resulting pressure on the sheet-pile wall.
c. Determine the resultant of the horizontal load on a 1-metre wide

vertical strip of the wall in kN/m.
d. Also answer questions a to c with a terrain load of 12 kN/m2.
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8.12: 1–3 As problem 8.11, but now the water level to the left of the sheet
piling is 1.5 m below the groundwater level to the right.

8.13: 1–2 Sand is located under the anchor bars of an anchored sheet
piling in a port. The soil is filled up to ground level. To fill the site, there is
a choice between sand and a (far more expensive) foam mortar. The terrain
load is 20 kN/m2.

Material Specific weight (kN/m3)

dry sand 15

wet sand 18

dry foam mortar 2

wet foam mortar 6

Questions:
a. To SL–6.8, draw the distribution of the horizontal pressures to the left

and to the right of the sheet piling.
b. Draw the distribution of the resulting horizontal pressure on the sheet

piling.
c. Determine the resultant of the horizontal load on a 1-metre wide verti-

cal strip of sheet piling in kN/m.

d. How does the horizontal load change if there is no terrain load?

8.14 A building pit is surrounded by a steel sheet piling and is still full of
water. The soil profile is shown in the figure.

Material Specific weight (kN/m3)

dry sand 15

wet sand 18

wet peat 12

Questions:
a. Up to the clay layer, draw the distribution of the horizontal pressure

on the outside of the sheet piling, split into grain pressure and water
pressure.

b. Up to the clay layer, draw the distribution of the horizontal pressure
on the inside of the sheet piling, split into grain pressure and water
pressure.

c. Draw the distribution of the resulting horizontal load on the sheet
piling.

d. Determine the resultant of the horizontal load on a 1-metre wide
vertical strip of sheet piling in kN/m.

e. How does the resultant of the horizontal load on the sheet piling (in
kN/m) change if the water level in the building pit is lowered to SL–8.0?
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8.15 An anchor plate is located in dry soil, 1 m below ground level. The
plate is 2 m high and 1.5 m wide. It can be assumed here that the anchor
plate runs up to ground level. The specific weight of the soil is 15 kN/m3.

Questions:
a. Determine the maximum anchor force that the plate can provide.
b. Determine the influence of an terrain load of 18 kN/m on the magnitude

of the anchor force.

8.16: 1–2 As 8.15, but now with an anchor plate that is 1.5 m high and
2 m wide, with the plate 1 m, respectively 1.5 m under ground level.

8.17 An anchor plate is located in dry soil, 1 m below ground level, and is
2 m high and 1.5 m wide. It can be assumed here that the anchor plate runs
up to ground level. The specific weight of the soil is 15 kN/m3. The angle
of internal friction is 20◦.

Questions:
a. Determine the coefficient for active earth pressure.
b. Determine the coefficient for passive earth pressure.
c. Determine the maximum anchor force that the plate can provide.
d. Determine the influence of an terrain load of 18 kN/m on the magnitude

of the anchor force.

8.18: 1–2 As 8.17, but now with an anchor plate that is 1.5 m high and 2 m
wide, with the anchor plate 1 m, respectively 1.5 m under ground level.
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Various questions

8.19 During the construction of a railway, part of the existing railway
was moved to make room for the building pit of the new railway. In
order to prevent settlement, it was decided to introduce a raise with light
argex grains. The grains are sealed from the groundwater by means of a
waterproof membrane and are kept dry by means of drainage.

Construction in the Level SL (m) Material Specific weight
railway: (kN/m3)

topside ballast bed +1.50 ballast 18

topside gravel layer +0.90 gravel 17.5

topside sand layer +0.80 sand/dry 15

topside argex grains +0.30 argex/dry 6.5

Next to the railway: Level SL (m) Material Specific weight
(kN/m3)

ground level 0.00 soil/dry 14

groundwater level –1.00 soil/wet 17

Questions:
a. Up to 3 m below ground level, draw the distribution of the vertical earth

pressure outside the sheet-pile walls. In the diagram, indicate which
part of the earth pressure is caused by the grain pressure and which is
caused by the water pressure.

b. How deep must the waterproof membrane be with respect to SL, so that
the vertical earth pressure directly under the membrane is equal to the
earth pressure outside the sheet-pile walls?

c. Draw the distribution of the vertical earth pressure within the sheet-pile
walls, to 3 m below ground level. In the diagram, indicate which part of
the earth pressures is caused by the grain pressure and which is caused
by the water pressure.

d. Up to 3 m below ground level, draw the distribution of the horizontal
earth pressure on the outside of the sheet piling. In the diagram, indicate
which part of the earth pressures is caused by the grain pressure and
which is caused by the water pressure.
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8.20 A concrete culvert with rectangular cross-section 2 m wide and 2.1 m
high and the same wall thickness everywhere of 0.25 m, is located with its
top side 3.0 m under ground level. The groundwater is located 1.2 m under
ground level.

The specific weights are

γearth;dry = 17.5 kN/m3;
γearth;wet = 20 kN/m3;
γconcrete = 24 kN/m3.

Question:
Determine the distribution of the earth pressure, split up into grain pressure
and water pressure, on
a. the top side of the culvert.
b. the sides of the culvert.
c. the base of the culvert.

8.21 At a crossroad with unequal levels, one of the roads passes under the
other in a trough structure. Sheet-pile walls are driven into the clay layer.
Subsequently, the pit is dug down until SL–6.00 and the water in the pit is

drained to SL–7.00. Once the trough structure is completed, the sheet-pile
walls are removed.

Material Specific weight (kN/m3)

dry sand 15

wet sand 20

wet clay 18

concrete 24

Questions:
a. To SL–14.00, draw the distribution of the vertical earth pressure. In the

diagram, indicate which part of the earth pressure is caused by the grain
pressure and which is caused by the water pressure.

b. Is the building pit safe from bursting once it has been dug out but prior
to the placement of the concrete trough structure?

c. Show that, if there are no tension piles, the concrete trough will rise
once the sheet-pile walls have been removed.

d. Draw the horizontal earth pressure on the wall of the trough structure.
In the diagram, indicate which part of the earth pressure is caused by
the grain pressure and which is caused by the water pressure.
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8.22 Diaphragm walls have been used to build a tunnel. The diaphragm
walls run to SL–33.00. The building pit has been dug out to SL–19.00, after
which a soil improvement of 4 m was used to SL–1500. The lower struts
are at SL–12.00. Ground level is at SL. The groundwater is at SL–1.00. The
soil profile is as follows:

• 17 m peat: from SL to SL–17.00
• 13 m (Pleistocene) sand: from SL–17.00 to SL–30.00
• 5 m loam: from SL–30.00 to SL–35.00
• sand: from SL–35.00

Material Specific weight (kN/m3)

dry peat 13

wet peat 15

pleistoc. sand wet 19

loam 18

soil improvement 16

Questions:
a. To SL–35.00, draw the distribution of the vertical earth pressure ad-

jacent to the building pit, split up into grain pressure and water
pressure.

b. After applying the soil improvement in the building pit, how large is the
grain pressure directly under the loam layer? The water in the building
pit is at SL–19 .00

c. From SL–12.00 to SL–20.00, draw the distribution of the horizontal
earth pressure on the outside of the diaphragm wall, split into grain
pressure and water pressure.
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A truss is by definition a structure assembled with straight bars (members),
which are connected by hinged joints, and loaded by forces which have
their point of application at these joints.

In comparison to heavily-built structures, trusses need little material, and
therefore have a relatively small dead weight. If we consider the use of little
material, and the reduced costs for foundation because of the small dead
weight, they can be cost saving. On the other hand, constructing trusses is
often labour-intensive due to the complexity of the joints, and labour costs
can be higher. Nevertheless, the total costs may be lower, and trusses can
be an interesting type of structure from an economic perspective.

Trusses are often used in roof structures, bridges, cranes, and so forth.
Scaffoldings are also often trusses.

Section 9.1 addresses the difference between a space truss and a plane truss.
The rest of this chapter only looks at plane trusses. For this type of truss,
all the members are located in the same plane, and the load acts in the plane
of the truss. Section 9.1 also looks at the modelling of a structure as a truss,
the nomenclature for the members in a truss, and the conventions used to
label the joints and members.

Section 9.2 explains the relationship between the number of members and
joints in a simple or self-contained truss and a compound truss respectively.
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Next, the kinematic/static (in)determinacy of a truss is investigated and the
relationship between the number of support reactions, members and joints
is considered.

Calculating the member forces in a truss is addressed in Section 9.3. There
are several methods for this, two of which are discussed:
• the method of sections;
• the method of joints.

In the method of sections, we make a suitable section in the truss, and
calculate the member forces from the equilibrium of one of the bisected
(isolated) parts. In the method of joints, we calculate the member forces
from the equilibrium of the joints.

The methods mentioned are manual calculation methods and are applicable
only to statically determinate trusses; they demand the necessary insight if
they are to be used effectively. Sometimes it is useful to use both methods
in combination.

Nowadays, we generally use computer programs to calculate trusses. Many
of these programs use the so-called displacement method, which can be
used for both statically determinate and statically indeterminate trusses.1

Even though increasing numbers of calculations are performed using com-
puter programs, the manual calculation methods remain valuable, even if
only because they can be used as a relatively simple check. This is true par-
ticularly for the method of sections, which offers a superb way of checking
computer-based results. It allows us to check for errors that may be, for
example, the result of incorrect data entry by the user.

1 The displacement method not only uses the equilibrium relationships, but also
the behaviour of the material (the constitutive relationships) and the compatibil-
ity of the structure (the kinematic relationships). The constitutive and kinematic
relationships are covered in Volume 2: Stresses, Deformations, Displacements.
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Figure 9.1 Space trusses. (a) Side view and top view of a truncated
truss dome. (b) A space truss constructed from plane trusses.

9.1 Plane trusses

This section addresses the difference between a space truss and a plane
truss. From here on, we will look only at plane trusses, with all members
in the same plane, and the load acting in the plane of the truss. We will
also look at the way in which a structure is modelled as a truss, the
nomenclature for the members in a truss, the various types of trusses, and
the conventions for labelling the joints and members.

9.1.1 Plane and space trusses

A truss is defined as a structure constructed with straight bars (members),
which are connected by hinges at so-called joints, and loaded by forces
which have their point of application at these joints.

There are plane trusses and space trusses. In plane trusses, all the members
are in the same plane, and forces only act in the plane of the structure. In
space trusses, the members are not all in the same plane (see Figure 9.1).

Many space trusses in fact consist of plane trusses, such as the structure
in Figure 9.1b. The load shown is transferred to the supports via the plane
trusses ABCD and ABEG.

From here on, we will look only at plane trusses. The open circles, which
indicate the hinged joints, will be omitted since in a truss all joints are
hinged by definition.

9.1.2 Modelling a structure as a truss

Calculating a plane truss, hereafter referred to as truss, is based on the
following assumptions:
• all members are straight;
• all members are connected at hinged joints;
• the load consists of forces that act in the plane of the structure and apply

at the joints.
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Figure 9.2 A hinged joint.

Figure 9.3 In trusses, the member axes intersect at one point. The
members are usually rigidly connected to one another by a gusset
plate. The joints (a) in a steel truss and (b) in a wooden truss are
examples of this.

This implies that all the members in the truss behave as two-force members
and can only transfer tensile and compressive forces between the joints (see
also Sections 3.2.2 and Figure 3.35).

In the past, one tried to realise the connections in the joints as real hinges
(see Figure 9.2). These days, all the members are rigidly connected, either
directly or via a so-called gusset plate. Figure 9.3 shows two examples of a
joint with a gusset plate: one made of steel (a) and the other made of wood
(b). It is clear that these joints are not hinged. One can show, however, that
whether or not the joints are hinged, this in fact has little impact on the
force flow. A condition is, however, that the member axes intersect at the
joints – clearly the case in Figure 9.3 – and that the load is applied at the
joints.1 This must be taken into account seriously when designing a truss.

Figures 9.4a to 9.4d show four structures with rigid joints, for which the
load consists of forces that act at the joints. These structures behave as
trusses, and can be calculated as such only if the structure remains kine-
matically determinate when all the rigid joints are replaced by hinged
joints.

Figures 9.4e to 9.4h show the same structures as in (a) to (d), but now with
hinged joints. After applying hinges, structures (a) and (b) are kinematically
determinate and can therefore be considered trusses. With structures (c) and
(d), a mechanism is formed after introducing hinged joints. They are now
kinematically indeterminate and cannot be calculated as trusses. The force
flow in these structures occurs mainly by bending.

The simple truss bridge in Figure 9.5 shows how to ensure that the load on
the bridge ends up at the joints of the truss. The bridge consists of two main
beams constructed as plane trusses. Cross beams have been introduced

1 The proof for this cannot be given at this stage, but is based on the characteristic
that the members in a truss are relatively weak with respect to bending, and
relatively stiff with respect to extension (changing length).



9 Trusses 323

between the main beams, which are supported at the joints of the truss.
Between the cross beams, stringers carry the deck (not shown). In this way,
the traffic loading is directed via deck, stringers and cross beams as joint
loads onto the trusses.

Figure 9.5 The structure of a simple truss bridge.

Figure 9.4 (a) to (d) Four structures with rigid joints and loaded
by forces at the joints. (e) to (h) The same structures, but now all
the rigid joints are replaced by hinged joints. With hinged joints
(a) ad (b) are kinematically determinate and can be considered to
be trusses. For (c) and (d), the use of hinged joints generates a
mechanism; they cannot be considered trusses. The force flow in
(c) and (d) occurs mainly by bending.

Figure 9.4
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Figure 9.6 We assume that the dead weight of a truss applies in
the joints. The total dead weight Fdw of a truss member is equally
distributed over both adjacent joints.

Figure 9.7 The members along the chord or circumference of the
truss are chord members (ch), the others are known as bracing mem-
bers (br). Chord members can be divided into top chord members
(t) and bottom chord members (b), while for bracing members we
distinguish between verticals (v) and diagonals (d). A vertical chord
member is also referred to as a vertical.

One also often assumes that the dead weight of a truss applies at the joints.
The total dead weight Fdw of a truss member is split up into two equal
forces in both adjacent joints (see Figure 9.6). This is a rough model of
reality, but since the dead weight is generally small with respect to the other
loads that the truss has to bear, the deviations that occur are relatively small.

9.1.3 Nomenclature members and truss types

Figure 9.7 shows part of a truss. The letters show the names of the mem-
bers in the truss. The members along the chord or perimeter of the truss
are called chord members (ch), the others are referred to as bracing mem-
bers (br). Chord members can be divided into top chord members (t) and
bottom chord members (b). For bracing members, we distinguish between
verticals (v) and diagonals (d), depending on whether the members are
positioned vertically or obliquely. Vertical chord members are also referred
to as verticals. In certain cases, one distinguishes between rising diagonals
(rd) and falling diagonals (fd), depending on their position, seen from the
perspective of the nearest support, towards the centre (see Figure 9.8).

Figure 9.8 Trusses with (a) rising diagonals (rd), (b) falling diag-
onals (fd) and (c) alternating falling and rising diagonals.
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Figure 9.9 Trusses applied in roofs.

In the following you will find a number of types of trusses. Several trusses
have been named after their designer or after the region where they were
developed. We will not discuss this nomenclature further, which differs per
language area. We will also not address the benefits and disadvantage of the
various trusses. We will briefly discuss only the motive for choosing rising
or falling diagonals.

Figure 9.9 shows a number of trusses that are commonly used in roofs.

In a Belgian truss (a) the bracing consists of members at right angles to the
top chord, and diagonals. In an English truss (Howe truss) (b) the bracing
consists of verticals and diagonals. Trusses (c) and (d) have gently sloping
top chords and alternating rising and falling diagonals. Truss (c) is suitable
for a transom window. In a Polonceau truss (Fink truss) (e) one can recog-
nise a three-hinged truss with a tie rod. Truss (f) is used in saw tooth roofs;
glass is placed in the sheer sloping roof planes.

The truss in Figure 9.10 can be used in canopies and is therefore also
referred to as a canopy truss.

Figure 9.10 A canopy truss.
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Figure 9.11 Trusses applied in bridges. The bridge deck is shown
by means of a double line.

Figure 9.12 From the expected deformation due to a full load, we
can deduce that (a) falling diagonals will extend and be subject to
tension, and that (b) rising diagonals will shorten and be subject to
compression.

You will find the trusses in Figure 9.11 in bridges. The deck is shown by
means of a double line. Bridges (a), (b), (c) and (f) have a lower deck. The
other bridges have an upper deck.

Since these trusses have the same function as a beam, they are often called
truss beams. Trusses (a), (b), (c) and (g) are known as parallel truss beams,
as a result of their parallel top and bottom chords. If the end verticals are
omitted from a parallel beam, as in truss (d), the truss is referred to as a
trapezoidal truss beam.

Truss beam (e) has a curved bottom chord. Truss beam (f) has a curved top
chord. In a curved chord, the joints of the chord are located on a curve. The
chord members are straight. The curve is often a parabola. This is known as
a parabolic truss beam if the points of support are also part of the parabola,
as in truss (f). If this is not the case, as in truss (e), it is called a half-
parabolic truss beam.

Truss (g) is found in large spans. By creating an auxiliary truss within the
main truss, additional points of support are created for the bridge deck,
allowing the structure to be lighter.

Trusses (a) and (d) to (g) have falling diagonals, truss (b) has rising diag-
onals, and in truss (c) the diagonals alternate between falling and rising.

Due to the dead load, falling diagonals are loaded by tensile forces, and
rising diagonals are loaded by compressive forces. This is shown in Fig-
ure 9.12 in a general sketch of the expected deformation of the truss beam
subject to full loading. The falling diagonals in case (a) extend and are
loaded by tensile forces. The rising diagonals in case (b) shorten and are
loaded by compressive forces.
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Figure 9.13 Model of (a) a steel garden gate with falling diag-
onal (tension diagonal) and (b) a wooden garden gate with rising
diagonal (compression diagonal).

Figure 9.14
closed position. (b) Interior view of the left-hand lock door, as found
in older wooden mitre gates, with a diagonal strutt (compression
diagonal) and a steel tension bar (tension diagonal).

In steel trusses, falling diagonals (tension diagonals) are used most fre-
quently, as (usually slender) steel members subject to compression run the
risk of buckling. Preferably apply them as tension members.

In contrast, rising diagonals (compression diagonals) are most often used
in wooden trusses, as in general a wooden joint is more suitable to transfer
compressive forces rather than tensile forces.

An example close to home is the simple garden gate in Figure 9.13, with
(a) a steel version (falling diagonal) and (b) a wooden version (rising
diagonal). The wooden lock-gate in Figure 9.14 is another example. The
wooden diagonal strut is a rising diagonal and acts as a compression
member under influence of the dead weight of the gate. The wooden
planking is facing the same way as the diagonal strut. The steel falling
diagonal is a tension bar.

9.1.4 Labelling joints and members

The joints in a truss are numbered or lettered (see Figure 9.15). The num-
bers or letters used to indicate the joints can be used as an index. For
example, x4; y4 gives the x and y coordinates of joint 4, and Fx;C is the
x component of force F on joint C. It is customary to use the joint label as
sub-index.

Members are always numbered. The member numbers are often placed
between brackets. For quantities that relate to a particular member, the
member number is used as an upper index. The length � of member (2)
is recorded as �(2), and N(1) is the normal force in member (1).

(a) The mitre gates of a simple navigation lock in
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Figure 9.15 Joint and member numbering in (a) computer calcu-
lations and (b) manual calculations.

Figure 9.16 A triangle is the basic form of a simple or self-
contained truss, defined as a truss that can retain its shape.

In computer calculations, it is customary to use the labelling in Fig-
ure 9.15a; computer programs can deal better with numbers than with
letters. In manual calculations, the labelling in Figure 9.15b is used most.
Occasionally, the brackets about the member numbers are omitted. Their
context must then show whether �2 means “the square of �”, or “the length
of member 2”. If there is a chance of confusion, the member number has to
remain between brackets.

9.2 Kinematically/statically (in)determinate trusses

In this section, we discuss the relationship between the number of members
and joints in a simple or self-contained truss and a compound truss respec-
tively. Subsequently a systematic procedure will be introduced to calculate
the degree of kinematic/static (in)determinacy of a truss and the relationship
between the number of support reactions, members, and joints.

9.2.1 Simple and compound trusses

A simple or self-contained1 truss is defined as a truss that retains its shape.
The basic element of a simple truss is the triangle with s = 3 members and
k = 3 joints, like triangle ABC in Figure 9.16.

Unlike a triangle, a (hinged) quadrangle cannot retain its shape.2 Figure
9.17 shows the displacements with respect to AG for quadrangle ABEG.
One can imagine that BE is connected with AG via the two-force members
AB and EG. The displacement of BE with respect to AG consists of a
rotation about RC(BE), the centre of rotation of BE, that coincides with

1 The concept self-contained was covered earlier in Section 4.5.1.
2 The open circles for hinged joints are consistently omitted (see Section 9.1.1).
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Figure 9.18 Based on a simple triangle, we can repeatedly create
a new joint by adding two members.

Figure 9.19 Simple trusses constructed in the way shown in Fig-
ure 9.18. In (c) and (d) we can start with the dark triangle in the
middle. For all these trusses it holds that s = 2k − 3.

Figure 9.17 A hinged quadrangle cannot retain its shape.

the intersection of two-force members AB and EG. See also Section 4.5.1
and Figure 4.38c. When looking at the deformed quadrangle once more, it
is important to note that the displacements are depicted large in the figure
as compared to the length of the members.

The simplest way of constructing self-contained trusses is to start with a
triangle, and, as in Figure 9.18, repeatedly create a new joint with two
members. To retain its shape the truss does not have to consist only of
triangles. For example, the quadrangle ABEG from Figure 9.17 is found
again in the self-contained truss in Figure 9.18c.

Figure 9.19 shows a number of trusses that were constructed using this
method. Trusses (a) and (b) consist entirely of triangles and are clearly self-
contained. This is harder to determine for trusses (c) and (d) as they do not
consist entirely of triangles.1 They retain their shape however as they can
be constructed from the dark triangle in the middle by repeatedly creating
a new joint by adding two members to two existing joints.

1 The eight triangles in truss (c) are not “real” triangles but quadrangles.
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Figure 9.20 Simple trusses with a more complicated structure.
The two dark self-contained parts are connected by three members.
The formula s = 2k − 3 is also applicable to these trusses.

Figure 9.21 Simple trusses that contain more members than
needed for being self-contained. For these trusses, it holds that
s > 2k − 3.

The following relationship holds between the number of members s and the
number of joints k for a truss created in the way described above:

s = 2k − 3.

This can be derived as follows. Three members are needed for the first three
joints in the truss, which forms the first triangle. For the remaining (k − 3)

joints 2(k − 3) members are needed. The total number of members s is
therefore:

s = 3 + 2(k − 3) = 2k − 3.

Figure 9.20 shows two examples of simple trusses that cannot be con-
structed as shown in Figure 9.18. They clearly have a more complicated
structure. If we look more closely, we notice that the structures consist
of two dark coloured simple trusses of the type described earlier, which
are connected to one another by three members. The structures retain their
shape only when the three members do not intersect at one point, and nei-
ther are parallel. In the figure, a section s has been introduced across the
three members. The same formula s = 2k − 3 also applies to these more
complicated trusses.

The formula s = 2k − 3 is a minimum condition for a truss that will retain
its shape. By adding additional members to a simple truss, without creating
new joints, the structure remains self-contained. In this way, the trusses in
Figure 9.21 were created by adding additional members to trusses (c) and
(d) in Figure 9.19. The trusses are still self-contained, but now the number
of members is

s > 2k − 3

One would imagine that a truss is always self-contained if the number
of members s is at least equal to 2k − 3. This is a misconception, how-
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Figure 9.22 A truss that cannot retain its shape is called a com-
pound truss.

ever, as is shown for the truss in Figure 9.22 with s = 16 and k = 9. This
truss consists of two self-contained parts, which could both lose a member
without losing their shape. Both parts are connected by means of a hinge,
and can move with respect to one another. The structure is therefore not
self-contained, although the number of members s = 16 is greater than
2k − 3 = 15.

Hereafter, a truss that cannot retain its shape is referred to as a compound
truss.1

The formula s = 2k − 3 is clearly not a good criterion for a truss that will
retain its shape. One can say that for each self-contained truss, the following
relationship must hold:

s ≥ 2k − 3.

The reverse is not true, however. Not every truss with s ≥ 2k − 3 is self-
contained. This is demonstrated by the counterexample in Figure 9.22. The
formula does not indicate the functionalism for which the various mem-
bers were introduced. The formula s ≥ 2k − 3 is a necessary although
insufficient condition for a truss that will retain its shape.

To summarise:
s < 2k − 3 The truss is a compound truss (the truss cannot retain its form).

s ≥ 2k − 3 Necessary condition for a self-contained truss, but not a suf-
ficient condition. As a result of the application of inefficient
members, the truss may still not be capable of retaining
its shape. One can be sure only when the truss has been
investigated from joint to joint.

1 The literature often defines compound trusses as those of the type in Figure 9.20,
but sometimes also those in Figure 9.22. Here, as in Section 4.5.3, a compound
truss is defined as one that, when isolated from its supports, is not capable of
retaining its shape.
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Figure 9.23 (At least) three support reactions are needed for an
immovable support of a simple truss. Here they are provided by (a) a
hinged and roller support and (b) a hinged and bar support.

Figure 9.24 More than three support reactions are needed for an
immovable support of a compound truss, as the internal degrees
of freedom also have to be eliminated. In this case, four support
reactions are required, provided by two hinged supports.

If the truss retains its shape, the following cases can be distinguished:
s = 2k − 3 The truss needs all the members to retain its shape.

s > 2k − 3 The truss can miss s − (2k − 3) members without losing its
capability to retain its shape. These members cannot be se-
lected arbitrarily; they are determined by the way the truss is
assembled.

9.2.2 Determining kinematic/static (in)determinacy

If a truss is supported so that is has no possibility of moving, the truss is
defined as immovable or as kinematically determinate. This type of truss
can resist all types of load. If a truss is to be kinematically determinate, it
needs at least as many support reactions as degrees of freedom; one degree
of freedom is removed for each support reaction (interaction force between
truss and the immovable environment).

A simple truss may be considered as a rigid body. Since (in a plane) it
has three degrees of freedom (one rotation and the two components of
a translation), at least three independent support reactions are needed for
immovability. For example by means of a hinged support together with a
roller support or bar support, as shown in Figure 9.23.

Compound trusses can be seen as systems of rigid bodies that have a certain
degree of freedom with respect to one another. The possible movements
with respect to one another are known as the internal degrees of freedom.
The immovability of a compound truss always needs more than three sup-
port reactions, as the internal degrees of freedom also have to be eliminated.
In this way, the truss in Figure 9.24 is not shape-retaining in itself, as the
two constituent parts can rotate with respect to one another. The two hinged
supports ensure the kinematic determinacy of the truss.

In the examples, bar supports, roller supports, and hinged supports have
been used. It should be clear that fixed supports are not used in trusses.
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Figure 9.25 (a) A truss for which in (b) all the joints have been iso-
lated. It has been assumed that the normal force N in each member
is a tensile force. If so, all members pull at the joints.

Instead of looking at the degrees of freedom for simple or compound
trusses, we can also determine how many support reactions are needed to
keep the truss in equilibrium under every imaginable load. This procedure
was explained in Section 4.5.3 for an arbitrary structure. The answers are
somewhat easier to determine for trusses as here the members can transfer
only tensile and compressive forces between the joints. These forces are
called normal forces. Normal forces are represented by means of a capital
letter N . According to the sign convention N is positive for a tensile force,
and negative for a compressive force.

The truss in Figure 9.25a is supported at A on a hinge and at B on a roller,
and is loaded by the forces F1; F2; F3. In Figure 9.25b, all the joints in the
truss have been isolated. It has been assumed that all the member forces N

are positive (all the members transfer tensile forces, and therefore pull at
the joints).

An arbitrary truss has k joints, s members and r support reactions. The
unknown force quantities in the truss are then the r support reactions and
the s member forces. In total, there are therefore (r + s) unknowns in the
truss.

The equilibrium can be investigated for each joint. The conditions for mo-
ment equilibrium are automatically met as all the forces intersect at the
joint. All that remains is the force equilibrium. Two equations can be cre-
ated per joint. These contain both known forces (the loads) and unknown
forces (member forces and support reactions). With k joints, there are
therefore 2k equilibrium equations.

Let n be the difference between the number of unknown forces and the
number of available equilibrium equations:

n = r + s − 2k.

If n < 0, there are more equations than unknowns. It is always possible to
choose the (arbitrary) load in such a way that a number of the (redundant)



334 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 9.26 Kinematically indeterminate trusses or mechanisms.
(a) n = −1; a diagonal member is missing in the middle.
(b) n = −1; the hinged and roller support are insufficient to elimi-
nate all possible movement of the compound truss.

Figure 9.27 Kinematically indeterminate trusses or mechanisms
with n ≥ 0: (a) n = 0 and (b) n = 1.

equations become inconsistent. This means that, with that load, the equi-
librium conditions cannot be met at all the joints. The truss is a mechanism
and is kinematically indeterminate (not immovable). Examples are shown
in Figure 9.26.

In Figure 9.26a (with r = 3, s = 8 and k = 6, and therefore n = −1) the
kinematic indeterminacy results from the missing diagonal member in the
centre field. In Figure 9.26b (with r = 3, s = 14 and k = 9, and therefore
n = −1), the method of support is inadequate to remove all the degrees of
freedom of the compound truss.

From the above, we can conclude that n ≥ 0 is a necessary condition
for kinematic determinacy. Since the value of n is the result of a calcu-
lation in which the functionalism of the members and supports present is
not taken into account, this necessary condition is an insufficient condi-
tion. Even when n ≥ 0, there is always the possibility that the structure is
kinematically indeterminate. Examples of this are shown in Figure 9.27.

The structure in Figure 9.27a (with r = 4, s = 8, k = 6, and therefore
n = 0) is the same as the structure in Figure 9.26a, except that the roller
support is replaced by a hinged support. Since, for motion as a mechanism,
the roller in Figure 9.26a remains in place, this change makes no difference
whatsoever – the truss remains kinematically indeterminate.

In Figure 9.27b (with r = 3, s = 16, k = 9, and therefore n = 1) the
support of the compound truss is equally inadequate as in Figure 9.26b. The
only difference is that the two constituent parts now contain more members
than required for retaining their shape.

The kinematic determinacy of a truss cannot be assessed based on a cal-
culation alone; one always has to take the construction of the truss into
account.

With n = r + s − 2k the following is true for a truss:
n < 0 The truss is kinematically indeterminate. This is also known as a

mechanism.
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Figure 9.28 Statically determinate trusses.

n ≥ 0 Necessary but insufficient condition for a kinematically determinate
truss. As a result of non-effective members and/or supports, the
truss can still be kinematically indeterminate and a mechanism.

In kinematically determinate trusses, n ≥ 0, and as in Section 4.5.3 we can
distinguish the following cases:
n = 0 The truss is statically determinate.

The number of unknowns is equal to the number of available
equilibrium equations. All unknowns (member forces and support
reactions) can be derived directly from the equilibrium.

n > 0 The truss is statically indeterminate.
There are more unknowns than equilibrium equations. One or more
of the member forces and/or support reactions cannot be deter-
mined directly from the equilibrium. In principle, there is an infinite
number of solutions that satisfy the equilibrium conditions (the so-
lution is undetermined). The correct solution can be found by taking
into account the deformation behaviour of the structure. The surplus
of unknowns, n, is known as the degree of static indeterminacy.

Figure 9.28 provides examples of statically determinate trusses.

The shape-retaining truss ABCD in Figure 9.28a is immovable supported
by a hinge at A and a bar at B. The hinged support provides two support
reactions, and the bar support provides one, so that r = 3. With s = 25
and k = 14, n = 0. The truss is therefore statically determinate. If the bar
support is considered as one of the truss members, B′ has to be seen as a
hinged support. In that case, r = 4, s = 26 and k = 15, and again n = 0.

In the simple truss in Figure 9.28b, the diagonal members cross one an-
other. The truss is immovable, supported on a roller and by a hinge. Here
r = 3, s = 13 and k = 8, so that n = 0. The truss is therefore statically
determinate.

The compound truss in Figure 9.28c is also immovable supported. With
r = 4, s = 14 and k = 9, n = 0. The truss is statically determinate.
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Figure 9.29abc Statically indeterminate trusses. Trusses (a) to
(c) are supported with static determinacy. These trusses are also
said to be externally statically determinate and internally statically
indeterminate.

Figure 9.29 provides examples of statically indeterminate trusses. All the
trusses are kinematically determinate. The degree of static indeterminacy
can be determined with

n = r + s − 2k.

The truss in Figure 9.29a, in which the diagonal members cross one another,
has a hinged support and a bar support. With r = 3, s = 31, k = 14, one
finds n = 6. The truss is six-fold statically indeterminate. If we compare
the truss with the statically determinate structure in Figure 9.28a, we see
that the truss has 6 redundant diagonal members.

For the truss in Figure 9.29b, with crossing diagonals, r = 3, s = 26,
k = 14 and so n = 1. The truss is therefore statically indeterminate to
the first degree.

For the compound truss in Figure 9.29c, r = 4, s = 16 and k = 9, so that
n = 2. A member could be omitted in each of two self-contained parts (see
also Figure 9.28c).

The truss in Figure 9.29d is statically indeterminate to the first degree, with
r = 4, s = 19, k = 11 and so n = 1. The structure can be made statically
determinate by, for example, removing one of the roller supports. You could
also remove an arbitrary top or bottom chord member.

For the truss in Figure 9.29e, r = 6, s = 13 and k = 8, so that n = 3. The
truss is statically indeterminate to the third degree. The simple truss has
three redundant support reactions and/or members.

In statically determinate trusses, all the force members and support reac-
tions can be determined directly from the equilibrium. This is not possible
for statically indeterminate trusses. Sometimes, for statically indeterminate
trusses, it is possible to find all the support reactions from the equilibrium
equations, but not all the member forces. Examples of this type of truss
are shown in (a) to (c) in Figure 9.29. The support of these trusses is
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Figure 9.29de Statically indeterminate trusses.

Figure 9.30 Truss, with parallel top and bottom chord, for which
the forces in members 6 to 9 and in member 13 have to be calculated
using the method of sections.

statically determinate. Their static indeterminacy is caused by redundant
members in their self-contained parts. These types of trusses are also known
as externally statically determinate and internally statically indeterminate.

9.3 Determining member forces

There are various methods for calculating member forces in statically de-
terminate trusses. We will look at two:
• the method of sections;
• the method of joints.

In the method of sections, one introduces a suitable section across the truss
and calculates the member forces from the equilibrium of one of the iso-
lated parts. In the method of joints, we consistently determine the member
forces from the equilibrium of the joints.

9.3.1 Method of sections

In the method of sections, the member forces in a (statically determinate)
truss are determined by introducing a section and investigating at the equi-
librium of one of the isolated parts. Since there are only three equilibrium
equations available, you have to select a section such that there are no
more than three unknowns. In general, the support reactions have to be
determined previously. The method is demonstrated using a number of
examples.

Example 1
The first example relates to the truss beam in Figure 9.30, with parallel top
chord and bottom chord. The load consists of the two vertical forces shown
in the figure of respectively 120 kN and 40 kN.

Question:
Determine the forces in the members 6 to 9 and in member 13, with
the correct signs for tension and compression. In the calculation, use the
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Figure 9.31 The isolated truss with support reactions. To calculate
the forces in members 6, 7 and 8, a section is introduced across these
members in the truss.

Figure 9.32 The isolated parts to the left and right of the sec-
tion across members 6, 7 and 8. The interaction forces, the normal
forces N , are shown as tensile forces because tensile forces are by
definition positive.

coordinate system shown.

Solution:
In Figure 9.31, the truss has been isolated and the support reactions are
shown. For calculating the forces in members 6, 7 and 8, we introduce a
section across these members.

In Figure 9.32, the parts to the left and to the right of the section have been
isolated. The as yet unknown member forces N6, N7 and N8 are introduced
as tensile forces. Here we use the sign convention that the normal force in a
member is positive when it is a tensile force. If the member has to transfer
a compressive force, this will become clear later through a negative value
for the normal force N .

The normal force N6 in member 6 is most easily determined by looking
at the moment equilibrium of the left-hand part about intersection A of
members 7 and 8:∑

Tz|A = −(100 kN)(2 m) − N6 × (2 m) = 0 ⇒ N6 = −100 kN.

The minus sign shows that member 6 is a compression member. The 100 kN
force is therefore acting opposite to the direction shown in Figure 9.32.

Instead of the left-hand part, we can also look at the right-hand part. From
the moment equilibrium about A of the right-hand part, it follows that∑

Tz|A = −(120 kN)(2 m) − (40 kN)(4 m) + (60 kN)(10 m) +
+ N6 × (2 m) = 0.

Of course, N6 = −100 kN also here, except that it took a little more work
to find the answer as more forces are acting on the right-hand part than on
the left-hand part.

When calculating the member forces, it does not make a difference whether
you look at the equilibrium on the left-hand side or the right-hand side
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Figure 9.33 The section for calculating the forces in members 8,
9 and 10.

of the section. It is sensible to choose the part that offers the simplest
calculation.

The force in member 7 is most easily determined from the vertical force
equilibrium for the part to the left of the section:

∑
Fy = (100 kN) + 1

2N7
√

2 = 0 ⇒ N7 = −100
√

2 kN.

Diagonal member 7 is also a compression member. Calculating this mem-
ber force is easy as the parallel top and bottom chords members do not have
a vertical component.

Member force N8 is most easily determined from the moment equilibrium
of the left-hand part about the intersection of members 6 and 7:

∑
Tz|B = −(100 kN)(4 m) + N8 × (2 m) = 0 ⇒ N8 = +200 kN.

Bottom chord member 8 is a tension member.

To check the above, we calculate whether there is horizontal force equilib-
rium in the left-hand part:

∑
Fx = N6 + 1

2

√
2 × N7 + N8

= (−100 kN) + 1
2

√
2 × (−100

√
2 kN) + (200 kN) = 0.

With the values found for N6, N7 and N8, the conditions for horizontal
force equilibrium are indeed satisfied.

Please note the parallel with calculating the support reaction for a structure
on three bar supports, as in Examples 2 and 3 in Section 5.1.

The forces in the other members of the truss can be determined in the same
way. For example, we find the force in member 9 by introducing a section
across members 8, 9 and 10, as shown in Figure 9.33. From the vertical
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Figure 9.34 The section across member 13 cuts four members,
one too many to be able to determine all the member forces from
the equilibrium. With this section, we can only find N14 from the
moment equilibrium about E.

force equilibrium for the left-hand part it follows that

∑
Fy = (100 kN) − (120 kN) − N9 = 0 ⇒ N9 = −20 kN.

Member 9 is a compression member.

When determining the force in member 13, the problem arises that a section
across member 13 cuts more than three members. The section in Fig-
ure 9.34. for example, cuts through members 10, 11, 13 and 14, which is
one too many to be able to determine all the forces from the equilibrium.
If one of the member forces N10 of N11 is known, then it is possible to
determine the other three. We therefore look at a second section to first
determine one of the forces N10 or N11.

From the moment equilibrium about C of one of the isolated parts in
Figure 9.33 we find

N10 = −200 kN.

Using this information, we find from the moment equilibrium about C of
one of the isolated parts in Figure 9.34 (here we select the right-hand part)
the force in member 13 is

∑
Tz|C = −N10 × (2 m) + (60 kN)(8 m) − N13 × (2 m) = 0

⇒ N13 = +40 kN.

By chance, we can also find the force in member 13 using an easier method,
namely by using the section in Figure 9.35 across the members 12, 13 and
14. N13 is found from the vertical force equilibrium of one of the parts.
Here, we actually determine the force N13 from the force equilibrium of
joint D, where three members come together, of which two in a direct line.

Note that it is not possible to determine the section forces N12 and N14 from

Figure 9.33 The section for calculating the forces in members 8,
9 and 10.
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Figure 9.35 With this section across three members, we actually
isolate joint D. N3 follows directly from the vertical force equi-
librium of the joint. We do not need to know N12 and N14 to do
so.

Figure 9.36 Truss with non-parallel top and bottom chord.

the equilibrium of one of the parts isolated in Figure 9.35. It is possible to
determine only that N12 = N14 from the horizontal force equilibrium, but
we cannot determine their magnitude.

Table 9.1 provides a summary of all the member forces in the truss.

Example 2
The second example relates to the truss in Figure 9.36, with non-parallel top
and bottom chords. The load consists of a single vertical force of 120 kN.

Table 9.1 Member forces Example 1.

Mem. no. i Ni (kN)

1 0

2 0

3 −100
√

2

4 +100

5 +100

6 −100

7 −100
√

2

8 +200

9 −20

10 −200

11 +20
√

2

12 +180

13 +40

Mem. no. i Ni (kN)

14 +180

15 −60
√

2

16 −120

17 +60

18 +120

19 −60
√

2

20 −60

21 +60

22 +60

23 −60
√

2

24 0

25 0
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Figure 9.37 Section for calculating the forces in members 6, 7
and 8.

Question:
Determine the forces in members 6 to 9 and in member 13, with the correct
sign for tension and compression. Use the coordinate system given.

Solution:
We first determine the support reactions. For the left-hand and right-hand
support reactions, we find 80 and 40 kN respectively, both vertically and
directed upwards.

For determining the three unknown member forces N6, N7 and N8, a sec-
tion has been introduced across members 6, 7, and 8 in Figure 9.37, and the
parts on both sides of the section have been isolated. The member forces
N6, N7 and N8 follow from the equilibrium of one of the parts to the left or
right of the section. The force N6 is most easily determined. This follows
directly from the moment equilibrium about intersection A of members 7
and 8. For the left-hand part, we find

∑
Tz|A = −(80 kN)(3 m) + N6 × (3 m) = 0 ⇒ N6 = +80 kN.

Member 6 is a tension member.

If we use the right-hand section, the equation for the moment equilibrium
about A demands a little more effort:

∑
Tz|A = (40 kN)(15 m) − (120 kN)(3 m) − N6 × (3 m) = 0.

Of course, this way round we also find a tensile force of 80 kN in member
6.

The force in member 7 is found from the moment equilibrium about in-
tersection B of the members 6 and 8 (see Figure 9.38a), where only the
left-hand part is shown:

Figure 9.36 Truss with non-parallel top and bottom chord.
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Figure 9.38 N7 is found from the moment equilibrium about B.
(a) Here we have to determine the distance from B to the line of
action of N7. (b) We can also shift N7 to C and there resolve it into
a horizontal and vertical component.

∑
Tz|B = (80 kN)(6 m) − N7 × (6

√
2 m) = 0 ⇒ N7 = +40

√
2 kN.

Member 7 is a tension member.

If the distance of point B to the line of action of N7 is difficult to find
(not the case here), force N7 can be shifted along its line of action to a
more suitable position.1 In Figure 9.38b, N7 has been shifted to point C,
where it has been resolved into components. The equation for the moment
equilibrium about B now only contains the vertical component of N7:

∑
Tz|B = (80 kN)(6 m) −

(
1
2N7

√
2
)

(12 m) = 0.

As found earlier, this gives N7 = +40
√

2 kN. If N6 is known, N7 can also
be determined from the moment equilibrium about a point other than B on
the line of action of N8, such as about point D.

For the left-hand part we find (see Figure 9.38b)

∑
Tz|D = −(80 kN)(6 m) + N6 × (4 m) +

(
1
2N7

√
2
)

(4 m) = 0.

With N6 = +80 kN, we find N7 = +40
√

2 kN, as expected. This sort of
approach can offer benefits if the intersection B of the members 6 and 8 is
far away or is difficult to find.

The force in member 8 is found from the moment equilibrium about inter-
section C of the members 6 and 7. Here, it is useful that force N8 can be
shifted along its line of action to point D (see Figure 9.39). For the left-hand
part we find

1 See also Section 3.1.5 with Figure 3.17.
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Figure 9.39 N8 is found from the moment equilibrium about C.

Figure 9.40 Section for calculating the force in member 9. N9

follows from the moment equilibrium about B. As an interim step,
we can also first determine N10 from the moment equilibrium about
D, and then determine N9 from the moment equilibrium about A.

Figure 9.41 This section across member 13 intersects four members.
We can only determine N14 from the moment equilibrium about G.

∑
Tz|C = −(80 kN)(6 m) −

(
3
10N8

√
10
)

(4 m) = 0

⇒ N8 = −40
√

10 kN.

N8 is a compressive force.

To verify the three values we have determined for N6, N7 and N8, we
can check whether the conditions for force equilibrium are satisfied for the
left-hand part. This leads to the following two equations:

∑
Fx = 3

10N8
√

10 + 1
2N7

√
2 + N6 = 0,∑

Fy = 1
10N8

√
10 − 1

2N7
√

2 + (80 kN) = 0.

The values we found indeed meet these equilibrium conditions.

To determine the force in member 9, a section has been introduced in Fig-
ure 9.40 across the members 8, 9 and 10. The force N9 follows directly
from the moment equilibrium about the intersection B of the members 8
and 10. Written out in full, the left-hand part gives

∑
Tz|B = (80 kN)(6 m) − (120 kN)(12 m) + N9 × (12 m) = 0

⇒ N9 = +80 kN.

Member 9 is a tension member.

If determining the location of point B is complicated (not the case here)
you could also first determine N10 from the moment equilibrium about D
and then derive N9 from the moment equilibrium about A, for example:

∑
Tz|D = −(80 kN)(6 m) + N10 × (4 m) = 0 ⇒ N10 = +120 kN,
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Figure 9.42 Once N14 is known we can find N13 from the equi-
librium of joint E.

Table 9.2 Member forces Example 2.

Mem. no. i Ni (kN)

1 −80

2 0

3 +96.15

4 −84.33

5 −53.33

6 +80

7 +56.57

8 −126.49

9 +80

10 +120

11 −80

12 −75.89

13 +48

Mem. no. i Ni (kN)

14 075.89

15 +20

16 +60

17 −20

18 −63.25

19 +28.28

20 +40

21 −26.67

22 −42.16

23 +48.07

24 0

25 40

∑
Tz|A = −(80 kN)(3 m) − (120 kN)(3 m)

+ N10 × (3 m) + N9 × (3 m) = 0 ⇒ N9 = +80 kN.

When determining the force in member 13, we again encounter the problem
that a section across member 13 cuts four members (see Figure 9.41). In this
case, the problem cannot be easily solved from the equilibrium of joint E
isolated in Figure 9.42. In order to find member force N13 from the force
equilibrium of joint E, we first have to know one of the member forces N12

or N14.

Here there is a special case, in which we can determine the force in member
14 by means of the section in Figure 9.41, even though it passes over four
members. Since, in this section, three of the four unknown member forces
intersect at point G, the fourth force, in this case N14, can be derived di-
rectly from the moment equilibrium about G. This gives (for the part shown
to the left of the section, with force N14 moved to point E)

∑
Tz|G = −(80 kN)(9 m) + (120 kN)(3 m) − 3

10N14
√

10 × (5 m) = 0

so that N14 = −24
√

10 kN. The horizontal force equilibrium of joint E
(Figure 9.42) now gives

N12 = N14 = −24
√

10 kN.

The vertical force equilibrium gives

N13 = − 1
10

√
10 × (N12 + N14) = +48 kN.

Member 13 is therefore a tension member.

Table 9.2 provides a summary of all the member forces in the truss.
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Figure 9.43 A K-truss.

Figure 9.44 The isolated K-truss with support reactions.

Example 3
The third example relates to the somewhat more complicated truss in Fig-
ure 9.43, a so-called K-truss. This type of truss is sometimes used as wind
bracing in bridges. Here, the K-truss has four fields and is loaded by two
vertical forces of 120 kN and a horizontal force of 240 kN.

Question:
Determine the forces in members 7 to 13, with the correct sign for tension
and compression. In the calculations, use the coordinate system given.

Solution:
In Figure 9.44, the truss has been isolated and the support reactions have
been shown. Using the method of sections, we now encounter the difficulty
that, for most of the members, no section can be found that intersects only
three members. Sometimes it is possible to determine a member force if
the section passes through more than three members, but in most cases,
additional information is required that has to be obtained by selecting a
section in a clever way, or by considering a combination of sections. Since
the top chord and bottom chord members are easiest to determine, we will
start with them.

To determine the normal force N9 in top chord member 9, we introduce
a section across members 5, 6, 7 and 9. Figure 9.45 shows only the part
to the left of the section. Four unknown member forces are acting in the
section. Since the lines of action of the forces N5, N6 and N7 intersect
one another at point A, only one force is unknown in the equation for the
moment equilibrium about A, which can be determined directly. This gives

∑
Tz|A = −(60 kN)(2 m) − N9 × (3 m) = 0 → N9 = −40 kN.
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Figure 9.45 Section for determining the force in member 9. The
force is found from the moment equilibrium about A.

Figure 9.46 Section for determining the forces in members 9 and
12. They are found from the moment equilibrium about respectively
A and B.

Member 9 is a compression member.

The same equation is found from the moment equilibrium about A of the
part to the left of the section over members 7, 8, 9 and 12 (see Figure 9.46).
This section offers the advantage that the forces in the members of both
the top chord and the bottom chord can be found. In this way, force N12 in
member 12 follows directly from the moment equilibrium about B:

∑
Tz|B = −(240 kN)(3 m) − (60 kN)(2 m) + N12 × (3 m) = 0

⇒ N12 = +280 kN.

A tensile force is acting in member 12.

The section in Figure 9.46 has the additional benefit that the values found
for N9 and N12 can be checked using the horizontal force equilibrium of the
isolated part, without having to know the forces in the diagonal members
or verticals:

∑
Fx = −(240 kN) + N9 + N12

= − (240 kN) + (−40 kN) + (280 kN) = 0.

The isolated section in Figure 9.46 therefore meets the conditions for
horizontal force equilibrium.

With the section in Figure 9.46, we can quickly determine the forces in
the top chord member 9 and bottom chord member 12, but not the forces
in the verticals 7 and 8. The forces in these verticals are found from the
equilibrium of joints A and B, but we do not have enough information to
do so yet.



348 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 9.47 Section for determining the force in member 10. This
force follows from the moment equilibrium about C. However, we
do have to know N9 first.

Figure 9.48 N7 and N8, the forces in the verticals, are found from
the equilibrium of joints B and A, although we must first know the
forces in members 3 or 4, respectively 5 or 6.

The forces in the diagonal members 10 and 11 are found using the section
in Figure 9.47 over members 9, 10, 11 and 12. Since we already know
N9, we can find N10 from the moment equilibrium about C. This gives the
following (with force N10 shifted along its line of action to point D, only
the horizontal component of N10 is left in the equation for the moment
equilibrium)

∑
Tz|C = −(60 kN)(4 m) + (120 kN)(2 m) − N9 × (3 m) +

− 0.8N10 × (3 m) = 0.

With N9 = −40 kN this gives

N10 = +50 kN.

In the same way, from the moment equilibrium about D we find

N11 = −50 kN.

Since we know both N9 and N12, we can find N10 and N11 from the two
equations for the force equilibrium of the isolated part in Figure 9.47:

∑
Fx = N9 + 0.8N10 + 0.8N11 + N12 − (240 kN) = 0,∑
Fy = 0.6N10 − 0.6N11 + (60 kN) − (120 kN) = 0.

With N9 = −40 kN and N12 = +280 kN these equations are now

0.8N10 + 0.8N11 = 0,

0.6N10 − 0.6N11 = +60 kN.
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Figure 9.49 N3 and N6 follow from the force equilibrium of
respectively joint E and G.

Figure 9.50 If N3 = 0 and N6 = 240 kN, then N7 and N8 are
found from the force equilibrium of respectively joint B and A.

The solution is

N10 = +50 kN,

N11 = −50 kN.

This is in agreement with earlier results.

The forces in the verticals 7 and 8 follow from the (force) equilibrium of
joints B and A respectively, although we do first have to know the forces in
one of members 3 and 4 and one of members 5 or 6 (see Figure 9.48).

The forces N3 and N6 can be found in the section in Figure 9.49 from the
moment equilibrium about G and E respectively. In fact, with this section
on the end of the truss, we isolate joints E and G. N3 and N6 can therefore
also be found directly from the horizontal force equilibrium of joints E and
G:

N3 = 0,

N6 = +240 kN.

In Figure 9.50, joints A and B have been isolated, and all the known forces
N3, N6, N9 and N12 are shown as they act in reality on the joints.

At joint B, two forces are still unknown: N4 and N7. From the equilibrium
for this joint we find

∑
Fx = −(40 kN) − 0.8N4 = 0,∑
Fy = −(120 kN) − 0.6N4 − N7 = 0
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Figure 9.51 The force in member 13 is found from the force
equilibrium of joint D or C, although we must first determine one
of the member forces N14 and N15, or one of N16 and N17.

with the solution

N4 = −50 kN,

N7 = −90 kN.

In the same way, we can determine N5 and N8 from the equilibrium of
joint A:

∑
Fx = −(240 kN) + (280 kN) − 0.8N5 = 0,∑
Fy = 0.6N5 + N8 = 0

such that

N5 = +50 kN,

N8 = −30 kN.

The force in member 13 is the most complicated one to determine. This
force is found from the equilibrium of joint D or C. However, we first have
to determine one of the member forces N14 and N15, or one of N16 and
N17 (see Figure 9.51).

With the section in Figure 9.52, N14 is found from the moment equilibrium
about H:

∑
Tz|H = (180 kN)(2 m) − (240 kN)(3 m) + N14 × (3 m) = 0

⇒ N14 = +120 kN.

At joint D, N13 and N14 are now the only unknowns (see Figure 9.51). The

Figure 9.50 If N3 = 0 and N6 = 240 kN, then N7 and N8 are
found from the force equilibrium of respectively joint B and A.
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Figure 9.52 In this section, N14 is found from the moment equi-
librium about H.

Table 9.3 Member forces Example 3.

Mem. no. i Ni (kN)

1 0

2 −60

3 0

4 −50

5 +50

6 +240

7 −90

8 −30

9 −40

10 +50

11 −50

12 +280

13 −60

Mem. no. i Ni (kN)

14 +120

15 −150

16 +150

17 +120

18 +90

19 −90

20 +240

21 −150

22 +150

23 0

24 0

25 −180

two equations for the force equilibrium of the joint are:

∑
Fx = (40 kN) + N14 − 0.8 × (50 kN) + 0.8 × N15 = 0,∑
Fy = −(120 kN) − N13 − 0.6 × (50 kN) − 0.6 × N15 = 0.

Here substitute N14 = +120 kN to find the solution:

N15 = −150 kN,

N13 = −60 kN.

Table 9.3 provides a summary of all the member forces.

In the method of sections, member forces are determined from the equi-
librium of a sectioned part of the truss. In the examples, the sectioned
part sometimes degenerates into a joint. The following section looks at the
method of joints. With this method, all the member forces are consistently
derived from the equilibrium of the joints.

9.3.2 The method of joints

In the method of joints, all the joints are isolated, and we investigate the
force equilibrium of the individual joints.

For the truss in Figure 9.53a, all the joints have been isolated in Fig-
ure 9.53b. On the isolated joints are acting
• loads (joints C and D);
• support reactions (joints A and B);
• member forces.
Here, the support reactions and member forces are the unknown forces.

Since only two equations for the force equilibrium are available per joint,
we have to start the calculation at a joint where no more than two forces
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Figure 9.53 (a) Truss with support reactions and (b) all isolated
joints of the truss with all the forces acting on them.

are unknown. These forces are determined from the joint equilibrium, after
which we move to the next joint where, again, no more than two forces are
unknown. In this way, we pass along each of the joints in the truss.

If there are k joints, it is not the intention to first generate all 2k equations
for the force equilibrium, and then to solve them together as a system of
equations. We will often encounter the problem in which we cannot start
with a joint with only two unknowns, as in Figure 9.53. This can be avoided
by previously determining the support reactions from the truss as a whole.
In Figure 9.53b, we can now start the procedure at one of the joints A or B.

The method of joints is mostly used if one wants to find all the member
forces in a truss. If you want only to calculate the member force somewhere
in the middle of the truss, you will often have to work out the equilibrium
for several joints. In that case, the method of sections is faster.

Calculating the two unknown forces per joint can be done either analyt-
ically or graphically. The graphical approach is preferable; it is not only
faster but also gives a better insight in the force flow. The method of joints
is illustrated using a number of examples.

Example 1
The truss crane in Figure 9.54 is loaded at A by means of a vertical force
4F .

Question:
Determine all the member forces, with the correct sign for tension and
compression.

Solution:
In this case, we do not have to determine the support reactions as we can
start directly at joint A. Here, two forces are unknown: N1 and N2. These
forces can be determined both analytically and graphically.
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Figure 9.54 A truss crane. We can start the method of joints in A
without having to first determine the support reactions.

Figure 9.55 (a) The isolated joint A. The unknown forces N1 and
N2 exerted by the members 1 and 2 on joint A are shown as tensile
forces. (b) The interaction forces between joint A and members 1
and 2 as they really act. Member 1 is a compression member and
member 2 is a tension member.

Analytical solution for the equilibrium of joint A:
In Figure 9.55a, all the forces acting on joint A are shown. In this figure,
the member forces are again shown as tensile forces. For a tensile force, N

is by convention positive.

For the angles α1 and α2 shown in the figure, the equilibrium equations are

∑
Fx = −N1 cos α1 − N2 cos α2 = 0,∑
Fy = −N1 sin α1 − N2 sin α2 − 4F = 0.

From the slopes of the members 1 and 2 we find

sin α1 = cos α1 = 1
2

√
2,

sin α2 = 1
5

√
5 and cos α2 = 2

5

√
5.

Both equations in N1 and N2 now become

−N1 × 1
2

√
2 − N2 × 2

5

√
5 = 0,

−N1 × 1
2

√
2 − N2 × 1

5

√
5 = 4F

with solution:

N1 = −8F
√

2,

N2 = +4F
√

5.

Member 1 is a compression member and exerts a compressive force on joint
A. Member 2 is a tension member. Figure 9.55b shows the forces as they
really act on both the joint and on the two members.
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Figure 9.56 (a) The forces in members 1 and 2 follow from the
equilibrium of joint A. (b) The closed force polygon for the equilib-
rium of joint A. FA;1 and FA;2 are the forces that members 1 and
2 exert on joint A. (c) Joint A with all the forces acting on it. From
this figure we can see that N1 is a compressive force and N2 is a
tensile force.

Graphical solution for the equilibrium of joint A:
FA;1 and FA;2 are the forces that members 1 and 2 exert on joint A. The
forces FA;1 and FA;2 have their line of action along the members 1 and
2, but we do not know their magnitudes, nor their directions (see Fig-
ure 9.56a). Joint A is in equilibrium if all forces acting on joint A form
a closed force polygon. Figure 9.56b shows the closed force polygon for
the equilibrium of joint A. From here, we can read off the magnitude of
FA;1 and FA;2 (or calculate it):

FA;1 = 8F
√

2,

FA;2 = 4F
√

5.

From the force polygon, we can also find the directions of FA;1 and FA;2,
but we cannot see whether they are tensile or compressive forces. To do
so, we first have to draw the forces found as they act on joint A, see Fig-
ure 9.56c. Only then we can see that FA;1 is a compressive force, and FA;2
is a tensile force, so that

N(1) = −FA;1 = −8F
√

2,

N(2) = +FA;2 = +4F
√

5.

Note that the forces in the force polygon have not been denoted as N . The
force polygon provides information only on the magnitude of the member
forces, and not on the sign for tension or compression.

The order in which one writes down the forces in a force polygon does
not influence the result (vector addition is associative and commutative).
Figure 9.57 shows two equivalent force polygons. The first force polygon is
created by ranking the various forces acting on joint A in an order that is as-
sociated with an anti-clockwise rotation about joint A: 4F ⇒FA;2 ⇒FA;1.
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Figure 9.58 The order (a) to (h) shows how we can repeatedly
determine two member forces per joint (and finally the support re-
actions at G and H). The members for which the normal force is
known are shown in bold.

Figure 9.57 The order in which the forces in a force polygon are
plotted does not influence the result (vector addition is associative
and commutative).

The second force polygon arises from ranking the forces in a clockwise
order, so that 4F ⇒ FA;1 ⇒ FA;2.

In Figure 9.58, the order (a) to (h) shows how, per joint, we can consecu-
tively calculate two member forces (and then the support reactions in G and
H). The members for which the forces are known are shown in bold.

Figure 9.58a shows the initial situation. A is the only joint with two un-
known member forces. Once we have calculated these, we get the situation
shown in Figure 9.58b. Now B is the only joint with only two unknown
member forces. Once these have been determined, we get the situation
in Figure 9.58c, and so forth. The order in which the joint equilibrium is
determined, with no more than two unknowns per joint, is

A ⇒ B ⇒ C ⇒ D ⇒ E ⇒ G ⇒ H.
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Figure 9.59 (a) The forces in members 3 and 4 follow from the
equilibrium of joint B. (b) The closed force polygon for the equilib-
rium of joint B. FB;1 is known. (c) Joint B with all the forces acting
on it. From this figure we can see that N3 and N4 are compressive
forces.

For calculating the still unknown member forces, we now use the graphical
method. After A, the next joint is B, where we can calculate the member
forces. Joint B is subject to the forces FB;1, FB;3 and FB;4, of which FB;1
is known.

Earlier, we found that the force in member 1 is a compressive force:
N1 = −8F

√
2. Member 1 therefore exerts a compressive force on joint

B of 8F
√

2, so that FB;1 = 8F
√

2 (see Figure 9.59a).

The two unknowns FB;3 and FB;4 can be determined from the closed force
polygon for the equilibrium of joint B (see Figure 9.59b):

FB;3 = 4F,

FB;4 = 4F
√

5.

In Figure 9.59c, the forces from the force polygon are shown as they act
on joint B in reality. Here we see that FB;3 and FB;4 are both compressive
forces. Converted into the normal forces in the members 3 and 4, with the
correct sign for tension and compression, we therefore get

N3 = −FB;3 = −4F,

N4 = −FB;4 = −4F
√

5.

The following joint with only two unknowns is C. The forces that the
members 2 and 3 exert on the joint are known (see Figure 9.60a):

FC;2 = 4F
√

5,

FC;3 = 4F.

The unknown forces FC;5 and FC;6 follow from the force polygon in
Figure 9.60b:



9 Trusses 357

Figure 9.60 (a) The forces in members 5 and 6 follow from the
equilibrium of joint C. (b) The closed force polygon for the equi-
librium of joint C. FC;2 and FC;3 are known forces. (c) Joint C
with all the forces acting on it. From this figure we can see that
N5 is compressive and N6 is tensile.

FC;5 = F
√

5,

FC;6 = 3F
√

5.

In Figure 9.60c, all the forces are shown as they act on joint C in reality.
Member 5 presses against the joint and is a compression member, member
6 pulls on the joint and is a tension member:

N5 = −F
√

5,

N6 = +3F
√

5.

In Figures 9.61 to 9.64, the other member forces are calculated using the
same method.

Table 9.4 provides a summary of all the member forces.

Table 9.4 Member forces Example 1.

Mem. no. i Ni (kN)

1 −8F
√

2

2 +4F
√

5

3 −4F

4 −4F
√

5

5 −F
√

5

6 +3F
√

5

7 −3F

8 −10F

9 0

10 +6F

11 0
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Figure 9.61 (a) The forces in members 7 and 8 follow from the
equilibrium of joint D. (b) The closed force polygon for the equi-
librium of joint D. FD;4 and FD;5 are known forces. (c) Joint D
with all the forces acting on it. From this figure we can see that
N7 and N8 are compressive.

Figure 9.62 (a) The forces in members 9 and 10 follow from the
equilibrium of joint E. (b) The closed force polygon for the equilib-
rium of joint E. FE;6 and FE;7 are known. (c) Joint E with all the
forces acting on it. From this figure we can see that N10 is tensile.
Member 9 is a zero-force member.
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Figure 9.64 (a) The horizontal and vertical support reaction at
H is found from the equilibrium of joint H. (b) The closed force
polygon for the equilibrium of joint H. Member 11 is a zero-force
member and does not participate. FH;10 is known. (c) Joint H with
all the forces acting on it. The horizontal support reaction at H is
zero. The vertical support reaction in H is a tensile force.

Figure 9.63 (a) The force in member 11 and the vertical sup-
port reaction at G is found from the equilibrium of joint G. (b)
The closed force polygon for the equilibrium of joint G. Member
9 is a zero-force member and does not participate. FG;8 is known.
(c) Joint G with all the forces acting on it. Member 11 is a zero-force
member. The vertical support reaction at G is a compressive force.
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Figure 9.65 The truss crane with the support reactions as they are
acting in reality.

Figure 9.66 In this truss, we can apply the method of joints only
when we know the support reactions.

In Figures 9.63 and 9.64 the support reactions in G and H have also been
calculated:

Gv = 10F,

Hh = 0,

Hv = 6F.

In Figure 9.65, the support reactions are shown with the directions in which
they are acting.

To check the calculation, we can look at the equilibrium of the truss as a
whole:

∑
Fx = Hh = 0,∑
Fy = Gv − Hv − 4F = 10F − 6F − 4F = 0,∑
Tz|H = Gv × 2a − 4F × 5a = 10F × 2a − 4F × 5a = 0.

The truss as a whole meets the equilibrium conditions.

Example 2
The truss in Figure 9.66 is loaded at joint E by a vertical force of 120 kN.

Question:
Calculate the member forces, with the correct sign for tension and com-
pression.

Solution:
In this truss, we cannot find a joint with only two unknown forces. Before
we can start the procedure for the joint equilibrium, we first have to deter-
mine the support reactions from the truss as a whole. Then we can start the
calculation at joint A or B.
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Figure 9.67 The order (a) to (g) shows how, starting at A, we can
consecutively determine two member forces per joint. The members
for which we know the normal force are shown in bold.

In Figure 9.67, the order (a) to (g) shows how, starting at A, we can con-
secutively determine two member forces per joint. The members for which
we know the normal force are shown in bold. We will look at the joints in
the following order:

A ⇒ C ⇒ D ⇒ E ⇒ G ⇒ H ⇒ K or B.

The last two joints K and B both offer an opportunity to check the results:
both force polygons have to be closed and give the same force in member
13.

Table 9.5 provides a summary of all the member forces.

Table 9.5 Member forces Example 2.

Mem. no. i Ni (kN)

1 +60

2 −60
√

2

3 0

4 +60

5 +20
√

2

6 −40
√

5

7 +100

8 +80

9 −25
√

13

10 −15
√

5

11 +75

12 +30

13 −30
√

5
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Figure 9.68 Truss with support reactions.

Figure 9.69 The members for which we know the normal force
are shown in bold. (a) The method of joints gets stuck at joints E and
D, as more than two member forces are unknown. (b) The force in
member 11 follows from the vertical equilibrium of joint H, (c) after
which we can find the force in member 9 from the force equilibrium
of joint G. The method of joints can now continue at D. (d) We
could also switch to the method of sections to calculate the force in
member 14. The method of joints can then be resumed at E.

Example 3
You are given the (Baltimore) truss beam in Figure 9.68.

Question:
Determine the member forces N1 to N15 using the method of joints. In
which order should we handle the joint equilibrium?

Solution:
After first determining the support reactions from the equilibrium of the
truss as a whole, we can determine the forces in members 1 to 6 from the
equilibrium of joints A, B and C respectively. In the situation shown in
Figure 9.69a we get stuck, as more than two member forces are unknown
in both D and E.

Since members 8 and 12, and 10 and 13 are in a direct line with one another,
we can determine the forces in the members 11 and 9 from the equilibrium
of joints H and G.

The vertical equilibrium of joint H in Figure 9.70 gives

N11 = 2F.

We now have the situation as shown in Figure 9.69b. From the equilib-
rium in G in the direction normal to members 10 and 13 we find next (see
Figure 9.70):

N9 + 1
2N11

√
2 = N9 + 1

2 × 2F × √
2 = 0 ⇒ N9 = −F

√
2.

Now that N9 is known (see Figure 9.69c), we can find the remaining mem-
ber forces by consecutively elaborating the equilibrium of joints D, E, G, H
and L. The order in which we handle the joints is therefore

A ⇒ B ⇒ C ⇒ H ⇒ G ⇒ D ⇒ E ⇒ G ⇒ H ⇒ L.
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Figure 9.70 The isolated joints G and H.

Instead of determining N9 and N11 from the equilibrium of joints H and G,
it is far easier to revert to the method of sections. With the section shown
in Figure 9.69d across members 12, 13 and 14, we can determine the force
in member 14 from

∑
Tz|K = 0. The other member forces are then found

from the equilibrium for the successive joints E, D, G, H and L.

In certain cases, it can be useful to switch from one method to the other at
the right moment.

Table 9.6 provides a summary of member forces N1 to N15.

Table 9.6 Member forces Example 3.

Mem. no. i Ni (kN)

1 +4F

2 −4F
√

2

3 +2F

4 +4F

5 −F
√

2

6 −3F
√

2

7 +2F

8 +4F

Mem. no. i Ni (kN)

9 −F
√

2

10 +F
√

2

11 +2F

12 +4F

13 0

14 −4F

15 0

9.3.3 Zero-force members and continuous members;
simplifying the calculation

We can often shorten the calculation that needs to be done by first looking
for zero-force members in a truss. Zero-force members are members in
which no forces are acting (N = 0) due to the present loading.
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Figure 9.71 (a) If two members meet in an unloaded joint, both
members are zero-force members. (b) The forces acting on isolated
joint A.

There are three situations of frequent occurrence in which zero-force
members can be easily recognised:

1. If only two members meet in an unloaded joint, both are zero-force
members (see Figure 9.71).

2. If three members meet in an unloaded joint of which two are in a di-
rect line with one another, then the third is a zero-force member (see
Figure 9.72).

3. If two members meet in an unloaded joint and the line of action of
the load coincides with one of the members, the other member is a
zero-force member (see Figure 9.73).

These three rules are the direct consequence of the joint equilibrium, as
shown below for each of the cases.

Rule 1. Two members meet in unloaded joint A in Figure 9.71. The force
in one of the members has a component normal to the direction of the other
member. If we write down the equilibrium of joint A in the given (local) xy

coordinate system, we find

∑
Fx = N1 + N2 cos α = 0,∑
Fy = N2 sin α = 0

with the solution (because sin α �= 0):1

N1 = N2 = 0.

Equilibrium is possible only if both member forces are zero.

1 In a kinematically determinate truss, members 1 and 2 cannot be an extension of
one another, so that α �= 0 and α �= 180◦.
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Figure 9.72 (a) If three members meet in an unloaded joint of
which two are in a direct line with one another, the third member is
a zero-force member. The normal forces in continuous members 1
and 3 are equal. (b) The forces acting on isolated joint B.

Figure 9.73 (a) If two members meet in an unloaded joint and the
line of action of the load is in a direct line with one of the members,
the other member is a zero-force member. (b) The forces acting on
isolated joint C.

