

AIRCRAFT RESPONSES TO ATMOSPHERIC TURBULENCE

March 26th, 2001 Examination for the lectures AE4-304

This examination contains 9 problems.

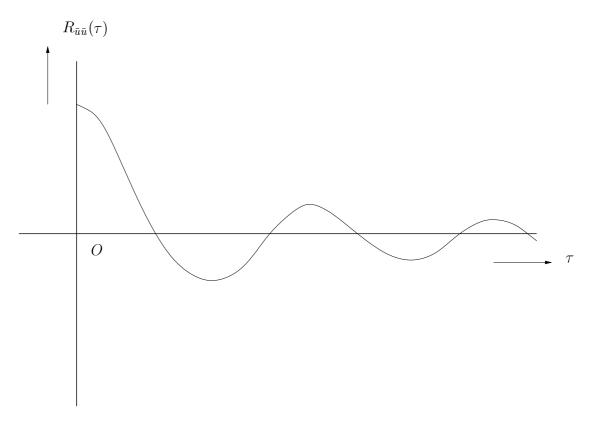


Figure 1: Product function $R_{\bar{u}\bar{u}}(\tau)$

- 1. In figure 1 the product function $R_{\bar{u}\bar{u}}(\tau)$ of the stationary stochastic process \bar{u} is given. What can be said about the properties of the stochastic variable \bar{u} ?
 - (a) It is white noise.
 - (b) It is noise with a small bandwidth.
 - (c) It is white noise plus a sinus.
 - (d) It is a sinus

Explain your answer.

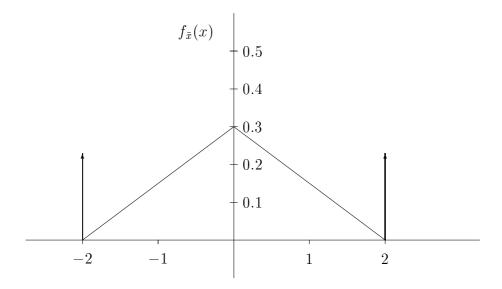


Figure 2: Probability density function $f_{\bar{x}}(x)$

2. The random variable \bar{x} has a probability density function $f_{\bar{x}}(x)$ as depicted in figure 2.

What is the probability of $P(x \ge -1)$?

- (a) 0.125
- (b) 0.275
- (c) 0.725
- (d) 0.750
- (e) 0.875
- (f) Not enough data available

Explain your answer.

3. Proof that the Fourier transform of the signal $\dot{y}(t)$ (= $\frac{dy(t)}{dt}$) equals,

$$F\left\{\dot{y}(t)\right\} = j\omega \ Y(\omega)$$

with $Y(\omega)$ the Fourier transform of y(t).

4. Proof that the Fourier transform of the product of two functions,

$$F\left\{x(t)y(t)\right\} = \frac{1}{2\pi}X(\omega) \star Y(\omega)$$

Note: the symbol " \star " represents the convolution operator.

5. Proof that the periodogram $I_{\bar{y}\bar{y}}[k]$ of the signal y[n] = a x[n] + b equals,

$$I_{\bar{y}\bar{y}}[k] = a^2 I_{\bar{x}\bar{x}}[k] + (2a \ Re\{X[k]\} + b \cdot N) \ b \ \delta[k]$$

with,

$$I_{\bar{x}\bar{x}}[k] = X^*[k] \cdot X[k]/N$$

and $Re\{X[k]\}$ the real part of the Fourier transform of x[n].

Note: the Discrete Fourier Transform (FFT) of a constant b equals,

$$FFT\{b\} = \left(\sum_{n=0}^{N-1} b \cdot e^{-j\frac{2\pi k}{N}n}\right) = b \cdot N \cdot \delta[k]$$

with $\delta[k]$ the Kronecker delta function. Use the result $FFT\{b\} = b \cdot N \cdot \delta[k]$ in your proof. Remember that $\delta[k]$ equals 0 for $k \neq 0$ and $\delta[k]$ equals 1 for k = 0.

- 6. Make a qualitative sketch for the auto power spectral density functions of the following signals,
 - (a) $y_1(t) = \sin(\omega_0 t)$
 - (b) $y_2(t) = cos(\omega_1 t) + 1$
 - (c) $y_3(t) = \sin(\omega_1 t) + 1$

Explain your answer.

7. Assume the stochastic process \bar{x} which is defined as the wave-height in the North-Sea at a certain position. At a certain instant in time, t_1 , this stochastic process has a certain probability density function $f_{\bar{x}}(x;t_1)$, with t_1 the time during the day when hardly any wind is present. At time instant t_2 , representing a time in a period with strong winds, the probability density function is written as $f_{\bar{x}}(x;t_2)$.

Make a qualitative sketch of the probability density functions $f_{\bar{x}}(x;t_1)$ and $f_{\bar{x}}(x;t_2)$.

Note: assume that
$$\int_{-\infty}^{+\infty} f_{\bar{x}}(x;t)dx = 1 \ \forall \ t.$$

Explain your answer.

- 8. Given the system in figure 3 of which the frequency response functions $H_1(\omega)$ and $H_2(\omega)$ are known. The input $U(\omega)$ and the noise on the output $N(\omega)$ are stochastic and their power spectral density functions are also known (both $U(\omega)$ and $N(\omega)$ are white noise).
 - (a) Calculate the power spectral density function of the output: $S_{yy}(\omega)$.
 - (b) Calculate the power spectral density function of the output for the case the input $U(\omega)$ and the noise $N(\omega)$ do <u>not</u> resemble white noise ánd may even be correlated.
- 9. The probability distribution function $F_{\bar{x}}(x)$ of a uniformly distributed stochastic variable \bar{x} is written as (with b > a, see also figure 4),

5

$$\begin{cases}
F_{\bar{x}}(x) &= 0 & \text{for } x \leq a, \\
&= \frac{x-a}{b-a} & \text{for } a < x \leq b, \\
&= 1 & \text{for } x > b
\end{cases}$$

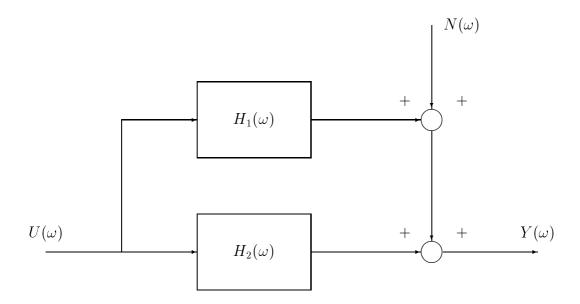


Figure 3: System description

(Question 9 continued)

Calculate the probability density function $f_{\bar{x}}(x)$ and proof that the stochastic variable's mean value and variance are respectively,

$$\mu_{\bar{x}} = \frac{a+b}{2}$$
 and $\sigma_{\bar{x}}^2 = \frac{1}{12} (b-a)^2$.

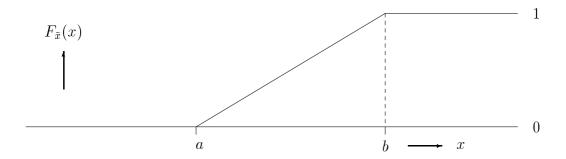


Figure 4: The probability distribution function $F_{\bar{x}}(x)$ for a uniformly distributed stochastic variable \bar{x}