Rule 2. In Figure 9.72, three members meet in joint B, of which members
1 and 3 are in a direct line with one another. The force in member 2 has a
component normal to members 1 and 3. There can be equilibrium only if
this component is zero, or in other words, if N2 = 0. If we write down the
equilibrium of joint B in the given (local) xy coordinate system, we find

∑
Fx = N1 + N2 cos α − N3 = 0,∑
Fy = N2 sin α = 0

so that

N2 = 0 and N1 = N3.

In addition to the fact that member 2 is a zero-force member, the normal
forces in the continuous members 1 and 3, which are in a direct line with
one another, are equal.

Rule 3. The situation in Figure 9.73 is clearly similar to that in Figure 9.71.
The equations for the equilibrium of joint C are

∑
Fx = N1 + N2 cos α − F = 0,∑
Fy = N2 sin α = 0

so that

N2 = 0 and N2 = F.

By using rules 1 to 3 to determine the zero-force members first, you can
often shorten the required calculation. A fourth rule with which we can
shorten the calculation relates to an unloaded joint, in which four members
meet and in pairs are in a direct line with one another. This situation is
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Figure 9.74 If four members meet in an unloaded joint that in
pairs are in a direct line with one another, these members can be
considered crossing members as far as the transfer of forces is
concerned. (b) The forces acting on isolated joint D.

Figure 9.75 A truss.

shown in Figure 9.74. For the given xy coordinate system, the equilibrium
of joint D gives

∑
Fx = N1 + N2 cos α − N3 − N4 cos α = 0,∑
Fy = N2 sin α − N4 sin α = 0

so that

N1 = N3 and N2 = N4.

Conclusion:

Rule 4. If four members meet in an unloaded joint that in pairs are in
a direct line with one another, these members can be considered crossing
members as far as the transfer of forces is concerned.

The three examples below show how it is possible to simplify the calcula-
tion with these four rules.

Example 1
You are given the truss in Figure 9.75.

Question:
Which members are zero-force members for the given load?

Solution:
A is an unloaded joint in which two members meet (see Figure 9.76). Both
members are zero-force members (rule 1), so that

N1 = 0 and N2 = 0.

B is an unloaded joint in which three members meet, and of which two are
in a direct line with one another. The third member is therefore a zero-force
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Figure 9.76 The zero-force members in the truss.

Figure 9.77 A truss.

member (rule 2), so that

N9 = 0.

C is a loaded joint where two members meet, and where the line of action
of the load coincides with member 17. Thus (rule 3)

N16 = 0.

The zero-force members are shown in Figure 9.76 with a “0” through the
member axis.

Zero-force members do not participate in the force flow for the present
load. When calculating the forces in the other members, you can leave out
the zero-force members from the truss. If you leave out zero-force member
9 from the truss, you immediately notice that

N8 = N10.

If you leave out zero-force member 16, you see that

N17 = −F.

That this (imaginary) omission of zero-force members can significantly
reduce the effort in calculating is further emphasised in the following two
examples.

Example 2
You are given the truss in Figure 9.77.

Question:
Determine all the zero-force members for the given load.
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Figure 9.78 A zero-force member does not participate in the trans-
fer of forces and can be omitted from the calculation. This is shown
here by depicting the member with a dashed line. (a) to (e) shows the
order in which one can find the zero-force members. (e) In the end,
all bracing members turn out to be zero-force members, and the top
and bottom chord members only transfer the load to the supports.

Solution:
From the equilibrium in joint B, it follows that member 3 is a zero-force
member (rule 2). With the given load, this member does not participate in
the transfer of forces, and could therefore be omitted. In Figure 9.78a, the
member is now shown by means of a dashed line. The equilibrium of joint
C means that member 5 is also a zero-force member (rule 2 again) (see
Figure 9.78b). If we continue, we notice that members 7 and 9 are also
zero-force members (see Figures 9.78c and 9.78d).

Since the support reaction in G is horizontal, member 11 is also a zero-force
member (rule 3) (see Figure 9.78e).

All the verticals and diagonals are zero-force members. The load is there-
fore fully transferred by the bottom and top chord members. For the
(continuous) top chord members we find

N1 = N4 = N8

For the (continuous) bottom chord members we find

N2 = N6 = N10.

When we talk about omitting zero-force members, this is done only to sim-
plify the calculation. If the zero-force members are removed from the truss
in reality, the truss becomes kinematically indeterminate.

Zero-force members therefore have a genuine function in the truss. On the
one hand they ensure the truss retains its shape, while on the other they
can prevent buckling (in the plane of the structure) of (long) compressed
members, such as the bottom chord in Figure 9.77, or the top chord in
Figure 9.79.

Figure 9.77 A truss.
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Figure 9.80 A truss in which the diagonals cross one another.

Figure 9.81 The zero-force members in the truss. (a) to (d) repre-
sent the order in which the zero-force members can be found.

Example 3
You are given the truss in Figure 9.80. The diagonals are crossing members.

Question:
Determine all the zero-force members for the given load.

Solution:
In this truss, it is not possible to find a section across three members (that do
not intersect in one point), nor is there a joint with less than two unknowns
(member forces or support reactions). We therefore cannot determine the
member forces with the method of sections, or with the method of joints,
unless we first determine the support reactions.

For determining the zero-force members in the truss, it is enough to know
that the support reaction at the point of the roller is vertical, so that N2 =
0. This means that N7 = 0, and so forth (see Figures 9.81a–9.81d). We
subsequently discover that members 10, 12 and 13 are zero-force members.

Determining the other member forces is now a relatively simple task. Note
that the force flow does not change when the crossing diagonals are joined
at the point where they cross (rule 4).

Figure 9.79 Zero-force members have a definite function in a
truss. On the one hand, they ensure the truss retains its shape. On the
other hand they can prevent buckling (in the plane of the structure)
of (long) compressed members, such as the top chord in this truss.
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9.4 Problems

Kinematically/statically (in)determinate trusses (Section 9.2)

9.1 Question: Which of these structures retains its shape?

9.2 Question: Which of these structures is kinematically indeterminate?

9.3 Question: Which structure is kinematically determinate?

9.4 Question: Which structure is kinematically determinate?

9.5: 1–4 You are given four simple or self-contained trusses that are sup-
ported in four different ways:

Questions:
a. What is the essential difference between a kinematically determinate

and a kinematically indeterminate structure?
b. What is the essential difference between a statically determinate and a

statically indeterminate structure?
c. Indicate whether the structure is

– kinematically determinate (kd) or kinematically indeterminate (ki),
and (if kinematically determinate) whether the structure is

– statically determinate (sd) or statically indeterminate (si).

9.6: 1–10 The given trusses are kinematically determinate.

Questions (for each truss):
a. Is the truss statically determinate or statically indeterminate?
b. What is the degree of static indeterminacy if the truss is statically

indeterminate?
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Method of sections (Section 9.3.1)

Note: Unless indicated otherwise, all structures in the problems are trusses.

9.7: 1–2 Two weightless blocks are connected by means of three bars.

Structure (1) is different to structure (2) owing to the different placement
of diagonal member 2.

Question: Determine the normal force in bars 1 to 3.

9.8 to 9.53 Question: Determine the normal force in the member(s) shown
in bold.
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9.54 Questions:
a. Using the method of sections, determine the forces in members 1 to 7.
b. Draw the force polygon for the equilibrium of joint G. Plot the forces

in the order 1, 2, 4, etc.

9.55 You are given a parabolic truss beam whose bottom chord is loaded
by a single force of 42 kN.

Question: Using the method of sections, determine the normal force in the
members 1 to 5.

9.56 The truss from the previous problem is now loaded at the joints on
the bottom chord by five equally large forces of 42 kN.

Question: Using the method of sections, determine the normal force in
members 1 to 5.

9.57 Use the method of sections to determine the normal force in members
1 to 7.
a. for F = 160 kN at joint C;
b. for F = 160 kN at joint D.

Method of joints (Section 9.3.2)

9.58 Question: Determine the normal force in member AB.

9.59 Question: Determine the normal force in the member shown in bold.
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9.60 Question:
Using the method of joints, determine all the member forces.

9.61 Question:
Using the method of joints, determine all the member forces due to
F = 6 kN.

9.62 You are given a truss in which members 1 and 4 cross one another.

Question:
Using the method of joints, deter-
mine the normal forces in members
1 to 6 due to the vertical force of
30 kN in the top of the truss.

9.63 You are given a truss in which
members 3 and 5 cross one another.

Question:
Using the method of joints, deter-
mine all the member forces. To do
so, draw the force polygon for all
the joints.

9.64 Question: Using the method
of joints, determine all the member
forces.
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9.65 In the truss shown, the
dashed line is a cable that is
connected to the truss at C
and runs over a pulley (with-
out friction) at D. A load of
3 kN hangs from the cable.

Question:
Using the method of joints, determine all the member forces.

9.66 Questions:
a. Using the method of joints, determine the forces in members 1 to 7.
b. Draw the force polygons for joints B and E.

9.67 Questions:
a. Determine and draw the

support reactions at A
and B.

b. Determine all the mem-
ber forces. To do so,
draw the force polygon
for the equilibrium for
all the joints. Choose a
scale of 5 mm ≡ 1 kN
for the forces.

9.68 In the truss shown, the dashed line k is a cable that is joined to the
truss at B and runs over a trolley (without friction) at C. The cable is loaded
with a weight of 45 kN.

Questions:
a. Draw the forces that the

cable exerts at B and C
on the truss.

b. Using the method of
joints, determine the for-
ces in members 3 and
8.

c. Draw the force polygon
for the equilibrium of
joint C.
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9.69 In the truss shown, there is a tensile force in member 4 of 20 kN:
N4 = +20 kN.

Questions:
a. Show that the truss is

statically indeterminate
to the first degree.

b. Using the method of
joints, determine all the
member forces.

c. Draw the support reactions in the direction in which they act, and give
their values.

d. Draw the force polygon for joint B. Plot the forces in the order 2, 3, 5
and 6. Use 10 mm ≡ 10 kN as force scale.

9.70 Questions:
a. Draw the support reactions as they act in reality on the structure and

give their values.
b. Using the method of joints, determine the forces in members 1 to 11.

9.71 Questions:
a. Using the method of joints, de-

termine all the member forces.
b. Draw the force polygon for the

equilibrium in joint S.

9.72 Questions:
a. Determine the support reactions at A, B and C.
b. Using the method of joints, determine the forces in members 1 to 16.
c. Check the force equilibrium of joint E graphically.
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9.73 Question: Using the method of joints, determine all the member
forces.

9.74 You are given a truss that is supported on a hinge at A and on rollers
at B and C. The truss is loaded by means of a horizontal force of 10 kN at
D. The members 6 and 9 cross one another.

Questions:
a. First determine (as far as possible) the support reactions.
b. Determine the force in member 6.
c. Also determine all the other member forces.

d. Draw all the support reactions as they act in reality on the structure and
give their values.

9.75 Question: How many tension members does this truss have due to the
given load?

9.76 Question: For each of the members in the truss, indicate whether it is
a zero-force member, a tension member, or a compression member. You do
not have to calculate the member forces.
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9.77 Question: In which figure are the correct signs for the member forces
given?

9.78 Question: In which figure are the correct signs for the member forces
given?

9.79 Question: In which figure are the correct signs for the member forces
given?

9.80 Question: In which figure are the correct signs for the member forces
given?

Zero-force members (Section 9.3.3)

9.81 to 9.92 Question: Which of the members are zero-force members?
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Mixed problems (Section 9.3)

9.93 Question: Determine the normal force in the vertical shown in bold.

9.94 Question: Determine the normal force in members 1 and 2 shown in
bold.

9.95 Questions:
a. Determine the member forces 1 to 10, with the correct sign for tension

and compression.
b. Draw the force polygon for joint C in the order 6, 7, 9 and 10.

9.96 Questions:
a. Determine all the member forces.
b. Draw the force polygon for joint C.
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9.97 Questions:
a. Using the method of sections, determine the forces in members 1 to 4.
b. Using a method of your own choice, determine the forces in members

5 to 8.
c. Draw the force polygon for joint C. Plot the forces in the order 3, 4, 6,

7 and 8. Use a force scale of 10 mm ≡ 10 kN.
d. How many zero-force members are there in the truss? Indicate them

(clearly) in the truss.

9.98 Questions:
a. The truss is kinematically determinate. What does that mean?
b. Show that the truss is statically determinate.
c. Determine all the member forces.
d. Draw the force polygon for the equilibrium of joint E, in the order 6,

7, 10 and 12. Use a scale of 5 mm ≡ 1 kN for the forces.

9.99 Questions:
a. Determine the forces in the members 9 to 17.
b. Draw the force polygon for the equilibrium at joint P.
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9.100 Questions:
a. Determine the forces in the members 1 to 9.
b. Draw the force polygon for the equilibrium at joint C. Plot the member

forces in the order 2, 3, 5, 6 and 10.

9.101: 1–2 Question: Determine the forces in the members 1 to 3.

9.102 Questions:
a. Determine the support reactions

at A, B and C. Draw them as
they act in reality on the struc-
ture and write down their values
alongside.

b. Determine the forces in the
members 1 to 14.

c. Draw the force polygon for the
equilibrium of joint D. Plot the
forces in the order 11, 9, 7 and
6.

9.103 You are given a truss in which the members 4 and 5 cross one
another.

Questions:
a. Determine the member forces.
b. Draw the support reactions as they are acting in reality.
c. Draw the force polygon for joint H. Plot the member forces in the order

6, 7, 9 and 10.
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Section forces is the collective name for interaction forces or joining forces
in a member axis. We make a distinction between normal force, shear force,
bending moment and torsional moment. Section forces always occur in
pairs and ensure force transfer in a member. This is addressed in further
detail in Section 10.1.

The section forces can vary along the member axis. Here they are a function
of the x coordinate, chosen along the member axis. Drawing these functions
provides a graphic representation of the distribution of the section forces,
known as diagrams.

In Section 10.2, we will determine the diagrams for the normal force (N),
shear force (V ) and bending moment (M) directly from the equilibrium.

For a correct interpretation of the signs in the M and V diagrams, we must
always know the coordinate system in which we are working. For manual
calculations, one often prefers the use of so-called deformation symbols.
The deformation symbols are independent of the coordinate system. In
Section 10.3, we will introduce the bending symbol for bending moments
and the shear symbol for shear forces.

Section 10.4 summarises the sign conventions for N , V and M diagrams.
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Figure 10.1 (a) A member modelled as a line element, loaded by
two forces of 120 kN and 40 kN. (b) The isolated member with its
support reactions.

Figure 10.2 The section forces (interaction forces) that the
member, modelled as a line, element has to transfer at C.

10.1 Force flow in a member

In mechanics, members in a frame are represented by means of lines. Each
one-dimensional line element represents a three-dimensional member (see
Section 4.3.2). All member properties are assigned to this single line. The
force flow in the member is also assumed to occur along this line, which is
known as the member axis.

Section forces is the collective name for interaction forces or joining forces
in the member modelled as a line element. They always occur in pairs. An
example is provided in Section 10.1.1.

In reality, the force transfer is not concentrated in the member axis, but
is distributed over the member cross-section, and is the sum of a large
number of small interactions between adjacent particles of matter. These
interactions are described using the concept stress. We look at this in more
detail in Section 10.1.2.

In Section 10.1.3, we discuss the general definition for the section forces,
related to the stresses in the cross-section.

The sign conventions for section forces are closely related to those for
stresses. They are summarised in Section 10.1.4.

10.1.1 Member axis and member cross-section; section forces

In Figure 10.1a, the load on beam AB in the one-dimensional model is
transferred to the supports via the member axis. Figure 10.1b shows the
support reactions. The lines of action of the resultant forces at A and B
intersect in the line of action of the force of 120 kN (graphical check of the
moment equilibrium for a body subjected to three forces, see Section 3.3.2).

Figure 10.2 shows the interaction forces that the member has to transfer
at C. After introducing a section at C across the member, the interaction
forces are found from the equilibrium of one of the isolated parts, to the
right or left of C.
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Figure 10.3 An arbitrarily shaped cross-section at C. The force
transfer is not concentrated in the member axis but is distributed
over the section as the sum of many very small interactions between
adjacent particles of matter. The stress resultant R is the resultant
force due to the stresses in the section.

Figure 10.4 It is usual to choose the section across a member
as a plane normal to the member axis. The centre of force is the
intersection of the line of action of the stress resultant R with the
plane of the cross-section.

In reality, the member is not one-dimensional, but has cross-sectional di-
mensions. Figure 10.3 shows an arbitrary section across the member at C.
The force transfer is not concentrated in the member axis, but varies over
the section as the sum of a large number of very small interactions between
adjacent particles of matter. Mathematically, we describe this phenomenon
in the section by means of the concept stress (see Section 6.5).1

The distributions in magnitude and direction of the stresses in the section
are as yet unknown. The equilibrium, however, shows that the stress re-
sultant R, regardless of the shape of the section, must be 50 kN, and that
the line of action of R must coincide with the line of action of the support
reaction at A (see Figure 10.3).

We usually do not give the section across a member an arbitrary shape, but
rather choose one that is straight and normal to the member axis, as shown
in Figure 10.4. This type of section is called a normal section or simply
cross-section. Hereafter, when we refer to a section, we always mean a
normal section.

The intersection of the line of action of the stress resultant R and the cross-
sectional plane is known as the centre of force.

The intersection of the member axis with the cross-sectional plane is the
normal force centre, or normal centre, of the section. The normal (force)
centre is indicated by the two-character symbol NC (see Figure 10.4).

Consistent with the model used for a line element, it is usual to represent

1 In Section 10.1.2, the definition of the concept stress, as introduced in Sec-
tion 6.5, is adapted to describe the interaction between the particles of matter.
The member axis is by definition chosen through the normal centre NC of the
cross-section. The location of the normal centre is covered in Volume 2 Stresses,
Deformations, Displacements. In so-called homogeneous cross-sections (the
whole cross-section consists of the same material) the normal centre coincides
with the centroid of the cross-section.

2

2
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Figure 10.5 Linked up with the modelling as line element, the
section forces (interaction forces) are said to act at the normal centre
NC, the intersection of the member axis with the cross-sectional
plane. Here there are three different section forces: a normal force
of 40 kN, a shear force of 30 kN and a bending moment of 120 kNm.

Figure 10.6 The sign of the section forces is related to a (local)
coordinate system with the x axis along the member axis and the yz

plane parallel to the cross-sections.

the forces in a section as acting in the member axis, or in other words, at
the normal centre NC. The vertical component of the stress resultant R at
section C is 30 kN and can be shifted directly along its line of action to
the member axis. The horizontal component of R is 40 kN and has to be
shifted 3 m in section C parallel to its line of action. This gives a moment
of (40 kN)(3 m) = 120 kNm. The section forces in section C, acting at the
member axis, are shown in Figure 10.5.

The section forces on the left- and right-hand sides of the section are equal
and opposite. Section forces are interaction forces and always occur in
pairs. You should always keep this in mind, even if you are drawing only
one of the member segments to the right or left of the section.

In the case shown in Figure 10.5, we can distinguish between the following
three section forces:
• A normal force: this is the pair of forces of 40 kN with their lines of

action along the member axis; a normal force acts normal to the cross-
sectional plane.

• A shear force: this is the pair of forces of 30 kN in the cross-sectional
plane; a shear force acts transverse to the member axis.

• A bending moment: this is the pair of couples of 120 kNm in a plane
normal to the cross-sectional plane.

For normal force, shear force and bending moment1 we use the symbols N ,
V and M respectively.

Since section forces are interaction forces, their sign convention is some-
what more complicated than that for a force F or couple T . The sign of the
section forces is related to a (local) coordinate system with the x axis along
the member axis and the yz plane parallel to the member cross-sections
(see Figure 10.6).

1 These names used in practice in no sense reflect that we are talking about
interaction forces (pair of forces).



10 Section Forces 391

Figure 10.7 The sectional planes I are positive because the x axis
points out of the matter and the unit normal vector �n points in the
positive x direction. The sectional planes II are negative because the
x axis points into the matter and the unit normal vector �n points in
the negative x direction.

Figure 10.8 The positive directions of the normal force N , shear
force V and the bending moment M in an xz coordinate system.

After applying a section, there are two cross-sectional planes. To distin-
guish these from one another, we call the sectional plane positive where the
x axis points outwards, and the sectional plane negative where the x axis
points inwards. This is shown in Figure 10.7 where the sectional planes I
are positive, and sectional planes II are negative.

More formally, we describe the position of a sectional plane using a so-
called unit normal vector �n. This is a unit vector (a vector with length 1)
pointing outwards from the matter and normal to the sectional plane that is
considered. The position of a sectional plane in space is fully determined
by the scalar components nx ; ny ; nz of the unit normal vector �n. Since
the cross-section is normal to the x axis as chosen along the member axis,
ny = nz = 0. The sectional plane is now said to be positive if the unit nor-
mal vector �n points in the positive x direction (nx = +1), and negative if �n
is pointing in the negative x direction (nx = −1). Again, see Figure 10.7.

Figure 10.8 shows the positive directions in the given xz coordinate system
of the normal force N , the shear force V and the bending moment M . The
sign conventions are as follows:
• A normal force N is positive when it acts on a positive sectional plane in

the positive x direction and on a negative sectional plane in the negative
x direction. To simplify: a normal force N is positive as a tensile force
and negative as a compressive force. This sign convention has already
been used in trusses (see Section 9.3).

• A shear force V is positive when it acts on a positive sectional plane in
the positive z direction, and on a negative sectional plane in the negative
z direction.

• A bending moment M is positive when it causes tension (tensile
stresses) at the positive z side of the x axis, and causes compression
(compressive stresses) at the negative z side.
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Figure 10.9 The positive directions of the section forces N , V and
M in different coordinate systems.

In an xy coordinate system, the positive/negative section forces are defined
in the same way. Figure 10.9 shows the positive directions of the section
forces in various coordinate systems.1

The sign convention given here for the section forces N , V and M is asso-
ciated with the sign convention for stresses in the cross-section. We look at
this in more detail in Section 10.1.2.

10.1.2 Stresses in the cross-section

On a positive sectional plane, consider a small area �A. Let � �F be the
resultant of all the small forces that are transferred by the matter via that
small area. � �F is built up by the contributions of a large number of interac-
tions between the particles of matter. Figure 10.10a shows the components
� �Fx ; � �Fy ; � �Fz of the small force � �F .

If �A is smaller, so is � �F . It is assumed that the relationship between � �F
and �A has a limit when �A approaches zero. This limit was defined in
Section 6.5 as the stress vector �p:

�p = lim
�A→0

� �F
�A

.

The definition of the stress vector is based on the idealised model of contin-
uous matter. Figure 10.10b shows the components px ; py ; pz of the stress
vector �p.

1 Note: it is wrong to say that a bending moment is positive when the couple acts
on the positive sectional plane in accordance with the positive sense of rotation
and on the negative sectional plane in accordance with the negative sense of
rotation. This is shown in Figures 10.9a and 10.9d.
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Figure 10.10 (a) The small force � �F is the resultant of all the
small forces acting on a small but finite area �A. (b) The stress
vector �p is defined as the limit value of � �F/�A for �A → 0.

Figure 10.11 The stress vectors �p(I) and �p(II) in corresponding
points on the positive and negative sectional plane are equal and
opposite, so �p(I) = − �p(II).

If we look at the same small area �A on the negative sectional plane, there
is an equal but opposite force, in accordance with the principle of action
and reaction. The stress vectors �p(I) and �p(II) have the same magnitude
at corresponding points (�A → 0) on the positive and negative sectional
plane, but have opposite directions (see Figure 10.11):

�p(I) = − �p(II).

The stress vector is defined in a particular point and for a particular sec-
tional plane. If we want to indicate the force transfer (interaction) at a point
of the cross-section, the stress vector �p alone is not enough, as we also have
to indicate the status of the sectional plane that is considered. This is done
by means of the unit normal vector �n on that plane.

To describe the action of the forces that the matter to the right of the section
exerts on the matter to the left, and vice versa, we introduce the following
quantities, which are known as cross-sectional stresses (see Figure 10.12):

σxx = lim
�A→0

�Fx

�A · nx

,

σxy = lim
�A→0

�Fy

�A · nx

,

σxz = lim
�A→0

�Fz

�A · nx

.

Here, nx is the x component of the unit normal vector �n on the sectional
plane that is considered.
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Figure 10.12 The stresses in the cross-section reflect the interac-
tion through the area �A (�A → 0), of the right-hand part on the
left-hand part, and vice versa. The normal stress σxx acts normal
to the cross-sectional plane; the shear stresses σxy and σxz act in
cross-sectional plane.

The kernel symbol σ for stress has two sub-indices. The first index relates
to the normal of the plane on which the stress is acting; the second index re-
lates to the direction of the stress (that is, the direction of the corresponding
force component on that plane).

If we look at two corresponding equal areas �A to the right and to the left
of the section, they are subject to two equal and opposite forces �F . Since
the unit normal vectors also have opposite directions, the limit results for
the negative sectional plane are the same as those for the positive sectional
plane. The concept stress reflects the interaction through the small area
�A (�A → 0), both for the right-hand part on the left-hand part, and vice
versa.

The stress σxx , acting normal to the cross-sectional plane is known as the
normal stress. The stresses σxy and σxz, that act in the cross-sectional plane
are known as shear stresses.

The sign convention for the stresses results directly from their definition.
The normal stress σxx is positive if nx and �Fx are both positive or are
both negative; the normal stress is negative if nx and �Fx have different
signs. In the same way, the shear stresses σxy and σxz are positive if nx

and �Fy , respectively nx and �Fz are both positive or both negative; the
shear stresses are negative if nx and �Fy , respectively nx and �Fz, have
different signs.

The sign convention can be summarised as follows:
• A stress is positive when it acts on a positive plane in the positive

direction or on a negative plane in the negative direction.
• A stress is negative when it acts on a positive plane in the negative

direction or on a negative plane in the positive direction.
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Figure 10.13 Positive stresses on the sides of a rectangular block.
The kernel symbol σ for stress has two indices. The first index re-
lates to the normal of the plane on which the stress is acting; the
second index relates to the direction of the stress. The stress is a
normal stress when both indices are equal, and a shear stress when
both indices are different.

For more general cases, the stress definition can be summarised in short as
follows:

σij = lim
�A→0

�Fj

�A · ni

(i, j = x, y, z)

in which both i and j can be replaced by x, y or z.1

Figure 10.13 shows the positive stresses acting on the sides of an (infini-
tesimally) small rectangular block. The block is bounded by six planes, of
which three are positive and three are negative.

σij

• on a small area with the unit normal vector parallel to the i axis (1st
index),

• due to a force component parallel to the j axis (2nd index).

The stress σij is a normal stress when the indices are the same (i = j ) and
a shear stress when the indices are different (i �= j ).

10.1.3 General definition of section forces

In a member cross-section, there are only normal stresses σxx and shear
stresses σxy and σxz (see Figure 10.12). These stresses are as yet unknown
functions of y and z, so that

σxx = σxx(y, z), σxy = σxy(y, z) and σxz = σxz(y, z).

1 The stresses σij (i, j = x, y, z) are the components of a quantity (the so-called
stress tensor) that in a certain point for each arbitrary plane links the components
of the stress vector �p and the components of the unit normal vector �n.

is the stress
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Figure 10.14 (a) The resultant of the normal stresses on a small
area �A around a point P is a small force �N . This force in P is sta-
tically equivalent to (b) a small force �N in the normal force centre
NC (the intersection of the member axis with the cross-sectional
plane), together with (c) a small moment �My in the xy plane and
(d) a small moment �Mz in the xz plane.

The resultant of the normal stresses on a small area �A around a point P is
a small force �N :

�N = σxx�A.

This small force �N in P is statically equivalent to a small force �N in the
member axis (the origin of the yz coordinate system), together with two
small moments �My and �Mz, acting in the xy plane and the xz plane
respectively (see Figure 10.14):

�My = y · �N = y · σxx�A,

�Mz = z · �N = z · σxx�A.

If we sum up the contributions of all the forces �N for the entire cross-
section, this gives:

N =
∫

A

σxx dA,

My =
∫

A

yσxx dA,

Mz =
∫

A

zσxx dA.

• N is the resulting force (or rather: the resulting pair of forces) due to
the normal stresses in the cross-section, and is by definition known as
normal force when it acts at the normal centre NC of the cross-section
(the intersection of the member axis with the cross-sectional plane).

• My is a moment (or rather: a pair of moments) that acts in the xy plane.
My is known as the bending moment in the xy plane.

• Mz is a moment (or rather: a pair of moments) that acts in the xz plane.
Mz is known as the bending moment in the xz plane.
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Figure 10.15 The positive directions of the section forces that are
transferred via normal stresses. N is the normal force, My is the
bending moment in the xy plane and Mz is the bending moment in
the xz plane.

Figure 10.16 (a) The resultant of the shear stresses on a small area
�A around a point P is a small shear force, with components �Vy

and �Vz.

Note that indices y and z in My and Mz also occur under the integral
symbol. This makes the formulas easy to memorise. In addition, y and z

reoccur in the indication of the planes in which the bending moments act:
My in the xy plane and Mz in the xz plane.

The normal force N is positive as a tensile force and negative as a com-
pressive force.

The bending moments My and Mz are positive when a tensile stress
(σxx >0) on a small elemental area �A for y >0 makes a positive
contribution to My or for z > 0 makes a positive contribution to Mz.

Figure 10.15 shows the positive directions of N , My and Mz. These are
the section forces that are transferred via normal stresses in the member
cross-section.

The resultant of the shear stresses on a small area �A around a point P is a
small shear force �V , with components �Vy and �Vz:

�Vy = σxy�A,

�Vz = σxz�A.

When assuming these small forces act in the member axis (by shifting them
to the origin of the yz coordinate system), we have to add a small moment
�Mt in the cross-sectional plane (see Figure 10.16):

�Mt = y · �Vz − z · �Vy = (yσxz − zσxy)�A.

Summation of the contributions of all the forces �Vy and �Vz for the entire
cross-section results in
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Figure 10.16 (a) The resultant of the shear stresses on a small area
�A around a point P is a small shear force, with components �Vy

and �Vz. The forces �Vy and �Vz in P are statically equivalent to
(b) the small forces �Vy and �Vz in the normal force centre NC
(the intersection of the member axis with the cross-sectional plane),
together with (c) a small moment �Mt in the cross-sectional plane.

Vy =
∫

A

σxy dA,

Vz =
∫

A

σxz dA,

Mt =
∫

A

(yσxz − zσxy) dA.

• Vy and Vz are the components of the shear force V , that are the resultant
forces (or rather: pair of forces) due to the shear stresses in the cross-
section.

• Mt is a moment (or rather: pair of moments) that acts in the cross-
sectional plane (the yz plane). Mt is known as a torsional moment.

The components Vy and Vz of the shear force V are (in accordance with
the sign convention for the shear stresses σxy and σxz) positive when they
act on a positive plane in the positive coordinate direction and on a negative
plane in the negative coordinate direction.

The torsional moment Mt is positive when the couple acts on the positive
sectional plane in the positive sense of rotation about the x axis and when
the couple acts on the negative plane in the negative direction of rotation.

Figure 10.17 shows the positive directions of Vy , Vz and Mt. These are the
section forces that are transferred in the cross-section via shear stresses.

Note: The expression given for the torsional moment is not universally ap-
plicable. Sometimes, to determine the torsional moment, we do not move
the lines of action of the shear forces Vy and Vz to the normal centre NC (or
the member axis, where we selected the origin of the yz coordinate system),
but to another point in the cross-section that we refer to as the shear force
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Figure 10.17 The positive directions of the section forces that
are transferred via shear stresses. Vy and Vz are the components of
the shear force V in respectively the y and z direction. Mt is the
torsional moment and acts in the plane of the cross-section.

Figure 10.18 Examples of cross-sections with rotational symme-
try. The angle of rotation α is mentioned for each cross-sectional
shape.

centre, or shear centre, SC.1 With (ySC, zSC) as the coordinates of the shear
force centre, the expression for the torsional moment in that case is

Mt =
∫

A

[(y − ySC)σxz − (z − zSC)σxy] dA.

The expression given earlier,

Mt =
∫

A

(yσxz − zσxy) dA,

applies only when ySC = 0; zSC = 0, or in other words, when the shear cen-
tre SC coincides with the normal centre NC. This occurs for cross-sections
that have rotational symmetry.

A cross-section is said to have rotational symmetry when we rotate the
cross-section n times (n > 1) with an angle of α = 360◦/n about the
member axis, and the rotated cross-section coincides with the original,
un-rotated cross-section.

Figure 10.18 gives a number of examples of cross-sections with rotational
symmetry; the angle of rotation α is given for each of the cross-sectional
shapes.

10.1.4 Summary of the sign conventions for stresses and
section forces

We use a (local) coordinate system with the x axis along the member axis.

A cross-section is straight and normal to the member axis. The location of
a cross-section is determined by the x coordinate.

1 Volume 2, Stresses, Deformations, Displacements, addresses the location of the
shear force centre SC in more detail.
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The unit normal vector is a unit vector pointed outwards from matter, and
normal to the sectional plane that is considered.

A sectional plane is
• positive when the unit normal vector is pointing in the positive coordi-

nate direction;
• negative when the unit normal vector is pointing in the negative

coordinate direction.

This can also be formulated as follows, without the unit normal vector.

A sectional plane is
• positive when the coordinate axis points out of the matter;
• negative when the coordinate axis points into the matter.

A stress is
• positive when it acts on a positive plane in the positive coordinate

direction or on a negative plane in the negative coordinate direction.
• negative when it acts on a positive plane in the coordinate negative

direction or on a negative plane in the positive coordinate direction.

In general, stress σij acts
• on a plane with the unit normal vector parallel to the i axis (1st index),
• due to a force component, parallel to the j axis (2nd index).

The stress σij is a normal stress when the indices are the same (i = j ) and
a shear stress when the indices are different (i �= j ).

The section forces transferred by normal stresses are
• the normal force N ;
• the bending moment My , acting in the xy plane;
• the bending moment Mz, acting in the xz plane.

The section forces transferred by shear stresses are
• the shear force Vy in y direction;
• the shear force Vz in z direction;
• the torsional moment Mt, acting in the yz plane.
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The following sign conventions apply for section forces:
• A normal force N is positive when it acts on a positive cross-sectional

plane in the positive x direction. In other words, a normal force N is
positive as a tensile force and negative as a compressive force.

• A shear force Vy (Vz) is positive when it acts on a positive cross-
sectional plane in the positive y direction (z direction) and on a negative
cross-sectional plane in the negative y direction (z direction).

• A bending moment My (Mz) is positive when it causes tensile stresses
at the positive y side (z side) of the x axis and compressive stresses at
the negative y side (z side).

• A torsional moment Mt is positive when the couple on the positive
cross-sectional plane acts in accordance with the positive direction of
rotation about the x axis and the couple on the negative cross-sectional
plane acts in accordance with the negative direction of rotation.

10.2 Diagrams for the normal force, shear force and
bending moment

The section forces in a member are in general not constant, but may vary
along the member axis. They are then a function of the x coordinate chosen
along the member axis. By drawing these functions, we get a graphical rep-
resentation of the distribution of the section forces. These types of diagrams
are extremely useful to see at a glance where the section forces change sign
(direction) and where they are at largest.

In this section, we cover examples of diagrams for the normal force, shear
force and bending moment. Section 10.2.1 covers members subject to con-
centrated forces and couples, while Sections 10.2.2 and 10.2.3 look at
members subject to a uniformly distributed load.
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Figure 10.19 (a) A simply supported member loaded by two
forces of which the lines of action coincide with the member axis.

10.2.1 Members subject to concentrated forces/couples

We look at three examples:
1. a simply supported member with forces in the direction of the member

axis;
2. a simply supported member with forces normal to the member axis;
3. a simply supported member subject to a couple.

Example 1
The simply supported member AD in Figure 10.19a is loaded at B and C
by two forces of respectively 50 and 20 kN, of which the lines of action
coincide with the member axis.

Question:
Determine the diagrams for the section forces.

Solution:
In Figure 10.19b, the member has been isolated from its supports and the
support reactions are shown; the vertical support reactions are zero.

The interaction forces in a section (the section forces) can be determined
from the equilibrium of the isolated member segments to the left or to the
right of the section. Figure 10.19c shows the member segment to the left
of a section located between A and B. In the section, both segments are
rigidly joined. The section must therefore be able to transfer a normal force
N , shear force V and bending moment M . In Figure 10.19c, the unknown
section forces are shown with their positive directions in the given xz axis
system.1

Actually, the shear force and the bending moment in this xz coordinate
system should be shown as respectively Vz and Mz. In obvious situations,
the indices are generally omitted to simplify the writing.

1 Remember that you should always include quantities shown as symbols to which
a sign is linked positively in the calculation.
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Figure 10.19 (b) The isolated member with its support reactions.
(c) The isolated part of the member to the left of a section between
A and B. The section can transfer a normal force N , shear force V

and bending moment M . The unknown section forces are shown in
accordance with their positive directions in the coordinate system.
(d) The isolated part of the member to the left of a section between
B and C. In the section, only the unknown normal force N is shown
as it was determined earlier that the shear force V and the bending
moment M are zero throughout the member. (e) The isolated part
of the member to the right of a section between B and C, with the
unknown normal force N .

From the force and moment equilibrium of the segment to the left of the
section it follows that

∑
Fx = −(30 kN) + N = 0 ⇒ N = +30 kN,∑
Fz = 0 ⇒ V = 0,∑
Ty |section = 0 ⇒ M = 0.

The normal force N is a tensile force of 30 kN, while the shear force
V and the bending moment M are zero. These values are independent
of the location of the section between A and B and therefore apply for
(0 m) ≤ x < (2 m).

The shear force and bending moment are not only zero in AB, but also
in the rest of the member. This follows from equilibrium of each member
segment to the left or right of a (arbitrarily chosen) section. For this reason,
we will look only at the distribution of the normal force.

Figure 10.19d shows the isolated member segment to the left of a section
between B and C. The equation for the force equilibrium in the x direction
now also includes the force of 50 kN at B:

∑
Fx = −(30 kN) + (50 kN) + N = 0 ⇒ N = −20 kN.

This result, a compressive force of 20 kN, is independent of the location of
the section between B and C and therefore applies for (2 m) < x ≤ (6 m).

Of course, instead of the equilibrium for the part to the left of the section,
we can also determine the equilibrium for the part to the right of the section
(see Figure 10.19e):

∑
Fx = −N − (20 kN) = 0 ⇒ N = −20 kN.
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Figure 10.20 The normal force diagram (N diagram) for the sim-
ply supported member loaded by two forces of which the lines of
action coincide with the member axis. Step changes occur in the N

diagram at the location of the point loads at B and C.

Figure 10.21 A step change in the N diagram can be found from
the equilibrium of a small member segment. In this way, the normal
forces on both sectional planes of a small member segment are in
equilibrium with the load of 50 kN (shown eccentrically for the sake
of clarity).

Note that the positive direction of N on a cross-sectional plane is by defi-
nition always that of a tensile force.

For a section between C and D, the equilibrium of the part to the right of
the section gives

N = 0.

To summarise, for normal force N applies:

N = +30 kN for (0 m) ≤ x < (2 m),

N = −20 kN for (2 m) < x < (6 m),

N = 0 for (6 m) < x ≤ (8 m).

Figure 10.20 shows the distribution of the normal force N graphically in a
diagram. This is called the normal force diagram, or N diagram. Positive
values of N (tensile forces) are plotted at the positive side of the z axis
and negative values (compressive forces) are plotted at the negative side
of the z axis. We usually place the sign of N (“+” for tension and “−”
for compression) within the diagram and write down the relevant values
without a sign.

At x = 2 m and x = 6 m there is a step change in the N diagram equal to
the forces acting there. In these sections, the value of N is undetermined.
This is a result of modelling the load into concentrated forces (acting in a
particular point).

The step change in the normal force diagram can be found from the equi-
librium of a small member segment with length �x (�x → 0), at the point
load. Figure 10.21 shows “joint” B between the member segments AB and
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Figure 10.22 (a) A simply supported member that is loaded in
B normal to the member axis by a force of 60 kN. (b) The isolated
member with its support reactions. (c) The isolated part of the mem-
ber to the left of a section between A and B. The section can transfer
a normal force N , shear force V and a bending moment M . The
unknown section forces are shown in accordance with their positive
directions in the coordinate system. (d) The shear force diagram (V
diagram) for AB. (e) The moment diagram (M diagram) for AB.

BC. From the N diagram we can read off that there is a tensile force of
30 kN directly to the left of B and a compressive force of 20 kN directly to
the right of B. Both forces are in equilibrium with the 50 kN load (which is
shown eccentrically for clarity).

Example 2
The simply supported member AD in Figure 10.22a is loaded at B normal
to the member axis by a force of 60 kN.

Question:
Determine the distribution of the section forces.

Solution:
The units used are m and kN. To simplify the writing, the units have been
omitted from the calculation.

In Figure 10.22b, the member has been isolated and the support reactions
are shown; the horizontal support reaction at A is zero.

Figure 10.22c shows the member segment to the left of a section between A
and B, with all the forces acting on it. The section forces N (normal force),
V (shear force) and M (bending moment) follow from the equilibrium.1

For a length x of the isolated member segment it holds that

∑
Fx = 0 ⇒ N = 0,∑
Fz = −45 + V = 0 ⇒ V = +45 kN,∑
Ty |section = −45x + M = 0 ⇒ M = 45x kNm.

1 The sub-index z is again omitted from the symbols for shear force (Vz) and
bending moment (Mz); see also Example 1.
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Figure 10.23 (a) The isolated member with its support reactions.
(b) The isolated part of the member to the left of a section between
B and D. The section can transfer a normal force N , shear force V

and a bending moment M . The unknown shear forces are shown in
accordance with their positive directions in the coordinate system.
(c) The isolated part of the member to the right of a section between
B and D. (d) The shear force diagram (V diagram) for BD. (e) The
moment diagram (M diagram) for BD.

The normal force N is not only zero in AB, but also in the rest of the
member. This follows from the force equilibrium in the x direction of each
member segment to the left or right of a (arbitrarily chosen) section. We
will therefore only look at the shear force and the bending moment.

The shear force is constant between A and B: V = +45 kN. The bend-
ing moment M varies linearly, from 0 at A (x = 0 m) to +90 kNm at B
(x = 2 m).

Figures 10.22d and 10.22e show the variation for AB of the shear force and
the bending moment with a so-called shear force diagram (V diagram),
respectively a bending moment diagram (M diagram).

Positive values of V and M are plotted at the positive side of the z axis, and
negative values are plotted at the negative side. The sign is shown within
the diagram; relevant values are written down without a sign.

In Figure 10.23b, the member segment to the left of a section located be-
tween B and D has been isolated. The equations for the force equilibrium in
the z direction and the moment equilibrium now includes the load of 60 kN:

∑
Fz = −45 + 60 + V = 0 → V = −15 kN,∑
Ty |section = −45x + 60 × (x − 2) + M = 0

⇒ M = (−15x + 120) kNm.

These values can also be found from the equilibrium of the member seg-
ment to the right of the section, as shown in Figure 10.23c. It should be
noted that the sectional plane in the coordinate system shown is negative,
and that the positive directions of N , V and M are therefore opposite to
those on a positive sectional plane.
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Figure 10.24 A simply supported member that is loaded at B
normal to the member axis by a force of 60 kN, with its shear force
diagram (V diagram) and bending moment diagram (M diagram).
A step change occurs at the location of the point load in the V

diagram and an abrupt change in slope occurs in the M diagram.

Figure 10.25 A step change in the V diagram can be found from
the equilibrium of a small member segment. In this way, the shear
forces on both sectional planes at B are in equilibrium with the load
of 60 kN.

∑
Fz = −V − 15 = 0 ⇒ V = −15 kN,

∑
Ty |section = 15 × (8 − x) − M = 0 ⇒ M = (−15x + 120) kNm.

The shear force between B and D is constant: V = −15 kN. The bending
moment M decreases linearly, from +90 kNm at B (x = 2 m) to 0 at D
(x = 8 m).

Figures 10.23d and 10.23e show the distribution for BD of respectively the
shear force V and the bending moment M .

The shear force diagram (V diagram) and bending moment diagram (M
diagram) for the entire member AD are shown in Figure 10.24.

At B, the point of application of the concentrated force of 60 kN, there is an
abrupt change in slope of the bending moment diagram. Here the bending
moment is at its largest.

The shear force in B is undetermined; this is the result of modelling the
load as a point load. This finds expression in the shear force diagram as a
step change: the shear force is +45 kN directly to the left of B and −15 kN
directly to the right of B. The magnitude of the step change equals the
magnitude of the point load at B.

The step change in the shear force diagram can be found from the force
equilibrium in z direction of a small member segment at B, with length �x

(�x → 0) (see Figure 10.25). The 60 kN point load is kept in equilibrium
by both shear forces in the sectional planes (the bending moments are not
shown).
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Figure 10.26 (a) A simply supported member AD, which is
loaded in C by a couple of 80 kNm. (b) The isolated member with
its support reactions. (c) The isolated part of the member to the left
of a section between A and C. The section can transfer a normal
force N , shear force V and a bending moment M . The unknown
shear forces are shown in accordance with their positive directions
in the coordinate system. (d) The isolated part of the member to the
left of a section between C and D.

Example 3
The simply supported member in Figure 10.26a is loaded at C by a couple
of 80 kNm.

Question:
Determine the distribution of the section forces.

Solution:
The units used are m and kN.

In Figure 10.26b, the member has been isolated and the support reactions
are shown.

Figure 10.26c shows the isolated member segment to the left of a section
between A and C, with all the forces acting on it. From the equilibrium we
find:∑

Fx = N = 0 ⇒ N = 0,∑
Fz = 10 + V = 0 ⇒ V = −10 kN,∑
Ty |section = 10x + M = 0 ⇒ M = −10x kNm.

Figure 10.26d shows the member segment to the left of a section between
C and D, with all the forces acting on it. The equation for the moment
equilibrium now includes the load from the couple of 80 kNm:

∑
Fx = N = 0 ⇒ N = 0,∑
Fz = 10 + V = 0 ⇒ V = −10 kN,∑
Ty |section = 10x − 80 + M = 0 ⇒ M = (−10x + 80) kNm.
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Figure 10.26 (e) The shear force diagram (V diagram) for AD. (f)
The bending moment diagram (M diagram) for AD. The bending
moment varies linearly and makes a step change at C, the point of
application of the couple. The magnitude of the step change is equal
to the magnitude of the couple.

Figure 10.27 A step change in the M diagram can be found from
the equilibrium of a small member segment. In this way, the bending
moments on both sectional planes of a small member segment are
in equilibrium with the couple of 80 kNm.

Figures 10.26e and 10.26f show the shear force diagram (V diagram)
and the bending moment diagram (M diagram) for member AD. Since
the normal force is zero everywhere, the normal force diagram has been
omitted. The shear force is constant across the entire length of the member:
V = −10 kN. The bending moment varies linearly, from 0 at A (x = 0 m)
to −60 kNm directly to the left of C (x = 6 m) and from +20 kNm directly
to the right of C (x = 6 m) to 0 at D (x = 8 m).

In C, where the couple acts, the bending moment is undetermined. This is a
result of modelling the load as a couple that is concentrated in a single point.
This finds expression in the bending moment diagram as a step change
equal to the magnitude of the couple.

The step change in the bending moment diagram can be found from the
moment equilibrium of a small member segment at C, with a length of �x

(�x → 0) (see Figure 10.27; the shear forces are not shown). The bending
moments on both sectional planes are in equilibrium with the couple of
80 kNm.

10.2.2 Members with a uniformly distributed load in the direction
of the member axis

In straight members a (distributed) longitudinal load does not produce
bending moments or shear forces. In these cases, there are only normal
forces. The variation of the normal force is elaborated for two examples:

1. a column subject to its dead weight;

2. a simply supported member subject to a uniformly distributed axial
load over three-quarters of its length.
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Figure 10.28 (a) Dimensions of a concrete column of the building
used in Section 6.4. (b) The column is loaded on top by a force
of 46.4 kN. The dead weight is to be considered as a uniformly
distributed (line)load along the member axis of 1.92 kN/m.

Figure 10.29 (a) The model for the column and the load. (b) To
determine the normal force N we look at the equilibrium of the part
above the section. (c) The normal force diagram.

Example 1
For the example in Figure 10.28, we will use the concrete column from the
building that we looked at in Section 6.4.

Question:
Determine the N diagram.

Solution:
The column is loaded on top by a force of 46.4 kN (see Figure 10.28b). The
dead weight is a uniformly distributed (line) load along the member axis.
With a specific weight of concrete of 24 kN/m3, and the cross-sectional
dimensions given in Figure 10.28a, the dead weight is

(0.4 m)(0.2m)(24kN/m3) = 1.2kN/m.

The model for the column and load is shown in Figure 10.29a.

In Figure 10.29b, a segment with length x has been isolated at the top of
the column. In the section, the as yet unknown normal force N is shown
according to its positive direction (that of a tensile force). For this segment,
the equation for the force equilibrium in the x direction is

∑
Fx = (46.4 kN) + (1.92 kN/m)(x m) + N = 0

from which it follows that (x expressed in m)

N = (−46.4 − 1.92x) kN.

In Figure 10.29c, the normal force N is shown as a function of x. The
normal force is a compressive force everywhere and varies linearly, from
46.4 kN at A (x = 0 m) to 56 kN at B (x = 5 m).

As expected, the compressive force increases downwards due to the col-
umn’s dead weight. The compressive force of 56 kN at B is in conformity
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Figure 10.30 (a) A simply supported member AC, with a uni-
formly distributed load q over part BC along the member axis. (b)
The isolated member with its support reactions. (c) The isolated part
to the left of a section between A and B. (d) The isolated part to the
left of a section between B and C. (e) The isolated part to the right
of a section between B and C. (f) The normal force diagram. It has
an abrupt change in slope at the joining of fields AB and BC.

with the previously determined support reaction (in Section 6.3) from the
equilibrium of the column as a whole.

Example 2
In Figure 10.30a, the simply supported member AC is subject to a
uniformly distributed axial load q along segment BC.

Question:
Determine the normal force distribution.

Solution:
There is only one support reaction not equal to zero, namely the horizontal
support reaction at A. Figure 10.30b shows the isolated member, with all
the forces acting on it.

The variation of the normal force can be determined from the force equi-
librium in the x direction for the member segment to the left of a section
at a distance x from A. Here, we have to distinguish between two parts, or
fields:
• AB (0 < x < a),
• BC (a < x < 3a).

For 0<x <a (the section is within AB) the equation for the force equilib-
rium of the left-hand member segment is (see Figure 10.30c)

∑
Fx = −2qa + N = 0

from which it follows that

N = 2qa.

The normal force in field AB is a constant tensile force.

For a < x < 3a (the section is within BC) the equilibrium equation for the
left-hand member segment is (see Figure 10.30d)
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Figure 10.31 The simply supported member AC is subject to a
uniformly distributed axial load q along part BC. If we switch the
hinged support and roller support, the N diagram changes.

∑
Fx = −2qa + q(x − a) + N = 0.

Here q(x−a) is the resultant of the distributed load on the isolated left-hand
segment. This leads to

N = q(−x + 3a).

Of course we find the same result if we look at the segment to the right of
the section (see Figure 10.30e).

In field BC the normal force is a tensile force that decreases linearly, from
2qa at x = a to zero at x = 3a.

Figure 10.30f shows the entire normal force diagram. This gives a bend (an
abrupt change of slope) at the joining of the fields AB and BC.

It should be noted that the normal force variation changes if you swap the
hinged and roller support at A and C (see Figure 10.31). It is up to you to
check this.

10.2.3 Members with a uniformly distributed load normal to the
member axis

This section looks at two examples:
1. a simply supported member;
2. a member fixed at one side and free at the other.

Example 1
The simply supported beam AB in Figure 10.32a carries a uniformly
distributed load q over its entire length �.

Question:
Determine the distribution of all the section forces.
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Figure 10.32 (a) A simply supported beam AB is bearing a uni-
formly distributed load q over its entire length �. (b) The isolated
member with its support reactions. (c) The isolated part of the mem-
ber to the left of a section. The section can transfer a normal force
N , shear force V and a bending moment M . The unknown section
forces are shown in accordance with their positive directions in the
coordinate system. (d) The shear force diagram for AB. (e) The
bending moment diagram for AB, with the tangents in A and B.

Solution:
In Figure 10.32b, the beam has been isolated and the support reactions are
shown. To determine the variation of the section forces, we will look at the
equilibrium of the part to the left of the section (see Figure 10.32c):

∑
Fx = N = 0,∑
Fz = − 1

2q� + qx + V = 0,∑
Ty |section = − 1

2q� · x + qx · 1
2x + M = 0

so that

N = 0

V = −qx + 1
2q�, (a)

M = − 1
2qx2 + 1

2q�x = 1
2qx(� − x). (b)

The normal force is zero everywhere, and therefore not interesting.

The shear force varies linearly from + 1
2q� in A (x = 0) to − 1

2q� in B
(x = �). The shear force diagram is shown in Figure 10.32d.

The bending moment varies quadratically in x and is positive everywhere.
The bending moment diagram is shown in Figure 10.32e and is shaped like
a (second degree) parabola. In A and B, the tangents of the parabola are
also shown; both tangents intersect at the middle of AB.1

1 It is assumed that the reader is familiar with plotting graphical functions,
drawing tangents, and calculating extreme values.
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Figure 10.33 (a) A member AB fixed at A carries a uniformly
distributed load q over its entire length �. (b) To determine the
section forces, we look at the equilibrium of the part to the right
of the section. (c) The shear force diagram for AB. (d) The bending
moment diagram for AB, with the tangents at A and B.

The bending moment is an extreme (maximum or minimum) when the
derivative of M with respect to x is zero:

dM

dx
= −qx + 1

2q� = 0 ⇒ x = 1
2� and Mmax = 1

8q�2.

If we differentiate expression (b) for the bending moment with respect to x

we find the expression (a) for the shear force. The derivative of the bending
moment M is therefore equal to the shear force V :

dM

dx
= V.

Consequently: the gradient of the moment diagram is equal to the shear
force. In Chapter 11 we will demonstrate that this property is generally
applicable. It is up to you to check the property for Examples 2 and 3 in
Section 10.2.1.

Example 2
In Figure 10.33a, the member AB is fixed at A and carries a uniformly
distributed load q over its entire length �.

Question:
Determine the variation of the section forces.

Solution:
To determine the section forces, we will look at the equilibrium of the seg-
ment to the right of the section. In this case, it is not necessary to previously
determine the support reactions at A (see Figure 10.33b):

∑
Fx = N = 0 ⇒ N = 0,∑
Fz = −V + q(� − x) = 0 ⇒ V = q(� − x),∑
Ty |section = −M − q(� − x) · 1

2 (� − x) = 0 ⇒ M = − 1
2q(� − x)2.
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Figure 10.34 The magnitude and direction of the support reac-
tions in A can be derived from the shear force diagram and the
bending moment diagram.

The normal force is zero everywhere, and therefore not of interest.

The shear force is positive everywhere and varies linearly, from q� at
A (x = 0) to zero at B (x = �). The shear force diagram is shown in
Figure 10.33c.

The bending moment is quadratic in x and negative everywhere. It varies
from − 1

2q�2 at the fixed end A (x = 0) to zero at the free end B (x = �).

Figure 10.33d shows the bending moment diagram: a parabola with its apex
at B. The tangents at A and B are also shown. The tangent at B is horizontal.
Both tangents intersect at the middle of AB. The values p are equal to 1

8q�2.

The maximum1 bending moment occurs at the fixed support in A:

|M|max = 1
2q�2.

Note that at A: dM/dx = V �= 0; here it concerns a maximum at a field
boundary.

The support reactions at A can be derived according to magnitude and
direction from the shear force diagram and the bending moment diagram:

VA = +q�,

MA = − 1
2q�2.

Since the support reactions at A act on a negative sectional plane, they have
the directions shown in Figure 10.34. Whether this is correct can easily be
checked by looking at the equilibrium of the structure as a whole.

1 With “maximum” we often mean “the largest value in an absolute sense”; we
call this the global maximum.
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Figure 10.35 A fixed member, loaded at its free end by a force of
75 kN, with its N diagram, M diagram and V diagram. The magni-
tude of the section forces follows directly from these diagrams. The
direction is determined by the sign. To do so, we have to know the
coordinate system in which we are working. Since that is not given,
the signs in the M and V diagrams have here lost their meaning.

10.3 Deformation symbols for shear forces and
bending moments

Figure 10.35 shows a fixed member that is loaded at its free end by a force
of 75 kN. The same figure also shows the N diagram, M diagram and the
V diagram. The magnitude of the section forces can be read directly from
these diagrams. The direction is determined by the plus or minus sign.

The normal force N can be read directly from the N diagram without coor-
dinate system. The direction of the normal force follows directly from the
plus or minus sign. The N diagram shows that the normal force is negative
and therefore a compressive force.

Other than for the normal force N , we have to know the coordinate system
in which we are working to interpret the signs in the M and V diagrams.
In Figure 10.35, without the coordinate system, the signs in the M and V

diagrams have lost their meaning.

Assume we were working in a xz coordinate system with, of course, the
x axis along the member axis. In order to determine the direction of the
bending moment M from the sign, we have to know the direction of the z

axis.1 In order to determine direction of the shear force V from the sign,
we have to know the direction of the z axis and also the x axis.2

1 A bending moment is positive if it causes tension at the positive z side of the
member axis and compression at the negative z side. The direction of the x axis
is not important here.

2 A shear force is positive if it acts in the positive z direction on a positive sectional
plane, and in the negative direction on a negative sectional plane. Now you also
have to know the direction of the x axis to determine whether a sectional plane
is positive or negative.
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Figure 10.36 The fixed member with the coordinate system used.

Figure 10.37 When you have to deal with bent members or struc-
tures consisting of several members, you have to introduce a local
coordinate system along each straight member segment if you want
to indicate the directions of M and V using the plus and minus
signs. This soon becomes cumbersome and cluttered in manual
calculations.

The signs in the M and V diagrams are in accordance only with the cor-
rect directions for the bending moment M and the shear force V for the
coordinate system given in Figure 10.36.

To interpret the signs in the M and V diagrams correctly, we therefore
have to know the coordinate system. So far, in all the examples showing
the M and V diagrams, the structure has consisted of a single straight
member, and the coordinate system was always shown. When you have
to deal with bent members or structures consisting of several members, you
have to introduce a local coordinate system along each straight member
segment if you want to indicate the directions of M and V using the plus
and minus signs. For the simple structure in Figure 10.37, this already leads
to three local coordinate systems: one for AB, one for BC and one for
CD.

This soon becomes cumbersome and cluttered. In manual calculations, we
will therefore use deformation symbols: the bending symbol for bending
moments, and the shear symbol for shear forces.

The bending symbol and shear symbol symbolise the deformation of the
member axis due to a bending moment and a shear force respectively. These
deformation symbols can be used to set the direction of the section forces
unequivocally, regardless of a coordinate system.

We always use the plus and minus sign for normal forces.

The bending symbol and shear symbol will be explained in more detail
below.



418 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 10.38 Bending symbols.

Figure 10.39 Shear symbols.

Figure 10.38 (a) A small member segment subject to bending
moments will lengthen at the tension side and shorten at the
compression side. The member segment will bend. (b) The small
arc that represents the deformation is used as deformation symbol
for the bending moment and is known as the bending symbol.

Figure 10.39 (a) In a member segment subject to shear
forces, one sectional plane will try to shift with respect to
the other. (b) This effect can be visualised by introducing an
(imaginary) slide joint in the segment, so that both sectional
planes can move with respect to one another. (c) The step formed
by the moved member axes is used as the deformation symbol for
shear forces and is known as the shear symbol.

• Bending symbol (deformation symbol for bending moments)
Figure 10.38a shows a small member segment subject to bending
moments. The member segment will lengthen at the side being pulled,
and shorten at the side being compressed. The member segment will
bend. Since it is possible to determine the bending moment from the
bent shape of the member axis, we use the small arc as deformation
symbol for the bending moment (see Figure 10.38b).

• Shear symbol (deformation symbol for shear forces)
Figure 10.39a again shows a small member segment, but now with
shear forces. When subject to shear forces, one sectional plane will
try to shift with respect to the other. This effect can be visualised
by applying an (imaginary) slide joint within the segment, so that
both parts can move with respect to one another (see Figure 10.39b).
The step change formed by the moved member axes is used as the
deformation symbol for shear forces (see Figure 10.39c).
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Figure 10.40 (a) A simply supported beam, loaded by a single
point load. (b) and (c) When using deformation symbols, we are
free to choose at which side of the member axis the shear force
is plotted. (d) The bending moment is plotted at the side where
the bending moment causes tension, so at the convex side of the
member axis. The open side of the bending symbol therefore always
faces towards the member axis. The gradient of the M diagram
(�M/�x), shown as a “step”, now corresponds directly to the shear
symbol for the shear force. (e) If however the M diagram is plotted
at the wrong side of the member axis, the relationship with the de-
formation symbol for the shear force (the “step” in the M diagram)
is lost.

Figure 10.40 shows the V diagram and the M diagram with the deformation
symbols for a simply supported beam, loaded by a single point load.

Since there is no coordinate system, we are in principle free to choose on
which side of the member axis we plot the bending moment and the shear
force, as long as we use the correct deformation symbols. See the shear
force diagrams in Figures 10.40b and 10.40c, which are both correct.

We make an exception for the bending moment. It is agreed that the M

values are plotted at the side where the bending moment causes tension, so
at the convex side of the member axis (see Figure 10.40d). The open side
of the deformation symbol is therefore always faced towards the member
axis.1

The advantage of this is that the gradient of the M diagram (�M/�x),
shown in Figure 10.40d as a “step”, now corresponds directly with the shear
symbol for the shear force. This allows us to easily and directly check the
relationship between the moment diagram and the shear force diagram.

In Figure 10.40e, the M diagram has been plotted at the wrong side of
the member axis. Although you will come across this often in books, we
strongly recommend that you do not draw the moment diagram in this way,
as the relationship with the deformation symbol for the shear force (the
“step” in the M diagram) is lost.

1 Thanks to this agreement, the deformation symbol in the M diagram is actually
unnecessary. The deformation symbol is nevertheless always shown for clarity.
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10.4 Summary sign convention for the N, V and M
diagrams

When drawing the N , V and M diagrams, you can use:
• plus and minus signs, related to a (local) coordinate system with the x

axis along the member axis;
• deformation symbols (only for the V diagram and the M diagram).

If working with plus and minus signs, in a xz coordinate system:
• positive section forces are plotted at the positive side of the z axis, and

negative values at the negative side of the z axis;
• the sign is placed within the diagram; relevant values are included

without their sign.

If working with deformation symbols:
• You use plus and minus signs for the normal force N , and you use the

bending symbol for the bending moment M and the shear symbol for
the shear force V .

• The bending moment is plotted at the side where the bending moment
causes tension, this is at the convex side of the member axis. The open
side of the deformation symbol therefore always faces the member axis.
The gradient of the M diagram, shown as a “step”, now corresponds
directly to the shear symbol in the V diagram.

• It does not matter at which side of the member axis you plot the values
for the normal force and the shear force.

• Plus and minus signs for the normal force and deformation symbols
for the bending moment and shear force are placed within the diagram;
relevant values in the diagram are written without sign.
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10.5 Problems

Member axis and member cross-section; section forces (Section 10.1.1)

10.1 The sign of the section forces N , V and M can be related to a coordi-
nate system with the x axis along the member axis and the yz plane parallel
to the member cross-sections.

Questions:
a. When is a section plane positive, and when is it negative?
b. When is a normal force positive, and when is it negative?
c. When is a shear force positive, and when is it negative?
d. When is a bending moment positive, and when is it negative?

10.2: 1–10 You are given two beams loaded in five different ways.

Question:
Determine the bending moment and the shear force, with the correct sign
in the given coordinate system, in the following cross-sections:
a. directly to the right of A.
b. directly to the left of B.
c. in C.
d. directly to the left of D.
e. directly to the right of D.
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10.3: 1–4 You are given a column AB fixed at A, with console BC, loaded
in four different ways.

Question:
Determine the sections forces, with the correct sign in the given coordinate
system, in the following cross-sections:
a. directly below the console at B.
b. at D, one meter below B.
c. directly above fixed support A.

Stresses (Section 10.1.2)

10.4: 1–4 You are given a block with the following four states of stress:

(1) σxx = −25 N/mm2

σxy = σyx = −30 N/mm2

σyz = σzy = +15 N/mm2

σzz = +10 N/mm2

(3) σxx = +30 N/mm2

σxz = σzx = +15 N/mm2

σyz = σzy = −25 N/mm2

σzz = −5 N/mm2

(2) σxy = σyx = +15 N/mm2

σxz = σzx = +10 N/mm2

σyy = −5 N/mm2

σzz = +20 N/mm2

(4) σxx = −6 N/mm2

σxy = σyx = −8 N/mm2

σyy = +5 N/mm2

σyz = σzy = +12 N/mm2

Question:
Draw (for each case) the stresses on the block in the directions in which
they act and include their values:
a. for the planes shown.
b. for the planes not shown.

10.5: 1–4 You are given a block with the following four states of stress:

(1) σxx = +10 N/mm2

σxy = σyx = +15 N/mm2

σxz = σzx = −30 N/mm2

σyy = −5 N/mm2

(2) σxy = σyx = +10 N/mm2

σyy = −3 N/mm2

σyz = σzy = −8 N/mm2

σzz = +14 N/mm2
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(3) σxx = −12 N/mm2

σxz = σzx = +5 N/mm2

σyz = σzy = −8 N/mm2

σzz = −15 N/mm2

(4) σxx = +4 N/mm2

σxz = σzx = +10 N/mm2

σyy = +7 N/mm2

σyz = −16 N/mm2

Question:
Draw (for each case) the stresses on the block in the directions in which
they act and include their values:
a. for the planes shown.
b. for the planes not shown.

10.6 The dimensions of a rectangular block are �x; �y; �z and are so
small that three stresses on opposite planes are equal. The figure shows
the top view of the block with only the shear stresses σxy and σyx on two
planes. The other stresses are not shown.

Questions:
a. Draw all the other stresses that act parallel to the xy plane. Show that,

from the moment equilibrium of the block in the xy plane, it follows
that σxy = σyx .

b. Also show that σxz = σzx .
c. Show that σyz = σzy .

General definition section forces (Section 10.1.3)

10.7 A normal force N and the bending moments My and Mz act in a
cross-section. If σ = σ(x, y) is the normal stress in the cross-section, then
the normal force is: N = ∫

A σ dA.

Questions:
a. Draw the (positive) normal force N in the cross-section.
b. Draw the (positive) bending moments My and Mz in the cross-section.
c. How can we express the bending moments My and Mz in the normal

stress σ?

10.8 The shear stresses σxy = σxy(x, y) and σxz = σxz(x, y) in a cross-
section lead to the shear forces Vy and Vz and a torsional moment Mt.

Questions:
a. Draw the (positive) shear forces Vy and Vz in the cross-section.
b. How can the shear forces Vy and Vz be expressed in the shear stresses

σxy and σxz?
c. Draw the (positive) torsional moment Mt in the cross-section.
d. How can the torsional moment Mt be expressed in the shear stresses

σxy and σxz?
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Diagrams for the normal force, shear force and bending moment (Sec-
tion 10.2)

10.9: 1–4 Member AD is supported in two different ways and is loaded at
B and C by forces of respectively 10 and 15 kN.

Questions:
a. From the equilibrium determine the normal force N as a function of x.
b. Draw the N diagram.

10.10: 1–4 You are given four different loaded beams.

Questions:
a. From the equilibrium, determine the shear force V as a function of x.
b. Draw the shear force diagram.
c. From the equilibrium, determine the bending moment M as a function

of x.
d. Draw the bending moment diagram.
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10.11: 1–8 A number of members are loaded for extension by a uniformly
distributed load of 3 kN/m.

Questions:
a. From the equilibrium, determine the normal force as a function of x.
b. Draw the normal force diagram.

10.12: 1–8 The same member is loaded in two different ways and is
loaded for extension in four different ways by a linearly distributed load.
In all cases, the top value of the distributed load is 6 kN/m.

Questions:
a. From the equilibrium, determine the normal force as a function of x.
b. Draw the normal force diagram.
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10.13: 1–4 You are given four differently loaded beams.

Questions:
a. From the equilibrium, determine the shear force V as a function of x.
b. Draw the shear force diagram.
c. From the equilibrium determine the bending moment M as a function

of x.
d. Draw the bending moment diagram.

10.14: 1–3 You are given three beams with a linearly distributed load
normal to the member axis. The top value for the distributed load in all
three cases is 4 kN/m.

Questions:
a. From the equilibrium, determine the shear force V as a function of x.
b. Draw the V diagram.
c. Form the equilibrium, determine the bending moment M as a function

of x.
d. Draw the M diagram.
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10.15 The figure shows a foundation beam on sand and loaded by a force
of 27 kN. For this load, the earth pressure is linearly distributed, as shown
in the load diagram. The dead weight of the beam is ignored.

Questions:
a. Determine the top value of the earth pressure.
b. From the equilibrium, determine the shear force and the bending mo-

ment for AB as a function of x (0 ≤ x < 2 m).
c. From the equilibrium, determine the shear force and the bending mo-

ment for BC as a function of x (2 m < x ≤ 4 m).
d. For ABC, draw the shear force diagram and the bending moment dia-

gram.

Deformation symbols for shear force and bending moment (Section 10.3)

10.16 Question: Explain the shape of the deformation symbols that are
used for shear force and bending moment.

10.17: 1–8 A fixed beam is loaded in various ways.

Question:
Which deformation symbol belongs to the shear force in cross-sections a
and b respectively?
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10.18: 1–4 You are given four different beams. Question:
Which deformation symbol belongs to the shear force in cross-sections a
to e respectively?

10.19: 1–2 Two beams are loaded by an eccentrically applied normal force.

Question:
Which combination of deformation symbols belongs to the shear force and
the bending moment in cross-section a?
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10.20: 1–3 You are given the same cantilever beam with three different
loads.

Question:
Determine the combination of deformation symbols that belong to the shear
force and the bending moment:
a. in the cross-section directly to the right of B.
b. in the cross-section directly to the left of B.
c. in the cross-section directly next to the fixed support A.

10.21: 1–6 You are given two beams loaded in three different ways.

Question:
Determine the bending moment and the shear force, with the correct
deformation symbol, in the following cross-sections:
a. directly to the right of A.
b. directly to the left of B.
c. at C.
d. directly to the left of D.
e. directly to the right of D.
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10.22: 1–4 You are given two beams loaded in different ways.

Question:
Determine the bending moment and the shear force, with the correct defor-
mation symbol, in the following cross-sections:
a. directly to the right of A.
b. directly to the left of B.
c. at C.
d. directly to the left of D.
e. directly to the right of D.

10.23: 1–4 You are given a cantilever beam and four different loads.

Question:
For the entire beam, draw the shear force diagram and the bending moment
diagram, with the deformation symbols. Include their values at relevant
points.

10.24: 1–4 You are given four different structures.

Question:
For the entire structure, draw the V diagram and the M diagram, with the
deformation symbols. Include the values.



11
Mathematical Description of
the Relationship between
Section Forces and Loading

In the previous chapter, a direct approach was used to determine the varia-
tion of section forces. Section forces were determined from the equilibrium
of the isolated member part on the one or other side of the section. Usually
the support reactions have to be determined first.

This chapter introduces a more mathematical approach based on the equi-
librium of a small member segment with length �x that approaches zero
(�x → 0).

In Section 11.1, we derive the differential equations for the equilibrium of
such an infinitesimal member segment.

Using examples, Sections 11.2 and 11.3 show how to determine the varia-
tion of the section forces. The examples in Section 11.2 relate to extension
(relationship between N and qx); those in Section 11.3 relate to bending
(relationship between Mz, Vz and qz).

Since no misunderstanding is possible, we will omit the index z in Mz and
Vz to simplify the writing.
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Figure 11.1 Member with (a) non-deformed geometry and (b)
deformed geometry.

Figure 11.2 (a) Section forces N , V and M acting on the
left-hand sectional plane of a small member segment with length
�x (�x → 0).

11.1 Differential equations for the equilibrium

The differential equations for equilibrium are derived from the equilib-
rium of a small member segment with a length �x that approaches zero
(�x → 0). We assume that the displacements due to the deformation of
the member are negligible small. Therefore the equilibrium, including that
of a small member element, can be related to the non-deformed geometry
(see Figure 11.1).

In Figure 11.2a, a small segment with length �x has been isolated from a
member and greatly magnified. The member segment is subjected to qx and
qz. The loads act on the member axis (this has not been drawn as such for
qz for the sake of clarity).

If length �x of the member segment is sufficiently small (�x → 0), the
distributed loads qx and qz can be considered uniformly distributed.

The (unknown) section forces on the left and right-hand sectional planes are
shown in their positive direction. The section forces are a function of x, the
location of the cross-section, and are generally different in both sectional
planes.

In Figure 11.2a, it is assumed that the forces on the left-hand section are
N , V and M . If the section forces increase over a distance �x in the x

direction by amounts �N , �V and �M , respectively (see Figures 11.2b
to 11.2d), the forces on the right-hand sectional plane are then N + �N ,
V + �V and M + �M (see Figure 11.2e).

From the force equilibrium of the small member segment it follows that

∑
Fx = −N + (N + �N) + qx�x = 0, (a)

∑
Fz = −V + (V + �V ) + qz�x = 0. (b)

From the moment equilibrium it follows that (we have selected the moment
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Figure 11.2 (b) to (d) Over a distance �x in the x direction the
section forces increase by amounts �N , �V and �M respectively.
(e) The section forces on the right-hand sectional plane are then
N + �N , V + �V and M + �M .

sum about point A on the right-hand sectional plane)

∑
Ty |A = −M − V �x + (M + �M) + qz�x · 1

2�x = 0. (c)

With the three equilibrium conditions (a) to (c) this gives

�N + qx�x = 0,

�V + qz�x = 0,

�M − V �x + 1
2qz(�x)2 = 0.

After dividing by �x we find

�N

�x
+ qx = 0,

�V

�x
+ qz = 0,

�M

�x
− V = − 1

2qz�x.

�N/�x is the increase in the normal force per length in the x direction (see
Figure 11.2b). In the limit �x → 0 this is known as the derivative from N

with respect to x and is written dN/dx:

lim
�x→0

�N

�x
= dN

dx
.

In the same way:

lim
�x→0

�V

�x
= dV

dx
,
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lim
�x→0

�M

�x
= dM

dx
.

The three equations for the equilibrium of an elementary member segment
with length �x in the limit �x → 0 are

dN

dx
+ qx = 0,

dV

dx
+ qz = 0,

dM

dx
− V = 0.

In the last equation, with �x → 0, the term 1
2qz�x has disappeared. This

is justified since the contribution by qz in the equation for the moment
equilibrium is one order smaller than the contribution of the other terms.

The formulas derived give important general information about the varia-
tion of N , V and M in member segments (fields) where no concentrated
forces and/or couples are acting. In Sections 11.2 and 11.3 this general
information is translated into rules that allow us to easily draw N , V and
M diagrams.

The first-order differential equation equation

dN

dx
+ qx = 0 (extension) (a)

provides a direct relationship between the (distributed) load qx acting in the
direction of the member axis, and the normal force N . This is known as the
equilibrium equation for extension.
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The equations

dV

dx
+ qz = 0, (b)

dM

dx
− V = 0 (c)

indicate the relationship between the (distributed) load qz acting normal to
the member axis, the shear force V and the bending moment M .

The shear force V can be eliminated by differentiating (c) to x and adding
it to (b). This gives the second-order differential equation

d2M

dx2
+ qz = 0 (bending). (d)

This equation provides the direct relationship between the (distributed) load
qz normal to the member axis and the bending moment M . This is known
as the equilibrium equation for bending.

The variation of the normal force N depends only on the load in the di-
rection of the member axis, qx . The variation of the bending moment M

and the shear force V depends only on the load qz normal to the member
axis. For a member, this means that the equilibrium equations for extension
(only normal forces due to axial loads) and bending (only bending moments
and shear forces due to loads normal to the member axis) can be treated
separately.1

Comment 1: In Sections 10.2.1 to 10.2.3 we discussed the fact that axial
loads give only normal forces (extension) and that loads normal to the mem-

1 The loads have to be applied on the member axis.
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ber axis (including couples) give only shear forces and bending moments
(bending).

Comment 2: The derivation is not applicable if a concentrated force or a
concentrated couple acts on the member segment. In that case, there is a
“step change” or “abrupt change in slope” in the N , V and/or M diagram;
see the examples in Section 10.2.1. N , V and/or M are, as functions of x,
no longer continuous and/or continuously differentiable. In such a case, the
member can be split into a number of fields, so that the differential equation
is applicable for each individual field (see Section 11.2, Example 2 and
Section 11.3, Example 4).

11.2 Mathematical elaboration of the relationship
between N and qx (extension)

We derived for the relationship between the normal force N and the
distributed axial load qx

dN

dx
+ qx = 0

or in other words

dN

dx
= −qx.

By integrating once, we find the variation of the normal force N :

N = −
∫

qx dx.

With the exception of a constant, we have determined the indefinite integral
(or primitive function) of qx , and therefore the variation of the normal force
N .
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Figure 11.3 Since the distributed load is not acting along the entire
length, the member has to be divided into two fields.

Figure 11.4 (a) Model of a column and its load. (b) The boundary
condition (end condition) N = −46.4 kN follows from the force
equilibrium in the x direction of the small end segment in A (with
�x → 0). (c) N diagram.

The unknown integration constant is found using a known (prescribed)
value of N at one of the member ends. This is referred to as an end
condition.

It is sometimes necessary to divide the member into a number of segments
(fields), as in Figure 11.3. In that case, we also have to formulate conditions
for the joining from one field to another. These conditions are referred to as
joining conditions.

Purely mathematically both the end conditions and joining conditions can
be regarded as boundary conditions for a specific field. They can be derived
from the equilibrium of a small member segment with length �x (�x → 0)
at the boundaries of the field (an end and/or a joining).

For a statically determinate member, there are always sufficient boundary
conditions to find the normal force variation without previously determining
the support reactions.

We will illustrate this by means of two examples previously covered in
Section 10.2.3:
• A column subject to its dead weight.
• A simply supported member that is loaded over two-thirds of its length

by a uniformly distributed axial load along the member axis.

Example 1
Figure 11.4a gives the model of a column and its load.

Question:
Determine the variation of the normal force (the N diagram) from the
differential equations for the equilibrium.

Solution:
The units used are m and kN; they are omitted hereafter from the calcula-
tion.
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In the given coordinate system:

qx = 1.92 kN/m

so that

N = −
∫

qx dx = −
∫

1.92 dx = (−1.92x + C) kN. (a)

The integration constant C is found from the fact that there is a compressive
force of 46.4 kN at the top of the column. The boundary condition (end
condition) is therefore

x = 0 : N = −46.6 kN. (b)

This boundary condition can also be derived more formally from the force
equilibrium in the x direction of a small member segment with length �x

(�x → 0) at the top of the column (see Figure 11.4b):

∑
Fx = 46.4 + N = 0 → N = −46.4 kN.

With �x → 0 the contribution of qx�x, due to the distributed load,
disappears.

Substitute the values of x and N from (b) in (a) and we find

C = −46.6 kN.

This gives the variation of the normal force N :

N = (−1.92x − 46.4) kN.

The normal force diagram is shown in Figure 11.4c. The results agree with
what we found earlier in Section 10.2.3, Example 1.

Figure 11.4 (a) Model of a column and its load. (b) The boundary
condition (end condition) N = −46.4 kN follows from the force
equilibrium in the x direction of the small end segment in A (with
�x → 0). (c) N diagram.
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Figure 11.5 (a) A simply supported member with a uniformly
distributed axial load on section BC. (b) The boundary condition
(joining condition) at B, N(1) = N(2), follows from the force equi-
librium in the x direction of a small member segment at the joining
at B (with �x → 0). (c) The boundary condition (end condition) at
C, N(2) = 0, follows from the force equilibrium in the x direction
of a small end segment at C (with �x → 0).

Example 2
In Figure 11.5a, a uniformly distributed axial load q is acting on segment
BC of member ABC which is simply supported at A and C.

Question:
Determine the variation of the normal force (the N diagram) from the dif-
ferential equations for the equilibrium.

Solution:
Since the uniformly distributed load q acts only on part of the member, we
have to distinguish between two segments:
• segment AB (0<x<a), hereafter known as field (1).
• segment BC (a<x<3a), hereafter known as field (2).

The normal force variation is determined per field. The field number is used
as upper index for units that are field-dependent.

Field (1):

dN(1)

dx
= −q(1)

x = 0 → N(1) = C(1).

In an unloaded field, the normal force is constant.

Field (2):

dN(2)

dx
= −q(2)

x = −q → N(2) = −qx + C(2).

In a field with a uniformly distributed load, the normal force is linear.

Per field, there is one unknown integration constant; with two fields there
is a total of two integration constants, C(1) and C(2). There are two bound-
ary conditions available to solve these constants: a joining condition at B
(x = a) and an end condition at C (x = 3a).



440 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

• The joining condition at B (x = a)
At B, the normal force in field (1) is equal to the normal force in field
(2):

x = a : N(1) = N(2). (a)

This boundary condition can be derived directly from the force
equilibrium in the x direction of the small member segment with
length �x (�x → 0) at the joining in B (see Figure 11.5b). The
contribution of q disappears from the equilibrium equation as �x → 0.

• The end condition at C (x = 3a)
At a roller support C the horizontal support reaction is zero, as is
therefore the normal force:

x = 3a : N(2) = 0. (b)

This boundary condition can also be derived from the equilibrium of
a small member segment at the end of the member (see Figure 11.5c).
Here also, the contribution of q disappears in the equilibrium equation
as �x → 0.

Elaboration of the conditions (a) and (b) leads to two equations with two
unknowns:

C(1) − C(2) = −qa,

C(2) = 3qa.

The solution is

C(1) = 2qa,

C(2) = 3qa.

This results in the normal force variation for both fields:

Figure 11.5 (a) A simply supported member with a uniformly
distributed axial load on section BC. (b) The boundary condition
(joining condition) at B, N(1) = N(2), follows from the force equi-
librium in the x direction of a small member segment at the joining
at B (with �x → 0). (c) The boundary condition (end condition) at
C, N(2) = 0, follows from the force equilibrium in the x direction
of a small end segment at C (with �x → 0).
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Figure 11.6 The loaded member with its N diagram.

Field (1):

N(1) = 2qa (0 ≤ x < a).

Field (2):

N(2) = −qx + 3qa (a < x ≤ 3a).

Figure 11.6 shows the N diagram. The results agree with those found
previously in Section 10.2.2, Example 2.

11.3 Mathematical elaboration of the relationship
between M, V and qz (bending)

We derived the following for the relationship between M , V and a dis-
tributed load qz normal to the member axis:

dV

dx
+ qz = 0,

dM

dx
− V = 0.

Eliminating the shear force leads to a direct relationship between the
bending moment M and the distributed load qz:

d2M

dx2 + qz = 0

or in other words:

d2M

dx2 = −qz.
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On the basis of this latter equation, we find the shear force V after inte-
grating once:

dM

dx
= V = −

∫
qz dx

and after integrating again we find the variation of the bending moment M:

M =
∫

V dx = −
∫ ( ∫

qz dx
)

dx.

With each integration, an integration constant appears. This means that the
expression for the shear force V contains one unknown (C1), and that for
the bending moment M contains two (C1 and C1).

The two constants C1 and C2 follow from end conditions and/or joining
conditions relating to V and M . They can be derived from the equilibrium
of a small member segment with length �x (�x → 0) on the boundaries
(end or joining) of the field.

For statically-determinate members, there are always sufficient end and/or
joining conditions to find the variation of the shear force and bending
moment without previously determining the support reactions. This is
illustrated using the following four examples:

1. A fixed beam, loaded at its free end by a concentrated load.
2. A simply supported beam and a beam fixed at one of its ends, both with

a uniformly distributed load along its entire length.
3. A simply supported beam with a triangular load.
4. A simply supported beam with overhang (cantilever beam) and a

uniformly distributed load along its entire length.
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Figure 11.7 (a) A beam fixed at A and loaded at its free end B
by a force F normal to the beam axis. (b) The boundary condi-
tions V = +F and M = 0 are found from the force and moment
equilibrium of a small boundary segment at B (with �x → 0).

Example 1
Figure 11.7a shows a beam AB fixed at A and of length �. At its free end B
the beam is loaded normal to its axis by a force F .

Question:
Determine the V and M diagrams using the differential equations for equi-
librium.

Solution:
For 0<x<� it holds that

d2M

dx2
= −qz = 0.

Repeated integration gives

dM

dx
= V = C1, (a)

M = C1x + C2. (b)

In an unloaded field the shear force is constant and the bending moment is
linear.

The integration constants C1 and C2 are found from the boundary con-
ditions at the free end B. Here both V and M have a prescribed value:
the shear force is equal to F (pay attention to the sign), and the bending
moment is zero:

x = � : V = +F, (c)

x = � : M = 0. (d)

The boundary conditions can also be derived from the force and moment
equilibrium of a small member segment with length �x (�x → 0) at the
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Figure 11.8 The loaded beam and its V and M diagrams.

Figure 11.9 A beam for which the type of support at A and/or
B is still unknown, with a uniformly distributed load normal to the
member axis.

free end B (see Figure 11.7b). The section forces V and M , which here are
acting on a negative section plane, have to be drawn in accordance with
their positive directions. The equilibrium of the member segment gives

∑
Fz = −V + F = 0 ⇒ V = +F,∑
Tz|B = −M − V �x = 0 (with �x → 0) ⇒ M = 0.

Substitute (c) in (a) and (d) in (b); elaboration of the boundary conditions
leads to

C1 = +F,

C2 = −F�.

This gives the variation of shear force V and bending moment M for beam
AB:

V = F,

M = Fx − F� = −F(� − x).

The V and M diagrams are shown in Figure 11.8. The shear force V is
constant. The bending moment M is negative everywhere and is linear. The
bending moment (in the absolute sense) has its maximum at the fixed end:

|M|max = F�.

Example 2
In Figure 11.9, a uniformly distributed load q is acting normal to the beam
axis over the entire length � of beam AB. The method of support in A and/or
B is given below.
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Figure 11.10 The same beam supported in three different ways,
with the associated V and M diagrams: (a) simply supported at A
and B, (b) fixed at A and (c) fixed at B.

Question:
For the following three cases, determine the V and M diagrams using the
differential equations for equilibrium (see Figure 11.10):

(a) The beam is simply supported at A and B;
(b) The beam has a fixed support at A and a roller support at B;
(c) The beam has a fixed support at B and a roller support at A.

Solution:
In all three cases, with qz = q the following applies:

d2M

dx2 = −q,

dM

dx
= V = −

∫
q dx = −qx + C1,

M =
∫

V dx =
∫

(−qx + C1) dx = − 1
2qx2 + C1x + C2.

Due to a uniformly distributed load, the shear force is linear, and the
bending moment is quadratic (parabolic).

The constants C1 and C2 are determined by the boundary conditions
(associated with the type of support) at A and/or B.

The boundary conditions are

case (a) case (b) case (c)

x = 0 : M = 0 x = � : V = 0 x = 0 : V = 0

x = � : M = 0 x = � : M = 0 x = 0 : M = 0
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• Elaboration of the boundary conditions in case (a):

x = 0 : M = C2 = 0 ⇒ C2 = 0,

x = � : M = − 1
2q�2 + C1� + C2 = 0 ⇒ C1 = 1

2q�

from which it follows that

V = −qx + 1
2q� = 1

2q(� − 2x),

M = − 1
2qx2 + 1

2q�x = 1
2qx(� − x).

• Elaboration of the boundary conditions in case (b):

x = � : V = −q� + C1 = 0 ⇒ C1 = q�,

x = � : M = − 1
2q�2 + C1� + C2 = 0 ⇒ C2 = − 1

2q�2

V = −qx + q� = q(� − x),

M = − 1
2qx2 + q�x − 1

2q�2 = − 1
2q(� − x)2.

• Elaboration of the boundary conditions in case (c):

x = 0 : V = C1 = 0 ⇒ C1 = 0,

x = 0 : M = C2 = 0 ⇒ C2 = 0

from which it follows that

V = −qx,

M = − 1
2qx2.

Figure 11.10 shows the V and M diagrams for all three cases. The tangents
to the M diagram are also shown at A and B. These intersect in x = 1

2�,
at mid-span. In the figure, an important variable p is shown: p = 1

8q�2. We
will make use of p in Chapter 12.

Figure 11.10 The same beam supported in three different ways,
with the associated V and M diagrams: (a) simply supported at A
and B, (b) fixed at A and (c) fixed at B.

from which it follows that
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Figure 11.11 (a) Small end segment at hinged support A (see
Figure 11.10a). (b) Small end segment at free end B (see Figure
11.10b).

Below we again show how, for two cases, the boundary conditions (end
conditions) can be derived from the equilibrium of a small element with
length �x (�x → 0) at the beam ends.

Boundary condition at the hinged support A in case (a)
In Figure 11.11a, a member segment with length �x (�x → 0) has been
isolated at the hinged support at A. The figure shows all the forces act-
ing on it, including the unknown vertical support reaction at A. Moment
equilibrium about A requires

∑
Ty |A = M − V �x − q�x · 1

2�x = 0.

For �x → 0 the terms with �x disappear and we find the boundary
condition at A:

M = 0.

Boundary conditions at the free member end B in case (b)
In Figure 11.11b, the small “last” member segment at the free end B is
shown, with all the forces acting on it. The element has a length �x.

The equations for the equilibrium are

∑
Fz = −V + q�x = 0,∑
Ty |B = −M − V �x + q�x · 1

2�x = 0.

For �x → 0 the terms with �x disappear in both equations and we find
the boundary conditions at the free member end B:

V = 0,

M = 0.
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Figure 11.12 (a) The water pressure on a water-retaining slide (b)
modelled as a line load on a line element.

Example 3
Figure 11.12a shows a water-retaining slide of width b and height h, which
is supported by a hinge at the top and supported against a sill below. The
mass density of water is ρ.

Question:
Model the slide as a line element with a line load, and use the differential
equations for equilibrium to find the variation of the shear force and the
bending moment.

Solution:
The water pressure on the slide at a depth x is

p = ρgx,

in which g is the gravitational field strength. The water pressure increases
linearly with the depth.

In Figure 11.12b the slide with width b is modelled as a line element
(beam). The support at the base is considered a roller support. At a depth x

the load on the slide is

qz = pb = ρgbx.

It holds

d2M

dx2
= −qz = −ρgbx,

V = dM

dx
= −

∫
qz dx = −

∫
ρgbx dx = − 1

2ρgbx2 + C1,

M =
∫

V dx =
∫ (

− 1
2ρgbx2 + C1

)
dx = − 1

6ρgbx3 + C1x + C2.
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Figure 11.13 (a) The water-retaining slide modelled as a beam
with its (b) shear force diagram and (c) bending moment diagram.

Due to a linear distributed load, the shear force is a quadratic (parabolic)
function in x, and the bending moment is a third degree (cubic) function in
x.

The constants C1 and C2 follow from the boundary conditions that the
bending moment at both the top and the base is zero:

x = 0 : M = 0,

x = h : M = 0.

Elaboration of the boundary conditions leads to

C1 = 1
6ρgbh2,

C2 = 0.

The expressions for the shear force and the bending moment are therefore

V = 1
6ρgb(h2 − 3x2), (a)

M = 1
6ρgb(h2x − x3). (b)

The V diagram is a second degree curve (parabola); the M diagram is a
third degree curve (cubic).

Both diagrams are shown in Figure 11.13. At A and B tangents to the V

and M diagrams are also shown. Note that the tangents to the M diagram
intersect at x = 2

3h, the location where the resultant R of the triangular
load acts. We will make use of this in the next chapter.

The bending moment is extreme when

dM

dx
= V = 0.
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Figure 11.14 The support reactions are found from the V diagram
as the shear forces at the member ends.

In other words: the bending moment is extreme where the shear force is
zero. This location can be found from (a):

V = 1
6ρgb(h2 − 3x2) = 0 ⇒ x = 1

3h
√

3.

Substituting this value of x in the expression for M gives the maximum
bending moment:

Mmax = M
(x= 1

3 h
√

3)
= 1

6ρgb

{
h2

(
1
3h

√
3
)

−
(

1
3h

√
3
)3
}

=
√

3

27
ρgbh3 = 0.064ρgbh3.

The support reactions can be found from the V diagram as the shear forces
on the beam ends:

x = 0 : V = + 1
6ρgbh2,

x = h : V = − 1
3ρgbh2.

These shear forces on the boundaries of the beam are shown in Fig-
ure 11.14. As a check, one can be examine whether the beam as a whole
is in equilibrium. The resultant R = 1

2ρgbh2 of the distributed load acts at
x = 2

3h. This gives

∑
Fz = R − 1

6ρgbh2 − 1
3ρgbh2 = 0,∑

Ty |B = R · 1
3h − 1

6ρgbh2 · h = 0.

Force and moment equilibrium therefore are satisfied.

Figure 11.13 (a) The water-retaining slide modelled as a beam
with its (b) shear force diagram and (c) bending moment diagram.
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Figure 11.15 (a) For the cantilever beam with a uniformly distrib-
uted load along the entire length we have to distinguish two fields.
(b) The joining condition, M(1) = M(2), at support B is found
from the moment equilibrium of a small beam segment with length
�x → 0.

Example 4
Cantilever beam ABC in Figure 11.15a is simply supported at A and B, and
has an overhang BC at B. The beam is carrying a uniformly distributed load
of 40 kN/m over its entire length. The dimensions are given in the figure.

Question:
Using the differential equations for equilibrium, determine the variation of
the shear force and the bending moment.

Solution:
The as yet unknown support reaction at B gives a discontinuity in the
distributed load on the isolated member. At this point, the differential
equations for the equilibrium are not valid (see Section 11.1). The beam
therefore has to be split into two parts or fields:

• part AB with (0 m)<x <(5 m), hereafter known as field (1).
• part BC with (5 m)<x<(7 m), hereafter known as field (2).

The differential equations for the equilibrium are elaborated per field. For
the units that are field-dependent, the field number is used as upper index.

All units are expressed in m and kN. The units are hereafter omitted from
the calculation.

For field (1) with (0 m)<x <(5 m):

qz = 40 kN/m,

d2M(1)

dx2
= −qz = −40 kN/m,

V (1) = dM(1)

dx
= −

∫
40 dx = (−40x + C

(1)
1 ) kN,
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M(1) =
∫

V (1) dx =
∫

(−40x + C
(1)
1 ) dx

= (−20x2 + C
(1)
1 x + C

(1)
2 ) kNm.

For field (2) with (5 m)<x<(7 m):

qz = 40 kN/m,

d2M(2)

dx2 = −qz = −40 kN/m,

V (2) = dM(2)

dx
= −

∫
40 dx = (−40x + C

(2)
1 ) kN,

M(2) =
∫

V (2) dx =
∫

(−40x + C
(2)
1 ) dx

= (−20x2 + C
(2)
1 x + C

(2)
2 ) kNm.

There are four boundary conditions available for solving the total of four
unknown integration constants C

(1)
1 , C

(1)
2 , C

(2)
1 and C

(2)
2 :

1. end condition at A: x = 0; M(1) = 0.

2. joining condition at B: x = 5; M(1) = M(2).

3. end condition at C: x = 7; V (2) = 0.

4. end condition at C: x = 7; M(2) = 0.

For the joining condition at B, we will show below how this can be derived
from the equilibrium of a member segment with length �x (�x → 0) at
the joining of the two fields.

Figure 11.15b shows the small member segment with the four section forces
acting on it and the unknown support reaction at B. If B is not located

Figure 11.15 (a) For the cantilever beam with a uniformly distrib-
uted load along the entire length we have to distinguish two fields.
(b) The joining condition, M(1) = M(2), at support B is found
from the moment equilibrium of a small beam segment with length
�x → 0.
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in the middle of the element, but at a distance ξ�x from the left-hand
section plane, respectively (1 − ξ)�x from the right-hand section plane
(0 < ξ < 1), then the equation for the moment equilibrium about B is∑

Ty |B =
−M(1) + M(2) − V (1)ξ�x − V (2)(1 − ξ)�x + qz�x

(
ξ − 1

2

)
�x = 0.

As �x → 0 all terms with �x disappear and we are left with

M(1) = M(2).

This is the joining condition we are looking for.

The derivation is considerably simpler if, as is standard, the beam element
is chosen such that B is in the middle. In that case ξ = 1

2 , and

∑
Ty |B = −M(1) + M(2) − V (1) 1

2�x − V (2) 1
2�x = 0.

As �x → 0 this again gives the joining condition we are looking for.

Elaboration of the end conditions and the joining condition leads to a set
of four equations and four unknowns:

1. end condition at A:

C
(1)
2 = 0.

2. joining condition at B:

−20 × 52 + C
(1)
1 × 5 + C

(1)
2 = −20 × 52 + C

(2)
1 × 5 + C

(2)
2 .

3. end condition at C:

−40 × 7 + C
(2)
1 = 0.

4. end condition at C:

−20 × 72 + C
(2)
1 × 7 + C

(2)
2 = 0.
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Figure 11.16 (a) A cantilever beam with a uniformly distributed
load, and the associated (b) V diagram and (c) M diagram. The
bending moment M is extreme where the shear force V is zero or
changes sign.

Or more neatly put

C
(1)
2 = 0,

5C
(1)
1 + C

(1)
2 − 5C

(2)
1 − C

(2)
2 = 0,

C
(2)
1 = 280,

7C
(2)
1 + C

(2)
2 = 980.

The solution to the set is

C
(1)
1 = 84 kN,

C
(1)
2 = 0,

C
(2)
1 = 280 kN,

C
(2)
2 = −980 kNm.

From this it follows for field (1) with (0 m)<x<(5 m) that

V (1) = (−40x + 84) kN,

M(1) = (−20x2 + 84x) kNm,

and for field (2) with (5 m)<x <(7 m) that

V (2) = (−40x + 280) kN,

M(2) = (−20x2 + 280x − 980) kNm,

Figure 11.16 shows the V and M diagrams. At A, B and C, the tangents to
the M diagram are also shown. These intersect at the middle of each field.

Note that p1 = 1
8 ×40 ×52 = 125 kNm and p2 = 1

8 ×40 ×22 = 20 kNm,
or in other words, for each field: “p = 1

8q�2”.



11 Mathematical Description of the Relationship between Section Forces and Loading 455

Figure 11.17 (a) The magnitude and direction of the support re-
actions at A and B follow from (b) the shear force diagram. (c) The
shear forces directly to the left and right of joint B. The support
reaction at B is the same magnitude as the step change in the shear
force diagram.

Figure 11.18 The isolated beam with all the forces acting on it.

The bending moment in field (1) is a maximum where the tangent to the M

diagram is horizontal, or where

dM

dx
= V = −40x + 84 = 0 ⇒ x = 2.1 m.

The maximum bending moment therefore occurs to the left of the middle
of AB. Substituting x = 2.1 in the expression for M(1) gives the value of
the maximum bending moment:

Mmax = −20 × 2.12 + 84 × 2.1 = 88.2 kNm.

The support reactions at A and B are shown in Figure 11.17a. Their magni-
tude and direction can be found directly from the shear force diagram (see
Figure 11.17b). This is shown below for the support reaction at B.

Figure 11.17c shows (only) the shear forces directly to the left and right of
joint B. The vertical force equilibrium of joint B gives

Bv = 116 + 80 = 196 kN.

The support at B is carrying 116 kN from the left-hand field and 80 kN
from the right-hand field. The support reaction at B is exactly the same
magnitude as the “step change” in the shear force diagram.

The support reactions derived from the shear force diagram can be checked
using the equilibrium of the beam as a whole.

With R = 7 × 40 = 280 kN (see Figure 11.18)

∑
Fz = 280 − 84 − 196 = 0,∑
Ty |A = −280 × 3.5 + 196 × 5 = 0.

The beam as a whole therefore satisfies force and moment equilibrium.
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Problems

Differential equations for the equilibrium (Section 11.1)

11.1 Member AB with length � is subjected to extension by a distributed
axial load qx = qx(x).

Questions:
a. Isolate a small segment of

length �x (�x → 0) from the
member and draw all the forces
acting on it.

b. From the equilibrium of the
member segment, derive the re-
lationship between the normal
force in the member and the
distributed load.

11.2 Beam AB with length � is subjected to bending by a distributed load
qz = qz(x), normal to the beam axis.

Questions:
a. Isolate a small segment of

length �x (�x → 0) from the
member and draw all the forces
acting on it.

b. From the equilibrium of the
member segment, derive the re-
lationship between the bending
moment and the shear force.

c. From the equilibrium of the member segment, derive the relationship
between the shear force and the distributed load.

d. From the equilibrium of the member segment, derive the relationship
between the bending moment and the distributed load.

Mathematical elaboration of the relationship between N and qx

(extension) (Section 11.2)

11.3: 1–4 A four-metre high column AB is subjected to extension by four
different axial loads.

Questions:
a. By integrating the differential equations for the equilibrium, determine

the normal force as a function of x, without previously calculating the
vertical support reaction at A.

b. Draw the normal force diagram.
c. Calculate the vertical support reaction at A from the equilibrium of the

column as a whole and check whether this agrees with the normal force
diagram found.

11.4: 1–2 Column AB, 4 m high, is subjected to extension by two different
axial loads.

Questions:
a. Write down the distributed load as a function of x.

11.4



11 Mathematical Description of the Relationship between Section Forces and Loading 457

b. Determine the variation of N as a function of x by integration of the
differential equation for the equilibrium (without previously calculating
the vertical support reaction at A).

c. Draw the N diagram.
d. At which height is the normal force in the column zero?
e. Calculate the vertical support reaction at A from the equilibrium of the

column as a whole and check whether this is in agreement with the N

diagram found.

11.5: 1–4 A simply supported member with length � is subjected to
extension by four different distributed loads q(x) with top value q̂:

(1) q(x) = q̂ ·
(

1 − 2
x

�

)
, (2) q(x) = q̂ cos

πx

�
,

(3) q(x) = 4q̂ ·
(

x

�
− x2

�2

)
, (4) q(x) = q̂ sin

πx

�
.

In the calculation use � = 5 m and q̂ = 2.4 kN/m.

Questions:
a. Using the differential equation for the equilibrium, determine the

variation of N as a function of x.
b. Draw the N diagram. Include the numerical values.
c. Where is N extreme, and what is this extreme value?
d. Determine the support reactions, and draw them as they are really

acting on the member.
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Mathematical elaboration of the relationship between M , V and qz

(bending) (Section 11.3)

11.6: 1–4 Four beams subjected to bending.

Questions:
a. By integrating the differential equations for the equilibrium, determine

the variation of the shear force V and the bending moment M as a
function of x, without previously determining the support reactions.

b. Draw the V and M diagrams.
c. Use the V and M diagrams to determine the magnitude and direction

of the support reactions. Draw them as they act on the beam and check
their values on the basis of the equilibrium of the beam as a whole.

11.7: 1–2 A beam with a linearly distributed load is supported in two
different ways.

Questions:
a. Write down the distributed load as a function of x.
b. Without previously calculating the support reactions, use the differen-

tial equations for the equilibrium to determine the variation of V and
M as a function of x.

c. Draw the V and M diagram and include their values and signs.
d. In which cross-sections are V and M extreme, and what are their

extreme values?
e. Using the V and M diagrams, determine the magnitude and direction

of the support reactions. Draw them as they act on the beam, and check
their values on the basis of the equilibrium of the beam as a whole.

11.8 A beam subjected to bending by a trapezoidal load.

Questions:
a. Write down the distributed load as a function of x.
b. Without previously calculating the support reactions, use the differen-

tial equations for the equilibrium to determine V and M as a function
of x.

c. Draw the V and M diagrams and include their values and signs.
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d. In which cross-section is M extreme, and what is its value?
e. Using the V diagram determine the magnitude and direction of the

support reactions. Draw them as they act on the beam and check their
values on the basis of the equilibrium of the beam as a whole.

11.9: 1–3 A simply supported beam AB with length � is subjected to
bending by three different parabolic distributed loads with the same top
value q̂:

(1) q(x) = q̂
x2

�2 ,

(2) q(x) = q̂ ·
(

1 − x2

�2

)
,

(3) q(x) = 4q̂ ·
(

x

�
− x2

�2

)
.

In the calculation use � = 4 m and q̂ = 30 kN/m.

Questions:
a. Determine M and V as a function of x.
b. Draw the M and V diagrams. Include the values and signs.
c. Determine the location and magnitude of the maximum bending mo-

ment.

d. Using the V diagram, determine the support reactions at A and B, and
draw them as they actually act on the beam.

11.10 An opening in a dam is closed by means of a 3 metre high slide. The
top of the slide is two metres below water level. A one metre wide strip
from the slide is modelled as the simply supported beam AB. The specific
weight of water is 10 kN/m3.

Questions:
a. Write down the distributed load on AB due to the water pressure as a

function of x.
b. Without previously calculating the support reactions, use the differen-

tial equations for the equilibrium to determine V and M as a function
of x.

c. Draw the V and M diagram and include their values and signs.
d. In which cross-section is M extreme, and what is its value?
e. Using the V diagram, determine the magnitude and direction of the

support reactions. Draw them as they act on the beam and check their
values on the basis of the equilibrium of beam AB as a whole.
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11.11 A 30-m long ship is stranded on rock just below the water level. The
figure shows a rough model of the situation. The ship is modelled as a line
element with a weight of 100 kN/m. The rock is acting as a hinged support.
The upward water pressure on the ship is modelled as line load and varies
linearly from zero at the rock to the top value q̂w at the free-floating end,
where the ship is deepest.

Questions:
a. Using the equilibrium of the ship as a whole, determine the value of

q̂w.
b. Write down the total distributed load on the ship as a function of x.
c. Use the differential equations for the equilibrium to determine V and

M as a function of x.
d. Draw the V and M diagrams, and include the values and signs.
e. In which cross-sections are V and M extreme, and what are their

values?
f. Give an assessment of the reality of this model.
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Bending Moment, Shear
Force and Normal Force
Diagrams

In this chapter, we will look at how to calculate and draw M , V and N

diagrams, with deformation symbols.

The formal approach using differential equations will often become far too
laborious. Therefore, we will first present a number of rules in Sections 12.1
and 12.2 on how to draw the M , V and N diagrams more quickly. The rules
follow directly from the differential equations for the equilibrium derived
in Section 11.1.

In Section 12.3, we present a number of examples in which we calculate
and draw the M , V and N diagrams for bent and compound bar struc-
tures loaded by concentrated forces and couples. We calculated the support
reactions and/or interaction forces for these structures earlier in Chapter 5.

When calculating and drawing M , V and N diagrams, the influences of
the various load contributions can be added. The individual contributions
can often be found again from the shape of the M , V and N diagrams. We
address this principle of superposition in Section 12.4.

Concentrated loads, couples and uniformly distributed loads are models of
the actual load. We will be looking at the consequences of such modelling
in Section 12.5. We also have a closer look at the shear force at a support,
and investigate the effect of eccentrically applied axial forces.
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12.1 Rules for drawing V and M diagrams more quickly

The formal approach for determining the variation of shear forces by
solving differential equations is rather laborious, certainly if several fields
within a member have to be distinguished.

We are often not so much interested in the precise variation of the section
forces as a function of x, but rather in the extreme values and the loca-
tions where these occur, or the locations where the section forces change
direction.

If we want to calculate the section forces in only a few locations, the direct
method, whereby we look at the equilibrium of an isolated segment (method
of sections) is far quicker.

The mathematical approach based on the differential equations for the equi-
librium of a small member segment has the advantage that it leads to a
number of generally-applicable rules for the relationship between load,
shear force and bending moment that can be translated into properties of
the V and M diagrams.1

In combination with the direct method, these rules allow us to sketch the
V and M diagrams, and determine the relevant values quickly. Since the
ability to sketch the V and M diagrams and indicate relevant locations and
values is extremely important in engineering practice, the direct method is
of great practical relevance.

We will look at the rules relating to the V and M diagrams below, using
a number of examples. The rules often highlight various sides of one and
the same property. In the examples, we will be using deformation symbols.

1 The mathematical approach in Chapter 11 is also important at a later stage,
when we further develop the theory to be able to determine deformations and
displacements.



12 Bending Moment, Shear Force and Normal Force Diagrams 463

The calculations are not always performed in their entirety, and the reader
is left to complete certain parts.

At the end of this section, we will also look at the properties of a parabola,
the shape of the M diagram due to a uniformly distributed load.

12.1.1 Relationship between the variation of the distributed load
qz and the shape of V and M diagrams

In Section 11.3 we showed how to find the shear force V from the dis-
tributed load qz by integration:

V = −
∫

qz dx

and the bending moment M by integrating again:

M =
∫

V dx.

With a simple variation of the distributed load qz we can show directly what
the variation of the shear force and the bending moment will be, and which
shape the V and M diagrams will have. This leads to the following three
rules for an unloaded field (qz = 0), a field with a uniformly distributed
load (qz constant and �= 0) and a field with a linearly distributed load
respectively:

• Rule 1
In an unloaded field, the shear force V is constant and the bending moment
M is linear. If the shear force is zero, the bending moment is constant.

qz = 0 ⇒ V constant; V = 0 ⇒ M constant,

V �= 0 ⇒ M linear.
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Table 12.1 Relationship between the variation of the distributed
load qz normal to the member axis and the variation of the shear
force V and the bending moment M .

Variation qz ⇒ variation V ⇒ Variation M

constant = 0 constant = 0 constant

constant = 0 constant �= 0 linear

constant �= 0 linear quadratic

linear quadratic cubic

• Rule 2
In a field with a uniformly distributed load qz, the shear force V varies
linearly, and the bending moment M varies quadratically (parabolic).

qz constant (�= 0) ⇒ V linear ⇒ M quadratic.

• Rule 3
In a field with a linearly distributed load qz, the shear force V varies quad-
ratically, and the bending moment M is a cubic function.

qz linear ⇒ V quadratic ⇒ M cubic.

The three rules are summarised in Table 12.1. The correctness of the rules
can be verified in Section 11.3, Examples 1 to 3.

Using these rules, it is often possible to draw the V and M diagrams more
quickly by determining the values in a limited number of points and then to
sketch the path between these points.

The rules are illustrated below by means of two examples.

Example 1
The simply supported beam AD in Figure 12.1a is loaded at B and C by
two equal forces of 30 kN.

Question:
Determine the V and M diagrams.

Solution:
First the support reactions at A and D are calculated. Both support reactions
turn out to be the same: upward forces of 30 kN (see Figure 12.1b).

V diagram
As far as the V diagram is concerned, it can be said that for each of the
unloaded fields AB, BC and CD, the shear force is constant between the
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Figure 12.1 (a) Simply supported beam loaded symmetrically by
two forces. (b) The support reactions at A and B, and the shear
forces in fields AB and CD. (c) Shear force diagram. The shear force
is constant in each field. (d) Bending moment diagram. This is fully
determined by the values at the boundaries (ends and joinings of the
fields).

concentrated loads (rule 1). To fully plot the shear force diagram, we have
to calculate only three shear forces, namely V AB, V BC and V CD, the shear
forces in the fields AB, BC and CD,1 respectively. These shear forces can
be calculated as shown in Section 10.2.1, Example 2, etc.

Shear force V BC is thus found by introducing a section at an arbitrary lo-
cation in field BC. The magnitude and direction of V BC then follows from
the vertical force equilibrium of the isolated part to the right or to the left of
the section. In this case the calculation leads to V BC = 0. The calculation
is left to the reader.

The shear force in the end fields AB and CD is calculated in the same way.
The shear forces V AB and V CD in the end fields are of equal magnitude
to the support reactions at A and D respectively. Only their directions are
different. See Figure 12.1b, which shows the actual directions and the as-
sociated deformation symbols. V AB and V CD are therefore plotted in the V

diagram on different sides of the member axis.

In the V diagram in Figure 12.1c, the three values calculated are shown
by means of dots. Since the shear force is constant, the V diagram can
now be completed by drawing a horizontal line in each field through these
points.

M diagram
As far as the M diagram is concerned, we know that the bending moment
is zero at the supports A and D, and that the bending moment in each
field varies linearly (rule 1). To be able to plot the M diagram it is there-
fore only necessary to calculate the bending moments at the field joinings
at B and C after which straight lines can be drawn between the values
at A to D.

1 The upper index refers to the segment in which shear force V is acting.
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Figure 12.2 (a) Simply supported beam with a uniformly distrib-
uted load in field BC. (b) Support reactions. (c) Shear force diagram.
The variation of the shear forces is linear under the uniformly dis-
tributed load. (d) Bending moment diagram. The bending moment
is parabolic under the uniformly distributed load.

The bending moment MB at B1 is found from the moment equilibrium
(about B) of the isolated part to the left or right of B. This bending moment
is 60 kNm; the calculation is left to the reader. As this moment causes
tension at the lower side of the beam, this value in the M diagram has to be
plotted at the underside of the member axis. See the conventions discussed
earlier in Sections 10.2.4 and 10.2.5 and see also Figure 10.40.

In the same way, the bending moment found at C is 60 kNm, also with
tension at the lower side of the beam.

In the M diagram in Figure 12.1d, the two known and the two calcu-
lated values are shown by means of dots. The M diagram is completed
by drawing straight lines between these values.

The M diagram shows that in field BC, where the shear force is zero, the
bending moment is indeed constant (according to rule 1).

Example 2
In Figure 12.2a, the simply supported beam AD is subject to a uniformly
distributed load of 12.5 kN/m in field BC.

Question:
Determine the V and M diagrams.

Solution:
The support reactions at A and D are 20 and 30 kN respectively, both up-
wards (see Figure 12.2b).

V diagram
We know that the shear force is constant in field AB (rule 1), varies linearly
in field BC (rule 2) and is constant in field CD (rule 1). To draw the shear
force diagram we have to calculate only the shear forces V AB and V CD in
the end fields. Their magnitudes are the same as the support reactions at A

1 The lower index refers to the section in which the bending moment M is acting.
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and D respectively.

In the V diagram in Figure 12.2.c, the two calculated shear forces are shown
by means of dots. Since the shear forces have a different shear symbol, they
are plotted at different sides of the member axis. The V diagram is now
completed by means of the horizontal lines in the fields AB and CD, after
which the linear path in field BC can be drawn.

M diagram
The bending moment in the beam varies linearly in AB (rule 1), quadrati-
cally in BC (rule 2) and linearly in CD (rule 1). At A and D, the bending
moment is zero. For the field joinings at B and C, we can calculate that the
bending moment is 80 and 60 kNm respectively, both with tension at the
lower side of the beam. In the M diagram in Figure 12.2d, these values are
plotted downwards of the member axis.

On the M diagram, the four known values are shown by means of dots. The
M diagram can now be completed by drawing straight lines between the
values at A and B, respectively C and D (linear variation) and by drawing a
parabola between the values at B and C (quadratic variation).

More detailed information is required to draw the parabola between B and
C somewhat accurately. This is provided in the following subsections, in
particular Section 12.1.6.

12.1.2 Slope of the V diagram and M diagram and extreme values
of V and M

In Section 11.1, the differential equations for the equilibrium of an infini-
tesimally small member segment loaded normal to its axis were derived:

dV

dx
+ qz = 0,

dM

dx
− V = 0.
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Figure 12.3 (a) Simply supported beam with a uniformly dis-
tributed load in field BC. (b) Shear force diagram. (c) Bending
moment diagram. The steps in the M diagram agree with the de-
formation symbols in the V diagram. The bending moment is an
extreme where the shear force is zero. (d) The isolated part AE for
calculating the maximum bending moment at E.

These equations can also be written as

dV

dx
= −qz, (a)

dM

dx
= V. (b)

Expressing the differential equations (a) and (b) in words gives the follow-
ing two rules:

• Rule 4
The slope of the V diagram (dV/dx) is equal to the distributed load qz (but
with an opposite sign).

• Rule 5
The slope of the M diagram (dM/dx) is equal to the shear force V .

The correctness of these rules can be verified directly using the two
examples in the previous section.

If working with deformation symbols, the direction of the slope of the V

or M diagram can no longer be shown by means of plus and minus. We
therefore have to work with the absolute values |dV/dx| and |dM/dx|. The
directions are deduced from the V and M diagrams respectively.

Example 1
You are given the beam in Figure 12.3a with its V and M diagram in
respectively Figures 12.3b and 12.3c.

Questions:
a. Examine whether the M and V diagrams comply with rules 4 and 5.
b. Where is the bending moment an extreme, and how large is that

moment?

Solution:
a. In the end fields AB and CD, where the distributed load is zero, the slope
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of the V diagram is also zero. This is in line with rule 4.

In the middle field BC the slope of the V diagram is

∣∣∣∣�V

�x

∣∣∣∣ = (20 kN) + (30 kN)

4 m
= 12.5 kN/m.

This also agrees with rule 4, as it is exactly the value of the uniformly
distributed load in field BC.

The slopes of the M diagram in the end fields AB and CD are

∣∣∣∣�M

�x

∣∣∣∣
(AB)

= 80 kNm

4 m
= 20 kN = V (AB),

∣∣∣∣�M

�x

∣∣∣∣
(CD)

= 60 kNm

2 m
= 30 kN = V (CD).

In line with rule 5, the slopes of the M diagram are equal to the shear forces.

As a check for the directions of the shear force, we notice that each “step”
in the M diagram (which stands for |�M/�x|) corresponds to the defor-
mation symbol for the shear force. This check is possible only if one plots
the M diagram in accordance with the convention in Section 10.2.4 which
requires that the concave side of the bending symbol is faced to the member
axis.

The shear forces directly to the left and right of B are equal:

V
(AB)
B = V

(BC)
B = 20 kN.

So, in accordance with rule 5, the slopes of the M diagram directly to the
left and right of B are equal. In other words, the straight M path in field AB
is the tangent at B to the parabola in field BC. In the same way, the straight
M path in field CD is the tangent to the parabola at C.
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b. At E, the shear force is zero and the parabola has a horizontal tangent.
Here the bending moment is an extreme. The bending moment at E can
be calculated from the moment equilibrium of the isolated segment AE or
EB. Figure 12.3d shows segment AE. From the bending symbol in the M

side of the beam; ME in Figure 12.3d therefore has been plotted at the
underside of the beam axis. For AE it holds that∑

T |E = −(20 kN)(5.6 m) + (1.6 m)(12.5 kN/m)(0.8 m) + ME

= 0 (a)

so that

ME = (112 kNm) − (16 kNm) = 96 kNm.

Since no coordinate system is shown in Figure 12.3d, the positive direction
of rotation of the moment about E in expression (a) has been depicted by
means of a bent arrow. The positive direction of rotation chosen here is
anti-clockwise.

The value of the maximum bending moment at E and the tangents at B, C
and E are aids for sketching the parabolic M diagram in field BC (see also
Section 12.1.6).

In general, the shear force V has an extreme value where dV/dx = 0. Also,
the bending moment M is an extreme where dM/dx = 0. This leads to the
following two rules.

• Rule 6
The shear force V is an extreme where the distributed load qz is zero (or
changes sign). Per field, we have to take into account that the occurrence of
values at the boundaries (e.g. at concentrated loads and supports).

Figure 12.3 (a) Simply supported beam with a uniformly dis-
tributed load in field BC. (b) Shear force diagram. (c) Bending
moment diagram. The steps in the M diagram agree with the de-
formation symbols in the V diagram. The bending moment is an
extreme where the shear force is zero. (d) The isolated part AE for
calculating the maximum bending moment at E.

�

diagram, we know that the bending moment causes tension at the lower
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Figure 12.4 (a) Simply supported beam with linear distributed
load. (b) The isolated beam with the distributed loads in field AC
and CB replaced by their resultant. The support reaction at A is zero
and at B is 135 kN. (c) Shear force diagram. (d) Bending moment
diagram. (e) The isolated part AD for calculating the maximum
bending moment at D.

• Rule 7
The bending moment is an extreme where the shear force is zero (or
changes sign). Per field, we have to take into account the occurrence of
extreme values at the boundaries (e.g. where concentrated loads and/or
couples act or at supports).

Example 2
The simply supported beam AB in Figure 12.4a carries a linearly distributed
load of 30 kN/m upwards at A to 60 kN/m downwards at B.

Questions:
a. Determine the support reactions.
b. Make a good sketch of the V and M diagrams.
c. Determine the extreme values of V and M .

Solution:
a. To calculate the support reactions, the beam is divided into the fields AC
and CB. Per field, the resultant of the triangle load is (see Figure 12.4b)

R(AC) = 1
2 (3 m)(30 kN/m) = 45 kN,

R(CB) = 1
2 (6 m)(60 kN/m) = 180 kN.

The vertical support reaction at A (Av↑) follows from the moment equilib-
rium of AB about B:

∑
T |B = −Av × (9 m) − 45 kN)(8 m) + (180 kN)(2 m) = 0

⇒ Av = 0.

The vertical support reaction in B (Bv↑) follows from the vertical force
equilibrium of AB:

∑
Fvert↑ = (45 kN) − (180 kN) + Bv = 0 ⇒ Bv = 135 kN(↑).

�
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b. For the beam in Figure 12.4b, loaded only by concentrated loads, calcu-
lating and drawing the V and M diagrams is relatively simple using rule 1
from the previous section. The calculation is left to the reader. The result is
shown in Figures 12.4c and 12.4d by means of a dashed line.

The dashed lines do not give the correct V and M diagrams, but the values
of V and M at the field boundaries are correct! They are shown in Fig-
ures 12.4c and 12.4d by means of dots. If we isolate a field to calculate
the shear force and the bending moment in the field boundaries, it does not
matter in the equilibrium equations whether we consider the actual load in
the field or its resultant.

The actual V and M diagrams therefore pass through the dots at the field
boundaries.

Since the shear forces at the field boundaries A, C and B in the dashed case
have the correct values, the slopes of the M diagram in the dashed case are
also correct. This means that the dashed M diagram in Figure 12.4d at A,
C and B is tangent to the actual M diagram.

According to rule 3, the shear force in Figure 12.4c varies parabolically.
Since at C the distributed load is zero, the tangent to the V diagram is
horizontal there. The V diagram is now easy to draw.

According to rule 3, the M diagram in Figure 12.4d is cubic. It passes
through the three black dots and has the dashed lines at the dots as tangents.
After this it is not difficult to sketch the M diagram.

c. The shear force is an extreme where the distributed load is zero (rule 6).
Isolating section AC or CB the vertical force equilibrium gives

Vmax = 45 kN.

However, the largest shear force occurs at support B and is 135 kN (with
opposite sign). This is an example of a maximum at a field boundary.

Figure 12.4 (a) Simply supported beam with linear distributed
load. (b) The isolated beam with the distributed loads in field AC
and CB replaced by their resultant. The support reaction at A is zero
and at B is 135 kN. (c) Shear force diagram. (d) Bending moment
diagram. (e) The isolated part AD for calculating the maximum
bending moment at D.
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The maximum bending moment occurs where the shear force is zero, in D.
The V diagram varies parabolically. The top of the parabola is at C. Since
distances AC and CD are equal, the distance from D to A is therefore 6 m.

The maximum bending moment at D can be calculated from the moment
equilibrium of isolated parts AD or DB. In Figure 12.4e, part AD has been
isolated, and the two triangular loads have been replaced by their resultants.

underside of the beam due to the bending moment MD at D. In Figure 12.4e,
MD is shown in accordance with this direction. For AD it holds that∑

T |D = −(45 kN)(5 m) + (45 kN)(1 m) + MD = 0

so that

MD = Mmax = 180 kNm.

It is up to the reader to check that the same maximum bending moment is
found from the equilibrium of part DB.

12.1.3 Tangents to the M diagram

When drawing the V and M diagrams in Example 2 from the previous
section, two new rules occur:

• Rule 8
The tangents to the M diagram at the boundaries of a field intersect on the
line of action of the load resultant in that field (for a distributed load this is
at the centroid of the load diagram).

• Rule 9
If we replace the load per field by its resultant and we draw the bending
moment diagram due to these resultants, this bending moment diagram is
tangent to the actual bending moment at the field boundaries.

�

From the deformation symbol in the M diagram we observe tension at the
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Figure 12.5 Simply supported beam with V and M diagrams due
to a uniformly distributed full load.

Figure 12.6 Simply supported beam with the V and M diagrams
due to the resultant of a uniformly distributed full load.

We will illustrate this with three examples.

Example 1
The first example relates to a simply supported beam AB with length �.
In Figure 12.5, the beam is over its entire length subjected to a uniformly
distributed load q . In Figure 12.6, the beam is subjected to a concentrated
force R = q� at midspan C, to be seen as the resultant of the previously
mentioned uniformly distributed load q .

Question:
Verify the rules 8 and 9.

Solution:
In the case of Figure 12.5, the shear force varies linearly and the bending
moment varies parabolically. At midspan C, it applies that

V = dM

dx
= 0.

Here the M diagram has a horizontal tangent. This means that the bending
moment M at C is a maximum (rule 7):

Mmax = 1
8q�2.

In the case in Figure 12.6, the shear force at C is not zero (as is often
wrongly said), but rather changes sign. Here too the bending moment is a
maximum (rule 7):

Mmax = 1
4R� = 1

4q�2.

This maximum bending moment, twice as large as in the case of the uni-
formly distributed load, is a boundary extreme at the joining of fields AC
and BC.



12 Bending Moment, Shear Force and Normal Force Diagrams 475

Figure 12.7 (a) Simply supported beam with uniformly distrib-
uted load in field BC. (b) Shear force diagram. The dashed V

diagram in field BC corresponds with the resultant R of the distrib-
uted load. (c) Bending moment diagram. The dashed M diagram in
field BC corresponds with the resultant R of the distributed load.

If the distributed load q in Figure 12.5 is replaced by its resultant R in
Figure 12.6, the V and M diagrams change. The values at A and B do not
change. Since the shear forces at A in both cases are equal, the slopes of
the M diagram at A are also equal in both cases. The same holds for B.

It is now clear that the tangents at A and B for the distributed load can
be found by drawing the M diagram due to the resultant R. Both tangents
intersect, in accordance with rule 8, at the middle of AB, on the line of
action R.

For the value p indicated in the M diagram,

p = 1
8q�2.

Note: This expression for p holds only if the load is uniformly distributed.

Example 2
Draw the V and M diagrams for the simply supported beam in Figure 12.7a,
with the deformation symbols. See also Section 12.1.1, Example 2.

Solution:
If the distributed load q = 12.5 kN/m is replaced by its resultant R = 50 kN
at the middle G of BC, then the V and M diagrams change only between B
and C. The change over BC of V and M is shown by means of the dashed
lines in Figures 12.7b and 12.7c.

The actual V diagram in field BC varies linearly (rule 2). This is shown in
Figure 12.7b.

The resultant R gives the same shear force (20 kN) and bending moment
(80 kNm) at B as the uniformly distributed load q . Since the shear force
can be interpreted as the slope of the M diagram, this means that at B the
M diagrams due to R and q have the same slope. The same applies at C.

The actual M diagram in field BC varies parabolically. At B and C the
parabola is tangent to the dashed M diagram due to the resultant R (rule 9).
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The tangents at B and C intersect on the line of action of resultant R, in the
middle of BC (rule 8).

The parabola in field BC is the same parabola as in Example 1, except that
it is now “obliquely suspended” between the values of 80 and 60 kNm at B
and C respectively. The tangent midway of the parabola is parallel to chord
k.

As in Example 1, in the middle of field BC, the value of p in the M diagram
is

p = 1
8q�2 = 1

8 (12.5 kN/m)(4 m)2 = 25 kNm.

Here � represents the length of field BC.

It is up to the reader to check whether the distance p from the bend in the
dashed M diagram to the actual M diagram, and from there to the dotted
chord between the values at B and C is indeed 25 kNm.

It should be noted that the bending moment is not a maximum in the middle
of BC, x = 6 m. The maximum occurs somewhat to the left of the middle
(x = 5.6 m), where the shear force is zero (rule 7).

Example 3
A uniformly distributed load of 50 kN/m is acting on the simply supported
beam AC in Figure 12.8a, downwards in field AB and upwards in field BC.

Questions:
a. Draw a good sketch of the V diagram, with the deformation symbols.

Where is the shear force an extreme?
b. Draw a good sketch of the M diagram, with the deformation symbols.

At relevant points, also draw the tangents to the M diagram. Where is
the bending moment an extreme?

Figure 12.7 (a) Simply supported beam with uniformly distrib-
uted load in field BC. (b) Shear force diagram. The dashed V

diagram in field BC corresponds with the resultant R of the distrib-
uted load. (c) Bending moment diagram. The dashed M diagram in
field BC corresponds with the resultant R of the distributed load.
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Solution:
a. Before drawing the shear force diagram and the bending moment di-
agram, we first have to determine the support reactions. The support
reactions at A and C are respectively 170 kN (↑) and 70 kN (↓) (see
Figure 12.8b).

The shear force varies linearly in both field AB and field BC (rule 2). To
draw the V diagram we therefore have to calculate only the shear forces at
A, B and C. The shear forces at A and C are equal to the support reactions
at A and C. Beware of the deformation symbols! The shear force at B is
found from the vertical force equilibrium of AB or BC.

Figure 12.8c shows the V diagram. The values calculated are shown by
means of a dot.

At B, the distributed load changes sign, and the shear force is an extreme
(rule 6). However, the maximum shear force occurs at the location of
support A (a boundary maximum).

b. In order to draw the M diagram with its tangents, the distributed loads in
fields AB and BC are replaced by their resultants (see Figure 12.8b). The
bent M diagram due to these resultants is shown by means of the dashed
path in Figure 12.8d. At A, B and C, the dashed M diagram is tangent
to the actual M diagram (rule 9). Per field, the actual M diagram varies
parabolically (rule 2).

If, in the middle of a field, one halves the distance between the maximum
value of the dashed M diagram to the chord of the parabola, this gives an
additional point on the parabola. At that point, the tangent to the parabola
is parallel to the chord. Using this information, it is possible to make a
very accurate free-hand sketch of the M diagram. The result is shown in
Figure 12.8d.1

1 The tangents in the middle of the fields (parallel to the chords) are not shown, to
ensure the figure remains somewhat legible.

Figure 12.8 (a) Simply supported beam with an abruptly changing
uniformly distributed load at B. (b) The isolated beam with its sup-
port reactions and the distributed loads in field AB and BC replaced
by their resultants. (c) Shear force diagram. (d) Bending moment
diagram. At the field boundaries A, B and C, this diagram is tangent
to the dashed M diagram due to the load resultants.
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The correctness of the M diagram can be checked using the values of p1
and p2:

p1 = 1
8 (50 kN/m)(6 m)2 = 225 kNm,

p2 = 1
8 (50 kN/m)(4 m)2 = 100 kNm.

It is up to the reader to perform this check.

The bending moment is an extreme where the shear force is zero (rule 7),
that is at D and E. These extreme values can be calculated from the moment
equilibrium of the isolated part to the left or right of a section at respectively
D and E.

12.1.4 Interpreting the area of the load diagram and V diagram

The differential equations for the equilibrium of an infinitesimally small
beam segment are

dV

dx
= −qz, (a)

dM

dx
= V. (b)

This can also be written as

dV = −qz dx, (c)
Figure 12.8 (a) Simply supported beam with an abruptly changing
uniformly distributed load at B. (b) The isolated beam with its sup-
port reactions and the distributed loads in field AB and BC replaced
by their resultants. (c) Shear force diagram. (d) Bending moment
diagram. At the field boundaries A, B and C, this diagram is tangent
to the dashed M diagram due to the load resultants.

In Section 12.1.4 we present an alternative method for calculating the maxi-
mum shear force and the maximum bending moment.
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dM = V dx. (d)

Integrating expression (c) over the interval between x1 and x2 gives∫ x2

x1

dV = −
∫ x2

x1

qz dx

so that

�V = V (x2) − V (x1) = −
∫ x2

x1

qz dx.

Expressed in words and ignoring the signs, this leads to rule 10:

• Rule 10
Without concentrated forces,1 the change in the shear force V over a certain
length is equal to the area of the load diagram over that length.

Integrating expression (d) over the interval between x1 and x2 gives

∫ x2

x1

dM =
∫ x2

x1

V dx

so that

�M = M(x2) − M(x1) =
∫ x2

x1

V dx.

Expressed in words and ignoring the signs, this leads to rule 11:

1 If there are acting concentrated couples, the differential equation (a) is no longer
valid.
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Figure 12.9 (a) Simply supported beam with linear distributed
load and (b) the associated shear force diagram. The shear force
is an extreme where the distributed load is zero – not taking into
account the extremes at the field boundaries.

• Rule 11
Without concentrated couples,1 the change in the bending moment over a
certain length equals the area of the V diagram over that length.

Rules 10 and 11 are demonstrated using two examples.

Example 1
The V diagram in Figure 12.9b for the beam in Figure 12.9a was previ-
ously calculated in Section 12.1.2, Example 2. The maximum shear force
– boundary extremes not considered – occurs at C and can be calculated
directly from the force equilibrium of AC or BC.

Question:
Determine the maximum shear force at C from the area of the load diagram.

Solution:
From the V diagram we can read that

�V (AC) = VC − VA = Vmax.

�V (AC) is equal to the area of the load diagram over AC:

Vmax = �V (AC) = 1
2 (3 m)(30 kN/m) = 45 kN.

Example 2
For the beam in Figure 12.10a, the V and M diagrams in Figures 12.10b
and 12.10c were calculated earlier in Section 12.1.3, Example 3.

Question:
Calculate the extreme bending moments from the area of the shear force
diagram.

1 If there are acting concentrated couples, the differential equation (b) is no longer
true.
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Figure 12.10 (a) Simply supported beam with a step change in
the uniformly distributed load at B. (b) Shear force diagram. The
shear force is an extreme where the distributed load changes sign.
(c) Bending moment diagram. The bending moments are extreme
where the shear force is zero.

Solution:
The bending moments are extreme where the shear force is zero, that is at
D and E.

The maximum bending moment occurs at D. From the M diagram, with
MD = Mmax and MA = 0, we can read that

�M(AD) = MD − MA = Mmax.

�M(AD) is equal to the area of the shear force diagram over AD:

Mmax = �M(AD) = 1
2 (3.4 m)(170 kN) = 289 kNm.

The minimum bending moment occurs at E, and is found in the same way
from the area of the shear force diagram over EC:

Mmin = �M(EC) = 1
2 (1.4 m)(70 kN) = 49 kNm.

Check:

�M(DE) = Mmin + Mmax = 338 kNm.

This must be equal to the area of the V diagram over DE:

�M(DE) = 1
2 (5.2 m)(130 kN) = 338 kNm,

which is indeed the case.

From the above, and taking into account rule 11, we discover another
property:

• Rule 12
a. For a beam without concentrated couples, the total area of the V dia-

gram is zero. More generally
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b. The total area of the V diagram is equal to the sum of moments of all
concentrated couples that act on the beam.

Example 3
Check rule 12a for the beam in Figure 12.10.

Solution:
For the beam simply supported at A and C, without concentrated couples,
it applies that

�M(AC) = MC − MA = 0.

�M(AC) is equal to the total area of the V diagram:

1
2 (3.4 m)(170 kN) − 1

2 (5.2 m)(130 kN) + 1
2 (1.4 m)(70 kN) = 0 (b)

which is indeed zero.

Comment: When we calculate the area of the V diagram, the minus sign
in expression (b) indicates that the deformation symbol for the shear force
in field DE is opposite to that in the rest of the beam. The plus and minus
signs alone here are arbitrary: they could just as well be interchanged one
another. For this reason, we generally look at the absolute value of the area
of the V diagram.

If there are (concentrated) couples acting on the beam, the (absolute value
of the) total area of the V diagram is equal to the sum of the moments of the
(concentrated) couples. This rule is closely bound up with the modelling of
the couple as discussed in Section 12.5.3.

12.1.5 Step changes and bends in the V and M diagrams

• Rule 13
A step change in the distributed load qz gives a bend in the V diagram (and
a point of inflection in the M diagram).

Figure 12.10 (a) Simply supported beam with a step change in
the uniformly distributed load at B. (b) Shear force diagram. The
shear force is an extreme where the distributed load changes sign.
(c) Bending moment diagram. The bending moments are extreme
where the shear force is zero.
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Figure 12.11 (a) Simply supported beam loaded by a concentrated
force and a couple. (b) The isolated beam and its support reac-
tions. (c) Shear force diagram. A step change occurs at the point
of application of the concentrated force. The point of application
of the couple cannot be derived from the V diagram. (d) Bending
moment diagram. A bend occurs at the point of application of the
concentrated force, and a step change occurs where the couple is
applied.

For rule 13, please refer to Figure 12.10. In both fields, the slope of the V

diagram is 50 kN/m. The slopes are opposite as the distributed loads in the
fields are opposite (rule 4). This causes a bend in the V diagram.

• Rule 14
A (concentrated) force F normal to the member axis generates a step
change in the V diagram, with magnitude F , and a bend in the M diagram.

• Rule 15
A (concentrated) couple T gives a step change in the M diagram of
magnitude T . The V diagram reveals no information about the point of
application of the couple.

Two examples are given below to illustrate this.

Example 1
The simply supported beam in Figure 12.11a is loaded by a force of 40 kN
and a (concentrated) couple of 80 kNm.

Questions:
a. Calculate and draw the V and M diagrams, with the deformation

symbols.
b. Explain the step change in the V and M diagrams from the equilibrium

of joints B and C respectively.
c. To what extent can rules 11 and 12 be applied here?

Solution:
a. The support reactions at A and B are both 20 kN (↑), see Figure 12.11b.

In principle, when drawing the V and M diagrams, we have to distinguish
three fields: AB, BC and CD. There is no distributed load, so that the shear
force is constant, and the bending moment varies linearly in all three fields
(rule 1).

In the end fields AB and CD, the shear force is equal to the support reactions
at A and D respectively. Beware of the deformation symbols!
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To find the shear force in field BC, we have to introduce a section some-
where in field BC and investigate the vertical force equilibrium of the
isolated part to the left or to the right of the section. If we write down the
expression for the force equilibrium of the right-hand part, the couple of
80 kNm plays no part in this expression! The shear force in BC is therefore
equal to the shear force in CD and is 20 kN.

Figure 12.11c shows the V diagram. The V diagram reveals no information
about the point of application of the couple (rule 15). At B, at the location
of the 40 kN load, a step change occurs in the V diagram. The magnitude
of the step change is equal to the magnitude of the concentrated load.

To draw the M diagram, we have to know the values at the field boundaries
A, B, C and D. Between them, the bending moment varies linearly. At A
and D the bending moment is zero.

The bending moment at B is calculated from the moment equilibrium of the
isolated part AB or BD. The result is 40 kNm with tension at the underside.

In the same way, the bending moment at C is calculated from the moment
equilibrium of the isolated part AC or CD. But beware: due to the 80 kNm
couple it makes a difference whether we take the section directly to the left
or directly to the right of C. In the section directly to the left of C, we find
20 kNm with tension at the upper side, and in the section directly to the
right of C we find 60 kNm with tension at the underside.

Figure 12.11d shows the M diagram. The values calculated at the field
boundaries are shown by means of dots. Between these values, the moment
varies linearly. At C, the point of application of the 80 kNm couple, there is
a step change in the M diagram. The magnitude of the step change is equal
to the magnitude of the (concentrated) couple.

Note that because the shear force over BCD is constant, the M diagram to
the left and to the right of C have the same slope (rule 5).

At B, the shear force changes sign, and the M diagram is an extreme (rule

Figure 12.11 (a) Simply supported beam loaded by a concentrated
force and a couple. (b) The isolated beam and its support reac-
tions. (c) Shear force diagram. A step change occurs at the point
of application of the concentrated force. The point of application
of the couple cannot be derived from the V diagram. (d) Bending
moment diagram. A bend occurs at the point of application of the
concentrated force, and a step change occurs where the couple is
applied.
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Figure 12.12 (a) The shear forces directly to the left and right of
joint B are in equilibrium with the point load of 40 kN on joint B.
(b) The bending moments directly to the left and right of joint C
are in equilibrium with the load due to the concentrated couple of
80 kNm on joint C.

7). We cannot however see from the V diagram that the M diagram also
has extreme values directly to the left and to the right of C, the point where
the couple is applied. The maximum bending moment in an absolute sense
occurs in the section directly to the right of C and is 60 kNm.

b. In Figure 12.12a, joint B has been isolated. In the sections, only the shear
forces are shown. The shear forces directly to the left and right of B have to
be in equilibrium with the vertical force on the joint. From this, it follows
that the step change in the V diagram must be equal to the force on the
joint.

In Figure 12.12b, joint C has been isolated. In the sections, only the bending
moments are shown. From the moment equilibrium of joint C it follows that
the bending moments directly to the left and to the right of C have to be in
equilibrium with the couple at C. The magnitude of the step change in the
M diagram must therefore be equal to the magnitude of the couple.

c. Rule 11, states that the change �M of the bending moment M is equal
to the area of the V diagram. This rule is still valid as long as no couples
are acting in the field that is considered.

If one looks at part AC of the beam, to the left of the couple, we could, for
example, determine MB and MC;left from the area of the V diagram. With
MA = 0 we find

MB = �M(AB) = (2 m)(20 kN) = 40 kNm,

MC;left = �M(AC) = (2 m)(20 kN) − (3 m)(20 kN) = −20 kNm.

In the latter case, because the V diagrams over AB and BC have different
deformation symbols, the area of the V diagram is equal to the difference
in the areas over AB and BC. Here, the opposite signs of MB and MC;left
indicate that the deformation symbols of MB and MC;left are opposite. The
plus and minus signs alone are however arbitrary and can be interchanged.
For this reason, we generally work with absolute values and use for �M
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Figure 12.13 (a) Simply supported cantilever beam with unequal
overhangs and a uniformly distributed full load.

the absolute value of the area of the V diagram.

Since a couple is acting on the beam, the area of the V diagram between A
and D is not zero but rather

∣∣(2 m)(20 kN) − (6 m)(20 kN)
∣∣ = 80 kNm.

In accordance with rule 12, this value is exactly equal to the magnitude of
the couple at C.

Example 2
The simply supported cantilever beam in Figure 12.13a has two overhangs
and is carrying a uniformly distributed load of 40 kN/m over its entire
length.

Questions:
a. Draw the M diagram.
b. Derive the V diagram from the M diagram.
c. Verify the step changes in the V diagram.
d. Determine the maximum bending moments in field BC and at the

supports.

Solution:
The support reactions at B and C are respectively 245 kN and 315 kN,
both aimed upwards (see Figure 12.13b). Three fields, AB, BC and CD, are
distinguished for drawing the M and V diagrams. In each of these fields,
the shear force varies linearly and the bending moment varies parabolically
(rule 2).

a. Per field, we replace the distributed load by its resultant, and draw the
moment due to these resultants. We find the bent M diagram shown by
the dashed lines in Figure 12.13c. At the field boundaries A, B, C and D,
the actual parabolic M diagram is tangent to the dashed M diagram. Extra
points on the parabolic M diagram are found in the middle of each field
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Figure 12.13 (b) The isolated beam with the resultants of the

reactions. (c) Bending moment diagram. At the field boundaries A
to D, this diagram is tangent to the dashed bending moment diagram
due to the load resultants. (d) Shear force diagram. The bending
moments are extreme where the shear force is zero or changes sign.

by halving the distance between the chord and the bend in the dashed M

diagram. At these points, the tangent to the M diagram is parallel to the
chord.1 With three values and three tangents per field, it is now easy to make
a free-hand sketch of the M diagram, see the solid line in Figure 12.13c. To
keep the image legible, the tangents in the field middles are not shown.

The correctness of the M diagram can be checked using the values
p = 1

8q�2, where � stands for field length:

p1 = 1
8 (40 kN/m)(2.5 m)2 = 31.25 kNm,

p2 = 1
8 (40 kN/m)(8 m)2 = 320 kNm,

p3 = 1
8 (40 kN/m)(3.5 m)2 = 61.25 kNm.

The value 2p is the distance between the chord and the bend in the dashed
M diagram. This distance can also be derived from the M diagram. It is
up to the reader to check whether the calculated values of p fit on the M

diagram shown.

b. The V diagram varies linearly with step changes at B and C where
the support reactions act. At the field boundaries, the shear forces can be
derived from the slope of the dashed M diagram (rule 5). This gives

1 See Section 12.1.6, “Properties of parabolic M diagrams”.

VA = 0,

VB;left = 125 kNm

1.25 m
= 100 kN ( ),

VB;right = (125 + 455) kNm

4 m
= 145 kN ( ),

distributed loads in the fields AB, BC and CD, and the support
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The deformation symbols also follow from the slope of the M diagram;
they are equal to the “steps” in the M diagram. These “steps” are shown
explicitly only for VB;right and VC;left in the M diagram in Figure 12.13c.

Figure 12.13d shows the V diagram. The V values derived from the M

diagram are shown by means of dots. Between these values the shear force
varies linearly. Since the same uniformly distributed load acts over the en-
tire length of the beam, the slopes of the V diagram are equal in all the
fields, and are 40 kN/m (rule 4).

c. The step changes in the V diagram at the supports at B and C are 245 kN
and 315 kN respectively, and are equal in magnitude to the support reactions
(rule 14).

d. The bending moments at the supports at B and C are referred to as
support moments.1 The maximum support moment occurs at C.

The largest moment in field BC is known as the maximum field moment.
This occurs at E, where the shear force is zero (rule 7). Here the tangent is
horizontal. The magnitude can be derived from the moment equilibrium of
the isolated part AE or ED, but also from the area of the V diagram (rule
11). With ME = Mmax and MA = 0,

�M(AE) = ME − MA = Mmax.

1 For a fixed-end, the support moment is called a fixed-end moment.

VC;left = (245 + 455) kNm

4 m
= 175 kN

VC;right = 245 kNm

1.75 m
= 140 kN ( ),

VD = 0.

( ),

Figure 12.13 (b) The isolated beam with the resultants of the

reactions. (c) Bending moment diagram. At the field boundaries A
to D, this diagram is tangent to the dashed bending moment diagram
due to the load resultants. (d) Shear force diagram. The bending
moments are extreme where the shear force is zero or changes sign.

distributed loads in the fields AB, BC and CD, and the support
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�M(AE) is equal to the (absolute value of the) area of the V diagram over
AE:

Mmax = �M(AE)

=
∣∣∣ 1

2 (2.5 m)(100 kN) − 1
2 (3.625 m)(145 kN)

∣∣∣ = 137.8 kNm.

Because the V diagrams over AB and BE have different deformation sym-
bols, the total area is equal to the difference in the areas over AB and BE.
And because the sign is not so important, we look at the absolute value.

Of course we can also look at the right-hand part ED:

�M(ED) = ME − MD = Mmax

so that

Mmax = �M(ED)

=
∣∣∣ 1

2 (4.375 m)(175 kN) − 1
2 (3.5 m)(140 kN)

∣∣∣ = 137.8 kNm.

Note that the total area of the V diagram is zero (rule 12).

If in this example (as well as in other examples) we further investigate the
M diagram, we notice a correlation between the shape of the M diagram
and the shape that a cable or cord assumes under the same load. This leads
to the following statement:

• Rule 16
If a beam is exclusively loaded by forces normal to its axis, the M diagram
has the same shape as a cable (or cord) on which one lets the same forces
act.

In addition to the shape of the M diagram, this rule also allows us to easily
check whether the M diagram has been drawn at the correct side and there-
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fore with the correct deformation symbol. A downward force generates a
downward bend in a cable, and also in the M diagram. An upward force
lifts the cable, and therefore also lifts the M diagram.

In the M diagram in Figure 12.13c, we can recognise a cable AD hanging
(as a parabola) under the influence of the uniformly distributed full load,
and pushed upwards by the support reactions at B and C.

The general validity of rule 16 is explained in Chapter 14.

12.1.6 Properties of parabolic M diagrams

Due to a uniformly distributed load, the M diagram has the shape of a
parabola. Since uniformly distributed loads occur frequently in practice we
will discuss a number of the striking properties of parabolas below. They
can be used to sketch a parabolic M diagram quickly.

We will use the isolated beam segment in Figure 12.14a as starting point,
with length � and a uniformly distributed load q over the full length. In
addition to shear forces, the section planes at A and B are subject to bending
moments MA and MB, both causing tension at the underside. Figure 12.14b
shows the associated M diagram.

Properties of the parabolic M diagram include the following:
• The tangents to the M diagram at A and B are found by drawing the M

diagram for the resultant of the distributed load. The tangents at A and
B intersect in the middle C of AB.

• The vertically measured distance p between chord k and the parabola
is

p = 1
2qab (in which a + b = �).

• In the middle C (a = b = 1
2�) this distance is

pC = 1
8q�2.

• The intersection of the tangents at A and B is at a distance 2pC under

Figure 12.13 (b) The isolated beam with the resultants of the

reactions. (c) Bending moment diagram. At the field boundaries A
to D, this diagram is tangent to the dashed bending moment diagram
due to the load resultants. (d) Shear force diagram. The bending
moments are extreme where the shear force is zero or changes sign.

distributed loads in the fields AB, BC and CD, and the support
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Figure 12.14 (a) An isolated beam segment with uniformly dis-
tributed full load and (b) the associated parabolic bending moment
diagram.

the chord k.
• In the example, with bending moments MA and MB, both causing ten-

sion at the underside, the bending moment in the middle C is:

MC = 1
2 (MA + MB) + 1

8q�2.

• The tangent in the middle C is parallel to chord k.
• The field moment in AB is an extreme where the tangent is horizontal.

This is generally not in the middle of AB.

12.1.7 Summary of all the rules relating to M and V diagrams

This section includes a summary of all the rules discussed in Sec-
tions 12.1.1 to 12.1.5.

• Rule 1
In an unloaded field, the shear force V is constant, and the bending moment
M varies linearly. If the shear force is zero, the bending moment is constant.

qz = 0 ⇒ V constant; V = 0 ⇒ M constant

V �= 0 ⇒ M linear.

• Rule 2
In a field with a uniformly distributed load qz, the shear force V varies
linearly, and the bending moment M varies quadratically (parabolic).

qz constant (�= 0) ⇒ V linear ⇒ M quadratic.

• Rule 3
In a field with a linearly distributed load qz, the shear force V varies quad-
ratically, and the bending moment M is a cubic function.

qz linear ⇒ V quadratic ⇒ M cubic.
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• Rule 4
The slope of the V diagram (dV/dx) is equal to the distributed load qz (but
with an opposite sign).

• Rule 5
The slope of the M diagram (dM/dx) is equal to the shear force V .

• Rule 6
The shear force V is an extreme where the distributed load qz is zero (or
changes sign). Per field, we have to take into account the occurrence of
extreme values at the boundaries (e.g. at concentrated loads and supports).

• Rule 7
The bending moment is an extreme where the shear force is zero (or
changes sign). Per field, we have to take into account the occurrence of
extreme values at the boundaries (e.g. where concentrated loads and/or
couples are applied or at supports).

• Rule 8
The tangents to the M diagram at the boundaries of a field intersect on the
line of action of the load resultant in that field (for a distributed load this is
at the centroid of the load diagram).

• Rule 9
If we replace the load per field by its resultant, and draw the bending
moment diagram due to these resultants, this bending moment diagram is
tangent to the actual bending moment diagram at the field boundaries.

• Rule 10
Without concentrated forces, the change of the shear force V over a certain
length is equal to the area of the load diagram over that length.

• Rule 11
Without concentrated couples, the change in the bending moment over a
certain length is equal to the area of the V diagram over that length.
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• Rule 12
The total area of the V diagram is equal to the sum of moments of all
concentrated couples that act on the beam. For a beam without concentrated
couples, the total area of the V diagram is zero.

• Rule 13
A step change in the distributed load qz gives a bend in the V diagram and
a point of inflection in the M diagram.

• Rule 14
A (concentrated) force F normal to the member axis generates a step
change in the V diagram, of magnitude F , and a bend in the M diagram.

• Rule 15
A (concentrated) couple T gives a step change in the M diagram of
magnitude T . The V diagram reveals no information about the point of
application of the couple.

• Rule 16
If a beam is exclusively loaded by forces normal to its axis, the M diagram
has the same shape as a cable (chord) on which one lets the same forces act.

12.2 Rules for drawing the N diagram more quickly

The differential equations for the force equilibrium of an infinitesimal
member segment in Section 11.1 are

dN

dx
+ qx = 0 (extension), (a)

dV

dx
+ qz = 0 (bending). (b)
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Table 12.2 Relationship between the distributed axial load qx and
the variation of the normal force N .

Variation qx Variation N

constant = 0 constant

constant �= 0 linear

linear quadratic

Based on the analogy of the differential equations (a) and (b), we can say
that, for the relationship between N and qx , the same rules apply as derived
in the previous section for the relationship between V and qz. Without
any further commentary, and set down in the same order, the rules for the
relationship between N and qx are presented.

• Rule 1
In an unloaded field, the normal force N is constant:

qx = 0 ⇒ N constant.

• Rule 2
In a field with a uniformly distributed load qx , the normal force N varies
linearly:

qx constant (�= 0) ⇒ N linear.

• Rule 3
In field with a linearly distributed load qx , the normal force N varies quad-
ratically (parabolic).

qx linear ⇒ N quadratic.

Rules 1 to 3 are summarised in Table 12.2.

• Rule 4
The slope of the N diagram (dN/dx) is equal to the distributed load qx (but
with an opposite sign).

• Rule 6
The normal force N is an extreme where the distributed load qx is zero
(or changes sign). Per field, we have to take into account the occurrence of
extreme values at the boundaries (e.g. at concentrated loads and supports).
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Figure 12.15 (a) The support reactions at A of a lighting mast
loaded by a vertical force at C. (b) The force at C resolved into
components normal to and parallel to member axis BC. (c) Bending
moment diagram. The bending moment “goes round the corner” at
B. (d) Shear force diagram. (e) Normal force diagram.

• Rule 10
Without concentrated forces, the change in the normal force N over a
certain length is equal to the area of the load diagram over that length.

• Rule 13
A step change in the distributed load qx gives a bend in the N diagram.

• Rule 14
A (concentrated) axial member force F generates a step change in the N

diagram of magnitude F .

12.3 Bent and compound bar type structures

With bent and compound bar type structures, the force flow can be found
by dividing the structure into all its (straight) members and by calculating
all the support reactions and joining forces as shown in Chapter 5. It is then
possible to draw the M , V and N diagrams for each separate member. These
diagrams are then linked together to form the M , V and N diagrams for the
structure as a whole. Only when the diagram becomes illegible should you
draw part of the structure with its M , V and N diagrams separately.

Below we determine and draw the M , V and N diagrams for a number of
structures for which we previously calculated the support reactions and/or
joining forces in Chapter 5. The load consists of concentrated forces and
couples. Distributed loads are covered in detail in Chapter 13.

Example 1
The support reactions were calculated for the lighting mast in Figure 12.15a
in Section 5.1, Example 1.

Question:
Determine the M , V and N diagrams.
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Solution:
Neither of the segments AB or BC is subject to a distributed load, so that
the shear force in each segment is constant, and the bending moment varies
linearly (rule 1).

M diagram
We can draw the M diagram as soon as we know the bending moments at
A, B and C. The fixed-end moment at A and the bending moment at the
free end C are known:

MA = 6 kNm,

MC = 0.

We now have to determine only the bending moment at B. Without resolv-
ing F , we can calculate MB from the moment equilibrium of the isolated
segment BC:

MB = (6 kN)(1.5 m) = 9 kNm.

Of course it is also possible to determine MB from the equilibrium of the
isolated segment AB.

The M diagram is shown in Figure 12.15c. All values are plotted normal to
the member axis.

The bending moment at joint B is the same magnitude on both sides of the
joint and is also plotted at the same side. This follows directly from the
moment equilibrium of joint B (see Figure 12.16, which shows only the
bending moments). It is said that the bending moment at B “goes round
the corner”, which is further emphasised in Figure 12.15c by the dotted arc
(normally not drawn).

Figure 12.15 (a) The support reactions at A of a lighting mast
loaded by a vertical force at C. (b) The force at C resolved into
components normal to and parallel to member axis BC. (c) Bending
moment diagram. The bending moment “goes round the corner” at
B. (d) Shear force diagram. (e) Normal force diagram.
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Figure 12.16 From the moment equilibrium of joint B it follows
that the bending moment in B “goes round the corner”.

V diagram
The shear forces can be calculated directly from the slopes of the M dia-
gram (rule 5):

V (AB) = �M(AB)

�(AB)
= 0 kNm

3.75 m
= 0,

V (BC) = �M(BC)

�(BC)
= 9 kNm

0.75
√

5 m
= 2.4

√
5 kN.

Since we are concerned here with the magnitude (and not the direction) of
the shear force, we use the absolute value of �M in the calculation.

The V diagram is shown in Figure 12.15d. The deformation symbol for the
(direction of the) shear force is found from the “steps” in the M diagram.

The shear force in AB is zero; this is in agreement with the horizontal
support reaction at A.

In Figure 12.15b, the force at C has been resolved into components parallel
to and normal to the member axis. The component normal to the member
axis corresponds with the magnitude and direction of the shear force in BC
as calculated earlier from the M diagram.

Comment: It is often useful, particularly for oblique members, to draw the
bending moment diagram first and then use it to calculate the shear forces.
In that case it is not necessary to resolve forces into their components.

N diagram
For determining the normal force in BC, we cannot escape from resolving
the 6 kN force at C into components parallel to and normal to BC (see
Figure 12.15b). The N diagram is shown in Figure 12.15e. The normal
force is a constant compressive force in both members.
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Figure 12.17 (a) Hinged beam with load and support reactions. (b)
Bending moment diagram (M diagram) with the step changes for
the deformation symbols in the shear force diagram (V diagram).
(c) Shear force diagram.

Example 2
The support reactions and joining forces for the hinged beam in Fig-
ure 12.17a were calculated in Section 5.2, Example 1.

Question:
Determine the M and V diagrams.

Solution:
M diagram
The M diagram is shown in Figure 12.17b. The bending moment is zero at
A, S and C; furthermore, the M diagram is linear with bends at the points of
application of the forces at D, B and E. To be able to draw the M diagram,
we have to calculate only the bending moments at D and E. The value at B
is found by drawing a straight line through the values at E and S.

V diagram
The shear forces can be found from the slopes of the M diagram. The V dia-
gram is shown in Figure 12.17c. The deformation symbols must correspond
to the “steps” in the M diagram. The step changes in the V diagram must
correspond with the forces on the beam (including the support reactions).

For a straight (continuous) beam, the shape of the V diagram is also found
easily by plotting the successive step changes due to the concentrated loads
one behind the other. These step changes are shown from left to right in
Figure 12.18a. The values of the step changes are included in the figure. To
draw the V diagram, the deformation symbols need to be included, as do
the values of the shear forces. The values of the step changes are usually
not included. Here this has been done only to illustrate the method.

Instead of going from left to right, we can plot the successive step changes
from right to left (see Figure 12.18b). The result is the same figure again
(Figure 12.18a), but now in reverse. If we include the correct deformation
symbols, this V diagram is also correct. If we use the deformation symbols,
it does not make a difference for the V diagram at which side of the member
axis we plot the values.
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Figure 12.19 (a) A structure of which parts AC, BC and DC are
rigidly joined at C. (b) Bending moment diagram. (c) Shear force
diagram. (d) Normal force diagram.

Figure 12.18 The shape of the V diagram can also be found by
plotting the successive step changes due to the point loads at the
beam: (a) from left to right or (b) from right to left.

Note that, between the two successive zero moments, in AS and SC, �M

is zero, and therefore the corresponding area of the V diagram is also zero
(rule 12). It is left to the reader to check this.

Example 3
The support reactions and the interaction forces at joint C for the struc-
ture in Figure 12.19a were calculated in Section 5.1, Example 5 (see
Figure 12.20).

Question:
Determine the M , V and N diagrams.
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Figure 12.20 The interaction forces between joint C and the
isolated parts AC, BC and DC.

Figure 12.21 Joint E and member ED isolated.

Solution:
If we determine the interaction forces at joint E, it is possible to plot the
M , V and N diagrams for the entire structure. As there are no distributed
loads, the bending moment varies linearly along all members, and the shear
force and normal force are constant in all members (rule 1).

M diagram
The M diagram is shown in Figure 12.19b. Since the variation of M along
all members is linear, it is sufficient to determine the bending moments at
the member ends to get the M diagram.

The bending moments M
(CA)
C , M

(CB)
C and M

(CE)
C at joint C have already

been calculated1 (see Figure 12.20).

M
(ED)
E follows from the moment equilibrium of the isolated part ED (see

Figure 12.21):

M
(CE)
E = M

(ED)
E

with tension on the upper side of ED. This value in the M diagram is
therefore plotted at the upper side.

The moment equilibrium of joint E in Figure 12.21 gives

M
(CE)
E = M

(ED)
E .

The bending moment “goes round the corner”. This is emphasised in the
M diagram in Figure 12.19b by means of a dotted arc at joint E.

1 The upper index refers to the member in which the bending moment acts and the
lower index refers to the location.
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Figure 12.22 (a) Trussed beam with load and support reactions.
(b) Isolated beam ASB. (c) Normal force diagram. (d) Shear force
diagram. The shear forces at A and B are not equal to the support
reactions at A and B. (e) Bending moment diagram.

V diagram
The magnitude of the shear force and the associated deformation symbol
follow from the slope of the M diagram.1 The V diagram is shown in
Figure 12.19c.

N diagram
The N diagram is shown in Figure 12.19d.

Example 4
We are given the trussed beam in Figure 12.22a. All the forces acting on
the isolated hinged beam ASB shown in Figure 12.22b were calculated in
Section 5.6.

The N , V and M diagrams are shown in Figures 12.22c to 12.22e.

Determining and drawing the V and M diagrams is done in the same
way as for the hinged beam in Example 2. To draw the M diagram, we
have to calculate only the bending moments at C and D. The bending
moment varies linearly between D and E, so that the M diagram must
pass through S where the bending moment is zero. This also fixes the
value at E. The V diagram can subsequently be calculated from the M

diagram.

We can change the order: first draw the V diagram and calculate the values
at C, E and D from the areas of the V diagram.

Note: The shear forces at A and B are not equal to the support reactions at
A and B! Why not?

1 In Figure 12.19b, the “steps” in the M diagrams are no longer shown.
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Figure 12.23 (a) Three-hinged portal frame with load and support
reactions. (b) Normal force diagram. (c) Shear force diagram. (d)
Bending moment diagram.

Example 5
The support reactions for the three-hinged portal frame in Figure 12.23a
were calculated in Section 5.3, Example 1.

As there are no distributed loads, the normal forces and shear forces in each
field are constant, and the bending moment varies linearly (rule 1).

N and V diagrams
To draw the N and V diagrams, we have to investigate the force equilibrium
of the separate parts. The necessary calculations are left to the reader. The
result is shown in Figures 12.23b and 12.23c.

Due to the concentrated load at E, a step change of 60 kN occurs in the V

diagram (rule 14).

M diagram
To draw the M diagram, we have to know only the bending moments at C
and D.

The bending moment at C follows from the moment equilibrium of the
isolated part AC:

M
(AC)
C = 40 kNm

with tension at the “outside” of the frame.

From the moment equilibrium of joint C, where the two members AC and
CS are rigidly joined to one another, it follows that the bending moments
M

(AC)
C in column AC and M

(CS)
C in beam CS are of equal magnitude, and

that both cause tension at the “outside” of the frame (see Figure 12.24,
which shows only the bending moments). Both moments are plotted “out-
side”. In the M diagram, we can see the bending moment in C “going round
the corner”.

For the bending moment at D we find
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Figure 12.24 From the moment equilibrium of joint C it fol-
lows that the bending moment “goes round the corner” at C (see
Figure 12.23).

Figure 12.25 (a) A structure loaded by a vertical force on the
left frame leg. (b) The isolated member AEB. (c) Bending moment
diagram.

M
(BD)
D = M

d(DS)
D = 80 kNm

also with tension at the “outside” of the frame.

The M diagram for AC and BD varies linearly, from 0 to 40 and 80 kNm
respectively. The M diagram for CSD consists of two straight lines that
have a bend at the concentrated load at E. In addition, the M diagram passes
through hinge S where the bending moment is zero. We therefore have to
draw a straight line from the value of 40 kNm at C, through S, up to 20 kN
on the opposite side at E. From there, we continue with a straight line to the
value of 80 kNm at D.

The M diagram is shown for the entire three-hinged portal frame in
Figure 12.23d.

Check 1:
We can read from the M diagram that the bending moment at the position
of the point load is 20 kNm, with tension at the underside of the beam. This
can be checked using the moment equilibrium of the isolated part BDE.

Check 2:
Note that the magnitude of the shear forces and the deformation sym-
bols agree with the slopes of the M diagram. This relationship between
the M and V diagram represents a simple and fast way of checking their
correctness.

Example 6
All the forces on the isolated members ACE and BDE for the structure in
Figure 12.25a were calculated in Section 5.5, Example 2.

M diagram
To draw the M diagram we have to calculate only the bending moment at
the three points C, D and G. To do so, it is sufficient to know the support
reactions and the normal force in member CD (see Figure 12.25b):
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MC = (25 kN)(3 m) = 75 kNm,

MG = (25 kN)(4.5 m) − (22.5 kN)(2 m) = 67.5 kNm,

MD = (15 kN)(3 m) = 45 kNm.

The M diagram is shown in Figure 12.25c. Since there is only a nor-
mal force in the two-force member CD, this member has been omitted to
simplify the figure.

V diagram
The shear forces can be determined directly from the slopes of the M

diagram. For example:

V (AC) = �M(AC)

�(AC)
= 75 kNm

5 m
= 15 kN,

V (CG) = �M(CG)

�(CG)
= (75 kNm) − (67.5 kNm)

2.5 m
= 3 kN,

V (GE) = �M(GE)

�(GE)
= 67.5 kNm

2.5 m
= 27 kN.

The associated deformation symbols follow from the “steps” in the M di-
agram (they are not shown here). The complete V diagram is shown in
Figure 12.25d. Here too the two-force member CD has been omitted.

N diagram
The N diagram is shown in Figure 12.25e. Determining the N diagram is
relatively laborious as we have to resolve all the forces on the members into
components normal to the member axis (step changes in the V diagram) and
components parallel to the member axis (step changes in the N diagram).

For example, for the horizontal force of 22.5 kN at C, the component
normal to the axis of member ACE is

Figure 12.25 (a) A structure loaded by a vertical force on the
left frame leg. (b) The isolated member AEB. (c) Bending moment
diagram.
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Figure 12.25 (c) Bending moment diagram. (d) Shear force
diagram. (e) Normal force diagram.

4
5 × (22.5 kN) = 18 kN

and the component parallel to the member axis is

3
5 × (22.5 kN) = 13.5 kN.

At C we observe a step change of 18 kN in the V diagram, and a step change
of 13.5 kN in the N diagram (rule 14).

In the same way, the component normal to ACE of the vertical force of
40 kN in G is

3
5 × (40 kN) = 24 kN

and the component parallel to ACE is

4
5 × (40 kN) = 32 kN.

At G we observe a step change of 24 kN in the V diagram, and a step
change of 32 kN in the N diagram (rule 14).

12.4 Principle of superposition

If several loads are acting on a structure, the separate influences of the
various loads on the support reactions and section forces can be added
together.1

The validity of this so-called principle of superposition is a result of the
linear relationships between the loads, section forces and support reactions.

1 In Section 6.3.1, we showed that distributed loads can be split and that the
individual influences on the support reactions can be added together.
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Figure 12.26 Simply supported beam with the V and M diagrams
due to (a) the force and (b) the couple. (c) The V and M diagrams
due to the force and the couple together, found by superposing the
V and M diagrams from (a) and (b). (d) The V and M diagrams
from (c) transferred to a horizontal axis.

Example 1
In Figure 12.26, the principle of superposition has been applied to deter-
mine the V and M diagrams for an 8-metre beam that is loaded by a force
of 40 kN and a couple of 80 kNm.

In Figure 12.26a, the V and M diagrams have been calculated due to the
force only. In Figure 12.26b, the V and M diagrams have been calculated
due to the couple only. The final V and M diagrams with concurrent loading
by the force and the couple is shown in Figure 12.26c. To draw these V and
M diagrams, one of the two diagrams to be superposed has been reflected
with respect to the horizontal axis to simplify the graphics. In areas with
opposite deformation symbols that overlap one another, the combined con-
tribution to the section force is zero. The remaining areas have been filled
and form the final V and M diagrams.

In Figure 12.26d, these diagrams have been transferred to a horizontal axis,
but this is generally not necessary.

Of course the superposition can also be performed by determining the
ordinates at a number of points and adding them together.

Example 2
The second example relating to the principle of superposition concerns fur-
ther analysis of the force flow in segment BC of beam AD in Figure 12.27,
with a uniformly distributed load over BC. The V and M diagrams for this
beam were calculated in Section 12.1.3, Example 2.

For BC, we find the same V and M diagrams if we isolate segment BC
from beam AD, support it simply at its ends B and C, and there load it by
couples of 80 and 60 kNm respectively (see Figure 12.28).

We can distinguish three loads on beam BC in Figure 12.28:
(a) a couple of 80 kNm at end B;
(b) a couple of 60 kNm at end C;
(c) a uniformly distributed full load of 12.5 kN/m.
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Figure 12.28 For BC in Figure 12.27, the same V and M diagrams
are found if BC is isolated from AD, simply supported at its ends B
and C, and loaded there by couples of 80 and 60 kNm respectively.

Figure 12.27 (a) Simply supported beam with a uniformly distrib-
uted load in field BC. (b) Shear force diagram. (c) Bending moment
diagram.
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Figure 12.29 The V and M diagrams in Figure 12.28 can be
found by superposing the V and M diagrams due to (a) a couple
of 80 kNm in B, (b) a couple of 60 kNm in C and (c) a uniformly
distributed full load of 12.5 kN/m.

Figure 12.30 Simply supported beam with a uniformly distributed
load in field BC.

In Figure 12.29, the V and M diagrams are shown for each of these loads.

The V and M diagrams in Figure 12.28 can be found by superposing the V

and M diagrams from Figure 12.29. In the M diagram in Figure 12.28c we
can clearly recognise the contributions (a) to (c) of the separate loads.

The principle of superposition can be used also to compare the effects of
similar loads of different magnitudes. Since the entire system behaves lin-
early, we can say that if a load leads to certain values for the section forces,
a similar load that is n times as large causes section forces that are in turn
n times as large.

Example 3
If the maximum bending moment in Figure 12.27c is 96 kNm, how large is
the maximum bending moment for the beam in Figure 12.30?

Solution:
The load in Figure 12.30 is similar to that in Figure 12.27a and is 20/12.5 =
1.6 times as large. In both cases, the V and M diagrams have the same
shape, except that the values for the beam in Figure 12.30 are now 1.6
times as large as those for the beam in Figure 12.27. This applies also for
the maximum bending moment. Therefore, for the beam in Figure 12.30,

Mmax = 1.6 × (96 kNm) = 153.6 kNm.

12.5

real loads. In this section we will look at the consequences of these schema-

Schematisations and reality

Forces, couples and uniformly distributed loads are schematisations of the

of eccentric axial forces.
tisations. We will also look at the shear forces at a support and the influence
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Figure 12.31 The V and M diagrams due to a point load F at
midspan.

Figure 12.32 The V and M diagrams in the case that load F is
uniformly distributed over a small length ξ�.

12.5.1 Point load

The simply supported beam in Figure 12.31a is loaded at the middle of span
� by a force F . Figures 12.31b and 12.31c show the associated V and M

diagrams.

The force F , modelled as a point load, is a load concentrated at one single
point, or in other words, a load that applies over a length zero. This does
not exist in reality. In fact, F is the resultant of a distributed load over a
small yet finite length ξ�. Figure 12.32 shows the V and M diagrams for
the case in which load F is uniformly distributed over length ξ�:

q = F

ξ�
.

For a point load, ξ approaches zero and at the same time the force intensity
q increases such that q · ξ� = F remains constant.

Over the (small) area ξ� in Figure 12.32, the shear force varies (steeply)
from + 1

2F to − 1
2F and the M diagram is parabolic. The maximum bending

moment occurs at midspan:

Mmax = 1
4F� − p = 1

4F� − 1
8

F

ξ�
(ξ�)2 = 1

4F�
(

1 − 1
2ξ
)

.

For calculating this moment, we used the property that

p = “ 1
8q�2” = 1

8
F

ξ�
(ξ�)2 = 1

8Fξ�.

If we allow ξ to approach zero, the slope of the V diagram gets increas-
ingly steep and eventually changes into a step change of magnitude F . The
shear force, and therefore the slope of the M diagram, changes increasingly
rapidly as length ξ� gets smaller. In other words, the parabola curves more
and more. In the limiting case ξ → 0 the area of the parabola is reduced to
a point: the M diagram gets bent under the concentrated load.

For uniformly distributed loads over a finite length ξ�, the maximum bend-
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Figure 12.33 The V and M diagrams due to a point load (dashed
line) to replace a uniformly distributed load over a small length
(solid line).

ing moment is smaller than when the load is concentrated at a single
point.

The difference is

p

1
4F�

=
1
8Fξ�

1
4F�

× 100% = 1
2ξ × 100%.

We can show that this value applies also when the load is not acting at
midspan.

To illustrate, we compare the two loads in Figures 12.33a and 12.33b. With

ξ = 1
8

we find

1
2ξ × 100% = 1

2 × 1
8 × 100% = 6.25%.

The maximum bending moment due to the distributed load will be 6.25%
smaller than the maximum bending moment due to the point load.

A calculation (which is left to the reader) shows that the maximum bending
moment due to the concentrated load is 120 kNm, and due to the distributed
load is 112.5 kNm, which indeed is 6.25% less than before.

In Figures 12.33c and 12.33d, the V and M diagrams are shown for both
loads. The V and M diagrams due to the concentrated loads are shown by
dashed lines, insofar they deviate.

Note: The maximum values of 120 and 112.5 kNm do not occur in the same
cross-section!
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Figure 12.34 The V and M diagrams due to a number of point
loads, respectively a substitute uniformly distributed load. (a) With
an odd number of point loads the substitute distributed load gives a
somewhat smaller maximum bending moment at midspan. (b) With
an even number of point loads, both bending moment diagrams have
the same maximum bending moment.

12.5.2 Uniformly distributed load

If a large number of almost equal point loads are acting on a beam at regular
distances, such as a bridge with a traffic jam or a train crossing, the point
loads can often be replaced by a uniformly distributed load to simplify the

actual load.

To gain a picture of the consequences of this type of modelling, we will
look at the simply supported beam in Figure 12.34, which is subject to a
system of equal point loads at mutually equal distances. With n point loads
F at mutually equal distances a on a span of length � it applies that

� = n · a.

The substitute uniformly distributed load is

q = F

a
= nF

�
.

The point loads generate a stepped shear force diagram and a bent bending
moment diagram. The uniformly distributed load causes a linear shear force
diagram and a parabolic bending moment diagram. Both V and M diagrams
have the same value midway between two successive point loads. Because
the shear force V is equal to the slope of the M diagram, the parabola is
tangent to the bent M diagram there.

With an even number of point loads, both moment diagrams have the
same maximum bending moment at midspan, see the M diagram in
Figure 12.34b:

Mmax = 1
8q�2 = 1

8
nF

�
�2 = 1

8nF�.

calculation. The uniformly distributed load is then a schematisation of the
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With an odd number of point loads, the maximum bending moment at
midspan due to the point loads is a value of p larger than the bending
moment due to the substitute uniformly distributed load, see the M diagram
in Figure 12.34a:

Mmax = 1
8q�2 + p

in which

p = 1
8qa2.

The actual maximum bending moment is therefore larger. The difference is

p

1
8q�2

· 100% = a2

�2 · 100% = 100

n2 %.

With one concentrated load (n = 1) the difference is 100%,1 but this re-
duces rapidly for more loads. With n = 3 the difference is 11% and for
n = 5 we are already down to a difference of 4%. It now does not make
much difference whether we use in calculations point loads or a substitute
uniformly distributed load.

12.5.3

The load on the beam in Figure 12.35a consists of two parallel and opposite
forces F . If the distance a between these forces is small as compared to the
length of the beam, the load can also be modelled as a concentrated couple
T = F ·a (see Figure 12.35b).

1 See Section 12.1.3, Example 1, with Figures 12.5 and 12.6.

Figure 12.34 The V and M diagrams due to a number of point
loads, respectively a substitute uniformly distributed load. (a) With
an odd number of point loads the substitute distributed load gives a
somewhat smaller maximum bending moment at midspan. (b) With
an even number of point loads, both bending moment diagrams have
the same maximum bending moment.

Couple
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Figure 12.35 The M and V diagrams (a) due to a couple of
60 kNm formed by two parallel opposite forces and (b) due to a
concentrated couple of 60 kNm.

Figure 12.35 shows the M and V diagrams for

F = 120 kN,

a = 0.5 m.

Thus

T = F · a = 60 kNm.

The differences in the M diagrams are minor: the maximum bending mo-
ments due to the forces are a fraction smaller than those due to the substitute
couple.

On the other hand, the differences in the V diagrams are far larger. The
shear force is equal to the slope of the M diagram. At the concentrated
couple the slope becomes infinitessimally large over an infinitely small
length. Since infinitessimally small and infinitessimally large do not exist
in physical reality, the dashed part of the V diagram in Figure 12.35b is
omitted.

For the simply supported beam in Figure 12.35a, the total area of the V

diagram is equal to zero (rule 12):

�M(AB) = MB − MA =
∫ �

0
V dx = 0.

It is clear that the area of the V diagram is no longer zero when a con-
centrated couple acts on the beam. By omitting the dashed part in the V

diagram in Figure 12.35b at the concentrated couple (an infinitely large
value over an infinitessimally small length, but with a finite area), the total
area of the V diagram changes. This is no longer zero, but is now equal to
the magnitude of the couple.
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Figure 12.36 Various loads with associated V and M diagrams. In
cases (a) and (b) the V and M diagrams are the same, but the support
reactions differ due to the load at A. If this load is not directly above
the support, but slightly to the left or to the right, the situations in
respectively (c) and (d) occur.

12.5.4 Shear forces at a support

The simply supported beam in Figure 12.36a is loaded by two forces F1
and F2. The force F1 at support A is directly transferred to the foundation
and does not influence the force flow in the beam. The V and M diagrams
are equal to those for the beam in Figure 12.36b, without force F1. Only
the support reactions differ.

Note: In Figure 12.36a, the shear force directly to the right of A is not equal
to the support reaction at A!

The fact that force F1 is exactly above support A is theoretically possible.
However, it is more likely that F1 acts slightly to the left (Figure 12.36c)
or slightly to the right (Figure 12.36d) of A. In both cases the maximum
bending moment changes only by a small amount, but there are major
differences in the V diagram at A.

The differences noted in the V diagram may be less serious than sketched
here, for concentrated forces do not exist in reality. Also, members idealised
as line elements (the member axis) in reality have cross-sectional dimen-
sions in which the shear force is a model for the transfer of forces normal to
the member axis. One should always keep in mind that there are differences
between an idealised and the real situation.

12.5.5 Eccentric axial forces

Line elements are structural elements for which the cross-sectional di-
mensions are considerably smaller than the length. Through simplifying
assumptions in the smaller directions (those of the cross-section) the prop-
erties of such a structural element can be ascribed to a single line. This
line, the so-called member axis, is a one-dimensional model of a struc-
tural element that in reality is three-dimensional. In mechanical diagrams,
we usually represent a line element by its axis, and draw it without its
cross-sectional dimensions.
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Figure 12.37 (a) Simply supported beam with load and support
reactions. The member axis is at half the depth of the beam. (b) The
beam modelled as a line element. None of the forces have their point
of application on the member axis. (c) Forces (force components)
normal to the member axis can be shifted along their line of action
to the member axis. Forces (force components) acting eccentrically
and parallel to the member axis can be shifted provided that a couple
is added concurrently. The magnitude of the couple is equal to the
product of force and eccentricity. (d) Shear force diagram. (e) Bend-
ing moment diagram. Note that the bending moment at the hinged
support is not zero. (f) Normal force diagram.

We have not yet discussed the position of the member axis within the cross-
section. This location is not important as long as all the forces are acting
normal to the member axis. It does make a difference if there are also forces
(with components) parallel to the member axis.

As an example, we use the simply supported beam in Figure 12.37a, for
which we assume that the member axis is halfway down the depth of the
beam.

The support reactions follow directly from the equilibrium of the beam. If
we model the beam as a line element, none of the forces on the beam (in-
cluding the support reactions) have their point of application on the member
axis (see Figure 12.37b).

Forces (force components) normal to the member axis can be shifted along
their line of action to the member axis.
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Forces (force components) acting eccentrically and parallel to the member
axis can be shifted to the member axis as long as we concurrently add
couples that are equal in magnitude to the product of force and eccentricity
(see Section 3.1.5). In this example, the two couples are:

(80 kN)(0.25 m) = 20 kNm.

In Figure 12.37c, all the loads are acting on the member axis. Fig-
ures 12.37d to 12.37f show the associated V , M and N diagrams.

Eccentric axial forces exert moments on the beam modelled as a line
element and cause step changes in the M diagram.

Note that the bending moment at the hinged support is not zero. Also note
that the slope of the M diagram agrees with the shear force, and that the
total area of the V diagram is no longer zero, but is equal to the sum of the
concentrated couples on the line element.

Figure 12.37 (a) Simply supported beam with load and support
reactions. The member axis is at half the depth of the beam. (b) The
beam modelled as a line element. None of the forces have their point
of application on the member axis. (c) Forces (force components)
normal to the member axis can be shifted along their line of action
to the member axis. Forces (force components) acting eccentrically
and parallel to the member axis can be shifted provided that a couple
is added concurrently. The magnitude of the couple is equal to the
product of force and eccentricity. (d) Shear force diagram. (e) Bend-
ing moment diagram. Note that the bending moment at the hinged
support is not zero. (f) Normal force diagram.
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12.6 Problems

Shape of the V and M diagrams (Section 12.1.1)

12.1 Given a shear force diagram and four loaded beams.

Question :
Which beam matches the shear force diagram?

12.2 Four bending moment diagrams are given for column AB.

Question :
Which bending moment diagram matches the given load?

12.3 Given a loaded beam and four
shear force diagrams.

Question :
Which shear force diagram matches
the loaded beam?

12.4 Four bending moment diagrams
are given for column AB (values in
kNm).

Question :
Which bending moment diagram
matches the given load?

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.5 A loaded beam and four shear
force diagrams are given.

Question :
Which shear force diagram matches
the loaded beam?

12.6 A shear force diagram and
four loaded beams are given.

Question :
Which loaded beam matches the
shear force diagram?

12.7 Four shear force diagrams
are shown for beam ABC,
loaded by two eccentric tensile
forces.

Question :
Which shear force diagram is
correct?

Slope of the V and M diagrams and extreme values (Section 12.1.2)

12.8 Given the bending moment
diagram for beam segment AB and
four shear force diagrams.

Question:
Which shear force diagram is cor-
rect?
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12.9 The shear force diagram for
beam segment AB and four bending
moment diagrams are given.

Question:
Which bending moment diagram may
be correct?

12.10 A bending moment diagram
and four shear force diagrams are
given.

Question:
Which shear force diagram matches
the bending moment diagram?

12.11 Four bending moment diagrams
are drawn to the same scale.

Question:
Which two bending moment diagrams
match the same shear force diagram?

12.12 The bending moment
diagram for beam AE is given.

Question:
Where in the beam is the shear
force an extreme?

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.13 A cantilever beam
with a linear distributed
load is given.

Question:
Which combination of V

and M diagrams matches
this loading case?

12.14 A cantilever beam
with a linear distributed
load is given.

Question:
Which combination of V

and M diagrams matches
this loading case?

12.15 A beam with its load is given.

Question:
Determine at A the slope of the tangent to the M diagram (in kNm/m).

12.16 A rigidly supported beam
with its shear force diagram is
given.

Question:
Determine the magnitude of the
uniformly distributed load q .

12.17 The shear force diagram for
beam AD is given.

Question:
Determine the magnitude and di-
rection of the uniformly distributed
load in field BC.
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12.18 Given the shear force diagram for
beam segment CD and the bending mo-
ment at C.

Questions:
a. Isolate segment CD and draw all the

(section) forces acting on it.
b. From the equilibrium of CD determine

the bending moment at D.
c. Check for CD that the slope of the M

diagram is equal to the shear force.

12.19 Given the shear force diagram for
beam segment AB and a sketch of the
bending moment diagram. The bending
moment at B is 31 kNm.

Questions:
a. Isolate beam segment AB and draw all

the forces acting on it.
b. From the equilibrium of AB determine

the bending moment at A.
c. Where is the bending moment an ex-

treme?
d. Determine this moment.

12.20 Given a simply supported beam with a uniformly distributed load on
the left-hand half.

Questions:
a. Draw the shear force diagram.
b. Where is the bending moment an

extreme?
c. Determine this bending moment.

Tangents to the M diagram (Section 12.1.3)

12.21: 1–6 The same beam ACB is loaded in six different ways.

Questions:
a. Draw the bending moment diagram due to the load resultants in the

fields AC and CB.
b. Use this bending moment diagram to determine the bending moment

and the shear force at C, the join of the fields.
c. Sketch the bending moment diagram due to the distributed load.

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.22: 1–6 The same beam ACB is loaded in six different ways. The
difference to the previous problem is an additional force of 100 kN at C.

Questions:
a. Draw the bending moment diagram due to the load resultants in the

fields AC and CB and the force of 100 kN at C.
b. Sketch the bending moment diagram due to the load actually present.

Interpreting the area of the load diagram and V diagram (Section 12.1.4)

12.23 Given a fixed beam and its
shear force diagram.

Question:
Determine the magnitude of the
fixed-end moment.

12.24: 1–2 Given the shear force diagram for a fixed beam, loaded by
three point loads.

Question:
How large is the bending moment at C?
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12.25 Given the shear force diagram
for a beam segment CD and a sketch
of the bending moment diagram.
The bending moment at C is 60 kNm.

Question:
Determine the bending moment at D.

12.26 Given the shear force diagram
for a simply supported beam AB. No
(concentrated) couples are acting on
the beam.

Question:
Determine the maximum bending
moment.

12.27 Given the shear force diagram
for beam segment AB and a sketch
of the bending moment diagram. The
bending moment at A is 7.5 kNm.

Questions:
a. Determine the maximum bend-

ing moment.
b. Determine the bending moment

at B.

12.28 Given a shear force diagram
and the associated bending moment
diagram.

Question:
Determine the extreme values of the
bending moment.

12.29 Given a loaded beam and four shear force diagrams.

Question:
Which shear force diagram could be the correct one?

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.30 Given beam AB with five shear force diagrams. In addition to
(distributed) forces normal to the beam axis, the beam may also be subject
to a (concentrated) couple.

Question:
In which cases is a (concentrated) couple acting on the beam? In those
cases determine the magnitude of the couple and the direction in which it
is acting.

Step changes and bends in the V and M diagrams (Section 12.1.5)

12.31 Given a loaded beam and
four bending moment diagrams.

Question:
Which bending moment diagram
has the right shape?

12.32 Given the bending moment
diagram for a beam segment subject
to forces at A and B.

Question:
The magnitude and direction of
these forces.

12.33 Given the bending moment
diagram for beam AB.

Question:
The magnitude and direction of the
forces at C and D.

12.34 Given a shear force diagram
for four different loaded beams.

Question:
Which load matches the shear force
diagram?
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12.35 The bending moment diagram of beam AB varies linearly along
the left-hand side and is curved on the right-hand side. The tangent to the
curved part of the M diagram in the middle C is also shown.

Question:
Determine the magnitude and direction of the point load at C.

12.36 The simply supported beam AB is loaded by a uniformly distributed
load q and a force F . Four bending moment diagrams are shown.

Question:
Which bending moment diagram matches the loaded beam?

12.37 Given four bending moment
diagrams for beam AB.

Question:
Which bending moment diagram
matches the given load?

12.38 Given four bending moment diagrams for post AB.

Question:
Which bending moment diagram could match the given load?

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.39 Given the bending moment
diagram for the cantilever beam
AB.

Question:
Determine the magnitude and direc-
tion of the force at C.

12.40 Given four bending moment diagrams for column AB.

Question:
Which bending moment diagram could match the given load?

12.41 A sketch is given of the
shear force diagram of the simply
supported beam ACB, loaded by a
force F at C. The magnitude and
direction of the shear force in field
CB are also given.

Question:
Determine the magnitude and direction of F .

Properties of parabolic M diagrams (Section 12.1.6)

12.42 Given the bending moment
diagram for an isolated beam seg-
ment AB with a uniformly distrib-
uted load q . At A and B the tangents
to the M diagram are shown.

Questions:
a. The magnitude of the uniformly

distributed load q .
b. The shear force in the middle of

AB.

c. The shear forces at A and B.
d. Isolate beam segment AB, draw all the forces acting on it and check the

equilibrium.

12.43 Given a statically indeterminate portal frame with its bending mo-
ment diagram due to the given load. The bending moment half-way up the
column is 15 kNm.

Questions:
a. The magnitude of the

uniformly distributed
load q on column AB.

b. The shear force dia-
gram for column AB.

c. The location and mag-
nitude of the maximum
bending moment in col-
umn AB.
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12.44 Given a sketch of the bending moment diagram of a simply
supported beam with uniformly distributed loads q1 and q2.

Questions:
a. From the shape of the M diagram

determine the magnitude of the
distributed loads.

b. Draw the shear force diagram for
the entire beam.

c. Determine the location and mag-
nitude of the maximum bending
moment in the beam.

Mixed problems (Section 12.1)

12.45: 1–4 The same simply supported beam is loaded in various ways.
Length scale: 1 square ≡ 1 m; forces in kN.

Questions:
a. Determine the bending moment diagram.
b. Determine the shear force diagram.

12.46: 1–4 The same beam with overhang is loaded in various ways.
Length scale: 1 square ≡ 1 m; forces in kN.

Questions:
a. Determine the bending moment diagram.
b. Determine the shear force diagram.

12.47: 1–2 Two loading cases and five bending moment diagrams are
given.

Question:
Which bending moment diagram(s) in no way matches (match) the loading
case?

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.48 Given the bending moment
diagram for beam AE. Five forces
are acting on the isolated beam.

Question:
Determine the magnitude and direc-
tion of these forces.

12.49: 1–4 Given a number of beams loaded in various ways.

Questions:
a. Determine the

bending moment
diagram.

b. Determine the
shear force dia-
gram.

12.50: 1–4 Given a number of cantilever beams are loaded in various ways.

Questions:
a. Determine the bending moment diagram.
b. Determine the shear force diagram.

12.51: 1–4 The same simply supported beam is loaded in various ways by
only couples. Length scale: 1 square ≡ 1 m; couples in kNm.

Questions:
a. Determine the bending moment diagram.
b. Determine the shear force diagram.

12.52 Given four bending moment diagrams for beam AB.

Question:
Which bending moment diagram matches the given load?
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12.53 Given four bending moment diagrams for beam AB.

Question:
Which bending moment diagram matches the given load?

12.54 Given four bending moment diagrams for beam AB.

Question:
Which bending moment diagram matches the given load?

12.55 Four bending moment diagrams for column AB are given.

Question:
Which bending moment diagram is correct?

12.56 A shear force diagram and four bending moment diagrams are given.

Question:
Which bending moment diagram matches the shear force diagram?

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.57 Given a loaded beam and four bending moment diagrams.

Question:
Which bending moment diagram matches the loaded beam?

12.58 Given the bending moment diagram
for beam AB due to a force F at C and
a uniformly distributed load q along field
CB. The direction of F is not given.

Questions:
a. Determine the magnitude of q .
b. Determine the magnitude and direction

of F .

12.59 A beam with overhang is loaded as shown.

Questions:
a. Determine the bending moment

diagram with the tangents at A
and B.

b. Determine the shear force dia-
gram.

c. Determine the maximum field moment in AB.

12.60 Given the simply supported beam AB loaded as shown.

Questions:
a. Determine the bending moment

diagram with the tangents at A
and B.

b. Determine the shear force diagram.
c. Determine the maximum field moment.

12.61: 1–4 Given four different beams with a uniformly distributed load.

Questions:
a. Determine the M diagram with its tangents at the field boundaries.
b. Determine the V diagram.
c. Determine the location and magnitude of the extreme bending mo-

ments.
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12.62: 1–6 The same beam AB is loaded in six different ways.

Questions:
a. Determine the M diagram with the tangents at relevant points.
b. Determine the V diagram.
c. Determine the location and magnitude of the maximum/minimum

bending moment.

12.63: 1–6 Six different loaded beams are given.

Questions:
a. Determine the M diagram with the tangents at relevant points.
b. Determine the V diagram.
c. Determine the location and magnitude of the maximum/minimum

bending moment.

12.64: 1–4 Four different loaded beams with overhang are given.

Questions:
a. Determine the M diagram with the tangents at relevant points.
b. Determine the V diagram.
c. Determine the location and magnitude of the maximum/minimum

bending moment.

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.65: 1–3 Three beams with a linear distributed load are given. The top
value of the distributed load is in all cases 1.8 kN/m.

Questions:
a. Sketch the M diagram with its tangents at the field boundaries.
b. Sketch the V diagram.

12.66: 1–6 A number of beams with linear distributed load and in two
cases also a point load are given. The figures are not all drawn to the same
scale. The top value of the linear distributed load is in all cases 8 kN/m.
The magnitude of the two point loads can be read off from the figure.

Questions:
a. Sketch the M diagram with its tangents at the field boundaries.
b. Sketch the V diagram.

12.67: 1–4 Four different loaded beams are given.

Question:
Sketch the bending moment diagram with the tangents at A, B and C.

12.68 For the segment PQ of a beam the shear force diagram (without
deformation symbols), the bending moment at P and a sketch of the bending
moment diagram are given.
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Questions:
a. Place the deformation symbols

in the V diagram.
b. Which load is acting on PQ?

Draw the load.
c. Determine the bending moment

at Q.
d. Determine the maximum bend-

ing moment at PQ.
e. Draw PQ with all the forces

(loads and section forces at the
edges) acting on it and include
the values.

12.69 Member ABCD is loaded normal to its axis. The bending moment di-
agram is given with the tangents in C and D. The bending moment between
C and D is a parabola.

Questions:
a. Draw the associated shear force

diagram with the deformation
symbols. Include the relevant
values.

b. Draw all the forces (couples)
acting on the isolated member.
Include the relevant values.

c. Check the equilibrium of mem-
ber ABCD.

12.70 The V diagram of beam ABCDE is given. There are no couples
acting on the beam.

Questions:
a. Draw all the (distributed) forces associated with this V diagram acting

on beam ABCDE.

b. For the entire beam, draw the M diagram with the deformation sym-
bols. Include the relevant values. Draw in relevant points the tangents
to the M diagram.

12.71 Member ABCDE is loaded normal to its member axis. The bending
moment diagram is given, as are the tangents in A and B. The bending
moment between A and B is a second-degree curve (parabola).

Questions:
a. Draw the associated shear force diagram with deformation symbols.

Include the relevant values.
b. Draw all the forces (couples) acting on the isolated member. Include

the relevant values.
c. Check the equilibrium of the member.

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.72 Member ABCD is loaded normal to its axis. The bending moment
diagram is given, as are the tangents at C and D. The bending moment
between C and D is a second-degree curve (parabola).

Questions:
a. Draw the associated shear force diagram with deformation symbols.

Include the relevant values.
b. Draw all the forces (couples) acting on the isolated member. Include

the relevant values.
c. Check the equilibrium of the member. Clearly indicate how you

performed this check.

12.73 The bending moment diagram is given for member ABCD. The
bending moment between A and B is a parabola (second-degree curve).

Questions:
a. Draw the associated shear force diagram with deformation symbols.

Include the relevant values.
b. Draw all the forces (couples) acting on the isolated member. Include

the relevant values.
c. Check the equilibrium of the member.

Bent and compound bar type structures (Section 12.3)

12.74: 1–3 The same bent cantilever is loaded in three different loading
ways.

Question:
For the entire structure determine:
a. the M diagram.
b. the V diagram.
c. the N diagram.
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12.75: 1–2 The same bent cantilever is loaded in two different ways.

Question:
For the entire structure determine:
a. the M diagram.
b. the V diagram.
c. the N diagram.

12.76: 1–3 The same structure is loaded in three different ways.

Question:
For the entire structure determine:
a. the M diagram.
b. the V diagram.
c. the N diagram.

12.77: 1–12 A number of hinged beams with load are given. Dimensions
are in m; forces in kN.

Question:
Determine the bending moment diagram and shear force diagram.

12.78: 1–2 The same three-hinged portal frame is loaded in two ways.
Length scale: 1 square ≡ 1 m; forces in kN.

Question:
For the entire structure
determine:
a. the M diagram.
b. the V diagram.
c. the N diagram.

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.79: 1–3 Given three three-hinged portal frames with their load. Length
scale: 1 square ≡ 1 m; forces in kN.

Question:
For the entire structure determine:
a. the M diagram.
b. the V diagram.
c. the N diagram.

12.80: 1–2 The same pitched roof portal frame is loaded in two different
ways. Length scale: 1 square ≡ 1 m; forces in kN.

Question:
For the entire structure determine:
a. the M diagram.
b. the V diagram.

12.81: 1–2 The same three-hinged portal frame is loaded in two different
ways. Length scale: 1 square ≡ 1 m; forces in kN.

Question:
For the entire structure determine:
a. the M diagram.
b. the V diagram.

12.82: 1–6 Given six bent structures. Length scale: 1 square ≡ 1 m; forces
in kN.

Question:
For the entire struc-
ture determine:
a. the M diagram.
b. the V diagram.
c. the N diagram.
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12.83: 1–2 The same structure is loaded in two different ways.

Question:
For the entire structure determine:
a. the M diagram.
b. the V diagram.
c. the N diagram.

12.84: 1–2 A trussed
beam ASB is loaded in
two different ways.

Questions:
a. Determine the M and

V diagram for ASB.
b. Determine the N

diagram for ASB.

Mind the difference be-
tween full hinges and par-
tial hinges.

12.85: 1–5 Hinge S in trussed beam ASB is located in different places.
Length scale: 1 square ≡ 1 m; forces in kN.

Questions:
a. Determine the M and V diagram for ASB.
b. Determine the N diagram for ASB.

12.86: 1–4 Two trussed beams ASB are loaded in two different ways.
Length scale: 1 square ≡ 1 m; forces in kN.

Questions:
a. Determine the M and V diagrams for ASB.
b. Determine the N diagram for ASB.

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.87: 1–3 The same trussed beam ASB is loaded in three different ways.
Length scale: 1 square ≡ 1 m; forces in kN.

Questions:
a. Determine the M and V diagrams for ASB.
b. Determine the N diagram for ASB.

12.88: 1–2 The same trussed beam ASB is loaded in two different ways.
Length scale: 1 square ≡ 1 m; forces in kN.

Questions:
a. Determine the M

diagram for ASB.
b. Determine the V

diagram for ASB.
c. Determine the N

diagram for ASB.

12.89: 1–3 Given a trussed beam with three different loads. Length scale:
1 square ≡ 1 m; forces in kN.

Questions:
a. Determine the M and V diagrams for BC.
b. Determine the N diagram for BC.

12.90: 1–2 Given a trussed beam with two different loads. Length scale:
1 square ≡ 1 m; forces in kN.

Questions:
a. Determine the M and V diagrams for BC.
b. Determine the N diagram for BC.
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12.91 Given a queen post truss.

Question:
Determine the M and V diagrams for ASB.

Principle of superposition (Section 12.4)

12.92 Given four bending moment diagrams for beam ABCD.

Question:
Which bending moment diagram matches the given load?

12.93 Given four shear force diagrams for beam ABC.

Question:
Which shear force diagram matches the given load?

12.94 Given loading case 1 with the associated bending moment diagram
and loading case 2 without bending moment diagram. In loading case 2
there is no force on the left-hand overhang.

Question:
Determine the bending moment at C for loading case 2.

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.95 Given a statically indeterminate beam with four bending moment
diagrams.

Question:
Which bending moment diagram(s)
may be correct?

12.96 Four bending moment
diagrams are shown for the loaded
structure, of which only one is
correct.

Question:
Using the correct bending moment
diagram determine the magnitude
of the force F .

Eccentric axial forces (Section 12.5.5)

12.97 Given four bending moment diagrams for column AB.

Question:
Which bending moment diagram, with the given load, could be correct?

12.98 Given a loaded beam with four bending moment diagrams.

Question:
Which bending moment diagram
has the right shape?
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12.99 Given four bending moment diagrams for post AB.

Question:
Which bending moment diagram matches the given load?

12.100 Given four bending moment diagrams for beam AB.

Question:
Which bending moment diagram matches the given load?

12.101 Given four bending moment diagrams for beam AB.

Question:
Which bending moment
diagram matches the
given load?

12.102: 1–4 A beam with rec-
tangular cross-section is sup-
ported in four different ways.
The beam axis is half-way up.

Questions:
a. Indicate how the load is act-

ing on the beam modelled as
a line element.

b. Draw the N , V and M dia-
grams.

12 Bending Moment, Shear Force and Normal Force Diagrams
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12.103 A fixed column is loaded at its free end as shown. The column axis
passes through the normal centre NC and coincides with the x axis shown.

Question:
Draw the N , V and M diagrams for the column modelled as a line element.

12.104 A fixed column fixed is loaded at its free end as shown. The
column axis passes through the normal centre NC and coincides with the x

axis shown.

Question:
Draw the N , V and M diagrams for the column modelled as a line element.
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12.105: 1–2 In the figure, the beam axis is shown by means of a dashed
line.

Question:

due to the force F = 84 kN.

12 Bending Moment, Shear Force and Normal Force Diagrams

Schematise the beam as a line element and draw the N , V and M diagrams



(a) A lintel carrying the triangular part of the brick-
work. (b) Modelling of lintel and load as a beam with triangular
load.

13Calculating M, V and N
Diagrams

In this chapter, we will look at a number of examples for calculating
M , V and N diagrams. In the presentation we distinguish between the
self-contained structures in Section 13.1, the somewhat more complex
compound and associated structures in Section 13.2 and the statically inde-
terminate structures in Section 13.3. For some of the calculations we will,
to prevent repetition, make only a start, and leave it to the reader to work out
the answer further. Should you decide to work out the questions yourself,
you will notice that there are several ways to arrive at the answer.

13.1 Self-contained structures

In this section we will be determining the M , V , and sometimes the N

diagrams for self-contained structures subject to distributed loads.

13.1.1 Beam with triangular load (lintel)

The lintel in Figure 13.1a is supporting the part of the brickwork shown
above a door opening. The load on the lintel modelled as a line element
is the triangular load in Figure 13.1b, with top value q̂. The brick wall is
d = 240 mm thick. The mass density of the brickwork is ρ = 1800 kg/m3.

Figure 13.1
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Figure 13.2 (a) Beam with triangular load. (b) The isolated beam
with the field loads on AC and BC replaced by their resultants, and
the associated support reactions. (c) Bending moment diagram and
(d) shear force diagram.

Questions:
a. Determine the top value q̂ of the triangular load.
b. For AB, determine and draw the M and V diagrams. At A and B

also draw the tangents to the M diagram. How large is the maximum
bending moment?

Solution:
a. The height h of the brickwork in Figure 13.1a is

h = (1 m) × tan 60◦ = 1.732 m.

With a gravitational field strength of g = 10 N/kg, the top value q̂ of the
triangular load on the lintel is

q̂ = ρghd = (1800 kg/m3)(10 N/kg)(1.732 m)(0.240 m) ≈ 7.5 kN/m

(see Figure 13.2a).

b. In Figure 13.2b, the distributed loads on AC and BC have been replaced
by their resultants R:

R = 1
2 × (1 m)(7.5 kN/m) = 3.75 kN.

The support reactions are also shown.

In Figures 13.2c and 13.2d, the M and V diagrams due to these resultants
are shown by means of dashed lines. This way, we can find the correct
values for M and V at A, B and C (shown by means of dots) and the correct
slopes of the M diagram.

We can now draw the actual M diagram, a cubic, see the solid line in Fig-
ure 13.2c. The maximum bending moment occurs at midspan and is 2.5
kNm.
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Figure 13.3 Parabolic load over AB on beam ABC.

The actual V diagram is parabolic (see the solid line in Figure 13.2d). The
slope of the V diagram is equal to the magnitude of the distributed load.
At A and B, the distributed load is zero, and the V diagram has horizontal
tangents. At C, the distributed load is largest, and the slope of the V dia-
gram is steepest. The slope is 7.5 kN/m, and is shown separately in Fig-
ure 13.2d.

13.1.2 Beam with parabolic distributed load

Beam ABC in Figure 13.3 is supported by a hinge at A and on a roller at
B. The beam is loaded by a parabolic distributed load in field AB and a
point load of 25 kN at end C of cantilever BC. The longitudinal dimensions
of the beam are shown in the figure. The parabolic distributed load can be
represented with

q(x) = −30
(x

�

)2 + 30
(x

�

)
kN/m.

Here, � = 10 m is the length of AB. The dead weight of the beam is not
considered in the calculation.

Questions:
a. Replace the distributed load over AB by its resultant, and draw the M

and V diagrams for the entire beam ABC.
b. Draw a (rough) sketch of the actual M and V diagrams for AB. In

addition to the deformation symbols in the M and V diagrams, also
include the plus and minus signs in the given xz coordinate system.

c. For AB, through consecutive integration, determine the shear force V

and the bending moment M as a function of x. Determine the values of
V and M at A and B and at the middle D of field AB. At D draw the
tangent to the M diagram.

d. Where in AB is the field moment a maximum? It is enough to give
a rough indication of the location. Using the M diagram estimate the
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value of the maximum field moment. This value need not be determined
accurately.

Solution (units kN and m):
a. With � = 10 m, for the parabolically distributed load on AB it applies
that

q(x) = (−0.3x2 + 3x) kN/m

if x is expressed in metres. The top of the parabola is at the middle of AB.
This is derived from

dq(x)

dx
= −0.6x + 3 = 0 ⇒ x = 5 m.

On the basis of symmetry, the resultant R of the distributed load is acting
here. The magnitude of R is equal to the area of the load diagram, and is
found by integrating the distributed load:

R =
∫ 10

0
q(x) dx =

∫ 10

0
(−0.3x2 + 3x) dx = (−0.1x3 + 1.5x2)

∣∣∣10

0

= 50 kN.

Figure 13.4a shows the resultant R, together with the support reactions at
A and B. In Figures 13.4b and 13.4c, the M and V diagrams due to this
(concentrated) force R are shown (with dashed lines for AB).

b. The M and V diagrams are correct for the cantilever BC. In field AB,
only the values at A and B (shown by means of dots) are correct. In addition,
at A and B the dashed M diagram B is tangent to the actual M diagram.
There are no other handholds to sketch the M diagram, but we can now
certainly make a rough sketch (see the solid line in Figure 13.4b).

Figure 13.3 Parabolic load over AB on beam ABC.
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Figure 13.4 (a) Support reactions, (b) bending moment diagram
and (c) shear force diagram.

The actual V diagram has horizontal tangents at A and B because the dis-
tributed load is zero there. This allows us to make a pretty good sketch of
the V diagram (see the solid line in Figure 13.4c).

c. With

q(x) = −0.3x2 + 3x

integrating gives

V = −
∫

q(x) dx = +0.1x3 − 1.5x2 + C1.

Beware of the signs!

After integrating again we find

M =
∫

V dx = +0.025x4 − 0.5x3 + C1x + C2.

The integration constants C1 and C2 follow from the boundary condi-
tions. Because the M and V diagrams are roughly known, we have a free
choice here. Below we have selected the boundary conditions relating to
the bending moments at A and B:

x = 0; M = 0 ⇒ C2 = 0,

x = 10; M = −50 ⇒ C1 = +20 kN.

For the variation of the shear force and the bending moment we find

V = (0.1x3 − 1.5x2 + 20) kN, (a)

M = (+0.025x4 − 0.5x3 + 20x) kNm. (b)
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Check: With x = 0 and x = 10 expression (a) must give the shear force at
A, and that to the left of B, respectively:

x = 0; V = +20 kN (correct) ,

x = 10; V = +100 − 150 + 20 = −30 kN (correct) .

At D (x = 5):

V = +0.1 × 53 − 1.5 × 52 + 20 = −5 kN,

M = +0.025 × 54 − 0.5 × 53 + 20 × 5 = +53.125 kNm.

At D, the middle of span AB, the tangent to the M diagram is parallel to
the chord k (see Figure 13.4.b).

d. The maximum bending moment in AB will occur slightly to the left of
the middle D. Looking at the M diagram in Figure 13.4b, we can estimate
the magnitude of that moment as approximately 55 kNm.

Accurate determination:
If we are looking for the root of the V diagram, (a) gives

x = 4.33 m.

Substituting this value in (b) leads to an accurate value of the maximum
bending moment:

Mmax = 54.8 kNm (�).

13.1.3 Beam on three bar supports with a uniformly distributed
load

The structure in Figure 13.5 consists of a beam supported by three bars.
Dimensions and loads are given in the figure.

Figure 13.4 (a) Support reactions, (b) bending moment diagram
and (c) shear force diagram.
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Figure 13.5 Beam on three bar supports.

Figure 13.6 Support reactions.

Questions:
a. Determine the support reactions at P, Q and R. Draw them as they act

in reality, and include their values.
b. For ABCD, draw the V and M diagrams, with the deformation sym-

bols. Include relevant values. At A, B and E also draw the tangents to
the M diagram.

c. Determine the location and magnitude of the maximum field moment
in BC.

Solution:
a. In Figure 13.6, the distributed load over AE has been replaced by its
resultant of (8 kN/m)(8 m) = 64 kN. This simplifies the calculation for the
support reactions. From the moment equilibrium about S we can find the
vertical support reaction at Q:

∑
Ty |S = 0 ⇒ Qv = 32 kN (↓).

From the moment equilibrium about T we can find the vertical support
reaction at R:

∑
Ty |T = 0 ⇒ Rv = 48 kN (↑).

From the slope of bar support RC we find

Rh = 1
2Rv = 24 kN (←).

Finally, the horizontal and vertical force equilibrium gives

∑
Fz = 0 ⇒ Pv = 48 kN (↑),∑
Fx = 0 ⇒ Ph = 24 kN (→).
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Optional solution question a:
With Ph = 1

2Pv the moment equilibrium about C gives

Pv = 48 kN (↑),

Ph = 24 kN (→).

The horizontal force equilibrium gives

Rh = 24 kN (←).

The slope of the bar support RC gives

Rv = 2Rh = 48 kN (↑).

Finally, the vertical force equilibrium gives:

Qv = 32 kN (↓).

b. Figure 13.7a shows the isolated beam AD with all the forces acting on it.
To simplify the calculation and drawing of the V and M diagrams for the
fields AB and BC, the resultants of the distributed loads are also shown.

In Figures 13.7b and 13.7c, the dashed line shows the V and M diagrams
due to the concentrated forces. These diagrams have to be adjusted in fields
AB and BE. Here the shear force is linear and the bending moment is
parabolic. The parabolic bending moment diagram “hangs” between the
values at A, B and E. The definitive V and M diagrams are shown as solid
lines.

Checking the M diagram for field BE:
In the middle of the field, the parabola bisects the distance between the
chord (8 kNm) and the top value due to the load resultant (80 kNm). From

Figure 13.5 Beam on three bar supports.

Figure 13.6 Support reactions.
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Figure 13.7 (a) The isolated beam AD with its (b) shear force
diagram and (c) bending moment diagram.

Figure 13.8 A pile that is picked up to be driven, can be seen as a
simply supported beam with overhang.

Figure 13.7c we can deduce:

p = (80 − 8) kNm

2
= 36 kNm.

This value of p, the rise of the parabola, must be equal to 1
8q�2, in which �

is the length of field BE:

p = 1
8 (8 kN/m)(6 m)2 = 36 kNm.

This is the case.

c. From the V diagram we can deduce that the shear force in field BC is
zero at G, 4 m to the right of B. Here the maximum field moment occurs.
We can determine the magnitude from the moment equilibrium of beam
segments AG or GD, or from the area of the V diagram for beam segments
AG or GD. From the area of the V diagram for beam segment AG we find

Mmax =
∣∣∣ 1

2 (2 m)(16 kN) − 1
2 (4 m)(32 kN)

∣∣∣ = 48 kNm (�).

If we look at beam segment GD this must off course give the same value:

Mmax =
∣∣∣ 1

2 (2 m)(16 kN) + (2 m)(16 kN)

∣∣∣ = 48 kNm (�).

13.1.4 Pile (cantilever beam)

A concrete pile with length � = 20.5 m and square cross-section of
0.35 × 0.35 m2 is supported as shown in Figure 13.8. The mass density
ρ of concrete is assumed ρ = 2500 kg/m3.

Questions:
a. Determine and draw the M and V diagrams. At A, B and C also draw

the tangents to the M diagram.
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Figure 13.9 (a) Model for the pile subject to its dead weight.
(b) The load resultants on AB and BC and the associated sup-
port reactions. (c) Bending moment diagram and (d) shear force
diagram.

b. Determine the extreme value(s) of the bending moment.
c. Where should the support B be placed to minimise the bending

moment? Draw the associated M and V diagrams.

Solution:
a. The dead weight of the pile is q = ρgA, in which g = 10 N/kg is the
gravitational field strength and A is the cross-sectional area of the pile:

q = ρgA = (2500 kg/m3)(10 N/kg)(0.35 m)2 = 3062.5 N/m.

Hereafter, assume q = 3 kN/m.

Figure 13.9a shows the model for the pile. In Figure 13.9b, the distributed
loads in fields AB and BC have been replaced by their resultants, and the
support reactions are shown. In Figure 13.9c, the M diagram due to the load
resultants is shown by means of dashed lines. At A, B and C the dashed
diagram gives the correct values for the actual M diagram and the correct
tangents. The actual M diagram is shown by means of a solid line.

Checking the M diagram in field AB (see Figure 13.9c):

p = 1
8q�2 = 1

8 (3 kN/m)(16.5 m)2 = 102.1 kNm = (12 + 192.2)/2 kNm.

In Figure 13.9d, the V diagram due to the resultants is shown by dashed
lines. This V diagram gives the correct values in A, B and C. The actual V

diagram is linear, and is shown by means of a solid line.

Checking the V diagram:
The slope of the V diagram is equal to the distributed load, and is the same
in both fields.

b. From the V diagram in Figure 13.9d we find that the shear force in
field AB is zero at D. This is where the bending moment in the field is
an extreme. The distance from D to A is
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Figure 13.10 (a) Simply supported beam with total length � and
overhang of length a. (b) If the maximum bending moment at E
is equal to the bending moment at B, the hatched areas in the V

diagram are also equal.

�AD = 23.3

23.3 + 26.2
× (16.5 m) = 7.77 m.

The bending moment at D can be found from the moment equilibrium of
the isolated segment AD or, as shown below, from the area of the V diagram
for AD:

Mmax = 1
2 (7.77 m)(23.3 kN) = 90.5 kNm.

Another extreme bending moment is the support moment1 at B. Note that
this moment can be found from the area of the V diagram for segment BC
(see Figure 13.9d):

Mmin = 1
2 (4 m)(12 kN) = 24 kNm.

c. Let the total length of the pile be � and the length of the overhang be a

(see Figure 13.10a). Figure 13.10b shows a sketch of the V diagram. The
shear force to the right of B is equal to qa. The slope of the V diagram
is the same everywhere. The extreme bending moments occur at E and B.
The bending moment at B is equal to the hatched area of the V diagram
between B and C:

MB = 1
2qa2.

The bending moment at E is equal to the hatched area of the V diagram
between A and E. The bending moment in the pile is least when the extreme
bending moments at E and B are equal:

ME = MB = 1
2qa2.

1 A support moment is the bending moment in the beam at a support.
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Figure 13.11 (a) The pile supported in such a way that the maxi-
mum field moment in AB and the support moment at B are of equal
magnitude. (b) Associated shear force diagram and (c) bending
moment diagram.

In that case, the shear force diagrams for AE and BD must be equal. From
this it follows that the shear force at A is equal to qa, and the length of
AE is equal to a. From the linear variation of the shear force along AB,
it follows that the shear force to the left of B is equal to q(� − 2a). The
total area of the M diagram is zero as there are no concentrated couples
acting. The hatched area of the V diagram must therefore be equal to the
non-hatched area:

2 × 1
2qa2 = 1

2q(� − 2a)2.

This leads to the following quadratic equation in a:

2a2 − 4�a + �2 = 0.

The solution is

a = −(−4�) ± √
(−4�)2 − 4 × 2 × �2

2 × 2
=
(

1 ± 1
2

√
2
)

�.

Since a < � the solution with the plus sign is invalid, so that

a =
(

1 − 1
2

√
2
)

� = 0.293�.

With � = 20.5 m this gives

a = 0.293 × (20.5 m) = 6 m.

Figure 13.11 shows the associated M and V diagrams. The extreme bend-
ing moments are

ME = MB = 1
2 (3 kNm)(6 m)2 = 54 kNm.
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Figure 13.13 (a) Due to the prestressing, the eccentric compres-
sive forces Fp are exerted on the ends of the beam. (b) The beam
modelled as a line element. The eccentric compressive forces on the
beam ends cause couples. (c) Shear force diagram and (d) bending
moment diagram. (e) The maximum bending moment at the shear
force zero E can be found from the moment equilibrium of AE.

Figure 13.12 Simply supported prestressed beam with a uni-
formly distributed load on the right-hand side. The straight single
bar tendon has eccentricity e.

13.1.5 Prestressed beam

The simply supported beam AB in Figure 13.12 has a length � = 8 m and
is prestressed with a straight single bar tendon. The tendon is at a distance
e = 0.2 m under the beam axis. The prestressing force is Fp = 200 kN.
The right-hand half of the beam is loaded by a uniformly distributed load
q = 20 kN/m.

Questions:
a. Model beam AB as a line element and draw all the forces acting on it.
b. Draw the V and M diagrams with the deformation symbols. Include

relevant values.
c. Determine the location and magnitude of the maximum bending mo-

ment in the beam.

Solution:
a. Via the anchorages the tensile force Fp = 200 kN in the tendon ex-
erts equal compressive forces Fp = 200 kN on the beam ends (see Fig-
ure 13.13a). In Figure 13.13b, the beam has been modelled as a line
element. By definition, the line element coincides with the beam axis. So
the force flow is assumed to occur via the beam axis. All the forces are
therefore shifted to the beam axis. The eccentric compressive forces on the
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beam ends are statically equivalent with centric compressive forces (forces
acting in the beam axis) Fp = 200 kN and additional couples T :

T = Fpe = (200 kN)(0.2 m) = 40 kNm.

To simplify the calculation, the uniformly distributed load over BC has been
replaced by its resultant R in Figure 13.13b:

R = q × 1
2� = (20 kN/m)(4 m) = 80 kN.

The support reactions follow from the moment equilibrium about supports
A and B.

b. Figure 13.13c shows the V diagram. We can first draw the V diagram for
all the concentrated forces (dashed line), and then adapt them for field CB
by drawing a linear path between the values at C and B.

Figure 13.13d shows the M diagram. We first draw the M diagram due to
the concentrated forces (dashed line) and then adjust the variation for field
CB by sketching a parabola between the values at C and B, where it is
tangent to the M diagram due to the resultant R of the distributed load. At
the middle D of field CB the distance p between chord k and the parabola
is

p = 1
8q

(
1
2�
)2 = 1

8 (20 kN/m)(4 m)2 = 40 kNm.

Here the tangent is parallel to chord k.

For the bending moment at the middle D of field CB, we can read from the
M diagram in Figure 13.13d:

MD = p = 40 kNm (�)

Figure 13.13 (a) Due to the prestressing, the eccentric compres-
sive forces Fp are exerted on the ends of the beam. (b) The beam
modelled as a line element. The eccentric compressive forces on the
beam ends cause couples. (c) Shear force diagram and (d) bending
moment diagram. (e) The maximum bending moment at the shear
force zero E can be found from the moment equilibrium of AE.
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Figure 13.14 (a) A slice from a long floating concrete barge. (b)
The slice modelled as a line element.

Check: The tangents at C and B intersect at D at a distance 2p under chord
k.

c. The maximum bending moment in field AB occurs where the shear force
V = dM/dx is zero. This is at E, 1 m to the right of the middle C of beam
AB. The magnitude of this maximum can, for example, be determined from
the moment equilibrium about E of beam segment AE (see Figure 13.13e).
This gives

Mmax = 50 kNm (�).

Note that this maximum moment is not equal to the area of the V diagram
for beam segment AE or BE, while the total area of the V diagram certainly
is zero. It is left to the reader to explain this.

13.1.6 Slice from a long floating barge

A transverse slice has been isolated from the long floating concrete trough
in Figure 13.14a, and has been modelled as the line element in Fig-
ure 13.14b. The dead weight of the slice is uniformly distributed over walls
and bottom and is 12 kN/m. The dimensions and depth can be read from
the figure. Note: The width of the slice is unknown.

Questions:
a. From the equilibrium of the slice modelled as a line element, determine

the water pressure on the bottom AB. Draw the water pressure on both
the bottom and the walls. Include the values.

b. Isolate bottom AB, and draw all the forces acting on it. Include the
values.

c. For the entire slice, draw the M , V and N diagrams, with the defor-
mation symbols. Include relevant values.

d. Determine the maximum bending moment. Where does it occur?
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Figure 13.15 (a) The distribution of the water pressure and (b) the
resulting water pressure on the walls. (c) The isolated bottom with
all the forces and couples acting on it.

Solution:
a. Figure 13.15a shows the water pressure on the slice modelled as a line
element. The water pressure on the bottom is constant. Let the water pres-
sure there be qw. The water pressure on the walls varies linearly from zero
at the water level to qw at the bottom. The upward water pressure qw on
the bottom must be in equilibrium with the dead weight of the bottom and
walls of the strip:

(6 m) × qw (↑) = {(6 m) + 2 × (3 m)} × (12 kN/m) (↓)

= 144 kN (↓).

This gives qw = 24 kN/m.

b. The resulting water pressure R on the walls is (see Figure 13.15b):

R = 1
2 (24 kN/m)(2.5 m) = 30 kN.

The forces R, which pass through the centroid of the load diagram and
therefore act (2.5 m)/3 above bottom AB, exert horizontal forces of 30 kN
on AB and couples of (30 kN)(2.5 m)/3 = 25 kNm. The bottom AB can be
seen as an eccentrically compressed beam. In addition, at A and B, the verti-
cal forces due to the dead weight of the walls are (3 m)(12 kN/m) = 36 kN.
In Figure 13.15c, the base AB has been isolated, and all the forces are
shown. The resulting (uniformly) distributed load q on base AB is equal to
the difference between the upward water pressure qw = 24 kN/m (↑) and
the dead weight qw = 12 kN/m (↓):

q = qw − qdw = (24 kN/m) − (12 kN/m) = 12 kN/m) (↑).

c. Figures 13.16a to 13.16c shows the M , V and N diagrams for the entire
structure.
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Figure 13.16 (a) Bending moment diagram, (b) shear force dia-
gram and (c) normal force diagram for the slice from the floating
concrete barge modelled as a line element.

Walls: Due to the linearly distributed water pressure, the M diagram is a
cubic, and the V diagram is a parabola. In order to find the tangents to the
M diagram at A and B, the M diagram due to resultant R has been shown by
means of dashed lines. The slope of the V diagram is zero, where the water
pressure is zero and increases downwards. Due to the uniformly distributed
dead weight, the normal force in the wall is linear.

Bottom: Due to the uniformly distributed (upward) load, the bending mo-
ment is parabolic and the shear force is linear. The moments at A and B “go
round the corner”. Between A and B a parabola is “hanging” with a rise p

in the middle:

p = 1
8q�2 = 1

8 × (12 kN/m)(6 m)2 = 54 kNm.

Because the distributed load is acting upwards, the parabolic M diagram is
turned upwards. The normal force in the bottom is a constant compressive
force of 30 kN.

d. In the middle of field AB, the shear force is zero and the bending moment
is an extreme. The maximum field moment is an upward bending moment
and can be determined from the M diagram in Figure 13.16b:

Mmax = (54 kNm) − (25 kNm) = 29 kNm (�).

In addition, there are boundary extremes at A and B of 25 kNm (�).

13.1.7 Floating tunnel segment

A tunnel segment is afloat, waiting to be towed to the location where it
will be sunk. The tunnel segment can be seen as a rigid beam and has a
freeboard of 0.09 m (see Figure 13.17). The length �, width b and height h

of the tunnel segment are respectively 80, 9.5 and 6 m.
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Figure 13.17 Longitudinal view and cross-section of a floating
tunnel segment.

Figure 13.18 Distribution of the water pressure on the tunnel
segment.

Figure 13.19 (a) Water pressure on the tunnel segment modelled
as a plane element.

Figure 13.17 also shows the place of the normal force centre NC of the
tunnel segment. The dead weight of the tunnel is 554 kN/m. The two tem-
porary bulkheads both have a dead weight of 298 kN. The mass density of
water is γw = 10 kN/m3.

Questions:
a. Determine and draw the water pressure on the base of the tunnel. Write

down the units.
b. Draw the variation of the water pressure on a bulkhead. Write down the

units.
c. Model the tunnel segment as a line element. Draw all the forces

(distributed or not) (and/of couples) acting on it. Include the values.
d. Draw the N diagram, V diagram and M diagram for the tunnel segment

including the deformation symbols. Include relevant values. Determine
the maximum bending moment in the tunnel segment.

Solution:
a. The water pressure pw on the base of the tunnel is

pw = γwd

in which d = (6.00 m) − (0.09 m) = 5.91 m is the depth of water at the
base of the tunnel (see Figure 13.18), so that

pw = (10 kN/m3)(5.91 m) = 59.1 kN/m2.

b. The horizontal water pressure on the bulkheads varies linearly over the
height (see Figure 13.18).

c. In Figure 13.19a, the tunnel has been modelled as a plane element. The
water pressure on the base is

qw = bpw = (9.5 m)(59.1 kN/m2) = 561.45 kN/m.
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Figure 13.19 (b) Forces (and couples) on the tunnel section
modelled as a line element.

Figure 13.20 (a) The tunnel segment modelled as a line element
with its (b) normal force diagram (c) shear force diagram and (d)
bending moment diagram.

The resulting water pressures R on the bulkheads are

R = 1
2qwd = 1

2 × (561.45 kN/m)(5.91 m) = 1659 kN.

The forces R act at a distance d/3 = 5.91 m)/3 = 1.97 m from the base
of the tunnel segment. The eccentricity e with respect to the tunnel axis
(through the normal force centre NC) is

e = (2.92 m) − (1.97 m) = 0.95 m.

In Figure 13.19b, the tunnel segment has been modelled as a line element.
The force flow is assumed to take place along the tunnel axis, through the
normal centre NC. All the forces are therefore shifted to the tunnel axis. By
shifting the eccentric water pressures R on the bulkheads to the tunnel axis,
couples T are generated at the ends of the line element:

T = Re = (1659 kN)(0.95 m) = 1576 kNm.

In addition to the upward water pressure qw = 561.45 kN/m (↑), there
is also the dead weight of the tunnel segment qdw = 554 kN/m (↓). The
resulting distributed load is an upward load q:

q = qw − qdw = (561.45 kN/m) − (554 kN/m) = 7.45 kN/m) (↑).

Check: The resulting upward load q , shown in Figure 13.20a, must be in
equilibrium with the dead weight of the bulk heads:

∑
Fvert (↓) = 2 × (298 kN) − (7.45 kN/m)(80 m) = 0.

d. Figure 13.20b to d shows the N , V and M diagrams. The normal force is
a constant compressive force. The shear force varies linearly. The bending
moment varies parabolically. Since the distributed load is acting upwards
the parabolic M diagram is also aimed upwards. The maximum bending
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moment occurs in the middle of the tunnel segment. This can be determined
from the moment equilibrium of half a tunnel segment or directly from the
M diagram. In the middle of the tunnel segment, the distance a from the
chord k to the parabola is

a = 1
8q�2 = 1

8 × (7.45 kN/m)(80 m)2 = 5960 kNm

with which we can find the maximum bending moment:

Mmax = (1576 kNm) + (5960 kNm) = 7536 kNm (�).

Figure 13.20d shows the end tangents to the M diagram.

13.1.8 Oblique roof beam on bar supports with triangular load

The structure in Figure 13.21 is subject to a linear distributed load normal
to ABC, varying from from 18 kN/m at A to zero at C.

Questions:
a. Determine the support reactions at A, E and D. Draw them as they act

in reality and include their values.
b. Isolate beam ABC, and draw all the forces acting on it.
c. For ABC draw a clear sketch of the V and M diagrams, with the de-

formation symbols and the plus and minus signs in the given (local) xz

coordinate system. Include relevant values, and at A, B and C draw the
tangents to the M diagram.

d. For AB, determine the shear force V and the bending moment M as a
function of x. Use the given xz coordinate system.

Solution:
a. The support reactions are shown in Figure 13.22. To determine the
support reactions, the triangular load on ABC is replaced by its resultant

Figure 13.20 (a) The tunnel segment modelled as a line element
with its (b) normal force diagram (c) shear force diagram and (d)
bending moment diagram.
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Figure 13.21 Oblique roof beam with triangular load.

Figure 13.22 Support reactions.

RABC:

RABC = 1
2 × (18 kN/m)(6

√
2 m) = 54

√
2 m.

The vertical support reaction Av (↑) at A is found from the moment
equilibrium about G, the intersection of the two-force members BE and
CD:

∑
T|G = (4

√
2 m)(54

√
2 kN) − (4 m) × Av (↑) = 0

⇒ Av = 108 kN (↑).

The vertical support reaction Ev (↑) in E is then found from the moment
equilibrium about C:

∑
T|C = (4

√
2 m)(54

√
2 kN) − (6 m)(108 kN) − (2 m) × Ev (↑)

= 0

so that

Ev (↑) = −108 kN

or in other words

Ev = 108 kN (↓).

Finally, the support reactions at D follow from the horizontal and vertical
force equilibrium of the structure:

Dh = 54 kN (←),

Dv = 54 kN (↑).

�
�
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Figure 13.23 Isolated beam ABC with the load resultants for the
fields AB and BC.

This final calculation is left to the reader.

b. In Figure 13.23, the beam ABC has been isolated, and all forces acting on
it at A, B and C are shown. To draw the M and V diagrams, the distributed
loads in fields AB and BC have been replaced by their resultants RAB and
RBC. For the triangular load on BC

RBC = 1
2 × (6 kN/m)(2

√
2 m) = 6

√
2 kN.

The trapezoidal load on AB is divided into triangular loads (1) and (2); their
resultants can be calculated easier:

R(1) = 1
2 × (18 kN/m)(4

√
2 m) = 36

√
2 kN,

R(2) = 1
2 × (6 kN/m)(4

√
2 m) = 12

√
2 kN,

RAB = R(1) + R(2) = 48
√

2 kN.

The location of the line of action of RAB is found from the moment about
A:

aRAB = 1
3 × 4

√
2 × R(1) + 2

3 × 4
√

2 × R(2) = 160 kNm

so that

a = 160 kNm

48
√

2 kN
= 5

3

√
2 m.

c. Figure 13.24a shows all the forces acting normal to the beam axis. They
generate shear forces and bending moments in the beam. The distributed
loads on AB and BC have been replaced by their load resultants. In Fig-
ures 13.24b and 13.24c, the V and M diagrams due to the load resultants
are shown by means of dashed lines. The solid lines are the actual V and
M diagrams.
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Figure 13.24 (a) Isolated beam ABC with (b) shear force diagram
and (c) bending moment diagram.

The actual V diagram has a parabolic variation with a step change at B.
At C, the distributed load is zero, and the V diagram has a “horizontal”
tangent. To the left and to the right of B, the V diagram has the same slope.
In other words: the slope of the V diagram is continuous at B.

The actual M diagram is a cubic, with a bend at B. The M diagram due to
the load resultants gives the tangents to the actual M diagram at A, B and
C.

d. The load q on ABC varies linearly:

q = c1x + c2.

The coefficients c1 and c2 follow from the values q = +18 for x = 0 and
q = 0 for x = 6

√
2:

q = − 3
2x

√
2 + 18.

The units used are kN and m, and are omitted in this part of the answer.

By integrating, we can find the variation of the shear force and the bending
moment from the distributed load:

V = −
∫

q dx = 3
4x2

√
2 − 18x + C1,

M =
∫

V dx = 1
4x3

√
2 − 9x2 + C1x + C2.

The integration constants C1 and C2 can be found from the boundary
conditions at A:

x = 0 : V = +54
√

2 ⇒ C1 = +54
√

2,

x = 0 : M = 0 ⇒ C2 = 0.
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Figure 13.25 (a) Railway sleeper in a ballast bed with (b) the
schematic representation.

The functional forms of the shear force V and the bending moment M in
AB are

V = + 3
4x2

√
2 − 18x + 54

√
2,

M = + 1
4x3

√
2 − 9x2 + 54

√
2.

These expressions can be verified by substituting x = 4
√

2 m to obtain the
previously determined values of V and M at B:

x = 4
√

2 m : V = +6
√

2 kN (correct)

x = 4
√

2 m : M = +208 kNm (correct).

13.1.9 Railway sleeper in a ballast bed

Figure 13.25a shows a railway sleeper in a ballast bed. In Figure 13.25b the
sleeper is modelled as a line element. The sleeper is loaded across the width
of the rail by a uniformly distributed load q = 15 kNm. It is assumed that
the ballast bed exerts a uniformly distributed counter-pressure p (kN/m) on
the entire length of the sleeper. The dimensions are shown in the figure.

Questions:
a. Determine the counter-pressure p exerted by the ballast bed.
b. Draw the V diagram with the deformation symbols, and include

relevant values.
c. Draw the M diagram with the deformation symbols and the tangents at

A, B and C.
d. Determine the extreme bending moments in the railway sleeper. Where

do they occur?
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Figure 13.26 (a) The distributed loads on the railway sleeper
replaced by (b) their resultants. (c) Shear force diagram and (d)
bending moment diagram.

Solution:
a. The magnitude of p follows from the vertical force equilibrium of the
railway sleeper (see Figure 13.25b):

∑
Fvert (↓) = 2 × (0.2 m)(15 kN/m) − (2.4 m) × p = 0

so that

p = 2.5 kN/m.

b. In Figure 13.26a, the railway sleeper is split into the fields AB, BC, etc.
Figure 13.26b shows the resultants of the field loads. In Figure 13.26c, the
V diagram due to the load resultants is shown by means of dashed lines.
The values denoted by a dot at the field boundaries A, B, C, and so forth,
are the correct values. The actual (solid) V diagram varies linearly per field
between the values indicated by means of dots.

c. Figure 13.26d shows the M diagram due to the load resultants by means
of dashed lines. The values on the field boundaries A, B, C, and so forth,
indicated by a dot, are the correct values. They can be determined directly
from the dashed M diagram. The dashed M diagram also gives the tangents
to the actual (solid) M diagram at A, B, C and so forth. In each field,
the actual M diagram varies parabolically. In the fields AB, CD and EG,
the parabola is turned upwards (the distributed load is acting upwards),
in the fields BC and DE the parabola is turned downwards (the resulting
distributed load is acting downwards).

Per field, the parabolic variation can be drawn in the standard manner. For
field CD it holds that

p1 = 1
8q�2 = 1

8 × (2.5 kN/m)(1.2 m)2 = 0.45 kNm
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so that

M1 = p1 − (0.15 kNm) = 0.3 kNm (�).

In the middle of the fields BC and DE it applies that

p2 = 1
8q�2 = 1

8 × (12.5 kN/m)(0.2 m)2 = 0.0625 kNm

so that

M2 = (0.3 kNm) − p2 = 0.2375 kNm (�).

The values p2 and M2 are not shown in Figure 13.26d.

d. The M diagram has three extreme values, as the V diagram has three
zeros (not including the end zeros). The largest extreme value Mmax occurs
in the middle of the railways sleeper. This maximum was determined in
question c, and can be read directly from the M diagram:

Mmax = M1 = 0.3 kNm (�).

The two other extreme values are equal, and occur in the fields BC and DE.
Here we will determine the extreme value Mmin for field BC. In the shear
force diagram the distance from A to the zero in BC is (see Figure 13.26c)

(0.4 m) + 1 kN

(1 kN) + (1.5 kN)
× (0.2 m) = 0.48 m.

The magnitude of Mmin is now found most easily from the area of the V

diagram:

Mmin = 1
2 × (0.48 m)(1 kN) = 0.24 kNm (�).

Figure 13.26 (a) The distributed loads on the railway sleeper
replaced by (b) their resultants. (c) Shear force diagram and (d)
bending moment diagram.
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Figure 13.27 Beam on the ground. Due to the uniformly distrib-
uted load q, the ground pressure is distributed linearly.

13.1.10 Beam on the ground

Figure 13.27 shows a beam AB lying on the ground, of which the dead
weight can be ignored. A uniformly distributed load q is acting on the right-
hand side of the beam over a length a. Due to this load, the earth pressure
on the underside of the beam varies linearly, from 0 at A to 48 kN/m at B.

Questions:
a. From the equilibrium of the beam, determine length a and load q .
b. Make a good sketch of the V diagram and the M diagram for the beam.
c. At which cross-section is the shear force an extreme? Write down the

extreme values for the V diagram. For these cross-sections, also include
the tangents to the M diagram.

d. At which cross-section is the bending moment an extreme? Determine
this value, and include it with the M diagram.

Solution:
a. The resultant of the earth pressure and the resultant of the q load must
have the same line of action (moment equilibrium of a body subject to two
forces). The distance from B to the line of action of both resultants is (see
Figure 13.27)

1
2a = 1

3 × (1.80 m) ⇒ a = 1.20 m.

On the basis of the vertical force equilibrium, both resultants must be of
equal magnitude:

qa = 1
2 × (1.80 m)(48 kN/m) = 43.2 kN

so that

q = 43.2 kN

1.20 m
= 36 kN/m.



572 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 13.28 (a) Beam with load and earth pressure. (b) Resulting
distributed load on the beam and the resultants per field. (c) Shear
force diagram and (d) bending moment diagram.

b. In Figure 13.28a, all the loads on beam AB are shown. In Figure 13.28b,
the beam has been modelled as a line element, and the resulting load is
shown. Three fields with a triangular load can be distinguished. The figure
also shows the resultants of these triangular loads.

In Figures 13.28c and 13.28d, the V and M diagrams due to the three
load resultants are shown by means of dashed lines. They give the correct
values on the field boundaries, in both figures shown by dots. In the field
boundaries, the dashed M diagram also gives the tangents to the actual M

diagram. The actual V and M diagrams are shown by means of solid lines.

c. A linearly distributed load produces a parabolic V diagram. The shear
force is an extreme where the (resulting) distributed load is zero or changes
sign, so at A, C and D. At A and D, the V diagram has a horizontal tangent
(the distributed load is zero here) and the parabolas have their top. At C,
the step change in the distributed load gives a bend in the V diagram. The
extreme values can be read off directly from the V diagram.

d. The bending moment is a cubic and is relatively simple to draw using
the tangents at the field boundaries. The maximum bending moment Mmax
occurs where the shear force is zero. This is at E, 0.9 m to the left of B, see
the V diagram in Figure 13.28c. The magnitude of Mmax can be determined
from the moment equilibrium of the isolated part EB in Figure 13.29:

Mmax = (2.7 kN)(0.6 m) = 1.62 kNm (�).

Mmax can also be determined from the area of the parabolic V diagram for
EB. To do so we have to know that the area of the parabola is equal to
two-thirds of the area of the rectangle with a width of 0.9 m and a height of
2.7 kN. This then gives the same value:

Mmax = 2
3 × (0.9 m)(2.7 kN) = 1.62 kNm (�).
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Figure 13.29 The maximum bending moment at E can be derived
from the moment equilibrium of EB.

Figure 13.30 Lean-to.

13.1.11 Lean-to subject to dead weight, wind and snow loads

In Figure 13.30, the lean-to ACD is modelled as a line element. We want
to determine the N diagram and the extreme values of the bending moment
due to the three uniformly distributed loads:
a. A wind pressure of qw = 5 kN/m (force per length measured along

ACD).
b. A dead weight of qdw = 5 kN/m (force per length measured along

ACD).
c. A snow load of qsn = 5 kN/m (force per length measured along the pro-

jection of ACD on the horizontal ground plane).

Solution:
Since the dead weight and the snow load have components transverse to
the beam axis (qtr) and parallel to the beam axis (qpa), the N , V and M

diagrams are first determined due to the separate loads qtr = 1 kN/m (Fig-
ure 13.31a) and qpa = 1 kN/m (Figure 13.31b). By means of superposition,
we then determine the final N diagram for each of the given loads and the
extreme values of the bending moments.

In preparation, the dimensions given in Figure 13.30 are first used to deter-
mine the angles α, β and γ and the lengths �AC, �CD and �ACD of AC, CD
and ACD respectively. The angles α, β and γ we find from

tan α = 2/5 ⇒ α = 21.8◦,

tan β = 4/5 ⇒ β = 38.7◦,
γ = α + β = 60.5◦.

The lengths of AC, CD and ACD are

�AC = (5 m)/ cosα = 5.385 m,

�CD = (2 m)/ cos α = 2.154 m,

�ACD = �AC + �CD = 7.539 m.
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Figure 13.31 Lean-to loaded by a uniformly distributed load of
1 kN/m (a) normal to and (b) parallel to roof plane ACD.

• N , V and M diagrams due to qtr = 1 kN/m (Figure 13.31a)
In Figure 13.32, ACD has been isolated. The distributed load qtr = 1 kN/m
has been replaced by its resultant Rtr. In addition, the joining forces acting
at A and C on ACD are also shown. The indices “pa” and “tr” point to the
directions “parallel to the beam axis” respectively “transverse to the beam
axis”.

Since BC is a two-force member, the resultant of Ctr and Cpa must be along
BC:

Cpa = Ctr/ tan γ.

The resultant of the uniformly distributed load is

Rtr = qtr�
ACD = (1 kN/m)(7.539 m) = 7.539 kN.

The moment equilibrium about A gives Ctr:

∑
T|A = Rtr × 1

2�ACD − Ctr × �AC

= (7.539 kN) × 1
2 × (7.539 m) − Ctr × (5.385 m) = 0

so that

Ctr = 5.277 kN.

Cpa is found from the direction of two-force member BC:

Cpa = Ctr/ tan γ = 5.277 kN

tan 60.5◦ = 2.986 kN.

�
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Figure 13.33 (c) Shear force diagram and (d) bending moment
diagram due to a uniformly distributed load of 1 kN/m normal to
the roof plane.

Figure 13.32 Isolated beam ACD with the support reactions at A
and C due to a uniformly distributed load normal to the roof plane.

Figure 13.33 (a) Isolated beam ACD with a uniformly distributed
load of 1 kN/m normal to the roof plane and associated (b) normal
force diagram.
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The force equilibrium in the longitudinal direction of ACD gives

Apa = Cpa = 2.986 kN

and the force equilibrium normal to ACD

Atr = Rtr − Ctr = (7.539 kN) − (5.277 kN) = 2.262 kN.

Figure 13.33a again shows ACD with the forces determined at A and C,
and the resultants of the load on fields AC and CD. In Figures 13.33b to
13.33d, the N , V and M diagrams are shown. It is assumed that the reader
is familiar with the necessary calculation. The V and M diagrams due to
the load resultants are shown by means of dashed lines.

The M diagram has two extreme values: the (in an absolute sense) smallest
moment Mmin is the bending moment at C and the (in an absolute sense)
largest moment Mmax is the bending moment in field AC:

Mmin = 2.320 kNm (�).

The maximum moment in field AC is found 2.262 m from A. The magni-
tude can be determined from the area of the V diagram:

Mmax = 1
2 (2.262 m)(2.262 kN) = 2.558 kNm (�).

Figure 13.33 (c) Shear force diagram and (d) bending moment
diagram due to a uniformly distributed load of 1 kN/m normal to
the roof plane.
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Figure 13.34 Isolated beam ACD with the support reactions in A
and C due to a uniformly distributed load parallel to the roof plane.

Figure 13.35 (a) Isolated beam ACD with a uniformly distributed
load of 1 kN/m normal to the roof plane and associated (b) normal
force diagram.

• N , V and M diagrams due to qpa = 1 kN/m (Figure 13.31b)
In Figure 13.34, ACD has been isolated and the joining forces acting on
ACD are shown. The distributed load qpa = 1 kN/m has been replaced by
its resultant Rpa:

Rpa = qpa�
ACD = (1 kN/m)(7.539 m) = 7.539 kN.

The moment equilibrium about A gives Ctr = 0 and so Cpa = 0. The force
equilibrium of ACD gives Atr = 0 and Apa = Rpa = 7.539 kN.

In Figure 13.35a, ACD is shown again with the forces determined. In
Figure 13.35b, the associated N diagram is shown: due to a uniformly dis-
tributed load the normal force is linear. With this load there are no bending
moments and shear forces.
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Figure 13.36 (a) Lean-to with wind load of 5 kN/m and (b) asso-
ciated normal force diagram.

Figure 13.37 The components of the dead weigh qdw of a member
segment with length a.

a. Wind load
The wind load qw = 5 kN/m in Figure 13.36a is normal to the roof
plane ACD. The associated N , V and M diagrams are equal to those in
Figure 13.33b to d, but with values that are five times as large:

Mw;max = (2.558 kNm) × 5 = 12.79 kNm,

Mw;min = (2.320 kNm) × 5 = 11.60 kNm,

NAC = (2.986 kNm) × 5 = 14.93 kNm.

The N diagram for ACD is shown in Figure 13.36b.

b. Dead weight
In Figure 13.37 we take a closer look at a member segment with length
a. The dead weight of this member segment is aqdw with components
aqdw cos α and aqdw sin α respectively normal to and parallel to the beam
axis. For the components of the distributed load normal to and parallel to
the beam axis we find

qdw;tr = aqdw cos α

a
= qdw cos α = (5 kN/m) cos 21.8◦ = 4.642 kN/m,

qdw;pa = aqdw sin α

a
= qdw sin α = (5 kN/m) sin 21.8◦ = 1.857 kN/m.

The distributed load qdw = 5 kN/m due to the dead weight (Figure 13.38a)
has components of 4.642 kN/m normal to the beam axis (Figure 13.38b)
and 1.857 kN/m parallel to the beam axis (Figure 13.38c).

The bending moment in ACD is caused by the load of 4.642 kN/m normal
to the beam axis. The M diagram is equal to that in Figure 13.33d, but 4.462
as large, so that the extreme values of the bending moments are

Mdw;max = (2.558 kNm) × 4.642 = 11.87 kNm,

Mdw;min = (2.320 kNm) × 4.642 = 10.77 kNm.
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Figure 13.39 (a) The N diagram due to the component normal to
the roof plane, superposed on (b) the N diagram due to the com-
ponent parallel to the roof plane gives (c) the requested N diagram
due to the dead weight.

Figure 13.38 (a) The dead weight of beam ACD of 5 kN/m, re-
solved into components (b) normal to the roof plane and (c) parallel
to the roof plane.
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The N diagram in Figure 13.39a due to the 4.642 kN/m load normal to
the beam axis is equal to the N diagram in Figure 13.33b, but with values
that are 4.642 times as large. The N diagram in Figure 13.39b due to the
load of 1.857 kN/m parallel to the beam axis is equal to the N diagram in
Figure 13.35b, but then with values that are 1.857 times as large. Super-
posing the N diagrams in Figures 13.39a and 13.39b gives the N diagram
in Figure 13.39c. This is the requested N diagram due to the dead weight
qdw = 5 kN/m.

Figure 13.40 The components of the snow load qsn on a member
segment with length a measured horizontally.

Figure 13.39 (a) The N diagram due to the component normal to
the roof plane, superposed on (b) the N diagram due to the com-
ponent parallel to the roof plane gives (c) the requested N diagram
due to the dead weight.
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Figure 13.41 (a) The snow load of 5 kN/m on the lean-to, resolved
into components (b) normal to the roof plane and (c) parallel to the
roof plane.

c. Snow load
Over a length a measured horizontally, the resultant of the snow load is aqsn
(see Figure 13.40). The components of this force normal to and parallel to
the axis are respectively aqsn cos α and aqsn sin α. They act on a member
segment with length a/cos α. For the components of the distributed load
normal to and parallel to the beam axis we now find

qsn;tr = aqsn cos α

a/ cosα
= qsn cos2 α,

= (5 kN/m) cos2 21.8◦ = 4.310 kN/m,

qsn;pa = aqsn sin α

a/ cosα
= qsn sin α cos α,

= (5 kN/m) sin 21.8◦ cos 21.8◦ = 1.724 kN/m.

The distributed load qsn = 5 kN/m due to the snow (Figure 13.41a) has
components of 4.310 kN/m normal to the beam axis (Figure 13.41b) and
1.724 kN/m parallel to the beam axis (Figure 13.41c).

The bending moment in ACD is caused by the load of 4.310 kN/m normal
to the beam axis. The M diagram is equal to that in Figure 13.33d, but now
4.310 times as large, so that the extreme values of the bending moment are:

Msn;max = (2.558 kNm) × 4.310 = 11.02 kNm (�),

Msn;min = (2.320 kNm) × 4.310 = 10 kNm (�).
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Figure 13.42 (a) The N diagram due to the component normal
to the roof plane, superpositioned on (b) the N diagram due to
the component parallel to the roof plane gives (c) the requested N

diagram resulting from the snow load.

The N diagram in Figure 13.42a due to the load of 4.310 kN/m normal to
the beam axis is equal to the N diagram in Figure 13.33b, but with values
that are 4.310 times as large. The N diagram in Figure 13.42b due to the
load of 1.724 kN/m parallel to the beam axis is equal to the N diagram in
Figure 13.35b, but with values that are 1.724 times as large. By superposing
the N diagrams in Figures 13.42a and 13.42b on one another we get the N

diagram in Figure 13.42c. This is the requested N diagram due to the snow
loading qsn = 5 kN/m.

13.1.12 Indirectly loaded beam

With indirectly loaded beams, the load does not act on the beam directly,
but is rather transferred to the beam by means of a system of stringer beams
and cross beams.

Figure 13.43 shows a schematic representation of a bridge constructed as
an indirectly loaded beam. Main beam (mb) AB is carrying cross beams
(cb) at regular distances which in turn are carrying stringer beams (sb).

The main beam is divided into a number of fields by the cross beams, five in
Figure 13.43. It is assumed that the lengths of the stringer beams are equal
to the field lengths, and that the stringer beams are simply supported at the
cross beams.

Since the main beam is loaded only by forces exerted by the cross beams,
the shear force in each field is constant, and the bending moment in each
field is linear (excluding the dead weight of the main beam).

For the indirectly loaded beam in Figure 13.43, the M and V diagrams are
determined for the following two loading cases:

1. a concentrated load,
2. a uniformly distributed full load.
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Figure 13.43 A bridge constructed as an indirectly loaded beam.
The load on the stringer beams is transferred to the main beams via
crossbeams.

Figure 13.44 (a) Indirectly loaded beam AB, loaded in field CD
by a point load. (b) The bending moment diagram of the indirectly
loaded beam can be found from the dashed bending moment di-
agram of the directly loaded beam by snipping it between C and
D. (c) The bending moment diagram of stringer beam CD is equal
to the difference between the bending moment diagrams for the
directly and indirectly loaded beam.

Example 1
In Figure 13.44a, the main beam AB is indirectly loaded by a point load of
60 kN in field CD. The dimensions can be read from the figure.

Question:
Determine the M and V diagrams for the indirectly loaded main beam and
for the stringer beams.

Solution:
The support reactions at A and B are 40 kN and 20 kN respectively (see
Figure 13.44a).

In Figure 13.44b, the M diagram is shown for the directly loaded beam.
The dashed line indicates how this deviates from the requested M diagram
for the indirectly loaded beam.

The force of 60 kN in field CD exerts forces on the main beam of 20 kN
and 40 kN via the cross beams in C and D respectively (see Figure 13.44f).
The other cross beams do not exert any forces on the main beam. The M

diagram due to these forces of 20 and 40 kN at C and D is equal to the M

diagram due to the (resulting) force of 60 kN (this is the M diagram for the
directly loaded beam), with the exception of field CD. In field CD, the M

diagram varies linearly between the values of 120 kNm at C and 180 kNm
at D. The M diagram of the indirectly loaded beam can therefore be found
by snipping the M diagram of the directly loaded beam over field CD.

The snipped part of the M diagram is equal to the M diagram of the simply
supported stringer beam CD (see Figure 13.44c).
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Figure 13.44

The V diagram is found from the slope of the M diagram (see Fig-
ure 13.44d). The V diagram for the indirectly loaded beam deviates from
the dashed V diagram for the directly loaded beam only in the field CD.

The area enclosed in field CD between dashed and solid lines (the V dia-
grams for the directly and indirectly loaded beam respectively) is exactly
the same as the V diagram for the simply supported stringer beam CD (see
Figure 13.44e). The V diagram for the indirectly loaded beam can therefore
be found by reducing the shear force of the directly loaded beam in field
CD by the shear force in the stringer beam.

Example 2
In Figure 13.45a the indirectly loaded beam AB is carrying a uniformly
distributed load of 16 kN/m. The dimensions are found in the figure.

Question:
Determine the M and V diagrams for the indirectly loaded main beam and
for the stringer beams.

Figure 13.44 (a) Indirectly loaded beam AB, loaded in field CD
by a point load. (b) The bending moment diagram of the indirectly
loaded beam can be found from the dashed bending moment di-
agram of the directly loaded beam by snipping it between C and
D. (c) The bending moment diagram of stringer beam CD is equal
to the difference between the bending moment diagrams for the
directly and indirectly loaded beam. (d) The shear force diagram
of the indirectly loaded beam can be found from the slopes of the
associated bending moment diagram. (e) The shear force diagram
of the stringer beams can be found from the slopes of the associated
bending moment diagram and is equal to the difference between the
shear force diagrams for the directly and indirectly loaded beam. (f)
The forces exerted via the cross beams in C and D on the main beam
are found from the equilibrium of the stringer beam CD.
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Figure 13.45

Solution:
The support reactions at A and B are 120 kN (see Figure 13.45a).

In Figure 13.45b, the M diagram for the directly loaded beam is shown.
The values at the cross beams can be determined directly from the equi-
librium or (because the M diagram is parabolic) by means of the formula
M = 1

2qab, in which a is the distance to A and b is the distance to B (see
Section 12.1.6). By snipping the M diagram for the directly loaded beam
over the fields we can find the M diagram for the indirectly loaded beam.

The snipped part of the M diagram is equal to the M diagram of the simply
supported stringer beams (see Figure 13.45c).

The V diagram is found from the slope of the M diagram (see Fig-
ure 13.45d). The V diagram for the directly loaded beam is shown by means
of a dashed line. The difference between both V diagrams is equal to the V

diagram of the simply supported stringer beams (see Figure 13.45e).

Note that the shear forces at the end fields are not equal to the support
reactions. Half of the load on the end fields is not carried by the main beam
but is transferred by the end cross beams directly to the supports.

Figure 13.45 (a) Indirectly loaded beam AB with a uniformly dis-
tributed load. (b) The bending moment diagram of the indirectly
loaded beam is found by snipping the dashed (parabolic) bend-
ing moment diagram of the directly loaded cross beams. (c) The
bending moment diagram of the stringer beams is equal to the
difference between the bending moment diagrams for the directly
and indirectly loaded beam. (d) The shear force diagram of the
indirectly loaded main beam can be found from the slopes of the
associated bending moment diagram. (e) The shear force diagram
of the stringer beams can be found from the slopes of the associated
bending moment diagram and is equal to the difference between the
shear force diagrams for the directly and indirectly loaded beam.



586 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 13.46 Three-hinged shored frame.

13.2 Compound and associated structures

To be able to draw the M , V and N diagrams for compound and associated
structures, it is first necessary to determine the support reactions and the
joining forces between the compound sections. Subsequently, the M , V

and N diagrams can be determined and drawn for the constituent parts, in
the same way as for the self-contained structures in Section 13.1. By then
adding together the M , V and N diagrams of the constituent parts we can
determine the requested M , V and N diagrams for the entire structure.

13.2.1 Three-hinged shored frame

The three-hinged shored frame ASB in Figure 13.46 is loaded over CDSEG
by a uniformly distributed load of 16 kN/m. The dimensions are shown in
the figure.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in shores DD′ and EE′, with the correct signs for

tension and compression.
c. Isolate CDSEG, and draw all the forces acting on it.
d. For CDSEG, draw the N , V and M diagrams with the deformation

symbols and the tangents at C, D, S, E and G to the M diagram. Include
relevant values.

Solution (units kN and m):
a. Determining the support reactions is left to the reader (see Section 5.3,
Example 1).

b. In Figure 13.47, all parts of the frame have been isolated, and all the
joining forces are shown. The support reactions at A and B are also shown.
Both shores DD′ and EE′ are at 45◦:
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Figure 13.47 Girder, posts and shores isolated from the three-
hinged shored frame, with joining forces and support reactions.

Dh = Dv = 1
2NDD′√

2,

Eh = Ev = 1
2NEE′√

2.

Dh can be determined from the moment equilibrium of post AD′C about C:

∑
T|C = +32 × 5 + Dh × 2.5 = 0 ⇒ Dh = Dv = −64 kN

so that

NDD′ = −64
√

2 kN (a compressive force).

In the same way, Eh can be determined from the moment equilibrium of
post BE′G about G:

∑
T|G = −32 × 7.5 − Eh × 2.5 = 0 ⇒ Eh = Ev = −96 kN

so that

NEE′ = −96
√

2 kN (a compressive force).

The forces in C and G follow from the force equilibrium of AC and BG:

Ch = −32 − Dh = +32 kN,

Cv = +72 + Dv = +8 kN,

Gh = −32 − Eh = +64 kN,

Gv = +88 + Ev = −8 kN.

�
�
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Figure 13.48 (a) Isolated girder with the associated (b) normal
force diagram, (c) shear force diagram and (d) bending moment
diagram.

c. In Figure 13.48a, CDSEG has been isolated, and all the forces are shown.
The force and moment equilibrium of CDSEG can be used to check the
correctness of the forces determined above.

d. In Figures 13.48b to d the N , V and M diagrams are shown for CDSEG.
Three fields are distinguished: CD, DSE and EG.

In each field the normal force is constant. In CD and EG, the normal force
is a tensile force, while in DSE it is a compressive force.

The shear force is linear in each field, and the bending moment is parabolic.
The V and M diagrams due to the resultants of the field loads are shown in
Figure 13.48c and d by means of dashed lines.

The V diagram has the same slope in all fields, equal to the distributed load
of 16 kN/m.

The dashed M diagram due to the load resultants gives the tangents at
A, D, E and G. The parabola in field DE passes through hinge S, since
M = 0. Here, in the middle of field DE, the tangent is parallel to the chord
k between the M values at D and E.

Note that the M diagram at C and G has no horizontal tangents as the shear
force is not zero.

Check M diagram:
Per field, p = 1

8q�2 applies for the rise p of the parabolic M diagram.
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Figure 13.49 Three-hinged frame with a tie rod.

Figure 13.50 Three-hinged frame ASB with the support reactions
and the forces exerted by tie rod AB at A and B.

13.2.2 Three-hinged frame with tie rod

Figure 13.49 shows a three-hinged frame ASB with tie rod AB. Girder CSD
is carrying a uniformly distributed full load of 25 kN/m. The dimensions are
shown in the figure.

Questions:
a. Determine the support reactions at A and B and the force in tie rod AB.
b. Isolate frame ASB, and draw all the forces acting on it at A and B.
c. For ASB, draw the M , V and N diagrams, with the deformation sym-

bols. Include relevant values. At D, S and C, draw the tangents to the
M diagram.

d. Determine the maximum bending moment in field CSD.

Solution (units kN and m):
a. The support reactions at A and B are forces of 100 kN aimed upwards.
The calculation is left to the reader. In Figure 13.50, frame ASB has been
isolated at A and B. In addition to the support reactions of 100 kN, there
are also joining forces exerted by the tie rod AB. With a tensile force
N in the tie rod, the horizontal forces exerted on ASB at A and B are
4
5N , and the vertical forces are 3

5N , as shown in Figure 13.50. N can be
found from the moment equilibrium about S of ADS or BCS. The moment
equilibrium of BCS about S gives:

∑
T|S = +100 × 2 + 4

5N × 2 + 3
5N × 4 − 100 × 4 = 0

⇒ N = +50 kN.

In bar AB, there is therefore a tensile force of 50 kN.

�
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Figure 13.51 (a) Isolated three-hinged frame ASB with the re-
sulting forces at A and B and the associated (b) bending moment
diagram, (c) shear force diagram and (d) normal force diagram.

b. In Figure 13.51a, the resulting forces on the isolated frame ASB are
shown, and the associated M , V and N diagrams are shown in Figures
13.51b to 13.51d.

c. To draw the M , V and N diagrams due to the forces at A and B, and
the resultants of the field loads on CS and DS please refer to Section 5.3,
Example 5.

The M and V diagrams due to the resultants of the field loads on CS and
DS are not correct for girder CSD. They are therefore shown by means of
dashed lines in Figures 13.51b and 13.51c. For the uniformly distributed
load, the shear force over DSC is linear and the bending moment is par-
abolic. The dashed M and V diagrams give the correct values of V and M

at C, S and D, and the correct tangents to the M diagram.

d. The zero shear force in CSD is found at E, 30
30+70 ×4 = 1.2 m to the right

of S (see Figure 13.51c). Here the bending moment is an extreme. Because
the bending moment at S is zero, the bending moment at E is equal to the
(hatched) area of the V diagram for SE:

ME = 1
2 × 1.2 × 30 = 18 kNm (�).

This maximum field moment, which is significantly smaller than the bound-
ary moments at C and D, can of course also be found from the moment
equilibrium of the frame part ADSE to the left of E, or ECB to the right of
E.

13.2.3 Trussed beam

The trussed beam ABSC in Figure 13.52 is carrying a uniformly distributed
load of 12 kN/m. The dimensions of the structure are shown in the figure.
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Figure 13.52 Trussed beam ABC with uniformly distributed load.

Figure 13.53 Normal force NCD in two-force member CD is
found from the moment equilibrium of part SCD about S.

Figure 13.54 (a) Force polygon for the equilibrium of joint D.
(b) Joint D with the forces exerted on it by members AD, BD and
CD.

Questions:
a. Determine the forces in the members AD, BD and CD with the correct

signs for tension and compression. Include the force polygon for joint
D.

b. Isolate ABSC, and draw all the forces acting on it.
c. For ABSC, draw the M , V and N diagrams, with the deformation sym-

bols. At A, B, S and C draw the tangents to the M diagram.
d. Determine the maximum bending moment in ABSC.

Solution (units kN and m):
a. In Figure 13.52 the support reactions are already shown. The calculation
is left to the reader. In order to determine the normal forces in the two-force
members AD, BD and CD, part SCD has been isolated in Figure 13.53.
At D, the (normal) force NCD has been resolved into its components. The
force NCD is found from the moment equilibrium of the isolated part about
S:

∑
T|S = +72 × 3 − 96 × 6 + 2

5

√
5 × NCD × 3 = 0

so that:

NCD = +60
√

5 kN (= +134.2 kN).

The normal forces in the members AD and BD can now be determined from
the force equilibrium of joint D. To do so, we have created the closed force
polygon in Figure 13.54a. We first set down the tensile force F CD

D = NCD,
which is the force member CD exerts on joint D. Next, the force polygon is
closed with two lines parallel to AD and BD.

The magnitude of the forces F AD
D and F BD

D can be found from the force
polygon. In order to interpret them as normal forces N , with the correct
signs (positive as tensile force and negative as compressive force), we first
have to check whether the forces F AD

D and F BD
D from the force polygon

�
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Figure 13.55 (a) Isolated beam ASC with (b) bending moment
diagram, (c) shear force diagram and (d) normal force diagram.

exert tension or compression on joint D (see Figure 13.54b). We find

NAD = +F AD
D = +20

√
109 kN (= +208.8 kN),

NBD = −F BD
D = −40

√
13 kN (= −144.2 kN).

There is therefore tension in AD and CD and compression in BD.

b. In Figure 13.55a, the beam ABSC has been isolated. At A and C, in
addition to the support reactions, the components of the tensile forces in
AD and CD are also active. At B the components of the compressive force
in BD are acting. In the figure, the distributed loads in the fields AB, BS
and SC have been replaced by their resultants.

c. In Figures 13.55b to 13.55d the M , V and N diagrams are shown. The M

and V diagrams due to the resultants of the field loads are shown by means
of dashed lines. They give the correct values in the field boundaries. Here
the dashed M diagram also gives the tangents.

The final M diagram shown in Figure 13.55b with a solid line, can be
checked using the rise p of the parabolas for both fields:

p1 = 1
8 × 12 × 82 = 96 kNm,

p2 = 1
8 × 12 × 62 = 54 kNm.

These values of p fit in the M diagram shown.

Note that in Figure 13.55c the shear forces at the supports A and C are not
equal to the support reactions there. This is caused by the vertical com-
ponents of the member forces in AD and CD.

Also note that the shear force in all fields has the same slope, equal to the
distributed load of 12 kN/m.
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Figure 13.56 (a) Sideways-supported mast ABC with (b) its
support reactions.

There is a compressive force over the entire length of beam ABSC (see
Figure 13.55d). At B, a step change in the N diagram occurs due to the
horizontal component of the member force in BD.

d. The largest bending moment in an absolute sense is the support moment
at B:

MB = 96 kNm (�).

In addition, there are extreme field moments at E and G three metres from
the supports, where the shear force is zero (see Figure 13.55c). The easiest
way to find their magnitudes is from the hatched area of the V diagram:

ME = MG = 1
2 × 3 × 36 = 54 kNm (�).

MG is also equal to the maximum bending moment in the simply supported
beam SC with uniformly distributed full load:

MG = 1
8 × 12 × 62 = 54 kNm (�).

Note that the M diagram has mirror symmetry about B.

13.2.4 Sideways-supported mast

The mast ABC in Figure 13.56a is supported sideways by a number of bars.
Dimensions and load are shown in the figure.

Questions:
a. Determine the support reactions at A and D.
b. Determine the forces in the bars 1 to 3, with the correct signs for tension

and compression.
c. Isolate beam ABC, and draw all the forces acting on it.
d. For beam ABC draw the M , V and N diagram, with the deformation
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Figure 13.57 (a) Force polygon for the equilibrium of joint E. (b)
Joint E with the forces exerted on it by bars (1), (2) and (3).

symbols. At A, B and C, also draw the tangents to the M diagram.
e. Determine the extreme moments in ABC.

Solution (units kN and m):
a. The vertical support reaction Dv (↓) at D follows from the moment
equilibrium of the entire structure about A:

∑
T|A = −(12 × 5) × 6 + Dv × 6 = 0 ⇒ Dv = 60 kN (↓).

Bar (1) is a two-force member so that the line of action of the support
reaction at D coincides with DE. The horizontal component Dh is therefore

Dh = 4
6 × Dv = 40 kN (←).

The support reactions at A follow from the force equilibrium of the
structure as a whole:

Ah = 20 kN (←),

Av = 60 kN (↑).

The support reactions are shown in Figure 13.56b.

b. The support reactions at D show that there is a tensile force in bar (1):

N(1) = +
√

402 + 602 = +20
√

13 kN (= +72.11 kN).

The (normal) forces in bars (2) and (3) can now be determined from the
force equilibrium of joint E. To do so we have to draw the force polygon for
joint E (see Figure 13.57a). The force F

(1)
E = N(1) = 20

√
13 kN, which bar

(1) exerts on joint E, is known. We close the force polygon with the forces
F

(2)
E and F

(3)
E , parallel to the two-force members (2) and (3). Figure 13.57b

Figure 13.56 (a) Sideways-supported mast ABC with (b) its
support reactions.

�
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Figure 13.58 (a) Isolated mast ABC with (b) bending moment
diagram, (c) shear force diagram and (d) normal force diagram.

shows that all the forces in the force polygon are tensile forces:

N(2) = +F
(2)
E = +20 kN,

N(3) = +F
(3)
E = +20

√
10 kN (= +63.24 kN).

c. In Figure 13.58a, ABC has been isolated and all the forces acting on it
have been shown. For the fields AB and BC, the resultants of the distributed
load are also shown.

d. In Figure 13.58b to d the M , V and N diagrams are shown. The dashed
M and V diagrams, which are determined first, are an important tool for
drawing the actual M and V diagrams. The answer is left to the reader. The
value p can be used to check the M diagram shown:

p = 1
8 × 5 × 62 = 22.5 kNm.

Note that the M diagram has mirror symmetry about B.

e. The bending moment is an extreme at G and H, where the shear force is
zero, and at B, where the shear force changes sign (see Figure 13.58c).

The M diagram in Figure 13.58b gives

The actual maximum bending moment occurs at G and H, 4 m from the
ends A and B, and is most easily determined from the area of the V

diagram:

MB = 30 kNm ( ).�

MG = MH = Mmax = 1
2 × 4 × 20 = 40 kNm ( ).�
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Figure 13.59 Statically indeterminate trussed beam with uni-
formly distributed load.

Figure 13.60 Three joining forces are acting between joint D
and beam ACB, namely the normal forces in the three two-force
members.

Figure 13.61 Support reactions.

13.3 Statically indeterminate structures

With statically indeterminate structures, it is not possible to determine all
the support reactions and joining forces directly from the equilibrium, as
there are too few equilibrium equations. In this section, sufficient support
reactions and/or joining forces are given in magnitude and direction for a
statically indeterminate structure so that all the other support reactions and
joining forces can be determined with the available number of equilibrium
equations. Thereafter, it is possible to determine and draw the M , V and N

diagrams for the entire structure.

13.3.1 Trussed beam with a given normal force

The dimensions and load for the trussed beam ACB can be found in Fig-
ure 13.59. For the given load, there is a tensile force of 60 kN in member
CD.

Questions:
a. Determine the degree of static indeterminacy of the structure.
b. Isolate beam ACB, and draw all the forces acting on it.
c. For ACB, draw the N , V and M diagrams, with the deformation

symbols. At A, B and C also draw the tangents to the M diagram.

Solution:
a. In Figure 13.60, beam ACB and joint D have been isolated from one
another. There are v = 3 unknown joining forces acting between beam
ACB and joint D: the normal forces NAD, NBD and NCD. In addition,
there are r = 3 support reactions, namely Ah, Av and Bv. That makes a
total of r + v = 6 unknowns. Beam ACB provides three equilibrium equa-
tions (force equilibrium and moment equilibrium); joint D provides two
(force equilibrium). In total, there are therefore e = 5 equilibrium equations
available. The degree of static indeterminacy n is equal to the difference
between the number of unknowns and the number of available equilibrium
equations:
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Figure 13.63 (a) Isolated beam ACB with (b) normal force
diagram, (c) shear force diagram and (d) bending moment diagram.

n = (r + v) − e = 6 − 5 = 1.

The structure is therefore statically indeterminate to the first degree.

b. In Figure 13.61 the support reactions are shown; they follow from the
equilibrium of the structure as a whole.

If it is known that a tensile force of 60 kN is acting in CD, the normal forces
in two-force members AD and BD can be determined from the equilibrium
of joint D. In Figure 13.62a the closed force polygon is shown for the
equilibrium of the forces acting on joint D. Figure 13.62b shows how these
forces are acting on the joint. This figure also shows whether the forces are
tensile or compressive. The normal forces are

NAD = −F AD
D = −50 kN,

NBD = −F BD
D = −50 kN,

NCD = +F CD
D = +60 kN (given) .

Figure 13.63a shows the isolated beam ACB. At A and B there are not
only support reactions, but also (the components of) the compressive forces
exerted by the members AD and BD.

Figure 13.62 (a) Force polygon for the equilibrium of joint D. (b)
Joint D with the forces exerted on it by members AD, BD and CD.
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Figure 13.64 Statically indeterminate trussed beam with a uni-
formly distributed load on the left-hand side. We are given a zero
bending moment at C.

Figure 13.65 Support reactions.

c. The N , V and M diagrams are shown in Figures 13.63b to 13.63d. In
beam ACD there is a tensile force of 40 kN. When drawing the V and M

diagrams, we used the dashed V and M diagram associated with the load
resultants of 80 kN in the fields AC and BC. The bending moment is an
extreme at E and G, where the shear force is zero, and at C where the shear
force changes sign:

Mmin = MC = 40 kNm (�),

Mmax = ME = MG = 1
2 (2.5 m)(50 kN) = 62.5 kNm (�).

13.3.2 Trussed beam with a given bending moment

The trussed beam ACB in Figure 13.64 is the same as that in the previous
section, except it now has a different load. Further, we are given a zero
bending moment at C.

Question:
For ACB draw the N , V and M diagrams, with the deformation symbols.
At A, B and C also draw the tangents to the M diagram.

Solution (units kN and m):
The support reactions follow from the equilibrium of the structure as a
whole, and are shown in Figure 13.65.

In the unloaded field BC, the bending moment (dependent on the shear
force) is constant or linear. Since the bending moment is zero at both B and
C (given), the bending moment must be zero throughout field BC.

Due to the uniformly distributed load, the bending moment in field AC is
parabolic. In addition, the bending moment is zero at both A and C. This
allows us to directly draw the M diagram for AB (see Figure 13.66d). At
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Figure 13.66 (a) Isolated beam ACB with (b) normal force
diagram, (c) shear force diagram and (d) bending moment diagram.

the middle of AC:

M = Mmax = p = 1
8 × 20 × 42 = 40 kNm.

The V diagram can be determined from the M diagram. In field BC, the
shear force is zero, in field AC it varies linearly. The shear forces at A and
to the left of C are

2p

1
2�AC

= 2 × 40
1
2 × 4

= 40 kN.

Their deformation symbols follow from the slope of the M diagram (see
Figure 13.66c).

Check: The shear forces found must agree with the support reactions of the
simply supported beam AC.

The vertical force equilibrium of joint C gives (see Figure 13.67)

NCD = +40 kN.

Using the equilibrium of joint D, we can now find the normal forces in AD
and BD. They turn out to be compressive forces:

NAD = NBD = −100/3 kN.

The calculation is left to the reader.

In Figure 13.66a, beam ACB has been isolated, and all forces acting on it
are shown. At A and B, there are acting support reactions and (components
of the) compressive forces exerted by members AD and BD.

Check: By reducing the support reactions (pointed upwards) at A and B by
the vertical component (pointed downwards) of these member forces we
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Figure 13.67 The normal force NCD in member CD follows from
the vertical force equilibrium of joint C.

Figure 13.68 Statically indeterminate portal structure with the
support reactions at A and C.

Figure 13.69 The portal structure consists of two singly-cohesive
sub-structures.

find the same shear forces as from the V diagram.

The horizontal component of the compressive member forces at A and
B results in a tensile force of 80/3 kN in ACB, see the N diagram in
Figure 13.66b.

13.3.3 Portal structure with a number of given support reactions

With the load given, the support reactions at A and C for the structure are
given in Figure 13.68.

Questions:
a. Determine the degree of static indeterminacy of the structure.
b. Determine the support reactions at B.
c. Isolate ADEBH, and draw all the forces acting on it, with the additional

information of a compressive force of 6 kN acting in EG.
d. For ADE and BH, draw the M , V and N diagrams with the deformation

symbols. At D and E, draw the tangents to the M diagram.

Solution (units kN and m):
a. The structure consists of two singly-cohesive sub-structures (see Fig-
ure 13.69). There are v = 2 + 2 = 4 unknown joining forces acting
in the hinged joints between both sub-structures. In addition, there
are r = 2 + 3 + 2 = 7 unknown support reactions. In total, that makes
r + v = 11 unknowns. Each sub-structure offers three equilibrium equa-
tions, making a total of e = 2 × 3 = 6 equilibrium equations available. The
degree of static indeterminacy n is equal to the number of unknown joining
forces and support reactions minus the number of available equilibrium
equations:

n = (r + v) − e = 11 − 6 = 5.

The structure is therefore statically indeterminate to the fifth degree.
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Figure 13.70 (a) Assumed and (b) calculated support reactions at B.

b. The support reactions at B follow from the equilibrium of the structure
as a whole. For the assumed directions of Bh, Bv and Bm in Figure 13.70a,
we find

∑
Fx = 8 + Bh + 2 − 10 − 8 = 0 ⇒ Bh = 8 kN,∑
Fy = 40 + Bv + 35 − 80 − 60 = 0 ⇒ Bv = 65 kN,∑
Tz|B = −40 × 5 + Bm + 35 × 5 + 10 × 4

+ 8 × 8 − 80 × 2.5 + 60 × 2.5 = 0 ⇒ Bm = −29 kN.

The fixed-end moment reaction Bm is acting opposite to the direction as-
sumed in Figure 13.70a. In Figure 13.70b, the support reactions at B are
shown as they act in reality.

c. In Figure 13.71a, ADEBH has been isolated and all forces acting on it are
shown. Additional information given is that member EG exerts a horizontal
compressive force of 6 kN on joint E. The three joining forces at H can now
be determined from the equilibrium of ADEBH, or (less laboriously) from
the equilibrium of CGKH. The calculation is left to the reader.

d. In Figures 13.71b to 13.71d, the N , M and V diagrams for ADEBH are
shown. When determining and drawing these lines, it is best to work from
the member ends A, B and H to joint E. To verify the calculation, the force
and moment equilibrium of joint E can be investigated. One could also first
isolate all the members and determine all the joining forces at D and E. See
for example Section 5.3, Example 3.
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(a) Isolated part ADEBH with (b) bending moment
diagram, (c) normal force diagram and (d) shear force diagram.

Statically indeterminate frame for which the bend-
ing moment at G, and the shear force in BE are given.

13.3.4 Frame with given shear force and bending moment

For the statically indeterminate structure in Figure 13.72 we are given the
following:
• the bending moment at the middle G of DE: MG = 12.5 kNm, and
• the shear force in BE: V BE = 5 kN.

The associated deformation symbols are given in the figure, as are the meas-
urements and the load.

Questions:
a. Determine the degree of static indeterminacy of the structure.
b. Determine the support reactions. Draw them as they are acting in reality

on the structure.
c. Determine the normal force in CD.
d. Determine the N , V , and M diagrams for the entire structure, with

the deformation symbols. At D, G and E draw the tangents to the M

diagram.

Figure 13.71

Figure 13.72
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Figure 13.73 The vertical support reaction at B follows from the
moment equilibrium of ABEG about G.

Figure 13.74 Support reactions.

Solution (units kN and m):
a. The structure BEGD is statically indeterminate to the second degree.
The structure has five unknown support reactions while there are only three
equilibrium equations.

b. The horizontal support reaction at B follows from the shear force in BE.

Bh = 5 kN (→).

Bar AE is a two-force member so that

Av = 0.

Introduce a cut at G, and investigate the moment equilibrium of ABEG
about G (see Figure 13.73):

∑
T|G = +12.5 + 23 × 1, 25 + 5 × 2.5 − Bv × 2.5 = 0

⇒ Bv = 21.5 kN (↑).

The support reactions at A and C are found from the equilibrium of the
structure as a whole:

∑
Fvert = 0 ⇒ Cv = 24.5 kN (↑),∑
T|A = 0 ⇒ Ch = 32.5 kN (→),∑
Fhor = 0 ⇒ Ah = 37.5 kN (←).

In Figure 13.74, the support reactions are shown as they act in reality.

c. By resolving the horizontal and vertical support reaction at C into com-
ponents parallel to and normal to CD we find the normal force NCD and the

�
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Figure 13.75 To determine the normal force and shear force in
CD, the support reactions at C can be resolved into components
normal to and parallel to member CD.

Figure 13.76 (a) Normal force diagram.

shear force V CD (see Figure 13.75):

NCD = 1
2

√
2 × (32.5 + 24.5) = 28.5

√
2 kN,

V CD = 1
2

√
2 × (32.5 − 24.5) = 4

√
2 kN.

The normal force is a tensile force; the deformation symbol for the shear
force is given in Figure 13.75.

d. In Figures 13.76a to 13.76c, the N , V and M diagrams are shown. We
provide a number of comments about the M and V diagrams below. At
E and D, the bending moment “goes round the corner”. At G, the tangent
to the M diagram is parallel to the chord k of the parabola. The tangents
at E and D are formed by the dashed M diagram due to the resultant of
the distributed load on DE. The slope of this dashed M diagram gives the
magnitude and the deformation symbol for the shear forces at E and D. The
shear force in DE varies linearly between the values at D and E. The slope
of the V diagram can be used as a check: it is equal to the distributed load.
The maximum bending moment in DE is slightly to the left of the middle
G of ED, and will be only marginally larger than MG. From the area under
the V diagram we find

Mmax = 1
2 × 21.5 × 21.5

21.5+24.5 × 5 − 12.5 = 12.62 kNm (�).

13.3.5 Frame with two given shear forces

The statically indeterminate structure in Figure 13.77 has a hinged joint at
S. All other joints are rigid. Dimensions and loads are given in the figure.
The shear forces directly next to joint C are given:

V BC
C = 2.5

√
2 kN,

V CS
C = 10 kN.
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Figure 13.77 Statically indeterminate frame with two given shear
forces directly next to joint C.

Figure 13.76 (b) Shear force diagram and (c) bending moment
diagram.
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Figure 13.78 The frame consists of the two singly-cohesive
sub-structures ABCS and DS.

Figure 13.79 (a) The forces on joint C and (b) the closed force
polygon for the force equilibrium (scale: 1 square = 2.5 kN).

The directions follow from the deformation symbols given in the figure.

Questions:
a. Determine the degree of static indeterminacy of the structure.
b. Draw the force polygon for the force equilibrium of joint C.
c. Determine the support reactions at A and D.
d. Determine the M , V and N diagrams for the entire structure, with the

deformation symbols.

Solution (units kN and m):
a. The two parts ABCS and DS provide e = 2 × 3 = 6 equilibrium equa-
tions (see Figure 13.78). The number of unknown support reactions at A
and D is r = 3 + 3 = 6. The number of unknown joining forces at S is
v = 2. The degree of static indeterminacy is:

n = r + v − e = 6 + 2 − 6 = 2.

The structure is therefore statically indeterminate to the second degree.

b. In Figure 13.79a, joint C has been isolated and all forces acting on it
are shown. The bending moments acting on the joint are not shown! Fig-
ure 13.79b shows the closed force polygon for the force equilibrium of the
joint (scale: 1 square = 2.5 kN). The force polygon gives

NBC = +7.5
√

2 kN,

NCS = +5 kN.

c. With NCS = +5 kN the vertical equilibrium of CSD gives

Dv = 5 kN (↑).
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Figure 13.81 (a) Bending moment diagram, (b) shear force
diagram and (c) normal force diagram.

With V CS = 10 kN the horizontal equilibrium of ABC gives

Ah = 10 kN (←).

From the force equilibrium of the structure as a whole follows

Dh = 10 kN (←),

Av = 15 kN (↑).

Finally, the fixed-end moment reactions at A and D follow from the moment
equilibrium about S of DS and ABCS respectively. In Figure 13.80, the
support reactions are shown as they act in reality.

d. In Figures 13.81a to 13.81c the M , V and N diagrams are shown. At B
and C, the bending moment “goes round the corner”. The slopes of the M

diagram are in line with the magnitudes and the deformations symbols of
the shear forces.

Figure 13.80 Support reactions.
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13.4 Problems

General comment: When asked to draw an M , V or N diagram, please
draw the diagrams including the (deformation) symbols (or plus and minus
signs) and the values at relevant points.

Self-contained structures (Section 13.1)

13.1 A beam with length � = 16.90 m is supported as shown. The dead
weight of the beam is uniformly distributed and is 4 kN/m.

Questions:
a. How do you choose distance a to minimise the bending moment in the

beam due to the dead weight (in an absolute sense)?
b. How large is this bending moment?
c. Draw the M and V diagrams.

13.2 Beam ABC is simply supported at A and B. A uniformly distributed
load of 40 kN/m acts upwards over AB, and downwards over BC.

Questions:
a. Determine the support reactions and draw them as they act on the beam.
b. For ABC, draw the bending moment diagram with the tangents at A, B

and C. Clearly show where these tangents intersect.

d. Determine the maximum and minimum bending moment in the beam
and indicate where these moments occur.

13.3 Beam ACB is supported by a hinge at A, and on a roller at B. The
roller track at B is on a slope of 45◦. A uniformly distributed load of
0.5 kN/m acts over the entire length ACB. At B, the beam is loaded by a
vertical force of 4 kN. At C there is an eccentric axial force of 2 kN.

Questions:
a. Determine and draw the support reactions at A and B.
b. For ACB draw the N diagram.
c. For ACB draw the V diagram.
d. For ACB draw the M diagram. At A, C and B, draw the tangents to the

M diagram, and clearly indicate where they intersect.

13.4: 1–2 Beam AB is supported in two different ways and carries a
linearly distributed load.c. For ABC, draw the shear force diagram.
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Questions:
a. Determine and draw the support reactions.
b. Make a clear sketch of the V and M diagrams. At A, B and the middle

of AB, also draw the tangents to the M diagram.
c. Where are V and M an extreme and how large are these extreme

values?

13.5 The simply supported beam AE is loaded in the fields BC and CD by
two equally large triangular loads. The top value of the distributed load is
100 kN/m.

Questions:
a. Draw the M and V diagrams. At B, C and D draw the tangents to the

M and V diagrams, and clearly show where they intersect.

b. Where is the bending moment an extreme? Using the bending moment
diagram drawn, estimate the value of this moment.

c. Make an accurate calculation of the maximum bending moment.

13.6: 1–3 The simply supported beam AD is loaded in three different ways
by triangular loads with a top value of 16 kN/m.

Questions:
a. Draw the M and V diagrams. At A to D, also draw the tangents to the

M and V diagrams, and clearly show where they intersect.
b. Where is the bending moment an extreme? Determine this moment.



610 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

13.7 A rectangular slab rests on four edge beams, of which it is assumed
that they are simply supported on columns at the corners of the slab. A
uniform full load on the slab of 4 kN/m2 is transferred in accordance with
the envelope pattern shown to the edge beams.

Questions:
a. For each of the edge beams,

draw the loading diagram.
b. Drawn the M and V diagrams

for the short edge beam. How
large is the maximum bending
moment?

c. Draw the M and V diagrams
for the long edge beam. How
large is the maximum bending
moment?

13.8 A barrage is composed of 1.5-metre-wide bulkheads that on the un-
derside rest in a groove at A and on top rest against an I-beam. The I-beam
is supported by the barrage walls.

Questions:
a. Draw the distribution of the wa-

ter pressure on the bulkheads.
b. Draw a model of a bulkhead

with a width of 1.5 m as a
line element, and determine the
support reactions at A and B.

c. Draw the M and V diagrams for
bulkhead AB.

d. How large is the maximum
bending moment, and where
does it occur?

13.9 A steel sheet-pile wall is fixed in a concrete floor with 6 metres of
water on one side, and 3 metres on the other side. The mass density of
water is 1000 kg/m3.

Questions:
a. Schematize a 1-metre wide vertical strip from the sheet-pile wall as a

line element, and draw the load diagram.
b. Determine the support reactions for the strip.
c. Draw the M and V diagrams for the strip. In a number of places, draw

the tangents to the M and V diagrams.

13.10 Beam ABC is supported by a hinge at A and on a roller at B. In field
AB the beam carries a parabolically distributed load, and at the end C of
the overhang BC a point load of 15 kN. In the given coordinate system, the
parabolically distributed load is represented by

q(x) = −20
(x

�

)2 + 20
(x

�

)
kN/m.

Here � = 9 m is the length of AB. The dead weight of the beam is not
considered here.
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Questions:
a. Substitute the distributed load over AB by its resultant, and for the

entire beam ABC draw the M and V diagrams.
b. Now give a (rough) sketch of the actual M and V diagrams for AB,

with the deformation symbols, and also the plus and minus signs in the
given xz coordinate system.

c. For AB, through successive integration, determine the shear force V

and the bending moment M as a function of x. Determine the values of
V and M at A and B and in the middle D of field AB. At D draw the
tangent to the M diagram.

d. Where in AB is the field moment an extreme? It is enough to indicate
the location of this maximum roughly. On the basis of the M diagram,
estimate the value of the maximum field moment. This value need not
be calculated accurately.

13.11: 1–3 A simply supported beam AB with length � is loaded for
bending by three different distributed loads with the same top value q̂:

(1) q(x) = q̂ ·
(

x2

�2
− 2

x

�
+ 1

)
,

(2) q(x) = q̂ ·
(

−x2

�2
+ 2

x

�

)
,

(3) q(x) = 1
2 q̂ ·

(
x2

�2
+ x

�

)
.

For the numerical calculation, as-
sume � = 4 m and q̂ = 48 kN/m.

Questions:
a. Determine M and V as a func-

tion of x.
b. Draw the M and V diagrams

with the deformation symbols.
c. Determine the location and

magnitude of the maximum
bending moment.

d. Determine the support reac-
tions at A and B and draw
them as they actually act on
the beam.
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13.12: 1–4 Two cantilever beams AB with length � are subject to bending
by two different distributed loads with the same top value q̂:

(1) and (2) q(x) = q̂ ·
(

x2

�2 − 2
x

�
+ 1

)
,

(3) and (4) q(x) = q̂ ·
(

−x2

�2 + 2
x

�

)
.

For the numerical calculation, assume � = 4 m and q̂ = 48 kN/m.

Questions:
a. Determine M and V as a function of x.
b. Draw the M and V diagrams with the deformation symbols.
c. Determine the support reactions as they act on the beam.

13.13 The bent beam ABCD is supported by a hinge at A and on a roller at
D. The structure is loaded by a uniformly distributed load in field BC and a
point load at A.

Questions:
a. Determine the support reactions. Draw them in the directions in which

they act.
b. For the entire construction, draw the M , V and N diagrams with the

deformation symbols. At B and C, draw the tangents to the M diagram.
c. Indicate in which cross-section of BC the field moment is an extreme.

Determine this extreme value.

13.14 The structure consists of the members ACD and BCE that are rigidly
joined to one another at C.

Questions:
a. Determine the support reactions

and draw them as they act in
reality.

b. Isolate ACD, and draw all the
forces acting on it.

c. For ACD, draw the M and V

diagrams. At A, C and D draw
the tangents to the M diagram.

d. Determine the maximum bend-
ing moment in field AC. In
which cross-section does this
occur?

e. Draw the M and V diagrams for
BCE.
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13.15 The structure in Figure 13.21 consists of the members AC and BCDE
that are rigidly joined to one another at C.

Questions:
a. Determine the support reactions

at A and D.
b. For the entire structure draw

the M and V diagrams. At B
to E, draw the tangents to the
M diagram, and clearly indicate
where they intersect.

c. Where in field CD is the bend-
ing moment an extreme? Deter-
mine this moment.

d. Draw the N diagram for the
entire structure.

13.16 The structure is subject to a force of 50 kN at E, and a linearly
distributed load q(x) in field CD. The following applies in the given xz

coordinate system: q(x) = (−10x + 30) kN/m with x expressed in metres.

Questions:
a. Determine and draw the support reactions at A and B.
b. Isolate member CDE, and draw all the forces acting on it.
c. Write down the shear force in CD as a function of x. Verify the function

values at C and D.

d. Write down the bending moment in CD as a function of x. Check the
function values at C and D.

e. For CDE, draw the V and M diagrams with the deformation symbols.
At C and D, draw the tangents to the V and M diagrams.

f. Where in field CD is the bending moment an extreme, and how large is
this moment?

13.17 The structure is supported by a hinge at A and on a roller at B. At C,
the overhang is subject to a vertical force of 40 kN. A triangular load acts
between D and E, with a top value of 10 kN/m at E.

Questions:
a. Determine and draw the support reactions.
b. Draw the M , V and N diagrams for the entire structure with the de-

formation symbols. At D and E draw the tangents to the M and V

diagrams.
c. Determine M and V in field DE as a function of x. Use the given xz

coordinate system. Check the values (including the signs) of M and V

at both D and E.
d. Determine the location and magnitude of the maximum bending mo-

ment in field DE.
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13.18 The structure is subject to a uniformly distributed vertical load of
8 kN/m and a horizontal force F = 3 kN at B. The joint at B is hinged, the
joint at C is rigid.

Questions:
a. Determine the support reactions at A and D.
b. Draw the M , V and N diagrams for the entire structure.
c. Determine the location and magnitude of the maximum field moment

in BC.
d. Find the value of F for which the normal force in post AB is zero (with

the given uniformly distributed load of 8 kN/m on BCE).

13.19 A structure, modelled as beam AB, is lying on the ground. Its dead
weight can be ignored. On the right-hand side, the beam is subject to a
linearly distributed load over length a with a top value q̂. Due to this load,
the earth pressure on the underside of the beam is constant, and is 30 kN/m.

Questions:
a. From the equilibrium of the beam determine length a and the top value

q̂.
b. Draw the resulting distributed load on the beam (the load diagram).
c. For the beam, draw good sketches of the V diagram and the M diagram

(with their tangents at relevant points).
d. In which cross-section(s) is the shear force an extreme? At these cross-

sections also draw the tangents to the M diagram.

e. In which cross-section is the bending moment an extreme? Determine
this value.

13.20 A weightless rigid beam AB is resting on a hinge at A, while the
remainder is resting on the ground, which provides a linearly distributed
counter-pressure with top value q̂ at B. The load on the beam consists of a
triangular load with a top value of 8 kN/m at A.

Questions:
a. From the equilibrium of the beam, determine the top value q̂ of the

earth pressure.
b. Draw the resulting load on the beam (the resultant load diagram).
c. For the beam, draw good

sketches of the V diagram
and the M diagram (with
their tangents at relevant
points).

d. At which cross-section(s) is
the shear force an extreme?
Draw the tangents to the
M diagram at these cross-
sections.

e. At which cross-section is the
bending moment an extreme?
Determine this value.
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13.21 Given an eccentrically prestressed T-beam with overhangs and a
uniformly distributed full load. The straight single bar tendon is 90 mm
under the beam axis. The prestressing force is 1200 kN.

Questions:
a. Determine the support reactions.
b. Determine the N , V and M diagrams, with the deformation symbols.

At A to D, draw the tangents to the M diagram.
c. In which cross-section(s) is the bending moment an extreme? Deter-

mine this/these extreme value(s).

13.22 A tunnel segment is afloat, ready to be moved to its final location
where it will be sunk. The tunnel segment, which can be seen as a
rigid body, has a freeboard of 0.08 m. The dead weight of the tunnel is
525 kN/m. The weight of each of the two temporary bulkheads is 234 kN.
The specific weight of water is 10 kN/m3. The dimensions of the tunnel
segments are shown in the figure. The figure also shows the location of the
normal centre NC in the cross-section.

Questions:
a. How large is the water pressure on the underside of the tunnel?
b. Draw the distribution of the water pressure on a bulkhead, and deter-

mine the magnitude and location of the resultant.
c. Model the tunnel segment as a line element, and draw all (distributed

and non-distributed) forces (and/or couples) acting on it.
d. For the tunnel segment, draw the M , V and N diagrams, with the

deformation symbols. How large is the maximum bending moment?

13.23 A long weightless barge is loaded on its walls by a distributed load
of 60 kN/m.

Questions:
a. Determine the draught h of

the barge.
b. Determine the distribution

of the water pressure on
the walls and bottom of the
barge.

c. Draw the M , V and N dia-
grams for a 1-metre wide
strip from the wall.

d. Isolate a 1-metre strip from the bottom of the barge and draw all the
forces acting on it.

e. Draw the M , V and N diagrams for this 1-metre strip out of the bottom.
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13.24 A 1-metre strip has been isolated from a long barge and is modelled
as a bent line element. The dead weight of line element (walls and bottom)
is 10.5 kN/m. The width of the strip is not given.

Questions:
a. Determine the draught

h of the barge.
b. Determine the distribu-

tion of the water pres-
sure on the walls and
bottom.

c. Draw the M , V and N diagrams for the wall.
d. Isolate the bottom of the barge and draw all the forces acting on it.
e. Draw the M , V and N diagrams for the bottom.

13.25: 1–3 A 1-metre strip has been isolated from a long trough filled with
water and is modelled as a line element. There are three different trough
shapes.

Questions:
a. Determine the support reactions.
b. Draw the distribution of the water pressure on the walls and the bottom.
c. Isolate the bottom and draw all the forces acting on it.
d. Draw the M , V and N diagrams for the bottom.
e. Determine the maximum field moment in the bottom.

13.26: 1–2 The two structures shown differ only in their method of support.

Question:
Draw the M , V and N diagrams for the entire structure. At B and C, draw
the tangents to the M diagram, and clearly indicate where they intersect.
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13.27: 1–2 The two structures given differ only in their method of support.

Question:
Draw the M , V and N diagrams for the entire structure. At A and B, draw
the tangents to the M diagram, and clearly indicate where they intersect.

13.28 The structure consists of the members ABC, BE and CD that are
joined together by hinges. A uniformly distributed load of 10 kN/m acts
normal to ABC.

Questions:
a. Determine the support reactions at A, D and E. Draw them as they act

on the structure.
b. Isolate ABC, and draw all the forces acting on it.
c. For ABC determine and draw the M and V diagram, with the deforma-

tion symbols. At A, B and C, draw the tangents to the M diagram, and
clearly indicate where they intersect.
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13.29: 1–2 Two different beams AB are indirectly loaded by a number of
point loads.

Questions:
a. Determine the support reactions at A and B.
b. Determine the M and V diagrams for the indirectly loaded (main)

beam.
c. Determine the M and V diagrams for the directly loaded (stringer)

beams.
d. Explain any difference in magnitude between the support reactions at

A and B, and the shear force in the main beam at those places.

13.30: 1–4 Four different distributed loads act on the same indirectly
loaded beam AB.

Questions:
a. Determine the support reactions at A and B.
b. Determine the M and V diagrams for the indirectly loaded (main)

beam.
c. Determine the M and V diagrams for the directly loaded (stringer)

beams.
d. Explain any difference in magnitude between the support reactions at

A and B, and the shear force in the main beam at those places.
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Compound and associated structures (Section 13.2)

13.31 The scheme of a (weightless) draw bridge is given. A uniformly
distributed load q acts on the bridge deck ABC. The weight of the balance
is F . Assume that q = 12 kN and F = 90 kN.

Questions:
a. Isolate ABC, and draw all the forces acting on it.
b. Draw the M and V diagram for ABC. At A, B and C, draw the tangents

to the M diagram.
c. How large are the support reactions at D?
d. Calculate F in order to obtain a zero support reaction at A due to the

given load.

13.32 As problem 13.31, but now with q = 12 kN and F = 60 kN.

13.33: 1–4 A number of hinged beams are given.

Questions:
a. Determine the support reactions.
b. Determine the V diagram.
c. Determine the M diagram, with the tangents at a number of points.
d. Determine the location and magnitude of the extreme bending mo-

ments.
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13.34: 1–5 A number of hinged beams are given.

Questions:
a. Determine the support reactions.
b. Determine the V diagram.
c. Determine the M diagram, with the tangents at a number of points.
d. Determine the location and magnitude of the extreme bending mo-

ments.

13.35 A three-hinged portal frame with a uniformly distributed vertical
load of 16 kN/m on the left-hand side of the girder is given.

Questions:
a. Determine the support reactions.
b. Determine the M diagram for the entire structure with the tangents at a

number of points.
c. Determine the V diagram for the entire structure.

d. Determine the location and
magnitude of the maximum
field moment in the girder.

e. Determine the N diagram for
the entire structure.

13.36 A uniformly horizontal distributed load of 36 kN/m acts on the left-
hand column of a three-hinged portal frame.

Questions:
a. Determine the support reac-

tions.
b. Determine the M diagram for

the entire structure with the
tangents at a number of points.

c. Determine the V diagram for
the entire structure.

d. Determine the location and
magnitude of the maximum
field moment in the left-hand
column.

e. Determine the N diagram for
the entire structure.
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13.37: 1–2 Two three-hinged frames with unequal column lengths and a
uniformly distributed full load on the beam are given.

Questions:
a. Determine the support reactions.
b. Determine the M diagram for the entire structure with the tangents at a

number of points.
c. Determine the V diagram for the entire structure.
d. Determine the location and magnitude of the maximum field moment

in the beam.
e. Determine the N diagram for the entire structure.

13.38 The girder of a three-hinged frame with unequal posts is loaded by
a uniformly distributed vertical load and a horizontal force.

Questions:
a. Determine the support reactions.
b. Determine the M diagram for the entire structure with the tangents at a

number of points.

c. Determine the V diagram
for the entire structure.

d. Determine the location and
magnitude of the maximum
field moment in the girder.

e. Determine the N diagram
for the entire structure.

13.39 A three-hinged frame with a tie rod is carrying a uniformly dis-
tributed load of 40 kN/m.

Questions:
a. Determine the support reac-

tions.
b. Determine the force in the tie

rod.
c. Determine the M diagram for

the entire structure with the
tangents at a number of points.

d. Determine the V diagram for
the entire structure.

e. Determine the location and
magnitude of the maximum
field moment in the girder.

f. Determine the N diagram for
the entire structure.
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13.40 A uniformly horizontal distributed load of 2 kN/m acts on the right-
hand post of a three-hinged frame with tie rod.

Questions:
a. Determine the support reac-

tions.
b. Determine the force in the tie

rod.
c. Determine the M diagram for

the entire structure with the
tangents at a number of points.

d. Determine the V diagram for
the entire structure.

e. Determine the location and magnitude of the maximum field moment
of the loaded post.

f. Determine the N diagram for the entire structure.

13.41 As problem 13.40, but now with the distributed load acting on the
left-hand post.

13.42: 1–3 The same three-hinged frame is loaded in three different ways
by a uniformly distributed load on CS.

Questions:
a. Determine the support reactions.
b. For the entire frame, draw the M diagram with the tangents at C and S.
c. Draw the V diagram for the entire frame.
d. Draw the N diagram for the entire frame.
e. Determine the location and magnitude of the maximum bending mo-

ment in field CS.
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13.43 A shored three-hinged frame with a uniformly distributed full load
of 10 kN/m on the girder is given.

Questions:
a. Determine the support reac-

tions.
b. Determine the force in shore

DE, with the correct sign.
c. Isolate parts ADC, CES and

SGB and draw all the forces
acting on them.

d. Draw the N diagram for the
entire structure.

e. Draw the V diagram for the entire structure.
f. Draw the M diagram for the entire structure, with the tangents at C, E

and G.
g. Determine the location and magnitude of the extreme moments in

CESG.

13.44 The structure is supported by a hinge at A and is fixed at B. GK is
a shore with hinged connections at G and K. The structure also has hinged
connections at D, E and H. A uniformly distributed load of 10 kN/m acts
on CDE.

Questions:
a. For ACDEGH draw the M diagram, with the tangents at C, D and E.
b. For ACDEGH draw the V diagram.
c. Determine the support reactions.
d. Determine the force in shore GK, with the correct sign.
e. For HKB draw the M and V diagram.
f. Draw the N diagram for the entire structure.

13.45 The structure shown consists of the bent members ACS and BDS
and the straight members 1 to 5, all joined by hinges. The structure is
supported by a hinge at A, and on a roller at B. The load consists of a
horizontal force of 30 kN at C and a vertical force of 60 kN at G.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in members 1 to 5 (with the correct sign). Draw

the force polygons for joints E and G.
c. Isolate part ACS and draw all the forces acting on it.
d. For ACS draw the M and V diagram.
e. For ACS draw the N diagram.
f. Isolate part BDS and draw all the forces acting on it.
g. For BDS draw the M and V diagram.
h. For BDS draw the N diagram.
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13.46 As problem 13.45, but now without the horizontal force at C.

13.47 As problem 13.45, but now without the vertical force at G.

13.48 The structure shown consists of the bent members ACS and BDS
and the straight bars 1 to 4, all joined at hinges. The structure is supported
by hinges at A and B. At E, a cable is fixed that at G runs through a
frictionless pulley. A weight of 60 kN is attached to the cable. At C there
is a horizontal force of 30 kN.

Questions:
a. Determine the support reactions at A and B.
b. Determine the forces in members 1 to 4 (with the correct sign). Draw

the force polygons for joints E and G.
c. Isolate part ACS and draw all the forces acting on it.
d. For ACS draw the M and V diagram.
e. For ACS draw the N diagram.
f. Isolate part BDS and draw all the forces acting on it.
g. For BDS draw the M and V diagram.
h. For BDS draw the N diagram.

13.49 As problem 13.48, but now without the horizontal force at C.

13.50 As problem 13.48, but now without the weight of 60 kN at G.

13.51 The cantilever beam AB, with a uniformly distributed full load of
5 kN/m, is supported by means of a cable structure.

Questions:
a. Determine the support reactions.
b. Determine the forces in cables 1 to 5.
c. Isolate beam AB and draw all the forces acting on it.
d. Draw the M , V and N diagrams for AB. At A, D, E and B, draw the

tangents to the M diagram.
e. Determine the magnitude and location of the extreme bending mo-

ments in AB.

13.52 The trussed beam ASD is carrying a uniformly distributed load of
40 kN/m over SD.

Questions:
a. Determine the support reactions.
b. Determine the forces in members 1 to 7.
c. Isolate beam ASD and draw all the forces acting on it.
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d. Draw the M , V and N diagrams for ASD. In S, C and D also draw the
tangents to the M diagram.

e. Determine the location and magnitude of the extreme bending
moments in ASD.

13.53 The trussed beam ASD is carrying a uniformly distributed full load
of 40 kN/m.

Questions:
a. Determine the support reactions.
b. Determine the forces in members 1 to 7.

c. Isolate beam ASD and draw all the forces acting on it.
d. Draw the M , V and N diagrams for ASD. At A, B, S, C and D, draw

the tangents to the M diagram.
e. Determine the location and magnitude of the extreme bending moments

in ASD.

13.54: 1–2 The same trussed beam ASD is loaded in two different ways.

Questions:
a. Determine the support reactions.
b. Determine the forces in members 1 to 7.
c. Isolate beam ASD and draw all the forces acting on it.
d. Draw the M , V and N diagrams for ASD. Also draw at relevant points

the tangents to the M diagram.
e. Determine the location and magnitude of the extreme bending moments

in ASD.
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13.55: 1–2 The same trussed beam ASD is loaded in two different ways.

Questions:
a. Determine the support reactions.
b. Determine the forces in members a to e.
c. Isolate beam ASD, and draw all the forces acting on it.
d. Draw the M , V and N diagrams for ASD. At A, B and S, draw the

tangents to the M diagram.

13.56 The trussed beam ASD carries a uniformly distributed full load of
34 kN/m.

Questions:
a. Determine the forces in members 1 to 5, with the correct sign.
b. Isolate beam ASB and draw all the forces acting on it.
c. For ASB draw the N diagram.
d. For ASB draw the V diagram.
e. For ASB draw the M diagram with the tangents at A, C, D and B.

f. Determine the location and magnitude of the extreme bending moments
in beam ASB.

13.57 The trussed beam ASC carries a uniformly distributed full load of
12 kN/m.

Questions:
a. Determine the forces in members AD, BD and CD. Draw the force

polygon for joint D. Use a force scale of 1 cm ≡ 40 kN.
b. Isolate beam ASC, and draw all the forces acting on it.
c. For ASC draw the N diagram.
d. For ASC draw the V diagram.
e. For ASC draw the M diagram, with the tangents at A, B and C.
f. Determine the location and magnitude of the extreme bending moments

in beam ASC.
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13.58 The trussed beam ACB carries a uniformly distributed full load of
8 kN/m.

Questions:
a. Determine the forces in members DC, DE and DG.
b. Isolate beam ASC and draw all the forces acting on it.
c. For ACB draw the N diagram.
d. For ACB draw the V diagram.
e. For ACB draw the M diagram, with the tangents at A, E and C.
f. Determine the location and magnitude of the extreme bending moments

in beam ACB.

13.59 The trussed beam ASF carries a uniformly distributed load of
10 kN/m over SF.

Questions:
a. Isolate beam ASF, and draw all the forces acting on it.
b. For ASF draw the N diagram.
c. For ASF draw the V diagram.
d. For ASF draw the M diagram with the tangents at S, D, E and F.
e. Determine the location and magnitude of the extreme bending moments

in beam ASF.

13.60 A queen post truss with a uniformly distributed full load of 40 kN/m
is given.

Questions:
a. Determine the M and V diagrams for beam ASB. Also draw at relevant

points the tangents to the M diagram.
b. Determine the location and magnitude of the extreme bending moments

in beam ASB.
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Statically indeterminate structures (Section 13.3)

13.61 The M diagram for BC is given for the structure shown.

Questions:
a. To what degree is the structure statically indeterminate? Substantiate

your answer.
b. Draw the M diagram for AB, with the tangents at A and B.
c. Draw the V diagram for the entire structure.
d. How large is the maximum field moment in AB, and where does it

occur?
e. Draw the N diagram for the entire structure.
f. Determine the support reactions at A, B and C. Draw them as they act

on the structure.

13.62 The structure is supported by hinges at A and B. At joint D all the
members are rigidly joined to one another. With the given load, the bending
moment in the middle of field AD is 25 kNm. The associated deformation
symbol is given in the figure.

Questions:
a. To what degree is the structure statically indeterminate? Substantiate

your answer.
b. Determine the support reactions, and draw them as they act on the

structure.
c. For the entire structure, determine and draw the M and V diagrams.

At A and D and the middle of field AD, draw the tangents to the M

diagram.
d. Determine and draw the N diagram for the entire structure.

13.63 A two-hinged frame is loaded at C by the forces of 8 kN as shown.
With this load, the shear force in girder BC is 6 kN. The associated
deformation symbol is shown in the figure.
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Questions:
a. Determine the support reactions. Draw them as they act in reality.
b. Draw the bending moment diagram for the entire structure.
c. Draw the shear force diagram for the entire structure.
d. Draw the normal force diagram for the entire structure.

13.64 The bend beam is supported by hinges at A and C. The joint at B
is entirely rigid. With the given load the bending moment in member BA,
directly under joint B, is 60 kNm. The deformation symbol is given in the
figure.

Questions:
a. To what degree is the structure statically indeterminate? Substantiate

your answer.
b. Determine the support reactions and draw them as they act on the struc-

ture.

c. Determine and draw the M and V diagrams for the entire structure. At
B and C draw the tangents to the M diagram.

d. Determine and draw the N diagram for the entire structure.

13.65 In the trussed beam ACB the bending moment at C is zero for the
given load.

Questions:
a. Determine the degree of static indeterminacy for the structure.
b. For ACB draw the M and V diagrams. At A, B and C also draw the

tangents to the M diagram.
c. Determine the normal forces in bars AD, BD and CD.
d. Draw the N diagram for ACB.
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13.66 In the trussed beam ACB from problem 13.65 the bending moment
at C with the given load is 36 kNm.

Questions:
a. Draw the M and V diagram for ACB (there are two possibilities). At

A, B and C, draw the tangents to the M diagram.
b. Determine the normal forces in bars AD, BD and CD.
c. Draw the N diagram for ACB.

13.67 The structure consists of a two-hinged frame ADEB that is
supported horizontally by member CD. The link between member CD
and frame ADEB is a hinge. With the given uniformly distributed load of
30 kN/m on CDE, the bending moments with deformation symbols at D
and E are given for DE.

Questions:
a. Draw the M diagram for the entire structure. At D and E, draw the

tangents to the M diagram.
b. Draw the V diagram for the entire structure.
c. Draw the N diagram for the entire structure.
d. Draw all the support reactions in the directions in which they act.



14Cables, Lines of Force and
Structural Shapes

A special type of tension-loaded line element is the entirely flexible cable.
Cables have no “natural” shape, and adapt to the load.

In Section 14.1.1, we look at the behaviour of cables subject to a system of
parallel forces.

In Section 14.1.2, we show that the shape of a cable with respect to its
chord, due to a number of parallel forces, is similar to the bending moment
diagram of a simply supported beam with the same span and the same load.

After deriving the cable equation from the equilibrium of a small cable
element in Section 14.1.3, we apply this in Section 14.1.4 to a cable with a
uniformly distributed full load (force per horizontally measured length). In
this case, the cable is a parabola.

Next, the cable equation in Section 14.1.5 is applied to a cable loaded ex-
clusively by its dead weight (force per length measured along the cable).
The associated cable shape is a catenary.

In Section 14.2 we come back to the concept of centre of force, the point of
application of the resultant of all normal stresses in the cross-section, or in
other words, the point of application of the resultant of N and M (see Sec-
tion 10.1.1). The centres of force in all consecutive cross-sections together
form the line of force. If the line of force coincides with the member axis,
the bending moments (and shear forces) are zero and the force flow occurs
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via normal forces.

In bending, the material in the cross-section is used less efficiently than
in extension. To ensure maximum efficient use of material, the structural
shape (member axis) should preferably be chosen in such a way that there
is no bending and the force flow occurs via normal forces. In Section 14.3,
on the basis of the cable shape and line of force, we look for structural
shapes in which the force flow through bending remains limited.

14.1 Cables

Cables are line elements in which the resistance to bending is so small that
it can be ignored. A fully flexible cable cannot transfer bending moments
nor transverse forces. The force flow occurs entirely via normal forces,
namely tensile forces.1

Cables are often used in structures with large spans such as suspension
bridges and suspended roofs, but also in high-voltage cables, cableways,
and the mooring of high structures such as radio and TV masts.

Cables do not have their own shape – they adapt to the load. Here, we
assume that the axial stiffness of the cable is infinite. Therefore the cable
has the same length before and after loading. The shape of the cable and the
cable forces can then be deduced directly from the equilibrium equations.

In Section 14.1.1, we deduce the shape of the cable and cable forces directly
from the equilibrium for a cable loaded by a number of parallel point loads.

1 If there are compressive forces in the cable, the equilibrium is unstable (un-
reliable). In order to restore the equilibrium following a minor disruption in the
cable shape under the given load, bending moments have to develop in the cable.
Since this is not possible in an entirely flexible cable, the equilibrium is lost after
a minor disruption in the cable shape.
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Figure 14.1 (a) Cable AB loaded by two vertical forces. (b) The
isolated cable AB. (c) The isolated cable part AE.

In Section 14.1.2, we show that the cable shape is similar to the shape of
the bending moment diagram of a simply supported beam with the same
span and load.

We follow with a mathematical description of the relationship between ca-
ble force, cable shape and load in Section 14.1.3. We derive the so-called
cable equation from the equilibrium equations for a small cable element.

Using the cable equation as basis, we calculate the cable shape in Sec-
tion 14.1.4 due to a uniformly distributed load. The associated cable shape
is a parabola.

At that point, the distributed load is a force per horizontally measured
length. In Section 14.1.5, we calculate the cable shape due to its dead
weight. The dead weight is a force measured along the length of the cable.
The cable shape resulting from the dead weight is a catenary.

If the (vertical) sag of the cable with respect to its chord is small compared
with the (horizontal) span, then the catenary can be approximated by the
simpler parabola.

Finally, in Section 14.1.6, we present a number of examples.

14.1.1 Cables with point loads

Calculating the cable shape and cable forces from the equilibrium is illus-
trated using the cable in Figure 14.1a, supported at the fixed points A and B,
and loaded by the vertical forces FC = 75 kN and FD = 30 kN. The cable
has a (horizontal) span � = 60 m and a difference in elevation between
supports A and B of h = 9 m. The distances between the supports and the
lines of action of the forces are shown in the figure. The z coordinate of the
cable of point E is also given: zE = 22 m.

The dead weight of the cable is so small compared to the load that it can be
ignored.
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Questions:
a. Determine the cable shape, or in other words, the z coordinates of C

and D where kinks occur in the cable.
b. Determine the maximum and minimum cable force.

Solution:
a. With fully flexible cables, no bending moments can be transferred, and
the cable remains straight between the places where forces are applied.
Each straight part of the cable can be seen as a line element subject to a
tensile force N , the cable force.

In Figure 14.1b the cable has been isolated. There are four unknown support
reactions: Ah, Av, Bh and Bv. There are three equilibrium equations:

∑
Fx = −Ah + Bh = 0, (1)

∑
Fz = −Av − Bv + (75 kN) + (30 kN) = 0, (2)

∑
Ty |B = +Ah(9 m) − Av(60 m)

+ (75 kN)(40 m) + (30 kN)(20 m) = 0. (3)

For a unique solution to these three equations with four unknowns, we need
a fourth equation. This is found from the moment equilibrium of the part
of the cable to the right or left of E, the point where the z coordinate of the
cable is given. Here, we select the part to the left of E, as this equilibrium
equation contains only the unknowns Ah and Av and in combination with
Equation (3) leads to the quicker result (see Figure 14.1c):

∑
Ty |E = +Ah(22 m) − Av(30 m) + (75 kN)(10 m) = 0. (4)

From (3) and (4) we find

Ah = 60 kN,
Figure 14.1 (a) Cable AB loaded by two vertical forces. (b) The
isolated cable AB. (c) The isolated cable part AE.
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Figure 14.2 The equilibrium conditions are satisfied by an infi-
nite number of cable shapes. The final shape is determined by the
(developed) length of the cable.

Figure 14.3 (a) The z coordinate follows from the moment equi-
librium about C of AC.

Av = 69 kN.

From (1) and (2) we then find

Bh = 60 kN,

Bv = 36 kN.

If the z coordinate of E (or of another point on the cable) is not given,
the result remains undetermined, and the cable can assume various shapes,
such as the two dotted shapes in Figure 14.2. The final shape of the cable
is determined by the length of the cable. The approach via a given cable
length is considerably more complicated than that with a locally given z

coordinate of the cable, such as that at point E.

Hereafter we assume that the axial stiffness of the cable is infinite, so that
the cable has the same length before and after loading. In that case, the
cable shape and cable forces can be derived directly from the equilibrium.
Since the cable cannot stretch, an increase in the load with a certain factor
does not cause a change in the shape of the cable.

The z coordinates of respectively C and D are found from the moment
equilibrium about C and D of the left-hand or right-hand part of the cable.

The following holds for the part to the left of C (see Figure 14.3a):

∑
Ty |C = +(60 kN) × zC − (69 kN)(20 m) = 0

so that

zC = 23 m.
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Figure 14.3 (b) The z coordinate follows from the moment equi-
librium of ACD about D. (c) Support reactions and cable shape.

Figure 14.4 The cable forces can be determined using the force
equilibrium for joints C and D.

For the part to the left of D applies (see Figure 14.3b)

∑
Ty |D = +(60 kN) × zD − (69 kN)(40 m) + (75 kN)(20 m) = 0

so that

zD = 21 m.

The z coordinates of C and D fix the cable shape (see Figure 14.3c).

b. Cable forces N (in the straight parts) can now be calculated from the
force equilibrium of joints C and D (see Figure 14.4).

Since the cable is loaded exclusively by vertical forces, it is easier to use
the fact that the tensile force N in the cable has a horizontal component
H that is constant over the entire length of the cable. This follows directly
from the horizontal force equilibrium of an arbitrary part of the cable:

H = Ah = Bh = 60 kN.

Assuming α is the angle that the cable makes with the horizontal, then (see
Figure 14.5)

N = H

cos α
= H

√
1 + (tan α)2. (5)

The maximum force in the cable occurs where tan α is a maximum, that is
where the slope of the cable is largest.

The geometry of the deformed cable gives

NAC = H
√

1 + (tan αAC)2 = (60 kN)

√
1 + (23/20)2 = 91.44 kN,

NCD = H
√

1 + (tan αCD)2 = (60 kN)

√
1 + (2/20)2 = 60.30 kN,
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Figure 14.6 (a) A simply supported cable with compression bar
loaded by a number of parallel forces. (b) A simply supported beam
with the same span and load.

Figure 14.5 For cable force N it holds that
N = H/ cos α = H

√
1 + (tan α)2.

NDB = H
√

1 + (tan αDB)2 = (60 kN)

√
1 + (12/20)2 = 69.97 kN.

Check: The cable forces in AC and DB can also be found directly from the
support reactions at A and B respectively:

NAC =
√

A2
h + A2

v =
√

(60 kN)2 + (69 kN)2 = 91.44 kN,

NDB =
√

B2
h + B2

v =
√

(60 kN)2 + (36 kN)2 = 69.97 kN.

14.1.2 Relationship between cable shape and bending moment
diagram

Figure 14.6a shows a simply supported cable with compression bar, loaded
by n vertical point loads F1, F2, . . . , Fn. The cable has a (horizontal) span
� with a difference h between the support elevations at A and B.

The place of the roller support B is fixed by the compression bar AB so that
the cable shape can be determined as if A and B were immovable supports.
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For the cable shape applies

z = z(x)

in which z is the distance from the x axis to the cable. The distance from
the chord (compression bar) AB to the cable is hereafter indicated by

zk = zk(x).

From Figure 14.6a we can deduce that

zk = z − x

�
h.

Figure 14.6b shows a simply supported beam AB with the same span � and
the same load.

The cable with compression bar, and the simply supported beam have the
same support reactions Av and Bv at A and B respectively. There are no
horizontal support reactions. That the support reactions are equal for cable
and beam can easily be checked by calculation. In this way, the vertical
support reaction Av follows in both cases from the moment equilibrium
about B of the structure as a whole:

∑
Ty |B = −Av� +

n∑
i=1

Fi(� − xi) = 0

so that

Av =
∑

n
i=1Fi(� − xi)

�
.

In both cases, the vertical force equilibrium about B gives the following

Figure 14.6 (a) A simply supported cable with compression bar
loaded by a number of parallel forces. (b) A simply supported beam
with the same span and load.
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Figure 14.7 The isolated part to the left of section x of (a) the
cable with a compression bar and (b) the beam.

result for the vertical support reaction Bv:

Bv =
∑

n
i=1Fixi

�
.

In Figure 14.7, the part to the left of an arbitrary (vertical) section x has
been isolated for both the cable with compression bar and the simply
supported beam.

Since the cable is loaded exclusively by vertical forces, the tensile forces
in the cable have a constant horizontal component H (see Section 14.1.1).
From the horizontal force equilibrium of the isolated part in Figure 14.7a
we find that the compressive force in bar AB has the same horizontal
component H .

In addition to the horizontal forces H , there are also the vertical forces V

and Hh/� in the section, components of the tensile force in the cable and
the compressive force in the bar (a two-force member) respectively. On the
basis of the vertical equilibrium of the isolated section, it holds that

∑
Fz = −Av + ∑ 2

i=1Fi + V − Hh

�
= 0.

The vertical forces in the section are therefore

V − Hh

�
= Av −

2∑
i=1

Fi. (6)

In Figure 14.7b, there is a bending moment M and a shear force V beam at
the cross-section of the beam. The vertical equilibrium of the isolated part
of the beam gives the shear force:

V beam = Av −
2∑

i=1
Fi. (7)
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From (6) and (7), we find the following relationship between the vertical
component of the cable force and the shear force in the beam:

V − Hh

�
= V beam. (8)

The term Hh/� in (8) disappears when the supports of the cable are at equal
elevations. The vertical component of the cable force is then equal to the
shear force in the beam.

Conclusion: The vertical component of the cable force is equal to the shear
force in the beam (which can be read from the shear force diagram), only if
the support reactions of the cable are at equal elevations.

The moment equilibrium of the isolated part of the cable with compression
bar about an arbitrary point in the section gives (see Figure 14.7a)

∑
Ty |section = −Avx + ∑ 2

i=1Fi(x − xi) + Hzk = 0

so that

Hzk = Avx −
2∑

i=1
Fi(x − xi). (9)

The moment equilibrium of the isolated part of the beam in Figure 14.7b
gives

∑
Ty |section = −Avx +

2∑
i=1

Fi(x − xi) + M = 0

so that

M = Avx −
2∑

i=1
Fi(x − xi). (10)

Figure 14.7 The isolated part to the left of section x of (a) the
cable with a compression bar and (b) the beam.
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Figure 14.8 (a) The compression bar isolated from the cable. (b)
The support reactions of the cable without compression bar. (c) The
support reactions of a simply supported beam with the same span
and load.

If we compare the equations (9) and (10) we find

Hzk = M. (11)

Conclusion: The product of the horizontal component H of the tensile force
in the cable and the distance zk from the chord (compression bar) AB to the
cable is equal to the bending moment M in a simply supported beam with
the same span and the same load.

The horizontal component H of the tensile force in the cable is constant
and therefore independent from x. In contrast, the cable shape zk = zk(x),
under the chord, and the bending moment M = M(x) are functions of x.
The equation

Hzk(x) = M(x)

shows that the cable shape under the chord (compression bar) AB has the
same shape as the bending moment diagram. The force H can be seen as a
scale factor.1

In the section in Figure 14.7, the left-hand part is subject to only two forces
F1 and F2, and only these forces appear in the calculation. With an arbitrary
alternative section, the number of forces on the left-hand side can be larger
or smaller. The conclusions remain the same, however.

In Figure 14.8a, the compression bar AB has been isolated from the cable.
In A and B, the compression bar is subject to horizontal forces H and
vertical forces Hh/�. In Figure 14.8b, equal but opposite forces act on the
ends of the isolated cable, together with the forces Av and Bv, which are
equal to the support reactions of the beam AB in Figure 14.8c, with the
same span and load.

1 As a help for drawing bending moment diagrams, rule 16 in Section 12.1.6
already pointed out the relationship between cable shape and bending moment
diagram.
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Figure 14.9 A cable loaded by two vertical forces.

Figure 14.10 (a) A simply supported beam with the same span
and load as the cable in Figure 14.9 with (b) the associated bending
moment diagram.

The forces at A and B on the isolated cable in Figure 14.8b can be seen as
the support reactions of a cable without compression member, supported at
two fixed points.

The vertical support reactions Av and Bv are equal to those of a beam with
the same span and load only if the supports are at equal elevations.

With a difference h between both support elevations, the two horizontal
support reactions H form a couple that leads to a change in the vertical
support reactions of Hh/�.

This is applied in the following two examples.

Example 1
The cable in Figure 14.9, supported at the fixed points A and B, is loaded in
C and D by vertical forces of 75 and 30 kN respectively. Only the location
of point D is given for the cable shape: it is 4 metres lower than support A.

Questions:
a. Determine the cable shape.
b. Determine the horizontal support reactions at A and B.
c. Determine the vertical support reactions at A and B.
d. Determine the maximum and minimum cable forces.

Solution:
a. Figure 14.10a shows a simply supported beam AB with the same (hori-
zontal) span as the cable and the same vertical load. The support reactions
are also shown. Figure 14.10b shows the associated M diagram. Under
chord AB, the cable has the same shape as the M diagram; according to
(11):

Hzk = M.

The scale factor H is the horizontal component of the tensile force in the
cable. At D, the distance from the chord AB to the cable is (see Figure 14.9)
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Figure 14.11 Under the chord, the cable has exactly the same
shape as the bending moment diagram in Figure 14.10b. The scale
factor is H = 75 kN.

zk;D = 2
3 (12 m) + (4 m) = 12 m.

This gives

H = MD

zk;D
= 900 kNm

12 m
= 75 kN.

At C, the distance between the chord and the cable is

zk;C = MC

H
= 1200 kNm

75 kN
= 16 m.

The cable shape is now determined (see Figure 14.11).

b. The horizontal support reactions at A and B are equal to the horizontal
component H of the cable force determined above:

Ah = Bh = H = 75 kN.

The horizontal support reactions are shown in Figure 14.11.

c. The vertical support reactions Av and Bv in Figure 14.11 are equal to
the vertical support reactions of the beam in Figure 14.10a, but since the
horizontal support reactions act at different levels these have to be corrected
by a force

Hh

�
= (75 kN)(12 m)

60 m
= 15 kN

so that

Av = (60 kN) − (15 kN) = 45 kN,

Bv = (45 kN) + (15 kN) = 60 kN.
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Figure 14.12 Support reactions and cable shape.

Figure 14.13 At B, cable AB passes over a pulley, and is kept
under tension by a weight of 20 kN.

d. Figure 14.12 shows all the support reactions. This figure also includes
the slopes of the straight cable parts. With (5)

N = H
√

1 + (tan α)2

we find the cable force N in each of the straight cable parts:

NAC = (75 kN)

√
1 + (12/20)2 = 87.5 kN,

NCD = (75 kN)

√
1 + (8/20)2 = 80.8 kN,

NDB = (75 kN)

√
1 + (16/20)2 = 96.0 kN.

The maximum cable force occurs in the steepest part DB:

Nmax = NDB = 96.0 kN.

The minimum cable force occurs in the shallowest part CD:

Nmin = NCD = 76.5 kN.

Check: NAC and NDB can also be found from the support reactions at A
and B respectively:

NAC =
√

A2
h + A2

v =
√

(75 kN)2 + (45 kN)2 = 87.5 kN,

NDB =
√

B2
h + B2

v =
√

(75 kN)2 + (60 kN)2 = 96.0 kN,
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Figure 14.14 (a) A simply supported beam with the same span and
load as the cable in Figure 14.13, with the associated (b) bending
moment diagram and (c) shear force diagram.

Example 2
A uniformly distributed load of 9 kN/m acts over AC on the cable in Fig-
ure 14.13, of which the supports A and B are at equal elevations. At B, the
cable runs over a frictionless pulley with negligible dimensions. A block of
weight G = 20 kN is suspended at B.

Questions:
a. Determine the vertical component of the cable force in CB.
b. Determine the horizontal component of the cable force.
c. Determine the shape of the cable.
d. Determine the maximum and minimum forces in the cable and the

places where these occur.
e. Determine the support reactions at A and B.

Solution:
a. Figure 14.14a shows a beam AB with the same span and load as the
cable. Figures 14.14b and 14.14c also show the associated bending moment
diagram and shear force diagram, with various details. The calculation is
left to the reader.

V CB = 12 kN.

b. Since the pulley at B is frictionless, the following applies:

NCB =
√

H 2 + (V CB)2 = G.

From this, we can find the horizontal component H of the cable force:

H =
√

G2 − (V CB)2 =
√

(20 kN)2 − (12 kN)2 = 16 kN.

c. The cable has the same shape as the bending moment diagram in
Figure 14.14b. According to (11):

Hzk = M
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Figure 14.15 The cable is parabolic over AC. To sketch the shape
of the cable, we can use the same auxiliary lines when drawing a
parabolic bending moment diagram.

Figure 14.16 The forces acting in B on the trolley.

we find

zk;C = zC = MC

H
= 24 kNm

16 kN
= 1.5 m.

In D, the bending moment is a maximum, and the cable sags most:

zk;D = zD = MD

H
= 32 kNm

16 kN
= 2 m.

The cable shape over AC is parabolic. The auxiliary lines for drawing a
parabolic M diagram (see Section 12.1.6) can also be used to draw the
cable shape (see Figure 14.15).

d. The cable force is a maximum where the slope of the cable is a maximum.
This is at A, as shown in Figure 14.15. With (5)

N = H
√

1 + (tan α)2

we find

Nmax = NA = (16 kN)

√
1 + (3/2)2 = 28.84 kN.

The cable force is a minimum at D, where the cable is horizontal and
V = 0:

Nmin = H = 16 kN

e. The horizontal support reaction at A is equal to H :

Ah = H = 16 kN (←).

Since the cable supports are at equal elevations, the vertical support reaction
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Figure 14.17 The support reactions in A and B.

Figure 14.18 Cable with distributed load (force per horizontally
measured length).

at A is equal to the support reaction of the beam in Figure 14.14a:

Av = 24 kN (↑).

Check: Figure 14.16 shows the forces acting on the pulley at B. The forces
NCB and G, both 20 kN, are known. The force equilibrium can be used to
find the support reactions at B:

Bh = H = 16 kN (→),

Bv = (12 kN) + (20 kN) = 32 kN) (↑).

Check: The horizontal support reaction at B is equal to H . The verti-
cal support reaction is equal to the support reaction at B of the beam in
Figure 14.14a, increased with the vertical cable force G.

The support reactions at A and B are shown in Figure 14.17.

14.1.3 Cable equation

Figure 14.18 shows a cable subject to a distributed load qz = qz(x). The
cable shape is z = z(x).

In Figure 14.19, a small cable element of length �x has been isolated from
the deformed cable and blown up. As �x → 0 the distributed load qz on
the cable element can be considered to be uniformly distributed.

Assume the cable force at the left-hand section is a tensile force N , with a
horizontal component H and a vertical component V .1 The cable force at
the right-hand section could have changed with respect to magnitude and

1 V is not the transverse force in the cable, but the vertical component of the
tensile force N . Instead of H and V we could also formally have written Nh and
Nv.
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Figure 14.19 The enlarged element isolated from the cable.

direction. Assume for the right-hand part that the tensile force in the cable
has the components H + �H and V + �V .

There are three equilibrium equations for the cable element:

∑
Fx = −H + (H + �H) = 0,∑
Fz = −V + (V + �V ) + qz�x = 0,∑
Ty |right-hand section = +H�z − V �x + qz�x

(
1
2�x

)
= 0.

In the last equilibrium equation, the quadratic term in �x is a degree
smaller than the linear term in �x and can be ignored as �x → 0. This
leads to

�H = 0,

�V + qz�x = 0,

H�z − V �x = 0.

Divide each of these equations by �x and proceed to the limit �x → 0;
we generate three differential equations:

dH

dx
= 0, (12)

dV

dx
= −qz, (13)

H
dz

dx
= V. (14)
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Figure 14.20 The cable force N is directed along the tangent to
the cable: tan α = dz/dx = V/H .

It follows from equation (12) that

H = constant.

The horizontal component H of cable force N is constant, or in other
words, independent of x. This is in line with what we derived earlier in
Section 14.1.1 for a cable subject to a system of vertical forces.

From equation (14) we find that the cable force N is directed along the
tangent to the cable, as in Figure 14.20:

tan α = dz

dx
= V

H
.

The tensile force N in the cable is therefore

N =
√

H 2 + V 2 = H

√
1 +

(
dz

dx

)2

= H
√

1 + (tan α)2. (15)

Tensile force N is largest where the slope dz/dx of the cable is largest.

If we differentiate (14), in which H is constant, we find

H
d2z

dx2
= dV

dx
.

By substituting (13) in the equation above, we arrive at the so-called cable
equation:

H
d2z

dx2 = −qz. (16)

This differential equation, derived from the equilibrium of a cable element,



650 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 14.21 Cable with a uniformly distributed load q (force per
horizontally measured length).

forms a relationship between the horizontal component H of the cable
force, the cable shape z = z(x), and the distributed load qz = qz(x).

The cable shape for a certain load qz = qz(x) is the function z = z(x) that
satisfies the cable equation and the boundary conditions at the ends where
the cable is suspended. In order to solve the cable equation, we have to
know H . Sometimes H is not given, while the length of the cable is known.
Finding the solution is far more complicated in that case.

Hereafter, we assume that the horizontal component H is known.

In Section 14.1.4, using the cable equation as basis, we determine the cable
shape under a uniformly distributed load (force per horizontally measured
length). The associated cable shape is a parabola.

In Section 14.1.5, we calculate the cable shape due to its dead weight (force
per length measured along the cable). The shape of the cable under its dead
weight is a catenary.

14.1.4 Cable with uniformly distributed load; parabola

In Figure 14.21, cable AB, with span �, carries a uniformly distributed load
qz = q . The difference in elevation of the supports A and B is h. From the
cable equation we find

H
d2z

dx2 = −q.

After integrating once, we find

H
dz

dx
= −qx + C1,
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while after integrating once more we find

Hz = − 1
2qx2 + C1x + C2.

The integration constants C1 and C2 follow from the boundary conditions
at supports A and B:

x = 0; z = 0,

x = �; z = h.

Working out the boundary conditions gives

C1 = H
h

�
+ 1

2q�,

C2 = 0.

The cable shape is a parabola:

z =
1
2qx(� − x)

H
+ h

�
x.

This can be denoted as

z = zk + h

�
x

in which zk is the distance from the chord to the cable (see Figure 14.21):

zk =
1
2qx(� − x)

H
= M

H
.



652 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 14.22 With uniformly distributed loads, the cable assumes
the shape of a parabola. At A and B the tangents to the parabola are
shown.

M = 1
2qx(� − x) is the bending moment in a simply supported beam with

a uniformly distributed load (see Section 10.2.2, Example 1). The cable
has the same parabolic shape under the chord as the M diagram; the scale
factor is H .

Assume pk is the sag of the parabola under the chord, that is the dis-
tance between the parabola and the chord at the middle of the span � (see
Figure 14.22):

pk = zk

(
x = 1

2�
)

=
1
8q�2

H
. (17a)

If the sag pk of the parabola under the chord is given, the horizontal
component of the cable force follows from

H =
1
8q�2

pk
. (17b)

The slope of the cable is then

dz

dx
=

1
2q�

H
− qx

H
+ h

�
. (18)

At the supports A (x = 0) and B (x = �) the slope is

(
dz

dx

)
A

= h

�
+

1
2q�

H
,

(
dz

dx

)
B

= h

�
−

1
2q�

H
.
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Figure 14.23 The origin of the xz coordinate system chosen at the
vertex of the parabola.

Check: These expressions can also be determined directly from Fig-
ure 14.22, where the tangents to the parabola at A and B are shown. Using
(17a) we find

tan α = +
(

dz

dx

)
A

= 2pk + 1
2h

1
2�

=
1
2q�

H
+ h

�
, (19a)

tan β = −
(

dz

dx

)
B

= 2pk − 1
2h

1
2�

=
1
2q�

H
− h

�
, (19b)

The maxixum sag in the cable appears where dz/dx = 0. Here the parabola
has its vertex. Equation (18) gives

xvertex = 1
2� + Hh

q�
(20a)

or, using (17b)

xvertex = 1
2� +

1
8hl

pk
. (20b)

If we select the coordinate system at the vertex of the parabola, as in Fig-
ure 14.23, the formulas are far easier. With the boundary conditions (x = 0;
z = 0) and (x = 0; dz/dx = 0) the cable shape is

z = −
1
2qx2

H
. (21)

The slope of the cable is then

dz

dx
= −qx

H
. (22)
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Figure 14.24 (a) Cable with the end supports at equal eleva-
tions, subject to a uniformly distributed load (force per horizontally
measured length). (b) Support reactions.

The vertical component of the cable force is

V = H
dz

dx
= −qx. (23)

For the tensile force in the cable we find

N =
√

H 2 + V 2 =
√

H 2 + (qx)2. (24)

The use of these formulas is illustrated using an example.

Example
The cable in Figure 14.24a, with the end supports A and B at equal ele-
vations, has a span of 200 metres and a sag of 40 metres at midspan. The
cable carries a uniformly distributed load of 0.12 kN/m.

Questions:
a. Determine the horizontal component H of the cable force.
b. Determine the support reactions at A and B.
c. Determine the maximum cable force.

Solution:
a. The cable shape is a parabola of which the maximum sag, on the basis of
symmetry, is at midspan. If we set the origin of the coordinate system here,
then in accordance with (21)

H = −
1
2qx2

z
.

Using the known coordinates of B (x = 100 m; z = −40 m) we find

H = −
1
2 (0.12 kN/m)(100 m)2

(−40 m)
= 15 kN.
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Figure 14.25 Cable loaded by its dead weight g (force per length
measured along the cable).

Of course we could also use the coordinates of A.

b. The horizontal support reactions at A and B are equal to H (see Fig-
ure 14.24b). The vertical support reactions Av and Bv follow from the
equilibrium of the cable as a whole. On the basis of symmetry, each support
carries half of the total load:

Av = Bv = 1
2 (200 m)(0.12 kN/m) = 12 kN (↑).

c. According to (24), the tensile force N in the cable is

N =
√

H 2 + (qx)2.

The tensile force is a maximum at the supports A and B, with x = ±100 m

Nmax =
√

(15 kN)2 + {(0.12 kN/m)(±100 m)}2 = 19.2 kN.

Check:

NA = Nmax

√
A2

h + A2
v =

√
(15 kN)2 + (12 kN)2 = 19.2 kN.

Of course the same applies at B.

14.1.5 Cable subject to its dead weight; catenary

Figure 14.25 shows a cable under its uniformly distributed dead weight g.
In the cable equation

H
d2z

dx2 = −q.
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Figure 14.26 Replacing g (force per length measured along the
cable) by q (force per horizontally measured length): q = g ds/dx.

q is a vertical force per horizontally measured length. The dead weight g

of the cable is a vertical force per length measured along the cable.1 In
order to replace the dead weight g by the load q , Figure 14.26 shows an
infinitesimally small cable element with length ds. From the figure we find

g ds = q dx

and so

q = g
ds

dx
= g

√
(dx)2 + (dz)2

dx
= g

√
1 +

(
dz

dx

)2

.

The cable equation is now:

H
d2z

dx2 = −g

√
1 +

(
dz

dx

)2

. (25)

To solve this second degree differential equation we assume:2

dz

dx
= sinh u (26)

1 The symbol g is used for the dead weight of the cable, instead of the formal qdw.
By doing so, we avoid the recurring index “dw” and maintain the distinction with
q (force per horizontally measured length). There should not be any confusion
with the gravitational field strength g in this section.

2 The hyperbolic functions sinh(u) and cosh(u) are defined as follows:

sinh(u) = 1
2 (e+u − e−u),

cosh(u) = 1
2 (e+u + e−u).

Figure 14.25 Cable loaded by its dead weight g (force per length
measured along the cable).
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in which u is a new variable. Substitute (26) in (25):

H
d

dx
(sinh u) = −g

√
1 + sinh2 u.

Calculating the terms on both sides of the equals sign gives

H cosh u · du

dx
= −g cosh u

so that

H
du

dx
= −g.

By integrating this first degree equation in u we find

u = −gx

H
+ C1.

Substitution in (26) gives

dz

dx
= sinh u = sinh

(
−gx

H
+ C1

)
. (27)

Integrating with respect to x gives

z = −H

g
cosh

(
−gx

H
+ C1

)
+ C2. (28)

The integration constants C1 and C2 follow from the boundary conditions.
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Figure 14.27 The origin of the xz coordinate system chosen at the
point where dz/dx = 0.

If we choose the origin of the coordinate system at the point in the cable
where dz/dx = 0, the boundary conditions are (see Figure 14.27)

x = 0; z = 0,

x = 0; dz

dx
= 0.

With these boundary conditions, (27) and (28) give C1 = 0 and C2 = H/g

and the cable shape is1

z = −H

g

(
cosh

gx

H
− 1

)
. (29)

The slope of the cable is

dz

dx
= − sinh

gx

H
. (30)

The vertical component of the cable force is

V = H
dz

dx
= −H sinh

gx

H
. (31)

The tensile force in the cable is

N =
√

H 2 + V 2 = H

√
1 + sinh2 gx

H
= H cosh

gx

H
. (32a)

1 Hereafter, we use the properties cosh(−u) = cosh(+u) and
sinh(−u) = − sinh(+u).
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Figure 14.28 (a) Cable with the end supports at equal elevations,
loaded by its dead weight (force per length measured along the
cable). (b) Support reactions.

According to (29)

H cosh
gx

H
= H − gz

so that the tensile force can also be written as

N = H − gz. (32b)

The use of the derived formulas is illustrated by an example.

Example
The cable in Figure 14.28a, of which the supports A and B are at equal
elevations, has a span of 200 metres and a sag of 40 metres at the middle of
the span. The cable is carrying only its dead weight of 0.12 kN/m.

Questions:
a. Determine the horizontal component H of the cable force.
b. Determine the maximum cable force.
c. Determine the support reactions at A and B.

Solution:
a. On the basis of symmetry, the cable is horizontal at midspan. If we as-
sume here the origin of the coordinate system, the cable shape according to
(29) would be

z = −H

g

(
cosh

gx

H
− 1

)
.

By substituting the known coordinates of A or B, we obtain an equation
that allows us to calculate H . With the coordinates of B (x = 100 m;
z = −40 m), for example, we find

(−40 m) = − H

(0.12 kN/m)

(
cosh

(0.12 kN/m)(100 m)

H
− 1

)
.
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Table 14.1

H (kN) f1 f2

15.00 1.320 1.337

15.25 1.315 1.326

15.50 1.310 1.315

15.75 1.305 1.305

16.00 1.300 1.295

This can be converted into

1 + 4.8 kN

H
= cosh

12 kN

H
.

To solve H we assume

f1 = 1 + 4.8 kN

H

and

f2 = cosh
12 kN

H
.

For various values of H we now calculate the function values f1 and f2.
The calculation is performed in Table 14.1.

We are looking for the value of H for which f1 = f2. The table gives

H = 15.75 kN.

b. According to (32b), the tensile force in the cable is

N = H − gz.

The tensile force is a maximum at A and B, where z = −40 m:

Nmax = (15.75 kN) − (0.12 kN/m)(−40 m) = 20.55 kN.

c. The horizontal support reactions are equal to the horizontal component
H of the tensile force in the cable (see Figure 14.28b):

Ah = Bh = H = 15.75 kN.

Figure 14.28 (a) Cable with the end supports at equal elevations,
loaded by its dead weight (force per length measured along the
cable). (b) Support reactions.
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Table 14.2

forces in kN parabola catenary

H 15 15.75

Vmax 12 13.20

Nmax 19.2 20.55

Figure 14.29 For taut cables (pk/��1) the distributed load along
the cable can be approximated by an equal distributed load along the
chord.

The vertical support reactions at A and B are equal to the vertical com-
ponent V of the tensile force in the cable. According to (31)

V = −H sinh
gx

H
.

At the supports, with x = ±100 m, we find (see Figure 14.28b)

Av = Bv = |Vx=±100 m|

=
∣∣∣∣−(15.75 kN) sinh

(0.12 kN/m)(±100 m)

15.75 kN

∣∣∣∣ = 13.20 kN (↑).

Note: If we replace the uniformly distributed load along the cable by an
equal uniformly distributed load along the chord, we obtain the situation
of the example in Figure 14.24 (see Section 14.1.4). In that case the cable
shape is a parabola. In Table 14.2, the results are compared for a parabola
and a catenary, both with � = 200 m and pk = 40 m.

The differences are relatively minor. In the example, the ratio between the
sag and span is

pk

�
= 40 m

200 m
= 0.2.

The differences decrease sharply as the ratio pk/� decreases.

For taut cables (pk/��1), the catenary can be approximated by a parabola,
for which the distributed load along the cable is replaced by an equal
distributed load along the chord (see Figure 14.29).
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Figure 14.30 The load on the ridge of a shelter.

Figure 14.31 Suspension bridge over the Storebaelt (Large Belt)
in Denmark.

14.1.6 Examples

Example 1
Figure 14.30 represents the longitudinal section of a shelter. The vertical
load on the ridge is q = 125 N/m. The horizontal component of the force
that the guys exert on the ridge is H = 500 N.

Question:
Determine the sag of the ridge in the middle of the shelter.

Solution:
The following applies for the sag:

pk =
1
8q�2

H
=

1
8 (125 N/m)(2 m)2

500 N
= 125 mm.

Example 2
The dimensions for the suspension bridge in Figure 14.31 are derived from
the bridge over the Storebaelt (Large Belt) in Denmark. The load on the
cable, consisting of the dead weight of the cable, bridge deck and traffic
load is set at 250 kN/m. The structure is designed in such a way that there
is no bending in the towers.

Questions:
a. Determine the horizontal component H of the cable force in middle

span BC.
b. Determine the maximum cable force in the middle span.
c. Determine the forces that cables BC and CD at C exert on the tower.
d. Determine the forces that cable CD at D exerts on the foundation block.
e. Determine the maximum cable force in end span CD.
f. Determine the ratio pk/� for the middle span and the end spans.

Solution:
Since the load is a force per horizontally measured length, the cable shapes
in the middle span and the end spans are parabolas.
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Figure 14.32 Cables BC and CD isolated from tower C and foun-
dation block D.

Figure 14.33 The isolated cable CD.

a. For middle span BC

pBC
k = (254 m) − (70 m) = 184 m.

This gives

H BC =
1
8q(�BC)2

pBC
k

=
1
8 (250 kN/m)(1624 m)2

184 m
= 448 MN.

b. The vertical component of the tensile force in cable BC is a maximum at
B and C, as the cable is steepest here:

V BC
max = 1

2q�BC = 1
2 (250 kN/m)(1624 m) = 203 MN.

The cable force is also a maximum here:

NBC
max =

√
(H BC)2 + (V BC

max)
2

=
√

(448 MN)2 + (203 MN)2 = 492 MN.

c. In Figure 14.32, cables BC and CD have been isolated at C from the
tower. If there is no bending in the tower, the resulting horizontal force on
the tower must be zero. This means that the horizontal component of the
cable force in an end span is equal to that in the middle span:

H CD = H BC = 448 MN.

In Figure 14.33, cable CD has been isolated. The resultant R of the uni-
formly distributed load is

R = (250 kN/m)(536 m) = 134 MN.
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Figure 14.34 The forces on tower C and foundation block D.

The moment equilibrium of cable CD gives

∑
T |D = (448 MN)(200 m) − V CD

C (536 m) + (134 MN)(268 m)

= 0

so that

V CD
C = (448 MN)(200 m) + (134 MN)(268 m)

536 m
= 234 MN.

Next we find from the vertical force equilibrium

V CD
C = V CD

C − R = (234 MN) − (134 MN) = 100 MN.

In Figure 14.34, cables BC and CD have been isolated from the tower at
C and the foundation block at D. The tower is loaded at C by a vertical
compressive force:

V BC
C + V CD

C = (203 MN) + (234 MN) = 437 MN.

d. The foundation block in D is subject to a horizontal force of 448 MN and
an upward vertical force of 100 MN (see Figure 14.34).

e. The maximum force in cable CD occurs at C, where the cable is steepest:

NCD
max =

√
(H CD)2 + (V CD

max)
2

=
√

(448 MN)2 + (234 MN)2 = 505 MN.

Figure 14.33 The isolated cable CD.

�
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Figure 14.35 Cable AB is carrying a number of pipelines with a
weight of 20 kN/m.

Figure 14.36 Cable parts AC and BC isolated at the lowest point C.

f. For middle span BC, it applies that

pBC
k

�BC = 184 m

1624 m
= 0.113.

The maximum (vertically measured) distance from cable CD to the chord
is

pCD
k =

1
8q(�CD)2

H CD
=

1
8 (250 kN/m)(536 m)2

448 × 103 kN
= 20 m

so that for the end spans the following applies:

pCD
k

�CD
= 20 m

536 m
= 0.037.

Example 3
Cable AB in Figure 14.35 has a span of 60 m and is carrying a number of
pipelines with a total weight of 20 kN/m. The difference in elevation of the
end supports at A and B is 12 m. C is the lowest point of the cable and is
4 m below B.

Questions:
a. Determine the horizontal component of the cable force.
b. Determine the support reactions at A and B.
c. Determine the maximum cable force.

Solution:
a. We can assume a coordinate system at A or C, and use the formulas
derived above. Here we will use a different approach. In Figure 14.36, cable
parts AC and BC have been isolated and all acting forces are shown. At C,
the cable is horizontal and only force H acts. The lengths �A and �B are
still unknown. The moment equilibrium of AC about A gives

H × (16 m) = 1
2q�2

A. (a)
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Figure 14.37 The isolated cable sections AC and BC with their
dimensions and support reactions.

The moment equilibrium of BC about B gives

H × (4 m) = 1
2q�2

B. (b)

From (a) and (b) we can derive

�2
A

�2
B

= 4 ⇒ �A = 2�B.

With �A + �B = 60 m we find

�A = 40 m,

�B = 20 m.

Substituting �A = 40 m in (a) gives, with q = 20 kN/m,

H =
1
2q�2

A

16 m
=

1
2 (20 kN/m)(40 m)2

16 m
= 1000 kN.

b. The horizontal support reactions follow from the horizontal force equi-
librium of AC and CB (see Figure 14.37):

Ah = Bh = H = 1000 kN.

The vertical support reactions follow from the vertical force equilibrium of
AC and CB (see Figure 14.37):

Av = q�A = (20 kN/m)(40 m) = 800 kN,

Bv = q�B = (20 kN/m)(20 m) = 400 kN.

Figure 14.36 Cable parts AC and BC isolated at the lowest point C.
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Figure 14.38 A boat has cast its anchor in 30 m deep water.

Figure 14.39 The isolated anchor chain with a uniformly dis-
tributed load along the chain. The anchor chain has the shape of
a catenary.

c. The maximum cable force occurs at A, where the slope of the cable is
steepest:

Nmax = NA =
√

A2
h + A2

v =
√

(1000 kN)2 + (800 kN)2 = 1281 kN.

Example 4
A boat has cast its anchor in 30 m deep water (see Figure 14.38). The
horizontal force that the boat exerts on the anchor chain is 3.5 kN. The
anchor chain has a dead weight of 24 N/m. The upward water pressure on
the chain is 3 N/m.

Question:
Determine the (horizontally measured) length � for which the chain is free
from the bottom, and the maximum force in the chain.

Solution:
The (uniformly) distributed load on the chain is equal to the dead weight
minus the upward water pressure:

q = (24 N/m) − (3 N/m) = 21 N/m.

This load is a force per length measured along the chain. The anchor chain
will therefore assume the shape of a catenary.1 In Figure 14.39, the anchor
chain has been isolated. At A, the cable is tangent to the bottom, and only
a horizontal force H acts. The horizontal force equilibrium gives

H = 3.5 kN.

For the further calculation, we use the formulas derived in Section 14.1.5.
For the catenary in the coordinate system given in Figure 14.39, it applies

1 We ignore the fact that the upward water pressure is missing over the small part
that the chain is above the water.
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that

z = −H

q

(
cosh

qx

H
− 1

)

or

cosh
qx

H
= 1 − qz

H

so that

x = H

q
cosh−1

(
1 − qz

H

)
.

At B, x = �; z = −30.9 m applies, which gives the following (be aware of
the units!):

� = 3500 N

21 N/m
cosh−1

(
1 − (21 N/m)(−30.9 m)

3500 N

)
= 100 m

For the vertical force at B

Bv = −Vx=� = H sinh
q�

H

= (3500 N) sinh

(
21 N/m)(100 m)

3500 N

)
= 2228 N ≈ 2.23 kN.

The maximum force in the anchor chain is

Nmax = NB =
√

H 2 + B2
v =

√
(3.5 kN)2 + (2.23 kN)2 = 4.15 kN.

Alternative solution:
The load q is a vertical force measured per length along the cable. If the an-

Figure 14.38 A boat has cast its anchor in 30 m deep water.

Figure 14.39 The isolated anchor chain with a uniformly dis-
tributed load along the chain. The anchor chain has the shape of
a catenary.
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Figure 14.40 If the anchor chain is taut (pk/� � 1), the distrib-
uted load along the chain can be replaced by an equal distributed
load along the chord. The anchor chain now has the shape of a
parabola.

chor chain is taut, this load can be approximated by an equal vertical force
per length measured along the chord (see Figure 14.40). The associated
shape of the anchor chain is then a parabola.

The resultant of the distributed load is

R = q
√

�2 + h2.

The moment equilibrium of the isolated chain gives

∑
T |B = Hh − R · 1

2� = Hh − 1
2q�

√
�2 + h2 = 0

so that

2Hh

q
= �

√
�2 + h2.

After squaring

(
2Hh

q

)2

= �2(�2 + h2)

we find

�4 + h2�2 −
(

2Hh

q

)2

= 0.

With h = 30.9 m, H = 3500 N and q = 21 N/m this leads to

�4 + (30.9 m)2�2 −
(

2 × (3500 N)(30.9 m)

21 N/m

)2

= 0
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Figure 14.41 A concrete beam with a parabolic tendon.

so that

�4 + (9.54.81 m2)�2 − (106.09 × 106 m4) = 0.

The solution is

�2 = 9.834 × 103 m2,

� = 99.17 m.

We find for the vertical force at B:

Bv = R = q
√

�2 + h2

= (21 N/m)
√

(99.17 m)2 + (30.9 m)2 = 2181 N ≈ 2.18 kN.

This gives the maximum force in the chain:

Nmax = NB =
√

H 2 + B2
v =

√
(3.5 kN)2 + (2.18 kN)2 = 4.13 kN.

The values found for � and Nmax deviate some 0.5% from those found using
the exact calculation. The load along the chord (and a parabolic shape of the
anchor chain) is therefore a good substitute for the load along the anchor
chain (and a catenary). The ratio pk/� is

pk

�
= (30.9 m)/4

99.17 m
= 0.078 � 1.

Example 5
A simply supported concrete beam with length � = 12 m and a rec-
tangular cross-section A = bh = 300 × 800 mm2 carries a variable load
qq =16 kN/m (see Figure 14.41). The dead weight of concrete is 25 kN/m3.
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Figure 14.42 The location of the prestressing cables in their
canals: (a) before and (b) after tensioning.

Figure 14.43 The isolated parabolic tendon with all the forces
acting on it. The tangents to the tendon are shown at the ends.

Parabolic post-tensioned cables have been applied to the beam. After the
concrete has been poured and hardened, the cables are tensioned by means
of screw jacks, and anchored at the beam ends. The anchors are located at
the beam axis. At midspan, the cables have an eccentricity of ep = 240 mm
with respect to the beam axis.

The (total) prestressing force in the cables is Fp = 1050 kN.1

Question:
Determine and draw the support reactions and the M diagram and V

diagram the prestressed beam as a result of the following:
a. the dead weight only;
b. the dead weight and variable load.

Solution:
Before being tensioned, the cables are located in cylindrical canals. When
the cables are tensioned, they will be pressed against the upper side of the
canals (see Figure 14.42). The cables are in equilibrium because the beam
exerts on the cables a uniformly distributed load qp. In Figure 14.43 the
two post-tensioned cables are replaced by a single tendon and all the forces
acting on it are shown.

From the parabolic shape of the tendon we find

tan α = 2ep
1
2�

= 4ep

�
= 4 × (0.24 m)

12 m
= 0.08.

The prestressing force Fp has components:

Fp;h = Fp cos α = 0.0968 × Fp = −0.9968 × (1050 kN) = 1046.6 kN,

Fp;v = Fp sin α = 0.0797 × Fp = −0.0797 × (1050 kN) = 83.7 kN.

1 The index p refers to prestressing.
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Figure 14.44 (a) The forces that the beam exerts on the tendon.
(b) The forces that the tendon exerts on the beam. (c) The bending
moment diagram and (d) shear force diagram of the beam due to the
prestressing.

Since for prestressing cables in general ep/��1, α is very small, so that
we can make the following approximations (see Figure 14.43):

cos α ≈ 1,

sin α ≈ tan α = 4ep

�
= 0.08.

In that case

Fp;h = Fp = 1050 kN,

Fp;v = 4ep

�
Fp = 0.08 × (1050 kN) = 84 kN.

We will use these values in further calculations.

In the tendon

Fp;hep = 1
8qp�

2

so that

qp = 8Fp;hep

�2 = 8 × (1050 kN)(0.24 m)

12 m)2 = 14 kN/m.

In Figure 14.44a all the forces acting on the isolated tendon are shown
again, this time with their values. All these forces are exerted by the con-
crete beam on the tendon: the concentrated forces via the anchors, the
distributed forces directly via the beam. On the basis of the principle of
action and reaction, the concrete beam is subject to equal and opposite
forces (see Figure 14.44b). In Figures 14.44c and 14.44d, the associated M

and V diagrams of the beam are shown. Since the forces form an equilib-
rium system (the vertical anchor forces are in equilibrium with the vertical
distributed forces), the support reactions at A and B are zero, and not equal
to the shear force here.
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Figure 14.46 (a) All the forces acting on the beam due to the pre-
stressing, dead weight and variable load. (b) The associated bending
moment diagram and (c) the shear force diagram.

Figure 14.45 (a) All the forces acting on the beam due to the
prestressing and dead weight. (b) The associated bending moment
diagram and (c) the shear force diagram.

a. Figure 14.45a shows the forces due to the prestressing and dead weight
for the beam modelled as a line element. For the dead weight, it applies that

qdw = (0.3 m)(0.8 m)(25 kN/m3) = 6 kN/m.

The resulting distributed load acts upwards:

qp (↑) + qdw (↓) = (14 − 6)(kN/m) (↑) = 8 kN/m (↑).

Figures 14.45b and 14.45c show the associated M and V diagrams.

b. Figure 14.46a shows the forces on the beam modelled as a line element
due to the prestressing, dead weight and variable load. The resulting
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Figure 14.47 (a) The bending moment Mz and normal force N at
the normal force centre NC are statically equivalent to (b) a single
force N at the centre of force cf, with an eccentricity ez = Mz/N

with respect to the member axis.

Figure 14.48 Three-hinged frame loaded by a vertical force at E.

distributed load is now acting downwards:

(qdw + qq) (↓) + qp (↑) = (6 + 16 − 14)(kN/m) (↓) = 8 kN/m (↓).

Figures 14.46b and 14.46c show the associated M and V lines.

Note that in both Figure 14.45 and 14.46 the shear forces directly adjacent
to the supports are not equal to the support reactions.

14.2 Centre of force and line of force

In a cross-section (cs) acts a bending moment Mz, normal force N and shear
force Vz (see Figure 14.47a). The shear force is the resultant of all shear
stresses in the cross-section; the bending moment and the normal forces are
the resultants of the normal stresses (see also Section 10.1).

Assume that the resultant of all the normal stresses is a force N with eccen-
tricity ez with respect to the member axis (see Figure 14.47b). By shifting
the normal force N normal to its line of action to the normal centre NC on
the member axis, we create the bending moment Mz in Figure 14.47a:

Mz = Nez.

The point in the cross-section where the resultant of all the normal stresses
is transferred is known as the centre of force (cf). The centre of force can
also be described as the intersection of the cross-section with the line of
action of the resultant of all the forces that the cross-section has to transfer
(see Section 10.1.1). This will be clarified in the two examples at the end
of the section.

For the z coordinate of the centre of force, indicated by means of ez, it holds
that
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Figure 14.49 (a) Support reactions and line of action figure. (b)
Bending moment diagram. (c) Normal force diagram.

ez = Mz

N
.

The centres of force at all consecutive cross-sections together form a line
known as the line of force.

If the normal force is a tensile force (N > 0), we also refer to centres of
tension and lines of tension instead of centres of force and lines of force.
For a compressive force (N < 0), we refer to centres of pressure and lines
of pressure.

The following can be said about lines of force:
• There is no line of force in areas where the normal force is zero. For

N →0 it always holds that ez →∞, and the centre of force is at infinity.
• If the bending moment is zero, ez = 0 applies, and the centre of force

is on the member axis. This means that in structures with hinges, the
line of force always passes through the hinges, as the bending moment
is zero there.

• Where the line of force intersects the member axis (or coincides with
it), ez = 0 and the bending moment is zero.

Example 1
Figure 14.48 shows a three-hinged portal frame, loaded by a vertical force
F = 50 kN at E. Figure 14.49a shows the support reactions and Fig-
ures 14.49b and 14.49c shows the M and N diagrams. The calculation is
left to the reader.

In Figure 14.49a, the lines of action of force F and the support reactions at
A and B are shown. These lines of action intersect in one point. This offers
a graphical check of the moment equilibrium of the three-hinged frame (see
Section 5.3, Example 1).

Questions:
a. Determine the centre of force in cross-section G of post AD, 1.50 m

above support A.
b. Determine the line of force for the parts AD, THE, DSC and BC.
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Figure 14.50 (a) Bending moment and normal force at
cross-section G. They are statically equivalent to (b) the eccentric
compressive forces to the left of the member axis.

Figure 14.51 Isolated part AG. The centre of force cf in
cross-section G is located on the line of action of the support
reaction at A; that is, the force cross-section G has to transfer.

Solution:
a. Figure 14.50a shows the bending moment and the normal force at cross-
section (cs) G. From the M diagram for post AD we can derive that the
bending moment at the cross-section is (1.5/2.0)×(50 kNm) = 37.5 kNm,
with tension at the “inside” of the frame. From the N diagram it follows that
there is a compressive force of 75 kN at the cross-section.

The section forces in Figure 14.50a are statically equivalent to the eccentric
compressive forces in Figure 14.50b. The centre of force (cf) will be to the
left of the member axis since a compressive force to the left of the member
axis causes (with respect to the normal force centre NC) a moment that has
the same direction as the bending moment in Figure 14.50a. The magnitude
of the eccentricity e is:

e = |M|
|N | = 37.5 kNm

75 kN
= 0.5 m.

The location of the centre of force can also be calculated formally in a
local coordinate system. In order to find the correct sign for ez we do have
to use the correct signs for N and Mz. For the xz coordinate system in
Figure 14.50

Mz = +37.5 kNm and N = −75 kN

so that

ez = Mz

N
= +37.5 kNm

−75 kN
= −0.5 m.

The centre of force is indeed to the left of the member axis.

b. In Figure 14.51, the part AG has been isolated. The support reactions act
at A. If there is a equilibrium, a force has to act at cross-section G that has
the same magnitude as the resulting force at A, and has the same line of
action, but has to act in the opposite direction. In other words, the centre of
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Figure 14.52 (a) The lines of force for AD and BC coincide with
the lines of action of the support reactions at A and B respectively.
(b) The line of force for DSC coincides with the line of action of
the support reaction at B.

force at cross-section G is located on the line of action (a) of the resulting
force at A (see also Figure 14.49a). This leads to the following statement:
the centre of force is the intersection of the cross-section with the line of
action of the resultant of all forces that the cross-section has to transfer.

Since all the cross-sections in AD have to transfer the same resulting force
at A, the centres of force in those cross-sections are on the same line of
action (a). The line of force for AD therefore coincides with line of action
(a) (see Figure 14.52a). Since the normal force in AC is a compressive
force, the line of force is a line of pressure.

In the same way, the line of force of BC coincides with line of action (b)
of the support reaction at B (see Figure 14.52a). Since the normal force is
a tensile force, the line of force is here a line of tension.

If we look at a section in girder DSC, this, seen from the left, has to transfer
the resultant of force F and the support reactions at A, and, seen from the
right, the support reaction at B. Both have the same line of action (b), as
shown by the line of action figure (see Figure 14.52b). The line of force for
DSC coincides with line of action (b) and is a line of tension.

Since the normal force is zero, there exists no line of force for DE. All
cross-sections between D and E have to transfer the same vertical force F .
The line of action of F is parallel to the cross-sections, so that there are no
intersections and therefore no centres of force.

Note: If the normal force in a beam is constant, the figure that is enclosed
between the line of force and the member axis has the same shape as the M

diagram. This is not surprising, for1

M = Ne.

1 Without taking into account the coordinate system and signs.



678 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 14.53 (a) Fixed bar type structure, loaded by two forces,
with (b) the lines of force.

The scale factor is N . If N is a tensile force, the line of force is on the same
side of the member axis as the M diagram. If N is a compressive force, the
line of force and the M diagram are not on the same side. It is up to the
reader to verify this, using the bending moment diagram in Figure 14.49b
and the lines of force in Figure 14.52.

Example 2
The structure ABCD in Figure 14.53a is fixed at A, and loaded by a
horizontal force F at C and a vertical force F at D.

Question:
Determine the lines of force for AB, BC and BD.

Solution:
The lines of force are shown in Figure 14.53b.

All cross-sections between C and B have to transfer the horizontal force F .
The line of force for BC therefore coincides with the line of action of this
horizontal force.

All cross-sections between D and B have to transfer the vertical force F .
The line of force for BD coincides with the line of action of this vertical
force.

All cross-sections between B and A have to transfer the resultant of the
forces F at C and D. The line of force for AB coincides with the line of
action of this resultant. The line of action figure shows that this line of
action passes through D and is parallel to ABC.

Since the normal force is a compressive force everywhere, all the lines of
force are lines of pressure.
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Figure 14.54 The distribution of normal stresses in a cross-section
due to (a) a bending moment M and (b) a normal force N .

Figure 14.55 If a beam with (a) a rectangular cross-section
is loaded by bending, the fibres around the member axis remain
virtually unloaded. With (b) a tubular section or (c) an I-section the
material is more effectively distributed across the cross-section.

14.3 Relationship between cable, line of force and
structural shape

The bending moment and the normal force are the resultants of the normal
stresses in a cross-section. Figure 14.54 shows the stress distribution due to
a bending moment M and a normal force N .1

A characteristic of stress distribution in bending is that the outermost fibres
of the cross-section are most heavily loaded, while the fibres in the envi-
ronment of the member axis are virtually unloaded. In contrast, the stresses
due to a normal force are constant over the cross-section. In extension, all
fibres are therefore loaded equally.

If we compare the stress distributions due to bending and extension, the
material in the cross-section is used far more efficiently in extension than
in bending. With bending, the strength capacity of the fibres around the
member axis is not used, and the small stresses only marginally contribute
to the bending moment. For beams loaded by bending, one often sees an
adaptation of the cross-section by omitting the less active material in the
cross-section. In this way, a rectangular cross-section may become a tubular
section or an I -section (see Figure 14.55).

In addition, when designing structures, designers look for shapes in which
the bending moments remain as small as possible, and in which the force
flow preferably occurs by extension. This is achieved by ensuring the
member axis and line of force coincide as much as possible.

Since a cable cannot transfer bending moments, it assumes a shape in which
the line of force coincides with its axis everywhere. Taking the cable shape
and line of force as basis, in the following four examples, we look for

1 In Volume 2, Stresses, Deformations, Displacements, we take a closer look at the
exact development of the normal stresses in a cross-section and at the conditions
under which the stress distribution in Figure 14.54 applies.
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Figure 14.56 (a) A beam subject to bending by two forces with
(b) the associated bending moment diagram.

Figure 14.57 Cable with compression bar loaded by two forces.
All the parts are subject to extension (tension and compression).

structural shapes in which the bending moments are as small as possible.

Example 1
The beam in Figure 14.56a is subject to bending by the two forces F . The
M diagram is shown in Figure 14.56b.

In Figure 14.57, the same load is carried by a cable with compression bar.
The cable and compression bar transfer normal forces only. The cable has
the same shape as the M diagram in Figure 14.56b. With a cable sag the
scale factor is

H = F�

�
= F.

H is the (compressive) force in the bar that is equal to the horizontal
component of the (tensile) force in the cable.

In Figure 14.58a the straight cable parts have been replaced by bars. Plus
and minus signs indicate whether the bar forces are tensile or compressive.
The structure can be considered a kind of arch under tension that is kept to-
gether by a compression bar. If the bar structure in Figure 14.58a is “turned
over” with equal loads as shown in Figure 14.58b, all the signs in the bars
change. The structure has now changed into an arch under compression
with tension bar (tie rod).

In the position shown in Figure 14.58b, the bar structure is in equilibrium.
However, the equilibrium is unstable (unreliable): a small change in posi-
tion will cause the equilibrium to fail and the bar structure will collapse.1

The bar structure is kinematically indeterminate. This collapse can be pre-

1 To prove this we have to investigate the equilibrium of the structure in its de-
formed state. However, this topic is beyond the scope of this book. Here we
assume that the reader is acquainted with this phenomenon of instbility on the
basis of some practical experience.
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Figure 14.59 By applying an additional bar, the kinematically in-
determinate bar structure changes into a kinematically and statically
determinate truss.

Figure 14.60 The bar structures in Figure 14.58 changed into
trusses.

Figure 14.61 These trusses are an alternative for the beam subject
to bending in Figure 14.56.

vented by making the structure kinematically determinate, for example by
introducing bracing members, and changing the bar structure into a truss
(see Figures 14.59 and 14.60b). If we calculate the member forces for the
given load, we find that all the interior members are zero members.

The cable in Figure 14.57 and the bar structure in Figure 14.58a are also
kinematically indeterminate. The equilibrium is stable (reliable) in this
case as the load makes the structure go back into the original equilibrium
position after a disruption.

In Figure 14.60a, the bar structure in Figure 14.58a has been changed into
a kinematically determinate truss. All the interior members are zero. As in
contrast to the cable, the truss has the benefit that the shape does not change
when the load changes.

In Figure 14.61, the forces on the truss are shifted to the horizontal plane
through the supports. The verticals are no longer zero members. These

Figure 14.58 (a) The cable replaced by a bar structure. The bar
structure is kinematically indeterminate, but the equilibrium is sta-
ble (reliable). (b) If the bar structure is folded over, the signs change
in all the bars. The equilibrium is now unreliable (unstable).
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Figure 14.62 (a) Kinematically indeterminate bar structure, is (b)
changed into a two-hinged frame. (c) The support reactions of the
statically indeterminate two-hinged frame if axial deformation is
ignored; the line of force coincides with the bent member axis: there
is no bending.

Figure 14.63 If we take into account the axial deformation, the
horizontal support reactions are smaller and the line of force no
longer coincides with the (bent) member axis: bending is generated.

trusses, in which all the members are subject to extension (or are zero
members), can be an alternative for the beam subject to bending in
Figure 14.56.

Figure 14.62a shows the bar structure from Figure 14.58b, but now with-
out tension member. This kinematically indeterminate structure can be
made kinematically determinate not only by changing it into a truss, but
also by replacing the hinged joints between the bars by rigid joints. The
structure then becomes a bent member, recognisable in Figure 14.62b as a
two-hinged frame.

One problem is that the frame is statically indeterminate to the first degree.
As such, it is not possible to determine the horizontal support reaction H

directly from the equilibrium. The deformation of the frame also has to be
taken into account. If the deformation by normal forces is ignored (as it was
in the cable), it is possible to show that no bending occurs under the given
load, and that the normal forces in the frame are equal to the forces in the
two-force members in Figure 14.62a. In Figure 14.62c, the frame has been
isolated and all the forces acting on it are shown. The line of force coincides
everywhere with the bent member axis and there is no bending anywhere.

In reality, there is always some axial deformation due to normal forces. As
such, the horizontal support reactions are somewhat smaller and, because
the vertical support reactions remain equal, the line of force no longer co-
incides with the bent member axis (see Figure 14.63). Axial deformation
therefore induces bending in the two-hinged frame.

Since statically indeterminate structures are more sensitive to settling and
temperature, statically determinate structures are generally preferable, be-
cause the force distribution is more manageable. In Figure 14.64, the
statically indeterminate two-hinged frame has been changed into a stati-
cally determined three-hinged frame. With the given load, the line of force
coincides everywhere with the bent member axis and there is no bending
anywhere.
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Figure 14.64 Three-hinged frames are statically determinate and
therefore the force flow is less sensitive to axial deformations,
settling and the influence of temperature.

Figure 14.65 (a) Three-hinged frame with uniformly distributed
load on girder CSD. (b) Support reactions. (c) Bending moment di-
agram. (d) The line of pressure for girder CSD is a parabola through
A, S and B.

Example 2
On girder CSD, the three-hinged portal frame in Figure 14.65a is carrying
a uniformly distributed load. In Figures 14.65b and 14.65c, the support
reactions and the bending moment diagram are shown. The calculation is
left to the reader.

Question:
How can one reduce the bending moment in the frame, without changing
the given load?

Solution:
Figure 14.65d shows the line of force for girder CSD. Cross-section C has
to transfer the support reaction at A; the centre of force for cross-section C
is therefore at A. In the same way, the centre of force for cross-section D is
at B. The line of force passes through hinge S. The line of force for CSD
has the same shape as a cable under a uniformly distributed load, which is a
parabola. Since the normal force in girder CSD is a compressive force, “the
parabolic cable is upside down” and the line of force is a line of pressure.

Check: Regard the line of force as an “upside-down cable” (see Fig-
ure 14.65d):

H =
1
8q�2

p
=

1
8 × (4 kN/m)(12 m)2

4 m
= 18 kN.

This force is indeed equal to the horizontal support reactions at A and B
(see Figure 14.65b).
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Figure 14.66 (a) The line of pressure can be changed by changing
the location of hinge S. (b) The support reactions when the line of
pressure is equally above and below the girder. (c) Bending moment
diagram.

The bending moment in the girder can be influenced by the location of
hinge S (see Figure 14.66a). The line of force maintains the shape of an
“upside-down parabolic cable” through A, B and S.

Distance e from the line of pressure to the girder is a measure for the
magnitude of the bending moment. It always holds that

|M| = |Ne| = |He|.

The moment distribution is most favourable when, in contrast to Fig-
ure 14.65d, the line of pressure is as much above the girder as below it.
This situation is shown in Figure 14.66a. Here it holds that

H =
1
8q�2

p
=

1
8 × (4 kN/m)(12 m)2

8 m
= 9 kN.

Figures 14.66b and 14.66c show the support reactions and the bending
moment diagram respectively. The distance b between the moment zeros
follows from

1
8qb2 = 36 kNm

in which q = 4 kN/m. We find

b =
√

8 × (36 kNm)

4 kN/m
=
√

72 m2 ≈ 8.5 m.

The location of hinge S is then

a = � − b

2
≈ 1.75 m.
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Figure 14.67 (a) A three-hinged frame whose shape has been
somewhat adapted to the shape of the line of pressure. (b) Support
reactions. (c) Bending moment diagram.

By moving hinge S we adapt the line of pressure to the shape of the frame.
Alternatively, the shape of the frame can also be adapted to the line of
pressure. This is shown in Figure 14.67a.1

For the horizontal support reaction H it holds that

H =
1
8q�2

p
=

1
8 × (4 kN/m)(12 m)2

4 m
= 18 kN.

In Figure 14.67b the support reactions are shown. They are of equal mag-
nitude to the support reactions of the three-hinged frame in Figure 14.65.
Figure 14.67c shows the bending moment diagram.

The moment distribution is determined below for girder SD. For this reason,
in Figure 14.68 a part directly adjacent to hinge S has been isolated. Only
the horizontal compressive force H acts at hinge S; there is no vertical
force. In the other section, there is a bending moment M , shear force V and
normal force N . From the moment equilibrium about this section we find

1 Here we assume that the distributed load is still a force per horizontally measured
length.

Figure 14.68 The forces on the isolated part of the frame to the
right of S.
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Figure 14.68 The forces on the isolated part of the frame to the
right of S.

M = H · 1
3x − qx · 1

2x = 1
3Hx − 1

2qx2 (a)

in which H = 18 kN and q = 4 kN/m.

Checking expression (a) for the bending moment at D, with x = 6 m

M = MD = 1
3 × (18 kN)(6 m) − 1

2 × (4 kN/m)(4 m)2 = −36 kNm.

This minus sign indicates that the bending moment at D acts opposite to the
direction shown in Figure 14.68. This is in agreement with the M diagram
in Figure 14.67c.

The bending moment is zero at E (see Figure 14.67c). With M = ME = 0,
it follows from (a) that:

x = xE = 2H

3q
= 2 × (18 kN)

3 × (4 kN/m)
= 3 m.

The field moment in SD is a maximum at G. Here dM/dx = 0. Differenti-
ating expression (a) gives

dM

dx
= 1

3H − qx = 0

so that

x = xG =
1
3H

q
=

1
3 × (18 kN)

4 kN/m
= 1.5 m.

From here, (a) gives

M = MG = 1
3 × (18 kN)(1.5 m) − 1

2 × (4 kN/m)(1.5 m)2 = 4.5 kNm.

Figure 14.67 (c) Bending moment diagram.
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Figure 14.70 (a) Arch bridge with upper deck. The horizontal
forces in the arch are directly transferred to the foundation. (b) Arch
bridge with lower deck. The horizontal forces from the arch are
transferred via the structure of the bridge deck, which acts as a tie
rod.

Figure 14.69 The adaptation to the line of force is optimal if the
frame is in the shape of a parabola.

The adaptation to the line of force is optimal if we give the frame the shape
of a parabolic arch (see Figure 14.69). The line of force now coincides
everywhere with the axis of the arch, and there is no bending anywhere.
The support reactions are equal to those of the frames in Figures 14.65 and
14.67.

In Figure 14.70a, the arch has been used in a bridge with upper deck.
This type of bridge is generally found in mountainous regions. The good
foundation ground, generally rock, is capable of transferring the horizontal
support reactions. In Figure 14.70b, the arch is used in a bridge with lower
deck. By using the structure of the bridge deck as a tie rod, the piers are not
subject to the horizontal forces from the arch.

Example 3
The third example demonstrating the concept of line of force concerns
structures with brickwork. Brickwork effectively resists pressure, but is
very poor at transferring tensile stresses. Since there is little tensile strength,
this must not be relied on; the tensile strength has to be neglected in the
calculation. Structures made of brickwork must therefore be designed so
that no tension occurs.



688 ENGINEERING MECHANICS. VOLUME 1: EQUILIBRIUM

Figure 14.71 The distribution of the normal stresses in a rec-
tangular cross-section due to (a) a centric compressive force, (b)
a bending moment and (c) an eccentric compressive force.

Figure 14.72 The normal stress distribution in a rectangular
cross-section due to an eccentric compressive force. (a) With minor
eccentricity, the entire cross-section is subject to compression. (b) If
e = h/6, the normal stress is zero at the least compressed edge. (c)
With major eccentricity, tensile stresses occur in the cross-section.

In Figures 14.71a and 14.71b the distribution of the normal stresses is
shown for a rectangular cross-section due to a centric compressive force N ′
and a bending moment M . The centric compressive force and the bending
moment are together statically equivalent to an eccentric compressive force
N ′ (see Figure 14.71c). Due to the eccentricity of the compressive force, the
compressive stresses increase on one side of the cross-section and decrease
on the other.

When the eccentricity e of the compressive force is equal to one sixth of
the depth h of the cross-section (e = h/6), the stress diagram is triangular
(see Figure 14.72b). At one of the sides, the normal stress is zero. If the
eccentricity is larger (e>h/6), then tensile stresses occur at that side (see
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Figure 14.73 There are no tensile stresses if the centre of
pressure is inside the core of the cross-section. With rectangular
cross-sections this is the middle third.

Figure 14.74 Due to the dead weight of a column, the line of
pressure tends increasingly towards a line parallel to the member
axis. (a) Tensile stresses occur where the line of pressure reaches
outside the core (b) Increasing the column cross-section has two
positive effects: the core increases in size while, thanks to the larger
weight of the column, the eccentricity of the line of force decreases.Figure 14.72c). In brickwork the joints cannot transfer tensile stresses and

cracks will form. The cohesion of the cross-section is lost so that there is a
danger of collapse.

To prevent tensile stresses in the cross-section, the centre of pressure (the
point of application of the compressive force in the cross-section) for a rec-
tangular cross-section must lie within the middle third of the cross-section.
This area is known as the core of the cross-section1 (see Figure 14.73).

Figure 14.74a shows a brickwork column, loaded at the top by an oblique
force. At first, the line of force has the direction of the oblique force. Since
the normal force increases downwards due to the weight of the column, the
line of force is curved and increasingly tends towards a line parallel to the

1 In Volume 2, Stresses, Deformations, Displacements, we shall address this issue
in further detail.
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Figure 14.75 In gothic cathedrals, we can see how the tensile
stresses in the buttresses are suppressed by using the weight of pin-
nacles.

Figure 14.74 Due to the dead weight of a column, the line of
pressure tends increasingly towards a line parallel to the member
axis. (a) Tensile stresses occur where the line of pressure reaches
outside the core (b) Increasing the column cross-section has two
positive effects: the core increases in size while, thanks to the larger
weight of the column, the eccentricity of the line of force decreases.
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Figure 14.76 In reinforced concrete, the tensile stresses in the
cross-section are transferred by reinforcement bars.

Figure 14.77 In prestressed concrete, the tensile stresses in the
cross-section are “suppressed” by applying tendons

column axis.

When there is a danger that the line of force will extend beyond the core
of the cross-section, the column cross-section can be enlarged. First, due to
the dead weight, the normal force will increase and the eccentricity of the
centre of force will decrease: the line of pressure thereby moves towards
the column axis. In addition, the core of the cross-section increases, and
therefore the area in which the centre of pressure can lie also increases (see
Figure 14.74b).

Increasing the compressive force N ′ in the cross-section, thereby reduc-
ing the eccentricity e of the line of force (e = M/N ′), is also possible
by increasing the height of the column to a greater height than is strictly
necessary, or by introducing additional weight on the column by means
of heavy statues or pinnacles. The latter is often used in gothic cathedrals
(see Figure 14.75). Due to the introduction of aisles, flying buttresses were
needed to support the main structure obliquely. The forces are transferred
to buttresses, weighed down by pinnacles.

We have only looked at brickwork. There are many other materials that are
unable to resist tension, such as concrete. Here, the issue of tensile stresses
is approached differently.

In reinforced concrete, steel bars are placed in the area of tension. These
reinforcement bars transfer the tensile stresses in the cross-section (see
Figure 14.76).

In prestressed concrete, the tensile stresses are “suppressed” by introduc-
ing a prestress (see Figure 14.77). The prestress achieves the same effect
as the weight of the pinnacles on the buttresses in Figure 14.75 (see also
Section 13.1.5 and Section 14.1.6, Example 5).
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Figure 14.78 (a) Original photograph of Gaudi’s suspension
model for the Colonia Güell.

Figure 14.78 (b) Photograph of the inside of the model, ro-
tated through 180◦. The upside-down cables change into arches. (c)
Interior sketch by Gaudi on the basis of the model.
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Figure 14.79 (a) Frei Otto used the soap membrane model as a
tool for designing cable networks. (b) The soap membrane model
changed into an actual structure.

Figure 14.80 One of Frei Otto’s most famous buildings is the roof
of the Olympic stadium in Munich (1972) in the shape of a tent with
saddle roof shapes.

Example 4
For the last example on lines of force, we refer back to the start: the cable
shape.

The Spanish architect Gaudi1 is known for his whimsical vaults in the
Colonia Güell and the Sagrada Familia, two churches in Barcelona. He de-
termined the shape of the vaults using a “suspension model”. Figure 14.78a
shows an original photo of the model for the Colonia Güell, which was
built between 1898 and 1908. Using bags of lead suspended from ropes,
representing the dead weight, Gaudi determined the preferred shape of
the arches. Figure 14.78b is a photo of the inside of the model, rotated
through 180◦. The upside-down cables are transformed into arches. Using
this model, Gaudi drew the interior sketch in Figure 14.78c. Due to a lack of
funds, the construction of the Colonia Güell had to be abandoned in 1914.
Only the crypt was completed.

When designing cable structures subject to tension (cable networks) Frei
Otto and his staff used the same experiment over 50 years later. In their
method, soap membranes were the most important tool. To translate a
soap membrane model in Figure 14.79a into an actual structure, it was
meticulously photographed and measured. Figure 14.79b shows the actual
structure being built. One of Frei Otto’s most famous buildings is the roof
of the Olympic Stadium in Munich (1972) as a tent with saddle roof shapes
(see Figure 14.80).

1 Antoni Gaudi i Cornet (1852–1926), Spanish architect, studied and worked in
Barcelona. He derived the shapes for his buildings from nature; this became
known as the organic style. His most famous creation is the Sagrada Familia in
Barcelona (construction started in 1883, not completed).
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14.4 Problems

Unless indicated otherwise, the dead weight of the cable is ignored in the
problems.

Cables, mixed problems (Section 14.1)

14.1: 1–2 Given two different cables, hung from fixed points A and B, are
loaded by a single force.

Questions:
a. Determine the vertical support reaction at A.
b. Determine the horizontal support reaction at B.
c. Determine the maximum cable force.

14.2 Given a cable with compres-
sion bar, loaded by a force of 180
kN.

Questions:
a. Determine the vertical compo-

nent of the force in the com-
pression bar.

b. Determine the horizontal com-
ponent of the force in the com-
pression bar.

14.3 A cable is loaded by two equal forces F .

Question:
Which cable shape fits the load?

14.4 Two weights of respectively 5 and 10 kN are suspended from a cable.

Question:
Which cable shape fits the load?
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14.5 A cable, suspended between two fixed points, is subject to the forces
F1 and F2, with F1 > F2.

Question:
Which cable shape does not fit this load?

14.6: 1–2 A cable suspended
between fixed points A and B
is loaded at C and D by two
forces of 40 kN. The horizon-
tal measured lengths are those
of the final position.

Question:
Find the ratio between the
vertical distances from chord
AB to the points C and D on
the cable.

14.7 The cable shown is loaded
by forces F1 and F2 in such a
way that the middle part is hori-
zontal.

Question:
Find the ratio F1/F2.

14.8 A cable is loaded by
two forces of respectively 6 and
10 kN. The cable is horizontal
between these forces.

Question:
Determine the difference in
height h between the suspension
points A and B.

14.9: 1–2 Two cables, sus-
pended at the fixed points
A and B, are loaded by two
forces. The magnitude of
force F is unknown.

Questions:
a. Determine the vertical

support reaction at A.
b. Determine the horizon-

tal component of the
cable force.

c. Determine the magni-
tude of F .

d. Determine the maxi-
mum cable force.
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14.10 Given a cable with com-
pression bar. The cable is loaded
by a force of 18 kN and an un-
known force F , and assumes the
shape shown.

Questions:
a. Determine the horizontal com-

ponent of the cable force.
b. Determine the normal force in

compression bar AB.
c. Determine the magnitude of F .

14.11: 1–2 Two cables with com-
pression member are loaded in such
a way that the middle part of the ca-
ble is horizontal.

Questions:
a. Determine the support reactions

at A and B.
b. Determine the vertical compo-

nent of the force in member
AB.

c. Determine the maximum cable
force.

14.12: 1–2 Two different cables with compression bar AB are loaded at C
and D by forces.

Questions:
a. Determine the force in compression bar AB.
b. Determine the distance a from point of application C to bar AB.
c. Determine the maximum cable force.

14.13 A cable with compression bar is loaded at C and D by two forces of
16 and 4 kN respectively. At midspan the distance between the cable and
compression bar AB is 2.5 metres.

Questions:
a. Determine the force in the com-

pression member.
b. Determine the distance a from

point of application C to mem-
ber AB

c. Determine the maximum cable
force.
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14.14 A cable suspended between
A and B is loaded at C and D by
two equal forces of 50 kN. The
distance from point of application
C to chord AB is 2 metres.

Questions:
a. Determine the horizontal com-

ponent of the cable force.
b. Determine the distance a from

point of application D to chord
AB.

14.15 The cable shown is loaded at C, D and E by forces of 30, 40 and
50 kN respectively. The difference in elevation of the end supports at A and
B is 12 metres. The distance from point of application C to the horizontal
through B is 20 metres.

Questions:
a. Determine the distance

from point of application D
to the horizontal through B.

b. Determine the distance
from point of application E
to the horizontal through B.

c. Determine the support reac-
tions at A.

d. Determine the support reac-
tions at B.

14.16: 1–2 Two cables are suspended between points A and B, and are
loaded in C and D by forces. The horizontal measured lengths are equal in
both cases.

Questions:
a. Determine the horizontal component of the cable force.
b. Determine the distance a of point of application D to chord AB.
c. Determine the maximum cable force.

14.17: 1–2 Given two cables
with compression bar, loaded by
three forces of 50 kN.

Questions:
a. Determine the force in the

compression bar.
b. Draw the cable shape to

scale.
c. Determine the minimum ca-

ble force.
d. Determine the maximum ca-

ble force.
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14.18: 1–2 Two cables with com-
pression bar AB are loaded at C and
D by forces.

Questions:
a. Determine the horizontal com-

ponent of the cable force.
b. Determine the normal force in

member AB.
c. Determine the distance a from

point of application D to bar
AB.

d. Determine the maximum cable
force.

14.19 A cable with compres-
sion bar, loaded by two forces of
20 kN and two unknown forces
F .

Questions:
a. Determine the force in the compression bar.
b. Determine the magnitude of forces F .

14.20: 1–3 A cable is carrying a uniformly distributed load of 5 kN/m and
thereby assumes the shape shown.

Question:
Determine the maximum cable
force when:
(1) � = 16 m and pk = 3.20 m.
(2) � = 18 m and pk = 4.50 m
(3) � = 20 m and pk = 4 m.

14.21: 1–2 Two cables with a uniformly distributed load of 20 kN/m.

Questions:
a. Determine the horizon-

tal component of the ca-
ble force.

b. Determine the maxi-
mum cable force.

c. Determine the support
reactions at A and B.
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14.22 Due to the uniformly distributed load of 18 kN/m on CB cable AB
assumes the shape shown.

Questions:
a. Determine the horizontal com-

ponent of the cable force.
b. Determine the maximum cable

force.
c. Determine the support reactions

at A and B.
d. Determine the sag a at C.
e. Determine the maximum sag of

the cable.

14.23 A uniformly distributed load of 16 kN/m is acting on cable AB
between C and D. The cable sags 2.6 metres at the middle of the distributed
load.

Questions:
a. Determine the horizontal component of the cable force.
b. Determine the sag a at C.
c. Determine the sag b at D.
d. Determine the maximum sag of the cable.

14.24 In the middle of cable AB a uniformly distributed load q = 5 kN/m
is acting over a length of 6 metres. The horizontal component of the cable
force is 75 kN.

Questions:
a. Determine the support reactions at A and B.
b. Determine the maximum cable force.
c. Determine the sag a in the middle of the cable.

14.25 See the figure for problem 14.24. In the middle part of cable AB a
uniformly distributed load q = 5 kN/m acts over a length of 6 metres. The
cable assumes the shape shown with a = 1.25 m.

Questions:
a. Determine the horizontal component of the cable force.
b. Determine the support reactions at A and B.
c. Determine the maximum cable force.

14.26 A uniformly distributed load q = 5 kN/m acts on cable AB at both
ends over a length of 3 metres. The middle part is unloaded. The cable
assumes the shape shown.

Questions:
a. Determine the horizontal

component of the cable
force.

b. Determine the support re-
actions at A and B.

c. Determine the maximum
cable force.
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14.27: 1–2 Given two cables with a uniformly distributed load of 40 kN/m.

Questions:
a. Determine the horizontal component of the cable force.
b. Determine the maximum cable force.
c. Determine the support reactions at A and B.
d. Where is the lowest point of the cable?
e. Determine the difference in height between support A and the lowest

point of the cable.

14.28 Given a cable with a uniformly distributed load of 4 kN/m.

Question:
Determine the support reactions at A and B.
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14.29: 1–4 Given four cables that under the influence of a uniformly
distributed load q = 36 kN/m assume the shape shown.

Questions:
a. Determine the horizontal component of the force in the cable.
b. Determine the support reactions at A and B.
c. Determine the maximum cable force.

14.30: 1–4 As problem 14.29, but now with a uniformly distributed load q

of 7.2 kN/m.

14.31: 1–4 Given four cables that under the influence of a uniformly
distributed load q assume the shape in problem 14.29. The horizontal
component of the cable force is 54 kN.

Questions:
a. Determine the magnitude of the distributed load q .
b. Determine the support reactions at A and B.
c. Determine the maximum cable force.

14.32: 1–4 As problem 14.31, but now the horizontal component of the
cable force is 135 kN.

14.33: 1–3 At B, cable ABC passes over a pulley and is kept in
equilibrium by a counterweight of 2 kN at C. The pulley is frictionless and
has negligibly small dimensions. Assume that the cable has a parabolic
shape due to of its dead weight. Ignore the dead weight of cable part BC.

Questions:
a. Determine the dead weight of

the cable AB.
b. Determine the support reactions

at A.
c. Determine the support reactions

at B.

14.34 Given a cable.

Question:
Which load has to act on the cable to give it the following shapes:

a. Parabola.
b. Catenary.
c. Circle.
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14.35: 1–4 A cable with span � is loaded by four different distributed loads
qz(x). Here q̂ is the top value of the distributed load. The horizontal compo-
nent of the cable force is H . In your calculation use � = 15 m, q̂ = 8 kN/m
and H = 75 kN.

(1) qz = q̂
x

�

(2) qz = 4q̂
x

�

(
1 − x

�

)
(3) qz = q̂ sin

πx

�

(4) qz = q̂
(

1 − sin
x

�

)

Questions:
a. Draw the load diagram.
b. Determine the cable shape as a function of x.
c. Determine the maximum sag in the cable.
d. Determine the maximum cable force.

14.36: 1–4 As problem 14.35, but now with values � = 20 m, q̂ = 6 kN/m
and H = 120 kN.

14.37: 1–2 Under the influence of a distributed load qz(x) a cable with
span � assumes one of the following cable shapes z(x):

(1) z(x) = −(7.5 m)
(x

�

)2 + (5 m)
(x

�

)

(2) z(x) = −(8 m)
(x

�

)3 + (6 m)
(x

�

)

The horizontal component of the cable force is H . In your calculation use
� = 12 m and H = 60 kN.

Questions:
a. Draw the cable shape.
b. Determine the maximum sag of the cable.
c. Determine the distributed load as a function of x.
d. Determine the maximum cable force.

14.38: 1–2 As problem 14.37, but now with � = 15 m and H = 90 kN.

14.39 A symmetrical cable structure consists of two bar supports and a
number of cables. The structure is loaded as shown by two forces of 41 kN.

Questions:
a. Which of the cables a to c is most heavily loaded?
b. Determine the force in the most heavily loaded cable.
c. Determine the normal force in a bar support.

14.40 The cable structure shown consists of two bar supports and the four
cables a, b, c and d. A force of 15 kN acts at midspan.

Questions:
a. Which cable is most heavily loaded?
b. Determine the force in the most heavily loaded cable.
c. Determine the support reactions at A to D and check the force and

moment equilibrium of the structure as a whole.
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14.41 The cable structure shown consists of a column fixed at A and the
four cables a, b, c and d. The structure is loaded as shown by two forces of
15 kN.

Questions:
a. Which cable is most heavily loaded?
b. Determine the support reactions at A, and draw them as they are acting

in reality.

14.42 Party decorations made of coloured lamps and flags are suspended
on a cable between two fixed columns of varying height. With a uniformly
distributed load of 200 N/m the cable assumes the shape as shown.

Questions:
a. Determine the largest cable force.
b. Determine the support reactions at A. Draw them as they are acting in

reality.

c. Determine the support reactions at B. Draw them as they are acting in
reality.

d. Determine the free height under the lowest point of the cable.

14.43 Using the cable structure shown, a number of pipelines are led
across a river. The load on the cable is uniformly distributed and is 30 kN/m.

Question:
Determine the normal force in tower AB.

14.44 Two electricity cables, each with the same dead weight, (force per
length), are attached to a mast at B. The maximum sag in field BC is
3.60 metres. We can assume that the cables have a parabolic shape due
to their dead weight.

Questions:
a. Determine the maximum sag a

in field AB so that the total hor-
izontal force that the cables at B
exert on the mast is zero.

b. Determine the support reactions
at A and C in case the dead
weight of the cables is 12 N/m.

14.45 The Akashi Kaikyo Bridge in Japan was the largest suspension
bridge in the world when it was opened in 1998/1999. The main span is
1990 m, and the side spans are 960 m. The following values apply for the
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position of the cable with respect to the average seawater level in Tokyo
Bay:

Location Level in metres

End anchors +53

Towers +297

Centre main span +96

The load on the cable, consisting of the dead weight (of the cable, hangers
and deck structure) and traffic loading is 450 kN/m.

Questions:
a. Determine the forces that the cable in the middle span exerts on the

towers.
b. Determine the forces that the cables in the end spans exert on the

towers.
c. Determine the total load on a tower.
d. Determine the forces that the cables in the end spans exert on the anchor

blocks.
e. Determine the maximum cable force in the middle span.
f. Determine the maximum cable force in the end spans.

14.46 On 17 July 1981, the suspension bridge over the Humber in Hull,
England was opened, the longest suspension bridge in the world at the time.
The bridge has a main span of 1410 m and end spans of respectively 290
and 530 m. A remarkable feature of this bridge is the major difference in
length between both end spans. The following (estimated) values apply for
the location of the cable:

Location Level in metres

End anchors +32.5

Towers +162.5

Centre main span +60.5

Assume that the load on the cable, consisting of the dead weight (of cable,
hangers and deck structure) and the traffic loading, is 200 kN/m.

Questions:
a. Determine the forces that the cable in middle field exerts on the towers.
b. Determine the forces that the cable in the left-hand end field exerts on

the tower.
c. Determine the total load on the left-hand tower.
d. Determine the forces that the cable in the left-hand end field exerts on

the anchor block.
e. Determine the forces that the cable in the right-hand end field exerts on

the tower.
f. Determine the total load on the right-hand tower.
g. Determine the forces that the cable in the right-hand end field exerts on

the anchor block.
h. Determine the maximum cable force in the middle field.
i. Determine the maximum cable force in the left-hand end field.
j. Determine the maximum cable force in the right-hand end field.
k. The cable in the short end field was designed stronger than the cable in

the other fields. Is this in line with your calculation?
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14.47 A simply supported prestressed beam has a length of 10 metres
and a rectangular cross-section of 0.3 × 0.8 m2. The prestressing cable is
parabolic with a maximum eccentricity of 0.25 m. The prestressing force is
1000 kN. The dead weight of the beam is 2500 kN/m3. The variable load
is 30 kN/m.

Questions:
a. Determine the forces that the prestressing cable exerts on the beam.
b. Determine the M and V diagrams for the beam resulting from only the

prestressing.
c. Determine the M and V diagrams due to the prestressing and dead

weight.
d. Determine the M and V diagrams due to the prestressing, dead weight

and variable load.

14.48 A simply supported prestressed beam with a length of 10 metres
has a dead weight of 6 kN/m. The variable load is 24 kN/m. The parabolic
tendon has a maximum eccentricity ep. The prestressing force is Fp.

Questions:
a. How large must the product Fpep be so that the maximum bending

moment due to the prestressing and dead weight (in an absolute sense)
is equal to the maximum bending moment due to the prestressing, dead
weight and variable load?

b. How large must the product Fpep be so that the maximum bending
moment due to the prestressing and dead weight (in an absolute sense)
is 5/7 the magnitude of the maximum bending moment due to the
prestressing, dead weight and variable load?

14.49 A simply supported prestressed beam with a length of 12 metres
has a dead weight of 7 kN/m. The variable load consists of two forces of
75 kN. The parabolic prestressing cable has an eccentricity of 0.23 m. The
prestressing force is 1200 kN.

Questions:
a. Determine the forces that the prestressing cable exerts on the beam.
b. Determine the M and V diagrams for the beam due to only the pre-

stressing.
c. Determine the M and V diagrams due to the prestressing and dead

weight.
d. Determine the M and V diagrams due to the prestressing, dead weight

and variable load.
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Centre of point and line of force (Section 14.2)

14.50: 1–3 Three fixed and bent beams are loaded by forces F .

Questions:
a. For each part of the structure draw the line of force and indicate whether

it is a line of tension or a line of pressure.
b. From the line of force derive the variation of the normal force, shear

force and bending moment. Draw the N , V and M diagrams for the
entire structure.

14.51 Beam ABCD is supported at A on a hinge and at D on a roller; the
roller track is inclined at an angle of 45◦. A couple acts at B, as well as a
45◦ force. A vertical force acts at C. Dimensions and load can be found in
the figure.

Questions:
a. Calculate and draw the support reactions at A and D.

b. Calculate and draw the M diagram, V diagram and N diagram, with
the deformation symbols. Write down the relevant values.

c. For ABCD, draw the line(s) of force, and indicate whether they refer to
tension or compression.

d. Where in cross-section C is the centre of force?

14.52 A three-hinged frame with overhang, is loaded by a force of 20 kN
on the overhang.

Questions:
a. Determine the line of force

for all parts of the frame and
indicate whether they refer to
tension or compression.

b. Determine the centre of force
at cross-section C on column
AC.

c. Determine the centre of force
at cross-section C of girder
CS.

14.53 Pitched roof portal frame ASB is loaded by a vertical force of 12 kN.

Questions:
a. Determine the support reac-

tions at A and B. Draw them
as they act in reality and in-
clude relevant values.

b. Draw the M diagram, with
the deformation symbols. In-
clude relevant values.

c. Draw the lines of force for
all parts of the frame. Indicate
clearly whether they refer to
tension or compression.
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14.54: 1–3 The same three-hinged frame ASB is loaded in various ways
by forces of 15 kN.

Questions:
a. Draw the lines of force for all parts of the frame. Indicate clearly

whether they refer to tension or compression.
b. Draw the M and N diagrams for all parts of the frame.

14.55 Given a compound frame.

Questions:
a. Draw the M diagram for CDE.
b. Draw the line of force for DE.
c. How large is the normal force in DE?
d. Draw the line of force for CD.

Relationship between cable, line of force and structural shape (Sec-
tion 14.3)

14.56 A parabolic arch has a uniformly distributed load. There is no axial
deformation.

Questions:
a. Draw the line of force for the arch. Does it refer to tension or com-

pression?
b. Determine and draw the horizontal support reactions.
c. Determine and draw the vertical support reactions.
d. Determine the maximum normal force in the arch.
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14.57: 1–4 Four three-hinged frames have the same uniformly distributed
load of 11 kN/m.

Questions:
a. Sketch the line of force for the girder.
b. Determine the normal force in the girder from this line of force.
c. Determine and draw the support reactions.
d. Draw the M , V and N diagrams for the entire structure.



15Virtual Work

In this chapter we deal with the virtual work equation: an often used
alternative for the equilibrium equations.

In Section 15.1, we first introduce the concepts work and strain energy.
Performing work can be seen as a mechanical process of a body exchanging
energy with its environment. To illustrate the concept, we have included a
separate section on strain energy. The strain energy concept plays an im-
portant role in calculations that are based on energy considerations, but is
not covered further in this chapter.

The concept of work returns in the virtual work equation. In Sections 15.2
to 15.4 we show for a particle, a rigid body and a mechanism respectively
that the virtual work equation is equivalent to the equilibrium equations.
Support reactions and section forces can be derived directly from the equi-
librium equations, but also with the principle of virtual work. We provide a
number of examples in Section 15.5.

The virtual work equation is especially useful for determining the influence
lines for support reactions and section forces in statically determinate bar
type structures; this is covered in Chapter 16.
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Figure 15.1 Work is defined as the inner product of force �F and
displacement d�u:

dA = �F · �u = | �F | · |d�u| · cos α = F · du cos α = F cos α · du.

15.1 Work and strain energy

In this section we look at the concepts work and strain energy.

15.1.1 Work

If the point of application of force �F in Figure 15.1a undergoes an infinitesi-
mal displacement d�u along path s, this is referred to as the force performing
an (infinitesimal) amount of work dA, defined as the inner product of the
vectors �F and d�u:

dA = �F · d�u
= Fx dux + Fy duy + Fz duz.

Work is a scalar quantity.

The inner product of two vectors can also be calculated as the product of the
magnitude (modulus) of both vectors and the cosine of the enclosed angle:

dA = | �F | · |d�u| · cos α = F · du · cos α.

This can be seen as the product of the force and the component of the
displacement in the direction of the force, F and du cos α respectively (see
Figure 15.1b). It can also be seen as the product of the displacement and the
component of the force in the direction of the displacement, du and F cos α

respectively (see Figure 15.1c).

Note that the force F does not perform any work if it is normal to the
displacement du (in that case α = ±π/2 and cos α = 0).

If the point of application of the force moves a finite distance along path s,
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Figure 15.2 If �F is constant, the total amount of work to be per-
formed depends only on the location of the starting point and end
point, and not on the route followed.

the total amount of work is equal to the sum of the contributions of all the
infinitesimal displacements. Mathematically this corresponds to integrating
over the path length s:

A =
∫

s

�F · d�u.

The magnitude and direction of the force F may depend on the location on
the route. If �F is constant (for a vector that means constant in magnitude
and direction), then �F can be excluded from the integration symbol. The
total amount of work performed is then (see Figure 15.2):

A =
∫

s

�F · d�u = �F
∫

s

d�u = �F · �u.

In this case, the total amount of work A depends only on the position of the
starting and end points and not on the shape of the route followed.

In full

A = Fxux + Fyuy + Fzyz = Fu cos α.

Note that no work is performed if �F and �u are normal to one another (in
that case α = ±π/2 and cos α = 0).

Forces that are constant in magnitude and direction include gravitational
forces.

The dimension of work is force multiplied by distance. The applicable SI
unit is the joule, denoted as J:

J = N · m = kg · m2/s2.
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Figure 15.3 (a) A beam subject to bending with (b) the associated
load-displacement diagram.

15.1.2 Strain energy

Consider the simply supported beam in Figure 15.3a, with a point load F .
Due to a load, the beam will bend. The sag at the concentrated load is u.
The relationship between the load F and displacement u can be shown in
a load-displacement diagram (see Figure 15.3b). The shape of the diagram
depends on the properties of the material. The shape is not important at this
stage.

If with an increasing load the displacement u increases by an amount du,
the force F performs work

dA = F du.

When the load and displacement have reached their final value, the total
amount of work performed is:

A =
∫ u

0
F du.

The total amount of work performed is equal to the area under the load-
displacement diagram.

Performing work can be seen as a mechanical process of energy exchange
between a body and its environment. If the load performs positive work,
energy is extracted from the environment and transferred to the structure.
If there is no exchange of heat from the structure to its environment, and
the structure is and remains at rest (the energy added is not converted into
kinetic energy), then the energy transferred is absorbed as strain energy.
Strain energy is the energy required to deform the structure.

The work performed A is equal to the increase in strain energy Ev:

A = �Ev.
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Figure 15.4 The strain energy Ev stored in the beam is equal to
the total amount of work performed A, and is equal to the area under
the load-displacement diagram.

Figure 15.5

In general it is assumed that the strain energy is zero in the undeformed
state. In that case, it holds for the deformed state that

A = Ev.

The strain energy stored in the beam is equal to the area under the load
displacement diagram (see Figure 15.4).

The SI unit for strain energy is joule.

15.2 Virtual work equation for a particle

In this section, we show that the virtual work equation for a particle is just
another form of the equilibrium equations.

When particles are compelled to follow a particular path, the virtual
displacements that are in line with the (limited) degree of freedom of
the particle are known as kinematically admissible virtual displacements.
These displacements are subject to special demands: they must be geomet-
rically linear. Physically this can be translated into the demand that the
virtual displacements must be very small.

15.2.1 Equilibrium

Assume a particle subject to forces (see Figure 15.5). The particle is in
equilibrium if the equations for the force equilibrium in the x, y and z

directions respectively are satisfied:

∑
Fx = 0,∑
Fy = 0,∑
Fz = 0.

A particle subject to forces.
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Figure 15.6 The displacement components of a particle.

These three equilibrium equations can also be formulated otherwise.

Assume G is a new quantity, defined as follows:

G = λ1
∑

Fx + λ2
∑

Fy + λ3
∑

Fz.

In this equation, λ1; λ2; λ3 are arbitrary quantities that cannot all equal
zero concurrently.

The demand that G = 0 for each arbitrary combination of λ1; λ2; λ3 (not
all equal to zero concurrently) is equivalent to the three equations for the
force equilibrium. For example, the combination could be

λ1 �= 0; λ2 = 0; λ3 = 0

in which case

G = λ1
∑

Fx + 0 ×∑
Fy + 0 ×∑

Fz = λ1
∑

Fx

and G can be equal to zero only if

∑
Fx = 0.

Likewise, the combination λ1 = 0; λ2 �= 0; λ3 = 0 leads to
∑

Fy = 0.
The combination λ1 = 0; λ2 = 0; λ3 �= 0 leads to

∑
Fz = 0.

15.2.2 Virtual work equation

The quantities that are to be chosen arbitrarily λ1; λ2; λ3 can also be consid-
ered to be arbitrary (imagined) displacements ux; uy; uz (see Figure 15.6),
so that

G = ux

∑
Fx + uy

∑
Fy + uz

∑
Fz.



15 Virtual Work 715

Figure 15.7 The virtual displacements of a particle.

In this case, G can be interpreted as the (imagined) work A done by the
forces acting on the particle.

Since we are not talking about actual but rather imagined displacements,
of arbitrary magnitude, they are referred to as virtual displacements and
they are denoted by δux ; δuy ; δuz (see Figure 15.7). In mathematics, δ is
known as the variation symbol. A virtual displacement therefore stands for
a variation of the displacement.

The work due to the virtual displacements is known as virtual work. This is
denoted by δA:

δA = δux

∑
Fx + δuy

∑
Fy + δuz

∑
Fz.

If the displacement of a particle in equilibrium is varied, the virtual work
done by the forces acting on it is zero. The converse is also true: if one
varies the displacement of a particle, and the virtual work is zero, then the
particle is in equilibrium.

Conclusion: A particles is in equilibrium only if the virtual work performed
by the forces acting on it is zero for any virtual displacement:

δA = δux

∑
Fx + δuy

∑
Fy + δuz

∑
Fz = 0.

This is known as the principle of virtual work.

The principle of virtual work combines the three independent equilibrium
equations into one virtual work equation. The virtual work equation is just
another form of the equilibrium equations.
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Figure 15.8 A particle that is compelled to follow a circular path
with radius r is loaded by two forces F .

Figure 15.9 The isolated particle with all the forces acting on it.

15.2.3 Kinematically admissible virtual displacements

A particle is compelled to follow a circular path with diameter r in the xy

plane. The path can be defined as

f (x, y) = x2 + y2 − r2 = 0.

There is no friction. The particle is loaded by a horizontal and vertical force
F , as shown in Figure 15.8.

Using the principle of virtual work, we now look for the positions on the
circle at which the particle is in equilibrium.

In Figure 15.9 the particle has been isolated. Since there is no friction, the
interaction force N is normal to the circular path.

If we are not interested in the interaction force N between the particle
and its path, we can choose a virtual displacement along the prescribed
path. Since N is normal to the path, it does not appear in the virtual work
equation.

A virtual displacement that is conform with the (limited) freedom of move-
ment of the particle is referred to as a kinematically admissible virtual
displacement.

The virtual work δA due to a kinematically admissible virtual displacement
is

δA = +Fδux − Fδuy. (a)

δux and δuy are the virtual displacements in the x and y directions respec-
tively.

For the path it holds that

f (x, y) = x2 + y2 − r2 = 0. (b)
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Figure 15.10 During the change in displacement the forces do
not change direction. Since N performs no work the virtual dis-
placement δu has to take place along the tangent to the prescribed
path.

After the virtual displacement, it applies that

f (x + δux, y + δuy) = (x + δux)2 + (y + δuy)2 − r2 = 0. (c)

If we combine equations (c) and (b) we find the following relationship
between δux and δuy :

2xδux + (δux)2 + 2yδuy + (δuy)2 = 0. (d)

Since this equation is determined by the geometry of the prescribed path, it
is known as a geometric equation.

During the variation of the displacement, the forces do not change direction.
The same is true for N . Since N does not perform work, the virtual dis-
placement has to occur along the tangent of the prescribed path, as shown
in Figure 15.10. This means that the geometric relationship between δux

and δuy has to be linear. Ignoring the quadratic (higher order) terms in the
geometric equation (d) can be physically interpreted as a demand that the
virtual displacements have to be small.

If we remove the quadratic terms in (d)1 we find

2xδux + 2yδuy = 0

or

δuy = −x

y
δux. (e)

When the particle is in equilibrium, δA = 0. With (a) and (e) the virtual
work equation becomes

1 This is referred to as the linearisation of the geometric equation (d).
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Figure 15.11 There are two locations on the circular path where
the particle is in equilibrium under the influence of forces F : A and
B.

δA = +Fδux − Fδuy = Fδux + F
x

y
δux =

(
1 + x

y

)
Fδux = 0.

Since F �= 0 and δux �= 0 the solution is

1 + x

y
= 0 or x + y = 0.

The equilibrium positions are therefore on the line x + y = 0. This leads to
two solutions: the particle under the influence of forces F is in equilibrium
at either A or B (see Figure 15.11).

Comment: The principle of virtual work says nothing about the state of
the equilibrium. It cannot be used to discover that the equilibrium at A is
reliable (stable) and that the equilibrium at B is unreliable (unstable).1

15.2.4 Virtual displacements in a mathematical sense

The fact that the geometric equations between the varied displacements
have to be linear means, from a mathematical perspective, that we have to
consider the so-called first-order variation. The first-order variation of a
function f (x, y) is defined as

δf (x, y) = ∂f

∂x
δx + ∂f

∂y
δy

1 If the particle at B loses its equilibrium as a result of a small disruption it will
become increasingly far removed from the original equilibrium position due to
forces F : the equilibrium at B is unreliable (unstable equilibrium). At A the
forces F compel the particle to return to its original equilibrium position after
disruption: the equilibrium at A is reliable (stable equilibrium). Examining the
reliability of equilibrium (stability investigation) is beyond the scope of this
book.
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or, with δx = δux and δy = δuy ,

δf (x, y) = ∂f

∂x
δux + ∂f

∂y
δuy.

For the function

f (x, y) = x2 + y2 − r2 = 0

that describes the circular path of the particle we find

δf (x, y) = ∂

∂x
(x2 + y2 − r2)δux + ∂

∂y
(x2 + y2 − r2)δuy

= 2xδux + 2yδuy = 0.

This leads directly to the expression (e) we are looking for:

δuy = −x

y
δux.

The method used here is far simpler than the approach in Section 15.2.3,
where we first derived the geometric equation (d) and then linearised it (by
removing all the non-linear terms).

15.3 Virtual work equation for a rigid body

For rigid bodies, the complete equilibrium equations can also be replaced
by a single virtual work equation. Deriving the virtual work equation for
a rigid body shows again that the geometrical relationship between the
virtual displacements has to be linear.
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Figure 15.12 The components of force F at point i.

15.3.1 Equilibrium

In a plane1 there are three equilibrium equations, two for the force
equilibrium:

∑
Fx = 0,∑
Fy = 0

and one for the moment equilibrium:

∑
Tz = 0.

There is equilibrium when all three conditions are satisfied.

The requirement

G = λ1
∑

Fx + λ2
∑

Fy + λ3
∑

Tz = 0

for all arbitrary combinations of λ1; λ2; λ3 (not all concurrently zero) is an
alternative for the three equilibrium equations:

• The combination λ1 �= 0; λ2 = 0; λ3 = 0 leads to
∑

Fx = 0.

• The combination λ1 = 0; λ2 �= 0; λ3 = 0 leads to
∑

Fy = 0.

• The combination λ1 = 0; λ2 = 0; λ3 �= 0 leads to
∑

Tz = 0.

Assume a number of forces are acting on the body (see Figure 15.12):

Fxi ; Fyi are the components of Fi at point i with coordinates xi ; yi ;

Fxj ; Fyj are the components of Fj at point j with coordinates xj ; yj ; etc.

1 For simplicity we will look only at rigid bodies in the xy plane.
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Figure 15.13 The displacement of point i due to a translation
ux0; uy0 and a large rotation ϕz0.

To keep the picture simple, Figure 15.12 includes only the components of
the force at point i.

The body is in equilibrium when the following condition is satisfied:

G = λ1
∑
i

Fxi + λ2
∑
i

Fyi + λ3
∑
i

(xiFyi − yiFxi) = 0

for each arbitrary choice of λ1; λ2; λ3 (not all concurrently zero).

15.3.2 Displacement of a point on a rigid body

The displacement of a rigid body in a plane is defined by the displacement
of, for example, point O to O′ and a rotation about O. Assume that the
components of the translation (displacement) are ux0; uy0 and the rotation
is ϕz0.

Instead of using its coordinates xi ; yi , we can define the location of an
arbitrary point i also by its angle αi and the radius ri . The displacement of
point i is (see Figure 15.13)

uxi = ux0 − a,

uyi = uy0 + b.

a and b are the result of the rotation ϕz0. Due to the rotation, point i moves
through an arc length ϕz0ri along the circle with radius ri and centre O′.
For a and b it applies that

a = ri
{

cos αi − cos(αi + ϕz0)
}
,

b = ri
{

sin(αi + ϕz0) − sin αi

}
.

The expressions are much simplified when the rotation is small. If ϕz0 �1
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Figure 15.14 The displacement of point i due to a translation
ux0; uy0 and a small rotation ϕz0.

the circle can be replaced by its tangent � (see Figure 15.14). The dis-
placement of point i due to the rotation is then ϕz0ri with the following
components:

a = ϕz0ri sin αi = ϕz0yi,

b = ϕz0ri cos αi = ϕz0xi.

For small rotations the following applies (ignoring the signs):
• the horizontal displacement is equal to “rotation × vertical distance to

the centre of rotation”;
• the vertical displacement is equal to “rotation × horizontal distance to

the centre of rotation”.

Conclusion: Due to a translation ux0; uy0 and a small rotation ϕz0 of the

uxi = ux0 − a = ux0 − ϕz0yi,

uyi = ux0 + b = uy0 + ϕz0xi.

Note that the geometric relationships between the various displacement
quantities are linear for small rotations.

15.3.3 Virtual work equation

When a body is given a virtual displacement, the virtual work performed
by all forces acting on it is

δA = ∑
i

Fxiδuxi + ∑
i

Fyiδuyi.

The virtual displacements δuxi ; δuyi of point i can be expressed by three
independent virtual displacements δux0; δuy0; δϕz0 of the body. The equa-

Figure 15.13 The displacement of point i due to a translation
ux0; uy0 and a large rotation ϕz0. body the displacement of point i is
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tion for δA assumes the form of expression G (see Section 15.3.1) only if
the relationships between δuxi; δuyi and δux0; δuy0; δϕz0 are linear.

The geometric relationships appeared to be linear only for bodies subject to
minor rotations. We can also say that the virtual displacements have to be
very small.

In that case, the virtual work performed by the force at point i is

Fxiδuxi + Fyiδuyi = Fxi(δux0 − yiδϕz0) + Fyi(δuy0 + xiδϕz0).

The total work performed by all the forces at the points i, j , . . . is

δA = ∑
i

Fxi(δux0 − yiδϕz0) + ∑
i

Fyi(δuy0 + xiδϕz0).

This gives

δA = δux0
∑
i

Fxi + δuy0
∑
i

Fyi + δϕz0
∑
i

(xiFyi − yiFxi).

The expression for virtual work δA is now in the same form as the ex-
pression for G; the quantities λ1; λ2; λ3 have been replaced by the virtual
displacements δux0; δuy0; δϕz0.

The demand

δA = δux0
∑
i

Fxi + δuy0
∑
i

Fyi + δϕz0
∑
i

(xiFyi − yiFxi) = 0

for all arbitrary combinations of δux0; δuy0; δϕz0 (not all equal to zero) is
a necessary and sufficient condition for equilibrium and is known as the
principle of virtual work.

For simplicity, concentrated couples were not addressed. A concentrated
couple can be replaced by a statically equivalent pair of forces. Assuming
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Figure 15.15 A concentrated couple can be replaced by a stati-
cally equivalent pair of forces. The virtual work performed by the
couple is equal to the product of couple and rotation.

the pair of forces in Figure 15.15 we find

δA = −F · bδϕz0 + F · (a + b)δϕz0 = Fa · δϕz0 = Tz · δϕz0.

The work performed by a couple is equal to the product of couple and
rotation. The work is positive when the couple and rotation are in the same
direction.

15.3.4 Virtual rotations in a mathematical sense

In deriving the virtual work equation, we found that the geometric relation-
ships had to be linear in the virtual displacements. Mathematically, this
means that the first-order variation has to be assumed for these virtual
displacements.

We previously deduced (see Figure 15.13) that the following applies for
the displacement of an arbitrary point i, due to a translation ux0; uy0 and a
rotation ϕz0:

uxi = ux0 − ri
{

cos αi − cos(αi + ϕz0)
}
,

uyi = uy0 + ri
{

sin(αi + ϕz0) − sin αi

}
.

The first-order variation of uxi is defined as

δuxi = ∂uxi

∂ux0
δux0 + ∂uxi

∂ϕz0
δϕz0.

In the same way, the first-order variation of uyi is defined as

δuyi = ∂uyi

∂uy0
δuy0 + ∂uyi

∂ϕz0
δϕz0.
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Figure 15.16 (a) Two bodies connected in a hinge. (b) The inter-
action forces at the hinged joint.

Elaborating these expressions (for ϕz0 = 0) indeed leads to

δuxi = δux0 − ri sin αiδϕz0 = δux0 − yiδϕz0,

δuyi = δuy0 + ri cos αiδϕz0 = δuy0 + xiδϕz0.

15.4 Virtual work equation for mechanisms

For mechanisms, the complete equilibrium equations can also be replaced
by a virtual work equation. When the virtual displacement is chosen con-
form the freedom of movement at the joints (a kinematically admissible
virtual displacement), the work performed by the interaction forces in
the joints is zero and the virtual work equation includes only the work
performed by the external forces.

When drawing the virtual displacements, one has to imagine that in the
drawing the dimensions of the structure are considerably reduced and that
the (very small) virtual displacements are considerably blown up. The mag-
nitude of the angles (of rotation) is indicated by the so-called orthogonal
value.

15.4.1 Virtual work equation

Mechanisms are systems of interconnected rigid bodies in which the joints
are such that the bodies still have a certain degree of freedom with respect
to one another.

Consider a system of two mutually hinged rigid bodies (1) and (2), loaded
by a number of forces (see Figure 15.16a). There are acting interaction
forces at the joint (joining forces). These occur always in pairs. In this case,
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these forces are the two equal and opposite forces F
(1)
i and F

(2)
i (see

Figure 15.16b).1

To investigate the equilibrium, the two bodies can be isolated from one
another (see Figure 15.16b). The principle of virtual work can then be
applied on each body. The virtual work δA(1) for a virtual displacement
of body (1) is split into a part δA

(1)
e due to the external forces2 on body (1)

and a part δA
(1)
i due to the interaction force on body (1):

δA(1) = δA(1)
e + δA

(1)
i = 0.

The same applies for body (2):

δA(2) = δA(2)
e + δA

(2)
i = 0.

We can choose a virtual displacement for the connected bodies that is con-
sistent with the freedom of movement in the joint. Such a displacement is
referred to as a kinematically admissible virtual displacement. The virtual
work equation is then

δA = δA(1) + δA(2) = δA(1)
e + δA(2)

e + δA
(1)
i + δA

(2)
i = 0.

The benefit of a kinematically admissible virtual displacement is that the
interaction forces F

(1)
i and F

(2)
i together perform zero work. The points of

application of these two equal and opposite forces always undergo the same

1 The upper index refers to the body, the lower index i refers to the interaction.
2 External in this sense does not refer to “the outside”, but rather to the cause of

the force “from the outside”. The so-called external forces (also called loads),
are independent forces in contrast to the interaction forces or joining forces (also
referred to as internal forces), that are dependent forces.

Figure 15.16 (a) Two bodies connected in a hinge. (b) The inter-
action forces at the hinged joint.
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Figure 15.17 (a) A slide or a so-called shear force hinge with
(b) the interaction forces after a kinematically admissible virtual
displacement.

displacement, so that

δA
(1)
i + δA

(2)
i = 0.

The virtual work equation now includes only the work performed by the
external forces:

δA = δA(1)
e + δA(2)

e = 0.

Conclusion: Due to a kinematically admissible virtual displacement of a
mechanism in equilibrium, the virtual work performed by the (external)
load equals zero. The fact that the work performed by the load is zero is a
necessary and sufficient condition for the equilibrium of a mechanism.

The approach can easily be expanded to include mechanisms of more than
two bodies, as well as other than hinged joints.

15.4.2 The magnitude of the virtual displacements

Figure 15.17 shows a slide or a so-called shear force hinge with the inter-
action forces M; N , and a kinematically admissible virtual displacement
δu; δϕ.

We can see immediately that the pair of bending moments M does not
perform any work. How different is it for the normal force pair N , that
as a couple Nδu undergoes a (small) rotation δϕ and therefore, taking into
account the directions shown in the figure, performs the work −Nδuδϕ.
The geometric significance of δuδϕ can be seen on the figure.

When deriving the virtual work equation for a rigid body, the demand arose
that the geometric relationships have to be linear in the virtual displace-
ments. To achieve that, the virtual displacements have to be very small.
Quadratic terms in the virtual displacements are therefore a degree smaller
in the virtual work equation and can be discarded. Mathematically, this
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Figure 15.18 (a) The simply supported beam AC with a slide
or shear force hinge at midspan B. (b) A kinematically admissible
virtual displacement: the segments to the right and left of the slide
remain parallel to one another. (c) The displacements in case the
rotation δϕ is small and the quadratic terms in δϕ can be neglected.

demand is formulated by looking only at the first-order variation of the
displacements in the virtual work equation (in other words, only the linear
terms in the virtual displacements). This limitation with respect to the vir-
tual displacements means that the δuδϕ is neglected, and the normal force
pair N performs no virtual work.

In diagrams, the dimensions of the structure are greatly reduced and
the displacements, even though they are infinitesimally small, are greatly
enlarged. This can give rise to problems at first sight.

As an example, consider the simply supported beam ABC modelled as a
line element in Figure 15.18a, with a slide or shear force hinge at midspan
B. The mechanism has one degree of freedom. For a kinematically admis-
sible virtual displacement, the displacement must be consistent with the
freedom of movement at the supports and the slide. The latter means that
beam segments AB and BC must remain parallel to one another on both
sides of the shear force hinge. Figures 15.18b and 15.18c show the vir-
tual displacement for the mechanism in two different ways. Figure 15.18b
would seem to be the correct one, but this is not so.

One has to imagine that the virtual rotation δϕ is very small. In that case
the horizontal displacement of the beam ends with respect to one another
at B, �(δϕ)2, is a degree smaller than the vertical displacement �δϕ. So the
displaced beam ends at the shear force hinge B can be drawn directly above
one another. Figure 15.18c gives therefore the correct representation of the
virtual displacements in the mechanism.

Another example is beam ABC in Figure 15.19a, that has been changed into
a mechanism by the introduction of the hinge at S. Figure 15.19b shows a
virtual displacement: a bend δθ occurs at hinge S. The small angle (rotation)
δθ , that is drawn to a large scale, can be defined by the ratio δa/�. This value
is known as the orthogonal value. The orthogonal value is not equal to the
sine or tangent of the angle, nor to the value in radians.
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Figure 15.20 Three angles θ with the same orthogonal value a/b.Figure 15.19 (a) Mechanism with (b) a kinematically admissible
virtual displacement.

Figure 15.20 shows three angles θ that differ in magnitude from a trigono-
metric perspective, but for which the orthogonal value a/b is the same.
Referring to Section 15.3.2 for the displacement due to a small rotation, it
holds for all three cases that the vertical displacement a is equal to “angle
(of rotation) θ× horizontal distance b to the centre of rotation”.

15.5 Calculating forces using virtual work

With statically determinate bar type structures, the support reactions and
section forces follow directly from the equilibrium. When determining
these forces, we can also use the principle of virtual work instead of the
equilibrium equations. To do so, we have to change the structure into a
mechanism in such a way that the force to be determined can perform work
if the mechanism is subject to a virtual displacement. This is explained
below by means of a number of examples.
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Figure 15.21 (a) Beam with (b) a mechanism for determining
the vertical support reaction at B and (c) a kinematically admissible
virtual displacement of the mechanism (displacements in m).

15.5.1 Support reactions

Example 1 – support reaction
We will now determine the vertical support reaction at B for the beam in
Figure 15.21a using the principle of virtual work.

Solution:
Assume Bv, the vertical support reaction at B, has the direction as shown
in Figure 15.21b. By removing the support at B we form a mechanism
in which Bv can perform work. The mechanism has one degree of free-
dom.1 Apply a virtual rotation δθ at A. Figure 15.21c shows the virtual
displacement of the mechanism. The virtual displacements at B and C
are equal to “rotation × horizontal distance to centre of rotation A” (see
Section 15.3.2); they are respectively 5δθ and 7δθ m.

Note that the deformation of the beam is not taken into account.

Due to the virtual displacement, the couple and the forces perform virtual
work. The total amount of work performed is

δA = +(30 kNm) × δθ + Bv × (5δθ m) − (50 kN) × (7δθ m).

The couple performs positive work, as does the support reaction Bv; the
force at C in contrast performs negative work. For equilibrium the following
applies

δA = 0

so that

1 The position of the mechanism is fully defined by a single parameter, such as
the rotation at A or the vertical displacement at B.
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Figure 15.22 (a) Hinged beam with (b) a mechanism for determin-
ing the fixed-end moment at A and (c) a kinematically admissible
virtual displacement of the mechanism.

Bv = −(30 kNm) × δθ + (50 kN) × (7δθ m)

(5δθ m)
= +64 kN.

As expected, the support reaction Bv turns out to be independent of the
magnitude and direction of the virtual rotation δθ .

Example 2 – Fixed-end moment
The hinged beam in Figure 15.22a carries a uniformly distributed load over
its entire length. Below we will determine the fixed-end moment using the
principle of virtual work.

Solution:
Assume the fixed-end moment Am acts in the direction shown in Fig-
ure 15.22b. If we replace the fixed-end support by a hinged support, we
create a mechanism in which the, as yet unknown, fixed-end moment Am
can perform work.

We select the vertical displacement of the hinge at S as a degree of freedom.
Assume that the hinge is subject to a virtual displacement δu. Figure 15.22c
shows the virtual displacement of the mechanism. Using “vertical displace-
ment = rotation × horizontal distance” we can express the virtual rotation
δθ at A in the virtual displacement δu:

δθ = δu

a
.

In equilibrium equations, a load on a rigid body can be replaced by its
resultant. This also applies to the formulation of the virtual work equation.
The distributed loads on AS and SB are replaced by their resultants:

RAS = qa and RSB = 2qa.

The virtual displacements at the point of these resultants are easy to
determine, and are both 1

2δu.
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For equilibrium the virtual work is zero:

δA = +Am · δθ + RAS · 1
2δu + RSB · 1

2δu

= +Am · δu

a
+ qa · 1

2δu + 2qa · 1
2δu = 0

so that

Am = − 3
2qa2.

In reality, Am therefore acts in the direction opposite to the one assumed in
Figure 15.22b.

Note: It is incorrect to use the resultant of the total distributed load over
ASB. This gives a different (and incorrect) result. Check it!

15.5.2 Section forces

Example 1 – Bending moment
The simply supported beam in Figure 15.23a carries a uniformly distributed
load over its entire length. Here we will calculate the bending moment MC
at cross-section C, at a third of the span.

Solution:
Change the structure into a mechanism (Figure 15.23b) by applying a hinge
at C. Since a hinge cannot transfer bending moments, the bending moment
MC at C is applied to the mechanism as an external load. We have to take
into account that the bending moment is an interaction force and therefore
occurs as a pair of moments: one moment MC acts on the left-hand part and
another moment MC, equal and opposite, acts on the right-hand part. The
direction of MC in Figure 15.23b is an assumption.

Assume C is subjected to a vertical virtual displacement δu. Figure 15.23c
shows the virtual displacement of the mechanism. AC undergoes a rotation
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Figure 15.23 (a) Simply supported beam with (b) a mechanism
for determining the bending moment at C, and (c) a kinematically
admissible virtual displacement of the mechanism.

δθAC, and CB undergoes a rotation δθCB. Both rotations can be expressed
in terms of δu:

δθAC = δu

a
and δθCB = δu

2a
.

Having replaced the distributed loads on AC and CB by their resultants, we
find the virtual work equation:

δA = −MC · δθAC − MC · δθCB + qa · 1
2δu + 2qa · 1

2δu

= −MC · δu

a
− MC · δu

2a
+ qa · 1

2δu + 2qa · 1
2δu = 0

so that

MC = +qa2.

The plus sign indicates that the bending moment acts in the direction
assumed in Figure 15.23b.

Of course, the result is the same if we select a virtual displacement δu at C
upwards instead of downwards. We have to realise that the virtual displace-
ment of the mechanism has nothing to do with the actual deformation of
the beam. In the virtual work equation, the actual deformation of the beam
is neglected and all beam segments are considered entirely rigid.

In the deformed mechanism, beam segments AC and CB bend with respect
to one another at the joint by δθC. This is also referred to as a “gap”.

From the geometry of the deformed mechanism in Figure 15.23c we find

δθC = δθAC + δθCB.

Looking back to the virtual work equation, we see that the contribution by
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Figure 15.24 (a) Simply supported beam with (b) a mechanism for
determining the shear force at C and (c) a kinematically admissible
virtual displacement of the mechanism.

the pair of moments MC, regardless of the sign, is equal to

δA(due to MC) = “bending moment × gap”

= MC · δθC.

The sign is determined by the directions in which we choose the bending
moment and the virtual displacement.

Example 2 – Shear force
We will now derive the shear force VC at C for the same beam as in
Example 1 (see Figure 15.24a).

Solution:
Change the structure into a mechanism (Figure 15.24b) by creating a slide
or shear force hinge at C that cannot transfer shear forces.

The shear force is applied to the mechanism at C as an (external) load.
Since the shear force is an interaction force it acts as a pair of forces:
one shear force VC acts on the left-hand segment and another equal and
opposite shear force VC acts on the right-hand segment. The direction of
VC in Figure 15.24b is an assumption.

Let the mechanism undergo a virtual displacement by displacing beam seg-
ments AC and CB at the shear force hinge over a distance δu with respect
to one another. Both beam segments remain parallel to one another and are
subject to the same rotation δθ . We find the relationship between δu and δθ

from the geometry of the deformed mechanism in Figure 15.24c:

δu = 3aδθ.

After replacing the distributed loads on AC and CB by their resultants, we
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Figure 15.25 (a) Hinged beam with the mechanisms for determin-
ing (b) the support moment at B, (c) the shear force directly to the
left of B and (d) the shear force directly to the right of B.

find the following for the virtual work equation:

δA = −VC · aδθ − VC · 2aδθ + qa · 1
2aδθ − 2qa · aδθ = 0

so that

VC = − 1
2qa.

The minus sign indicates that the direction of VC is opposite to the direction
assumed in Figure 15.24b.

In the virtual work equation, the contribution of the shear force VC,
regardless of the sign, is equal to

δA(due to VC) = “shear force × displacement in the shear force hinge”

= VC · δu.

The sign is determined by the directions in which we assume the shear force
and the virtual displacement.

Example 3 – Forces in a hinged beam
For the hinged beam in Figure 15.25a we will look for the mechanisms to
determine the support moment at B, the shear force directly to the left of B
and the shear force directly to the right of B.

Solution:
In order to find the support at B we convert the beam into a mechanism by
introducing a hinge at B (Figure 15.25b). The bending moment is allowed to
act on the mechanism as a load (as a pair of moments). The direction of MB
and the direction of the virtual displacement δθ can be chosen arbitrarily.

Figure 15.25c shows the mechanism for the shear force directly to the left
of B. At this point, a slide or shear force hinge has been fitted into the beam.
The shear force VB has been applied on the mechanism as a load (a pair of
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forces). At the shear force hinge, segments SB and BC can displace only
with respect to one another, and cannot turn with respect to one another.
Segments SB and BC therefore remain parallel. BC is fixed in a horizontal
position due to the supports at B and C. With the vertical displacement δu,
SB therefore remains horizontal.

Figure 15.25d gives the mechanism for the shear force directly to the right
of B. Here too, SB and BC remain parallel. Due to the displacement δu at
the shear force hinge, BC undergoes a rotation δθ = δu/2a. SB undergoes
the same rotation.

If the beam carries a uniformly distributed load q over its entire length
(Figure 15.25a) the support moment at B is

MB = −qa2.

The shear force directly to the left of B is

VB = + 3
2qa.

The shear force directly to the right of B is

VB = − 3
2qa.

Check the answers using these mechanisms.

Example 4 – Normal force
Here we will derive the normal force in the truss in Figure 15.26a for the
member DE using the principle of virtual work.

Solution:
Convert the truss into a mechanism by introducing a connection in mem-
ber DE that cannot transfer normal forces. Such a telescopic connection is

normal force N is applied to the mechanism as a load (a pair of forces). In

Figure 15.25 (a) Hinged beam with the mechanisms for determin-
ing (b) the support moment at B, (c) the shear force directly to the
left of B and (d) the shear force directly to the right of B.

also referred to as a normal force hinge. At the normal force hinge, the
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Figure 15.26 (a) Truss with (b) a mechanism for determining
the normal force in DE and (c) a kinematically admissible virtual
displacement of the mechanism.

Figure 15.26b it has been assumed that the normal force is a tensile force.

Figure 15.26c shows the virtual displacement for the mechanism. The
mechanism consists of two self-contained bodies ACD and BCE that can
respectively rotate about A and B and are hinged at C.

With the rules

“horizontal displacement = rotation × vertical distance”, and

“vertical displacement = rotation × horizontal distance”,

we can determine the rotation of the parts ACD and BCE and the displace-
ments of the joints. Figure 15.26c all the relevant quantities are expressed
in terms of the vertical displacement δw of joint C.

The member ends in the normal force hinge move with respect to one
another over a distance δu that is equal to the distance that the joints D
and E move towards one another:

δu = 1
4δw + 1

2δw = 3
4δw.

We write down the virtual work equation:

F · 1
2δw + N · δu = F · 1

2δw + N · 3
4δw = 0

so that

N = − 2
3F.

The normal force in member DE is therefore a tensile force.

In the virtual work equation, the contribution by the normal force N ,
regardless of the sign, is equal to
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δA(due to N) = “normal force × displacement in the normal force hinge”

= N · δu.

The sign is determined by the directions of the normal force and virtual
displacement.

This example shows that the initial simplicity of the virtual work equa-
tion to replace the equilibrium equations is somewhat overshadowed by the
more complicated geometry of the deformed mechanism.

Figure 15.26 (a) Truss with (b) a mechanism for determining
the normal force in DE and (c) a kinematically admissible virtual
displacement of the mechanism.
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15.6 Problems

General comment: All calculations must be performed using virtual work.

Virtual work – mixed problems

15.1: 1–2 A particle is compelled to follow the following parabolic path in
the xy plane:

y = −x2

2a
.

The particle is loaded by a horizontal and vertical force, as shown in the
figure. There is no friction.

Questions:
a. At which point(s) is the particle in equilibrium? Give the coordinates

for this/these point(s).
b. Can you (intuitively) say anything about the reliability (stability) of the

equilibrium at this/these point(s)?

15.2: 1–4 A particle is compelled to follow a frictionless path in the xy

plane between A and B with the following definition:
√

x + √
y = √

a.

Here a = 9 m. The particle is loaded by the forces shown in the figure.

Questions:
a. At which position(s)

is the particle in
equilibrium between A
and B? Give the coor-
dinates for this/these
point(s).

b. Can you (intuitively)
say anything about the
reliability (stability)
of the equilibrium at
this/these position(s)?

15.3: 1–2 A particle is compelled to follow the frictionless path of a cubic
parabola:

y = 3
√

x.

The particle is loaded by the forces shown in the figure.

Questions:
a. At which position(s) is the particle in equilibrium? Give the coordinates

for this/these point(s).
b. Can you (intuitively) say anything about the reliability (stability) of the

equilibrium at this/these position(s)?
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15.4: 1–4 A particle is compelled to follow an elliptical path:

x2

a2
+ y2

b2
= 1

with a = 2 m and b = 4 m. The path is frictionless. The particle is loaded
by the forces shown in the figure.

Questions:
a. Draw the path of the particle.
b. At which position(s) is the particle in equilibrium? Give the coordinates

for this/these point(s).
c. Can you (intuitively) say anything about the reliability (stability) of the

equilibrium in this/these position(s)?

15.5: 1–4 A block is supported on a roller at A and a hinge at B, and is
loaded by a force F = 20

√
2 kN in four different ways.

Questions:
a. Determine the support reaction at A.
b. Determine the vertical component of the support reaction at B.
c. Determine the horizontal component of the support reaction at B.

15.6: 1–6 You are given a number of structures fixed at A.

Questions:
a. Determine the horizontal support reaction at A.
b. Determine the vertical support reaction at A.
c. Determine the fixed-end moment at A.

15.7: 1–4 A number of beams are supported on a hinge and a roller. The
dimensions are in m, the forces are in kN.
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Questions:
a. Determine (the components of) the support reaction at A.
b. Determine (the components of) the support reaction at B.

15.8: 1–8 A number of beams, simply supported at A and B, are composed
of segments AC and BC that are rigidly joined at C. The location of joint
C is shown in the figure by means of a vertical dash. The forces are given
in kN, the lengths are in m.

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B
c. Determine the shear force at C.
d. Determine the bending moment at C.

15.9: 1–10 For hinged beam ABC you are given the lengths in metres and
forces in kN.

Questions:
a. Determine the support reaction at A.
b. Determine the support reaction at B.
c. Determine the support reaction at C.
d. Determine the support moment at B.
e. Determine the shear force directly to the left of B.
f. Determine the shear force directly to the right of B.

15.10: 1–10 As problem 15.9, but replace the concentrated loads by a
uniformly distributed load of 10 kN/m over the entire length of the beam.
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15.11 The hinged beam shown is subject to a uniformly distributed load of
18 kN/m.

Questions:
a. Determine the shear force at E.
b. Determine the bending moment at E.
c. Determine the shear force at G.
d. Determine the bending moment at G.
e. Determine the shear force at H.
f. Determine the bending moment at H.
g. Determine the shear force at K.
h. Determine the bending moment at K.



16Influence Lines

In many structures, the support reactions and section forces depend not
only on the magnitudes of the loads, but also on their placement. This is
particularly true for bridges, where an important part of the load consists of

If we want to choose the dimensions of a structural element to check it for
strength and rigidity, it is important to know the location at which the load
or set of loads generate the most severe effects. Important tools for finding
the most unfavourable placement of loads are the so-called influence lines.
Influence lines are graphic representations of the magnitude of a support
reaction or section force at a fixed location due to a single point load with
variable position.1

In this chapter we look at how to determine influence lines for forces in
statically determinate structures, and how to use them.

There are two methods for determining influence lines: directly from the
equilibrium equations (Section 16.1), or by means of virtual work (Sec-
tion 16.2). We will demonstrate both methods by means of examples.

1 There are also influence lines for displacements and rotations. We do not cover
those here.

moving vehicles. Other examples are assembly halls with crane runways or
warehouses in which the placement of loads can change.
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Figure 16.1 (a) Simply supported beam with (b) the influence line
for the vertical support reaction at A and (c) the support reaction Av
due to a set of loads.

Finally, we will show how to use influence lines to determine the placement
of loads to have the maximum effect (Section 16.3).

16.1 Influence lines using equilibrium equations

Here, for a simply supported beam, we will derive the influence lines for a
support reaction, bending moment and shear force directly from the equi-
librium equations. As you will notice, this method will become already
laborious for a hinged beam.

16.1.1 Simply supported beam

Example 1 – Influence line for a support reaction
The principle of influence lines is discussed on the basis of the simply
supported beam AB in Figure 16.1a. The beam is loaded by a moving point
load F .

Question:
How does the vertical support reaction Av at A change as the point load
moves from A to B?

Solution:
Assume Av acts in the direction indicated in Figure 16.1a. If the point load
is placed at a distance x from A, it follows from the moment equilibrium
about B that

Av = F
� − x

�
.

If the position x of the point load is assumed to be variable, and we draw
Av/F as a function of x (see Figure 16.1b), we obtain the influence line for
the support reaction Av. It is the convention to plot the positive values of
Av/F in the (positive) direction of F .
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Figure 16.2 (a) Simply supported beam with (b) the isolated
left-hand segment and (c) the influence line for the bending moment
at C.

For influence lines, one does not plot Av, but rather Av/F as a function of
the position of the point load. We also can interpret the influence line as the
variation of the support reaction due to a moving unit load (e.g. F = 1 kN).

The magnitude of the support reaction, or rather the influence Av/F , can
be read from the influence line at the position of the load. In this way, using
the influence line, the support reaction can be quickly derived if the beam
is subject to a set of loads. For example, for the case in Figure 16.1c:

Av = +0.75 × (10 kN) + 0.5 × (20 kN) + 0.25 × (30 kN) = +25 kN.

From the influence line we can see that at the position of the force of 10 kN
the influence is 0.75, or in other words: the contribution of this force to Av
is:

+0.75 × (10 kN) = +7.5 kN.

The total support reaction is found by superposing all the individual con-
tributions.

Example 2 – Influence line for a bending moment
We will now determine the bending moment MC at midspan C for the beam
in Example 1 (see Figure 16.2a).

Solution:
Assume the bending moment MC is positive if it causes tension at C at the
underside of the beam. The magnitude of MC follows from the moment
equilibrium of AC (or CB) about C. It should be remembered that it makes
a difference in the equilibrium equations whether the load is to the left or
right of the cross-section under consideration.
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Figure 16.3 (a) Simply supported beam with (b) the positive di-
rection assumed for shear force VC and (c) the influence line for the
shear force at C.

If the load is to the left of C (0 ≤ x < 1
2�) then the bending moment at C

equals (see Figure 16.2b)

MC = +F
� − x

�
· 1

2� − F ·
(

1
2� − x

)
= + 1

2Fx.

If the load is to the right of C ( 1
2�<x ≤ �) then the bending moment at C

equals

MC = +F
� − x

�
· 1

2� = + 1
2F(� − x).

The variation of MC/F as a function of x, as shown graphically in Fig-
ure 16.2c, is referred to as the influence line for the bending moment at
C.

The influence line has its maximum in the middle. This means that the
bending moment at C is a maximum when the point load F is at midspan:

MC =
(
+ 1

4�
)

× F = + 1
4F�.

Example 3 – Influence line for a shear force
For the same beam we will now determine the influence line for the shear
force VC at C (see Figure 16.3a).

Solution:
The direction assumed for VC is shown in Figure 16.3b. The shear force VC
can be found from the vertical force equilibrium of AC (or CB).

If the load is to the left of C ( 1
2�<x ≤ �) the equilibrium of AC gives

VC = Av − F = F
� − x

�
− F = −F

x

�
.
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Figure 16.4 (a) Hinged beam with influence lines for (b) the
vertical support reaction at B, (c) the bending moment at E, (d)
the bending moment at G and (e) the shear force at G; (f) positive
directions for bending moment and shear force.

If the load is to the right of C ( 1
2�<x ≤ �) then the shear force at C is equal

to the support reaction Av at A:

VC = Av = F
� − x

�
.

This determines the influence line for the shear force at C. The influence
line is shown in Figure 16.3c.

If the point load is to the left of C the influence line is negative. The shear
force acts in the direction opposite to the one assumed in Figure 16.3b.

The shear force at C is a maximum if the point load F is directly to the left
or right of C:

VC = (±0.5) × F = ± 1
2F.

A change of sign occurs at C.

16.1.2 Hinged beam

Figure 16.4 shows the influence lines for a hinged beam. The positive di-
rection of the support reaction Bv at B is shown in Figure 16.4a. For the
bending moment and the shear force, the positive directions according to
the xz coordinate system are given in Figure 16.4f.

We do not address the calculation of each of these influence lines in detail
here. They can be found by, for various positions of the point load, using
the equilibrium equations to calculate the magnitude of the various quanti-
ties. In this case, that leads to a fair amount of work as there are so many
positions of the load to be considered.

It is preferable to investigate a number of characteristic positions of the
point load (e.g. just above the support loads, or at the hinges) and to re-
member that the influence line between certain points has to be linear.
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Figure 16.5 (a) Beam with (b) mechanism for determining the
vertical support reaction at A, (c) virtual displacement for which
Av performs negative work and (d) the influence line for Av.

In the next section we introduce an alternative method, based on virtual
work.

16.2 Influence lines using virtual work

In Chapter 15 we showed that the virtual work equation offers an alternative
formulation of equilibrium equations. When determining influence lines,
we can replace the equilibrium equations by a single virtual work equation.

The alternative method, based on virtual work, provides the shape of the
influence line more quickly with less calculation. It is necessary, however,
to take three rules into account. We describe the method, and the rules,
below.

16.2.1 Simply supported beam

Example 1 – Influence line for a support reaction
To determine the influence line for the vertical support reaction Av at A
using virtual work, we convert the beam in Figure 16.5a into a mechanism
by removing the roller support at A. The unknown support reaction Av is
applied to the mechanism as a load (see Figure 16.5b).

We now apply a virtual displacement to the mechanism by displacing A
over a distance δa so that Av performs negative work (first rule) for the
directions assumed in Figure 16.5b (see Figure 16.5c). Assume that the
point of application of F undergoes a virtual displacement δw and that δw

is positive in the direction of F (second rule).

For equilibrium, the virtual work is zero:

δA = −Avδa + Fδw = 0

so that
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Figure 16.6 (a) Beam with (b) mechanism for determining the
bending moment at D.

Av = F
δw

δa
or

Av

F
= δw

δa
.

The virtual displacement δw (positive in the direction of F ) is dependent
on the position of the point load. It turns out that Av/F , the ordinate of the
influence line, is proportional to the virtual displacement δw. This means
that on a certain scale (δa) the deflection line of the mechanism due to
virtual displacement is identical with the influence line we are looking
for. The influence line for Av is shown in Figure 16.5d. The value of the
ordinate at A is equal to 1 as there δw = δa.

The fact that the influence line and the deflection line of the mechanism
are the same shape means that the signs of both quantities δw and δa are
the same. This is a consequence of the fact that the virtual displacement
has been chosen in such a way that the quantity we are looking for (Av)
performs negative work (rule 1).

If, for the scale factor δa, we chose a displacement that is equal to the
unit of length – this is known as a unit displacement – (third rule), then the
influence line is identical with the deflection line of the mechanism.

Conclusion: If the force sought performs negative work (rule 1) over a unit
displacement (rule 3), then the influence line is equal to the deflection line
of the mechanism. The influence line is positive where the displacement is
in the direction of F (segment AB) and negative where the displacement is
in the opposite direction of F (segment BC) (rule 2).

Example 2 – Influence line for a bending moment
The second example relates to the influence line for the bending moment at
cross-section D of the beam in Figure 16.6a.

Again we convert the beam into a mechanism by introducing a hinge at
D. The action of the bending moment at D is replaced by the pair of mo-
ments MD that are applied to the mechanism at either side of the hinge (see
Figure 16.6b). The direction of MD can be chosen arbitrarily.
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Figure 16.6 (a) Beam with (b) mechanism for determining the
bending moment at D. (c) Virtual displacement for which MD
performs negative work and (d) the influence line for MD.

We apply a virtual displacement to the mechanism by rotating beam seg-
ments AD and DBC at D through an angle δθ with respect to one another,
but in such a way that MD performs negative work (rule 1) (see Fig-
ure 16.6c). Assume that load F is displaced by a distance δw, and that
δw is positive in the direction of F (rule 2).

For equilibrium, the virtual work is zero:

−MDδθ + Fδw = 0

so that

MD

F
= δw

δθ
.

The bending moment MD is proportional to the displacement δw. The in-
fluence line for MD therefore has the same shape as the deflection line of
the mechanism. The scale factor is the angle δθ .

For a virtual displacement, δw and δθ are infinitesimally small, but their
ratio is finite. The influence line can therefore be drawn on an enlarged
scale. δθ can be defined as (see also Section 15.4.2):

δθ = δa

�
.

If we select δa equal to �, it is said that the angle δθ has the orthogonal unit
value – this is also referred to as a unit rotation (rule 3). In that case the
influence line is exactly the same as the deflection line of the mechanism
(see Figure 16.6d).

Conclusion: If we apply a unit rotation to the hinge, so that the bending
moment performs negative work, then the influence line for that bending
moment is the same as the deflection line of the mechanism.
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Figure 16.7 The construction of an angle δθ with orthogonal unit
value.

Figure 16.8 (a) Beam with (b) mechanism for determining the
shear force at D, (c) virtual displacement for which VD performs
negative work.

Arcs can be used to construct an orthogonal unit angle as shown in Fig-
ure 16.7. In that figure, two arcs are drawn, but one arc is actually sufficient,
as appears from the plot of the influence line in Figure 16.6d.

Example 3 – Influence line for a shear force
The third example relates to the influence line for the shear force in cross-
section D of the beam in Figure 16.8a.

The procedure is identical to that in the previous examples. The beam is
transformed into a mechanism by introducing a slide joint or shear force
hinge at D and replacing the action of the shear force at D by the pair of
forces VD that are applied on the mechanism at either side of the slide joint
(see Figure 16.8b). The direction of VD can be chosen arbitrarily.

Subsequently, the mechanism is subjected to a virtual displacement by dis-
placing segments AD and DBC at D over a distance δu with respect to one
another, but in such a way that VD performs negative work (rule 1) (see
Figure 16.8c). In the deformed mechanism, beam segments AD and DBC
remain parallel to one another.

Assume load F moves over a distance δw, and δw is positive in the direc-
tion of F (rule 2).

For equilibrium, the virtual work is zero:

−VDδu + δw = 0

so that

VD

F
= δw

δu
.

The shear force VD is proportional to the deflection δw. The influence line
for the shear force at D is the same shape as the deflection line of the
deformed mechanism. The scale factor is the displacement δu.
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Figure 16.8 (a) Beam with (b) mechanism for determining the
shear force at D, (c) virtual displacement for which VD performs
negative work. (d) The influence line for VD.

If we choose δu as a unit length displacement (rule 3), then the influence
line is identical to the deflection line of the mechanism (see Figure 16.8d).

Conclusion: If the shear force performs negative work over a unit dis-
placement, then the influence line is the same as the deflection line of the
mechanism. Where the displacement is in the direction of F (segments AD
and BC), the influence line is positive and the shear force acts in the as-
sumed direction. The influence line is negative where the displacement is in
the direction opposite to that of F (segment DB); here the shear force acts
opposite to the direction assumed.

16.2.2 General procedure for the method of virtual work

Determining the influence line for a force quantity1 using the method of
virtual work requires the same procedure each time:
• Convert the structure into a mechanism by creating a joint (hinge) that

cannot transfer the force quantity in question.
• Allow the force quantity to act on the mechanism as a load.
• Apply a virtual displacement to the mechanism such that the force

quantity performs negative work.
• Select a unit displacement or unit rotation for the displacement or ro-

tation respectively over which the force performs work. The deflection
line of the deformed mechanism is the influence line.

• The force quantity in question is positive when the displacement is in
the direction of the force quantity and negative when it is opposite to
the direction of the force quantity.

1 Generalisation for support reactions and section forces.
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Figure 16.9 (a) Hinged beam with (b) mechanism for determining
fixed-end moment MD at D and (c) the influence line for MD.

16.2.3 Hinged beam

On the basis of a few examples relating to hinged beams, we demonstrate
that the method of virtual work provides a quick and easy way of plotting
influence lines.

Example 1 – Influence line for a fixed-end moment
The hinged beam in Figure 16.9a has hinges at S1 and S2, and is fixed at D.
We will determine the influence line for the fixed-end moment MD at D.

The influence line is found by changing the fixed-end support at D into
a hinged support, and there applying a unit rotation such that MD per-
forms negative work.1 The deformed mechanism in Figure 16.9b is then
the influence line in Figure 16.9c.

The influence line shows that the fixed-end moment for the direction as-
sumed for MD in Figure 16.9b has a maximum positive value when load F

is at S1:

MD = +2Fa.

The most negative fixed-end moment occurs when the load is at A, the end
of the overhang:

MD = −4Fa.

The zeros in the influence lines allow us to check: the fixed-end moment is
always zero when the load is placed at one of the supports B, C or D.

1 Note: the unit rotation is applied at D and not at S2!
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Figure 16.10 (a) Hinged beam with (b) the influence line for the
shear force directly to the right of C and (c) the influence line for
the shear force at S1.

Example 2 – Influence line for shear forces
The beam from Example 1 is again shown in Figure 16.10a.

Figure 16.10b shows the influence line for the shear force V
right
C directly to

the right of C. Figure 16.10c shows the influence line for the shear force
VS1 at hinge S1.

The influence lines are found by introducing a slide joint directly to the
right of C, and at S1, respectively, and there applying a unit displacement
such that the shear force performs negative work. The deformed mechanism
is then the influence line we are looking for.

The (assumed) positive direction of the shear force is shown separately in
the figures.

The mechanisms are not shown separately. However, a ① shows where in
the mechanism a unit displacement was applied.

In the influence line for V
right
C (Figure 16.10b) the paths through S1C and

CS2 are parallel. After all, in the mechanism, segments S1C and CS2 can
displace only with respect to one another, and cannot rotate with respect to
one another.

In the influence line for VS1 (Figure 16.10c) the paths through ABS1 and
S1C are not parallel, as in accordance with the mechanism the segments
ABS1 and S1C can rotate with respect to one another due to the hinge at S1.

Example 3 – Various influence lines
Figures 16.11b to 16.11e show various influence lines for the hinged
beam in Figure 16.11a. The positive direction of the support reaction Bv
at B is shown in Figure 16.11a. For the bending moment and the shear
force, the positive directions are related to the xz coordinate system in
Figure 16.11f.

These influence lines are also shown in Section 16.1.2. There, we did not
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Figure 16.11 (a) Hinged beam with influence lines for (b) the
vertical support reaction at B, (c) the bending moment at E, (d)
the bending moment at G and (e) the shear force at G; (f) positive
directions for bending moment and shear force.

address the amount of arithmetic needed for a direct calculation from the
equilibrium equation.

The method of virtual work gives the same result with far less effort. If the
correct mechanism is selected, and the virtual displacement is applied in
such a way that the required quantity performs negative work over a unit
displacement or unit rotation, the deformed mechanism is the influence line
we are looking for.

The mechanisms are not shown separately. However, a ① shows where in
the mechanism a unit displacement or unit rotation was applied.

It is recommended to check the influence line by calculating the value and
the sign at a few relevant points from the equilibrium equations.

16.3 Working with influence lines

We have found that the method of virtual work provides the easiest way to
find influence lines.

In this section we address working with influence lines, and we do not
discuss how they are found. Using a number of examples, we show how
to determine the force quantity in question (support reaction, section force)
using an influence line for a set of loads and a uniformly distributed load.

Influence lines are often used for determining the most unfavourable place-
ment of the load, the placement where the load has the most severe effect
on the quantity in question. We also provide a number of examples of this.

16.3.1 Calculating forces using a given influence line

Example 1 – Set of loads
From an influence line, we can read off the influence of a point load with a
variable position on a certain quantity (support reaction, section force) at a
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Figure 16.12 (a) Hinged beam with set of loads and the influence
lines for (b) the bending moment at D and (c) the shear force at D.

fixed location. We can also say that the influence line gives the variation of
a certain quantity due to a movable unit load. The value of the quantity is
found at the position of the point load.

Figure 16.12 shows a hinged beam with the influence lines for the bending
moment and the shear force at D. The positive directions of MD and VD are
shown with the influence lines.

The hinged beam is loaded in field BC by a set of forces. The length of
the beam, and the positions and magnitudes of the forces are shown in the
figure. For each of the point loads, the influence line shows the associated
influence quantity at the position of the load. The influence quantity for
the bending moment (MD/F ) has the dimension of length. Figure 16.12b
therefore includes the values in metres. The influence quantity for the shear
force (VD/F ) is dimensionless.

The influence lines give the following for the bending moment:

MD = −
(

5
4 m

)
× (15 kN) −

(
5
6 m)

)
× (30 kN) −

(
5

12 m
)

× (45 kN)

= −62.5 kNm

and for the shear force

VD = − 1
4 × (15 kN) − 1

6 × (30 kN) − 1
12 × (45 kN) = −12.5 kN.

The correctness of these values can be checked by considering the equilib-
rium equations.

Example 2 – Uniformly distributed load
In Figure 16.13a, the beam in the previous example is loaded along its
entire length by a uniformly distributed load q = 80 kN/m. Here too we
will determine the bending moment and the shear force at D.
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Figure 16.13 (a) Hinged beam with uniformly distributed full load
and the influence lines for (b) the bending moment at D and (c) the
shear force at D.

First we calculate the bending moment. The influence quantity MD/F ,
which is a function of x, is hereafter for simplicity denoted by f (x). The
contribution dMD to the bending moment MD of the distributed load q over
a small length dx is found by multiplying the small resulting force q dx by
the associated value of f (x) of the influence line:

dMD = f (x) · q dx.

The bending moment at D due to the distributed load between x = x1 and
x = x2 is found by summing up all the contributions, or in other words, by
integrating:

MD =
∫ x2

x1

f (x)q dx.

Since the distributed load is constant here, q can be taken outside the
integration symbol:

MD = q

∫ x2

x1

f (x) dx.

The integral represents the area of the influence line between x1 and x2 (see
Figure 16.13b).

The bending moment due to a uniformly distributed load q is therefore
equal to the load q , multiplied by the area of the influence line for the part
where the load is acting. The signs have to be taken into account when
determining the magnitude of the areas.

The bending moment at D due to the uniformly distributed full load is found
from the influence line in Figure 16.13b:
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Figure 16.14 Beam with the influence line for the bending
moment at C, with a set of loads that moves over a distance �x.

MD =
{
+ 1

2 × (10 m) ×
(

5
2 m

)
− 1

2 × (10 m) ×
(

5
4 m

)}
× (80 kN/m)

= 500 kNm.

In the same way, the shear force at D is found from the area of the influence
line in Figure 16.13c. Since it is immediately clear that the total area of the
influence line over field AB is zero, we have only to determine the area over
field BC:

VD = − 1
2 × (10 m) × 1

4 × (80 kN/m) = −100 kN.

16.3.2 Most unfavourable placements of loads

If the load consists of a single point load, the influence line shows directly
where the force has the maximum effect. Also for a uniformly distributed
load the most unfavourable placement is rather easy to find. With a set of
loads, however, this is no longer the case, and several positions will have to
be investigated.

Here we look at a case in which we can rather easily calculate the most
unfavourable position for a set of loads. The second example relates to a
uniformly distributed load.

Figure 16.14 shows the influence line for the bending moment at C for beam
AB. The maximum value is m. The beam is subject to a set of loads. Part of
the loads is in field AC; another part is in field CB. If the set of loads moves
over a distance �x, the ordinate of the influence line at the position of the
loads in field AC increases by

�x tan α = �x
m

a
.

Therefore, the bending moment at C increases by
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�MC = ∑
AC

Fi · �x
m

a
= R(AC) m

a
�x.

R(AC) is the resultant of all the loads in field AC.

At the same time, the ordinate of the influence line at the position of each
of the loads in field CB decreases by

�x tan β = �x
m

b
.

This changes the bending moment at C by

�MC = −∑
CB

Fi · �x
m

b
= −R(CB) m

b
�x.

R(CB) is the resultant of all the loads in field CB.

Due to the displacement of the set of loads by a distance �x the total
increase of the bending moment at C is

�MC =
(

R(AC)

a
− R(CB)

b

)
· m�x = (q(AC) − q(CB)) · m�x.

Here, q(AC) = R(AC)/a and q(CB) = R(CB)/b can be seen as the average
loads in fields AC and CB respectively. As long as q(AC) is larger than q(CB)

the bending moment increases if the set of loads moves in the positive x

direction.

If one of the loads passes the location C, the average field loads change.
The bending moment MC is a maximum for that load at C for which
(q(AC) − q(CB)) is zero or changes sign.
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Figure 16.15 (a) Beam with a set of loads; (b) influence line for
the bending moment at C; (c) to (g) positions of the set of loads to
be investigated; (h) most unfavourable position of the set of loads.

Example 1 – Most unfavourable placement of a set of loads
The beam in Figure 16.15a carries a moving set of loads consisting of four
forces of 60 kN for which the mutual distances are shown in the figure.
Figure 16.15b shows the influence line for the bending moment at C. We
will calculate the maximum bending moment at C due to the set of loads.

Solution:
The maximum bending moment at C occurs when the placement of the set
of loads is such that the average loads of fields AC and CB are zero or
change sign. Figures 16.15c to 16.15g show five consecutive positions by
moving a load from field AC to BC. The average field loads are shown in
Table 16.1 for each of the positions.

For the change from position (e) to position (f) in Figure 16.15, a change
in sign occurs in (q(AC) − q(CB)). Figure 16.15h therefore gives the most
unfavourable position of the set of loads in relation to the bending moment
at C.

Table 16.1

Position load q(AC) (kN/m) q(CB) kN/m) q(AC) − q(CB)

Figure 16.15c 4×60
6 = 40 0 > 0

Figure 16.15d 3×60
6 = 30 1×60

12 = 5 > 0

Figure 16.15e 2×60
6 = 20 2×60

12 = 10 > 0

Figure 16.15f 1×60
6 = 10 3×60

12 = 15 < 0

Figure 16.15g 0 4×60
12 = 20 < 0
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Figure 16.16 (a) Bridge modelled as a hinged beam with uni-
formly distributed movable load; (b) influence line for the shear
force at E; (c) the load that causes the maximum positive shear
force; (d) the load that causes the maximum negative shear force;
(e) for railway bridges, trains are an uninterrupted load.

The maximum bending moment is

MC =
(

8
3 + 4 44

12 + 40
12

)
(m) × (60 kN) = 820 kNm.

The first term between brackets includes the influence values to be found
from the influence line at the position of each of the point loads.

Example 2 – Most unfavourable placement of a uniformly distributed
load
The hinged beam in Figure 16.16a is a model of a bridge. The traffic load
on the bridge, consisting of a large number of vehicles in a line, is modelled
as a uniformly distributed moving load of 90 kN/m. Figure 16.16b shows
the influence line for the shear force at E. We will determine the maximum
shear force at E in an absolute sense.

Solution:
Since gaps may appear in traffic jams, the uniformly distributed load is
sometimes interrupted. The maximum positive shear force occurs when the
uniformly distributed load is present in all fields where the influence line is
positive as indicated in Figure 16.16c. This gives

VE =
{

1
2 × (30 m) ×

(
+ 1

3

)
+ 1

2 × (20 m) ×
(
+ 2

3

)}
× (90 kN/m)

= 1050 kN.

The maximum negative shear force is found for the load in Figure 16.16d:

VE =
{

1
2 × (10 m) ×

(
− 1

3

)
+ 1

2 × (30 m) ×
(
− 1

3

)}
× (90 kN/m)

= −600 kN.

The maximum shear force in an absolute sense is therefore 1050 kN and
occurs with the load shown in Figure 16.16c.
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The fact that the positive shear force is predominant is clear from the in-
fluence line: the positive area under the influence line is larger than the
negative area.

In contrast to bridges for standard traffic, loads for trains on railway bridges
are uninterrupted loads, that may consist partly of empty carriages, for
which one then assumes a lesser load. For a railway bridge, the maximum
shear force at E in an absolute sense occurs for the load given in Fig-
ure 16.16e. Assume the uniformly distributed load is again 90 kN/m, but
now with a minimum of 15 kN/m for the empty carriages. The maximum
shear force is then

VE =
{

1
2 × (30 m) ×

(
+ 1

3

)
+ 1

2 × (20 m) ×
(
+ 2

3

)}
× (90 kN/m) +

+ 1
2 × (10 m) ×

(
− 1

3

)
× (15 kN/m)

= 1025 kN.

It is up to the reader to check that neither a distributed load over the entire
length AD nor a distributed load over BD are predominant.

Figure 16.16 (a) Bridge modelled as a hinged beam with uni-
formly distributed movable load; (b) influence line for the shear
force at E; (c) the load that causes the maximum positive shear
force; (d) the load that causes the maximum negative shear force;
(e) for railway bridges, trains are an uninterrupted load.
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16.4 Problems

General comment: If the influence line of a quantity X is requested, the
positive direction of this quantity must be stated beforehand. You must then
indicate the corresponding direction of X on the influence line by means of
plus and minus signs (or deformation symbols).

Influence lines using virtual work (Sections 16.2 and 16.3)

16.1: 1–5 A point load F = 20 kN and a uniformly distributed load q = 5
kN/m can move across a beam. The same questions are asked for the
following five quantities X:
1. X = bending moment at B.
2. X = bending moment at C.
3. X = shear force directly to the left of B.
4. X = shear force directly to the right of B.
5. X = shear force at C.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
d. Using the influence line, determine the value of X when the uniformly

distributed load q acts only on CD.

e. Where must the uniformly distributed load q be placed so that X is a
maximum? Determine this maximum value.

f. Where must the uniformly distributed load q be placed so that X is a
minimum? Determine this minimum value.

16.2: 1–6 A point load F = 30 kN and a uniformly distributed load q = 6
kN/m can move over the hinged cantilever beam. The same questions are
asked for six different quantities X:
1. X = vertical support reaction at A.
2. X = vertical support reaction at B.
3. X = shear force directly to the left of B.
4. X = shear force directly to the right of B.
5. X = bending moment in the middle of AB.
6. X = bending moment at B.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
d. Using the influence line, determine the value of X when the uniformly

distributed load q acts over the entire length of the beam.
e. Where must the uniformly distributed load q be placed so that X is a

maximum? Determine this maximum value.
f. Where must the uniformly distributed load q be placed so that X is a

minimum? Determine this minimum value.
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16.3: 1–9 A point load F , a set of loads F1; F2; F3 and a uniformly dis-
tributed load q can move across the hinged beam in Figure 16.3. Use
F = 40 kN, F1 = 20 kN, F2 = 50 kN, F3 = 30 kN and q = 8 kN/m. The
same questions are asked for nine different quantities X:
1. X = vertical support reaction at B.
2. X = vertical support reaction at C.
3. X = vertical support reaction at D.
4. X = bending moment at B.
5. X = bending moment at C.
6. X = bending moment at E.
7. X = shear force directly to the left of C.
8. X = shear force directly to the right of C.
9. X = shear force at S2.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
d. Using the influence line, determine the value of X due to the set of

loads when F1 is at S1.
e. Using the influence line, determine the value of X due to the set of

loads when F2 is at S2.
f. Using the influence line, determine the value of X when the uniformly

distributed load q acts over the entire length of the beam.

g. Where must the uniformly distributed load q be placed so that X is a
maximum? Determine this maximum value.

h. Where must the uniformly distributed load q be placed so that X is a
minimum? Determine this minimum value.

16.4: 1–10 A point load F , a set of loads F1; F2; F3 and a uniformly
distributed load q can move across the hinged beam in Figure 16.4. Use
F = F1 = F2 = F3 = 200 kN and q = 24 kN/m. The same questions are
asked for 10 different quantities X:
1. X = vertical support reaction at A.
2. X = vertical support reaction at B.
3. X = bending moment at B.
4. X = bending moment at E.
5. X = bending moment at G.
6. X = shear force at S1.
7. X = shear force at E.
8. X = shear force at G.
9. X = shear force directly to the left of C.
10. X = shear force directly to the right of C.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
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d. Using the influence line, determine the value of X due to the set of
loads when F1 is at S1.

e. Using the influence line, determine the value of X due to the set of
loads when F2 is at E.

f. Using the influence line, determine the value of X when the uniformly
distributed load q acts only on BD.

g. Using the influence line, determine the value of X when the uniformly
distributed load q acts over the entire length of the beam.

h. Where must the uniformly distributed load q be placed so that X is a
maximum? Determine this maximum value.

i. Where must the uniformly distributed load q be placed so that X is a
minimum? Determine this minimum value.

16.5: 1–18 A point load F , a set of loads F1; F2; F3 and a uniformly
distributed load q can move across the hinged beam in Figure 16.5. Use
F = 80 kN, F1 = 30 kN, F2 = 50 kN, F3 = 20 kN and q = 18 kN/m. The
same questions are asked for 18 different quantities X:
1. X = vertical support reaction at A.
2. X = vertical support reaction at B.
3. X = vertical support reaction at C.
4. X = vertical support reaction at D.
5. X = shear force at E.
6. X = shear force at G.
7. X = shear force at S1.
8. X = shear force at H.
9. X = shear force directly to the left of C.
10. X = shear force directly to the right of C.
11. X = shear force at S2.
12. X = shear force at K.
13. X = bending moment at B.
14. X = bending moment at C.
15. X = bending moment at E.

16. X = bending moment at G.
17. X = bending moment at H.
18. X = bending moment at K.

Questions:
a. Draw the influence line for X.
b. Where must the load F be placed so that X is a maximum? Determine

this maximum value.
c. Where must the load F be placed so that X is a minimum? Determine

this minimum value.
d. Using the influence line, determine the value of X due to the set of

loads when F1 is at E.
e. Using the influence line, determine the value of X due to the set of

loads when F2 is at G.
f. Using the influence line, determine the value of X when the uniformly

distributed load q acts over the entire length of the beam.
g. Using the influence line, determine the value of due to a uniformly

distributed load q between S1 and S2 and between K and L.
h. Where must the uniformly distributed load q be placed so that X is a

maximum? Determine this maximum value.
i. Where must the uniformly distributed load q be placed so that X is a

minimum? Determine this minimum value.
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16.6: 1–6 Given the same simply supported beam and six different sets of
loads.

Questions:
a. Determine the influence line for the support reaction at A.
b. Determine the maximum value of the support reaction at A due to the

set of loads.
c. Determine the influence line for bending moment at C.
d. Determine the maximum value of the bending moment at C due to the

set of loads.
e. Determine the influence line for the shear force at C.
f. Determine the maximum value for the shear force at C due to the set of

loads.

16.7: 1–6 Given the same simply supported beam and six different sets of
loads. Answer the same questions as in problem 16.6.
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A

abrupt change in slope of the V and M diagram 472
active earth pressure 294
active grain pressure 285
air-supported hall 248
all-round pressure 248, 254
anchor chain 667
angle of internal friction 292
applied mechanics 6
arch 114, 680, 687
Archimedes 266
Archimedes’ Law 266
area of the V diagram 478
area of the load diagram 478
associative property 17
average earth pressure 233

B

Baltimore truss 362
bar 114
bar axis 114

bar support 112, 120
basic laws 18
basic unit 9
beam 114

on the ground 571
on three bar supports 550
with parabolic distributed load 547
with triangluar load 545

beam grillage 128
Belgian truss 325
bending 435, 436
bending moment 74, 387, 390, 397, 401, 732

My , acting in the xy plane 400
Mz, acting in the xz plane 400

bending moment diagram 401, 406, 461
relationship with cable shapes 489, 637

bending symbol 387, 417
bends in V and M diagrams 482
bent and compound bar type structures 495
block supported on three bars 155
boiler formula 250, 253
bottom chord member 324
boundary condition 437, 452
bracing member 324
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brickwork 687
bridge

for standard traffic 762
railway 762
truss 323, 326
bridge with lower deck 326, 687
bridge with upper deck 326, 687

bulkhead 562

C

cable 114, 489, 631, 632
replaced by a bar structure 681
subject to its dead weight; catenary 655
with compression bar 638, 680
with distributed load 647
with point load 633
with uniformly distributed load; parabola 650

cable element 648
cable equation 631, 647, 649
cable shape 633, 638
canopy truss 325
cantilever beam 451, 486
Cartesian coordinate system 12
catenary 631, 633
centre

normal 389
of force 389, 631, 674
of pressure 675
of rotation 131, 328
of tension 675
shear 389

centroid 221

change in sign (indicated by prime) 235
characteristic load 209, 217
characteristic strength 217
characteristic value 217
chord member 324
circular cylindrical slide 258
closed force polygon 35
codes 205, 210
coefficient Ka for active earth pressure 295, 307
coefficient Kp for passive earth pressure 302, 308
cohesion 292
cohesive

multiply-cohesive 144
singly-cohesive 143

collar beam 177
collision phenomenon 207
column 114
commutative property 17
compound and associated structures 586
compound structure 136
compound truss 319, 328, 331
compounding coplanar forces analytically 23
compounding coplanar forces graphically 25
compounding forces and couples 64, 88
compounding forces in space 33
compression member 339
concrete beam with a parabolic tendon 670
continuous beam 130
continuous member 363
core of the cross-section 689
corkscrew rule 81
Coulomb 300
couple 512
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couple arm 58
cross beam 322, 582
cross-section 388, 389, 399
cross-sectional stresses 393
cross-section with rotational symmetry 399
curved bottom chord 326
curved top chord 326

D

damping 208
dead load 210
dead weight 210, 225, 578
deck 323, 326, 687
deformation symbol 387, 416

for bending moments 418
for shear forces 418

degree of freedom 112, 122, 137
degree of static indeterminacy 138
derived unit 9
Descartes 12
design value for strength 217
design value of the load 218
diagonal members 324
diagonals 324
differential equations for equilibrium 431, 432

bending 435
extension 434

dimension 8, 10
dimensionally stable structure 131
dimensionally unstable structure 136
disc 115
displacement method 320

distributed load 205, 219
dynamic load 205, 207
dynamics 4

E

earth pressure 285, 288
earthquake 207
eccentric axial forces 514
end condition 437, 440
English truss 325
equilibrium

of a particle 35
of a rigid body in a plane 71
of a rigid body in space 93
particular cases 76

equilibrium equations 73, 93
equilibrium equation for bending 435
equilibrium equation for extension 434
Euclid 12
extension 434, 436
extreme limits for the horizontal earth pressure 294
extreme values of V and M 467

F

failure state 214
falling diagonals 324, 326
field moment 593
fields 436, 451, 582
Fink truss 325
first-order variation 724
fixed-end moment 125, 488, 731
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fixed joint 116, 118
fixed support 112, 125
fixed vector 13
flat slide planes 300
flexible cable 631
floating barge 559
floating tunnel segment 561
floor 115
fluid mechanics 4
footing 233
force equilibrium 72, 78, 79, 93, 161
force flow in a member 388
force polygon 25, 56
force transfer 387
force vector 82
forces and moments in space 80
forces in space 30
formal notation 15
frame 128, 129, 140, 602, 604
free body diagram 117
free support 125
free vector 13
Frei Otto 250, 693
frequency of the loading 209
fully hinged joint 141

G

gap 733
garden gate 327
gas mechanics 4
gas pressure 245, 248, 269
Gaudi 693

Gauss 215
Gauss curve 215
general definition of section forces 388, 395
General Moment Theorem 64
general procedure for the method of virtual work 752
generalised force 122
generalised motion 121
Gerber 162
Gerber beam 162
girder 114
gradient of the bending moment diagram 414
grain pressure 286, 291
grain skeleton 285, 286
graphical check

of the force equilibrium 79, 161
of the moment equilibrium 79, 161

graphical composition
of non-parallel forces 55
of parallel forces 56

gravitational acceleration 21
gravitational field strength 22
gusset plate 322

H

half-parabolic truss beam 326
hammer beam 177
Haringvliet dam 207
Hertz 209
hinged beam 162
hinged joint 112, 116, 117

in a truss 321, 322
fully 141, 537



Index 771

partially 141, 537
hinged support 112, 124
horizontal earth pressure 292
Howe truss 325
hydrostatic pressure 245, 255, 269
hyperstatic 135

I

immovable 130, 131
immovable structure 112
impact factor 212
impact load 207
indirectly loaded beam 582
inertia 18
influence line 743

for a bending moment 745, 749
for a fixed-end moment 753
for a hinged beam 753
for a shear force 746, 751, 754
for a support reaction 744, 748
using equilibrium equation 744
using virtual work 748
working with a 755

instantaneous movement 54
interaction force 112, 116, 117, 153, 387, 388, 390
internal degree of freedom 332
International Units System (Système International d’Unité) 9
isolating a body 117
isotropic state of stress 245, 256

J

joining condition 437, 440
joining force 387, 388
joint 111, 321

fixed 116, 119
fully hinged 141, 537
hinged 116, 117
partially hinged 141, 537
rigid 116, 119

joint force 116
joint label as sub-index 327
joist 114

K

kinematically admissible virtual displacement 713, 716, 725
kinematically (in)determinate 112, 130, 131, 134, 136
kinematically/statically (in)determinate supported

compound structure 136
rigid structure 131, 132

kinematic/static (in)determinacy of trusses 328, 332
kinematic/static (in)determinate structure 130
K-truss 346

L

labelling joints 327
labelling members 327
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law
of action and reaction 18, 20
of inertia 18
of motion 18, 19
of universal gravitation 21

lean-to subject to dead weight, wind and snow loads 573
length 9
light mast 154
limit state 214
line

of action 13
of force 631, 675
of pressure 675
of tension 675

line element 111, 113, 115, 388
line load 205, 210
line of action figure 56
linearly distributed load 219
lintel 545
live load 210

bridges 212
buildings 211

load 205
load-displacement diagram 712
load factor 209, 212, 218
load of short duration 207
loads

due to forces 206
due to other influences 206
due to prescribed deformations or displacements 206
due to prestressing 211

loads in mechanics 206
loads in regulations 210

M

M diagram 406
main beam 322, 582
Mansart 177
mansart roof truss 177
mass 9
material factor 218
maximum at a field boundary 472
maximum cable force 644
maximum shear stress in a grain skeleton 292
mean value 215
mechanics 1
mechanics of materials 6
mechanics of structures 6
mechanism 112, 130, 137
member 114, 321
member axis 388
member number as upper index 327
member properties 388
membrane 115, 248
method of joints 320, 351
method of sections 320, 337
metro tunnel 264
minimum cable force 644
modelling a structure 126, 321
modelling a structural element 115
modelling load flow 231
moment

of a couple 57, 87
of a force about a line 86
of a force about a point 60, 81
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moment equilibrium 72, 78, 79, 93, 161
moment theorems 63
moment vector 82
moveable dam 258
moving load 210
multiply-cohesive 144

N

N diagram 404
natural frequency 209
navigation lock 327
neutral earth pressure 294, 305
neutral grain pressure 286
Newton 18
Newton’s Laws 18
norm of a vector 15
normal distribution 215
normal force 74, 387, 390, 397, 400, 401, 736
normal (force) centre 389
normal force diagram 401, 404, 461
normal force hinge 736
normal stress 233, 235, 287, 394, 395, 397, 400

O

oblique roof beam 564
open force polygon 25
orthogonal value of an angle 725, 728
orthonormal coordinate system 13
overpressure 248

P

package with three soil layers 290
parabola 413, 633

properties 490
parabolic tendon 671
parabolic truss beam 326
parallel truss beam 326
parallelogram rule 11, 14
particle element 111, 113, 115
Pascal 248
Pascal’s Law 245, 248
passive earth pressure 294
passive grain pressure 286
periodic load 207, 208
permanent load 211
pile (cantilever beam) 553
planar structure 126
plane trusses and frames 128, 319, 321
plate 114
pneu 248
pneumatic structure 248
point load 210, 509
Polonceau truss 325
post 114
post-tensioned cable 671
prefix 10
prestressed beam 557, 671
prestressed concrete 691
principle of superposition 223, 461, 505
principle of virtual work 709, 715, 723, 729
probability 215
probability density function 215
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properties of parabolic M diagrams 490

Q

quantity 8

R

railway bridges 762
railway sleeper 568
regulations 205, 210
reinforced concrete 691
relationship

between cable shape and bending moment diagram 637
between section forces and loading 431

resolving a force
along given lines of action analytically 69
along given lines of action graphically 68
in two given directions analytically 27
in two given directions graphically 29
into its components 31

resonance 209
resultant 23

of a surface load on a plate 227
of the all-round pressure on a body 254
of the water pressure on a partition wall 266
of the water pressure on a circular cylindrical slide 258
of the water pressure on a storm barier 262

resultant couple 73
resultant force 73
retaining wall on piles 157
right orthogonal coordinate system 12
right-hand rule 12, 81

rigid joint 112, 116, 118
ring beam 250
rising diagonals 324, 326
roller support 112, 122
rotational symmetry 399
rules for drawing V and M diagrams more quickly 462
rules for drawing the N diagram more quickly 493
rules relating to M and V diagrams 491

S

saw tooth roof 325
scalar 11
scalar component 15
scalar quantity 11
schematisation 7, 508
screw 89
section forces 74, 387, 388, 390

relationship with loading 431
sectional plane 400
self-contained structure 131, 154, 545
self-contained truss 319, 328
serviceability limit state 214, 218
set of loads 755

unfavourable placement 760
settlement in Antarctica 250
shear force 74, 387, 390, 398, 401, 734

Vy in y direction 400
Vz in z direction 400

shear force at a support 514
shear (force) centre 398, 399
shear force diagram 401, 406, 461
shear force hinge 727, 734
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shear stress 233, 235, 287, 288, 394, 395, 397, 400
shear symbol 387, 417
sheet piling in an impermeable layer of clay 297
shell 114
shelter 662
shore 177
shored frame 130
shored structure 176
shored three-hinged frame 178
shoring 177
shoring bar 176, 178
sideways-supported mast 593
sign convention 333, 387, 388, 392, 394

for N , V and M diagrams 420
for stresses and section forces 399

simple concrete building 231
simple truss 328
simple truss bridge 322
single bar tendon 557
singly-cohesive 143
slab 115
slide plane 293
sliding support 123
sliding vector 13, 54
slope of the V and M diagram 467
small rotation 722, 729
snow load 225, 581
soap membrane model 693
soil 286
soil mechanics 7, 233, 286
solid mechanics 4
space truss 321
spatial element 111, 113, 115

spherical state of stress 245
spring joint 117
spring support 125
square anchor plate in dry soil 304
stability 6
stability investigation 718
standard deviation 215
state of failure 214
state of stress 245

isotropic 245, 256
spherical 245

static equilibrium position 208
static (in)determinacy of a frame 140
static load 205, 207
statically determinate 112, 132, 134, 137
statically determinate structure 6, 682
statically equivalent 55
statically indeterminate 112, 130, 135, 138
statically indeterminate structure 6, 596, 682
statics 4

of a particle 23
of a rigid body 51

step change in the N diagram 404
step change in V and M diagrams 407, 409, 455, 482
stochastic load 208
stochastic quantity 215
storm barrier 262
strain energy 709, 712
strengthened beam 186
stress 206, 388, 400
stress concept 233
stress definition 395
stress peak 234
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stress vector 234
stresses in the cross-section 392
stresses in soil 286
stringer 323
stringer beam 582
structural element 111, 113
structural shape 631
suddenly-applied load 207
supplementary unit 9
support 111, 120

action 120
force 120
moment 488, 593
reaction 120, 153, 730

surface element 111, 113, 114
surface load 205, 209
suspension bridge 662
suspension model 693
Système International d’Unité 9

T

tangents to the M diagram 473
taut cable 661
tendon 671
tension member 339
tensor 12
terrain load 305
theoretical mechanics 4
three-hinged

arch 129
frame 78, 129, 168, 682
frame with tie rod 168, 589

portal frame 502, 600, 683
shored frame 586

tie-rod 178
tilting 176
time 9
top chord member 324
torsion 92
torsional moment 387, 398, 400, 401
towers 662
trapezoidal truss beam 326
trough bridge 127
truss 77, 319
truss beam 326
truss crane 352
truss with non-parallel top and bottom chord 341
truss with parallel top chord and bottom chord 337
trussed beam 130, 184, 495, 590

with a given bending moment
with a given normal force 596

two-force member 76, 120
two-hinged arch 129
two-hinged frame 129, 682

U

ultimate limit state 214, 218
underpressure 252
unfavourable placement

of a set of loads 760
of a uniformly distributed load 761
of loads 758

uniformly distributed load 219, 511, 756
unit 8

598
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unit normal 400
unit normal vector 391

V

V diagram 406
Varignon 64
Varignon’s First Moment Theorem 64
Varignon’s Second Moment Theorem 64
vector 11
vector component 15
vector property 17
vertical earth pressure 288
verticals 324
virtual displacement 715

in a mathematical sense 718
kinematically admissible 713, 716, 725
magnitude of the 727

virtual rotation 727, 727
in a mathematical sense 724
magnitude of the 727
orthogontal value of the 729

virtual work 709
virtual work equation 709

for a particle 713

for a rigid body 719
for mechanisms 725

visual notation 15
volume load 205, 209

W

wall 115
water accumulation 212
water pressure

in soil 287, 291
on a flap 256
on a partion wall 266
on a circular cylindrical slide 238
on a storm barrier 262

water-retaining slide 448
water-retaining wall 266
wind load 212, 225, 578
wooden lock-gate 327
work 709, 710

Z

zero-force member 363, 368



Latin capitals

Quantity SI unit

Symbol Name Symbol1

A Work Nm (J)

A m2

Ah Horizontal component of the
2

N

Am
2 Nm

Av Vertical component of the sup-
2

N

C1;C2 Integration constants –

Ev Strain energy Nm (J)

F N

�F Force vector N

Fa Force along line of action a3 N

Fh Horizontal component of the
force F

N

Fv Vertical component of the
force F

N

Fx ;Fy; Fz Components of the force F N

Fp N

G N

H Horizontal component of the N

Quantity SI unit

Symbol Name Symbol1

M Bending moment Nm

Mt Nm

My Bending moment in the xy

plane
Nm

Mz

plane
Nm

N Normal force N

R N

T Nm

�T Nm

Tx Moment about the x axis Nm

Ty Moment about the y axis Nm

z Moment about the z axis Nm

V Shear force N

V Vertical component of the N

Vy Shear force in the xy plane N

Vz Shear force in the xz plane N

1Expressed in the basic units.
2The kernel A refers to the location and could therefore

3The index a refers to the line of action and could

Latin lower case letters

Quantity SI unit

Symbol Name Symbol1

a Distance, length m

a Acceleration m/s2

b Distance, width m

d m

d Depth m

�d (non-standardised) direction
vector

–

dx ; dy ; dz Components of the direction
vector

–

e Eccentricity m

ep
force

m

�e Unit vector –

ex ; ey ; ez Components of the unit vector –

ez m

g Distributed permanent load N/m

g Gravitational acceleration m/s2

g Gravitational field strength N/kg

h Height m

� Span, length m

m Mass kg

�n Unit normal vector –

Area

support reaction at A

Fixed-end moment at A

Concentrated force, point
load

port reaction at A

Prestressing force

Gravitational load

cable force

Torsional moment

Resulting force, resultant

Concentrated couple (external

Bending moment in the xz

moment)

cable force

  also be B, C, etc.

  therefore also be b, c, etc.

Diameter

Eccentricity of the prestressing

z coordinate of the centre of
force in the cross-section
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Moment vector of a couple

T



A Number of Notations

Quantity SI unit

Symbol Name Symbol1

t Time s

u Displacement in the x direc-
tion

m

�u Displacement vector m

ux ;uy ;uz Components of the displace-
ment vector

m

v m/s

v m

w Displacement in the z direction m

x m

y m

z m

1Expressed in the basic units.

Greek letters

Quantity SI unit

Symbol Name Symbol1

α Angle rad

β Angle rad

γ Angle rad

γ Specific weight N/m3

ϑ Angle, change in angle due to
rotation

rad

ρ (mass) density, specific mass kg/m3

A number of other signs and sign combinations

� Change, increase

�M Increase in M∑
Summation symbol∑

T |B Moment sum with respect to point B

δ

δA Virtual work

δu Virtual displacement

δϕ Virtual rotation

FBC
A

index)

Velocity

Rectangular coordinate

Displacement in the y direction

Rectangular coordinate

Rectangular coordinate

Variation symbol

Force F at A (sub-index) on body BC (upper

Quantity SI unit

Symbol Name Symbol1

σ Stress, normal stress N/m2 (Pa)

σij Stress on a plane with the
normal in the i direction
(i = x, y, z), and acting in
the j direction (j = x, y, z);
normal stress when i = j and
shear stress when i �= j

N/m2 (Pa)

τ Shear stress N/m2 (Pa)

ϕ Angle, change in angle due to
rotation

rad

ϕx Rotation about the x axis rad

ϕy Rotation about the y axis rad

ϕz Rotation about the z axis rad

1Expressed in basic units.

Quantity SI unit

Symbol Name Symbol1

nx; ny; nz Components of the unit normal
vector

–

p Surface load (pressure, stress) N/m2 (Pa)

p Rise or sag of the parabola at
midspan

m

pk Distance between parabola and m

�p Stress vector N/m2 (Pa)

px;py ;pz N/m2 (Pa)

q Line load N/m

q Distributed variable load N/m

q̂ Top value of the line load N/m

qx Distributed load in the x direc-
tion (the direction of the mem-
ber axis)

N/m

qz Distributed load in the z direc-
tion (a direction normal to the
member axis)

N/m

r Radius m

�r Location vector m

rx; ry ; rz Components of the location
vector

m

s m

vector
Components of the stress

Path length

chord at midspan


