
AE4304 Examination April 2011

Question 1

The frequency response of the first order systemHw̄ȳ(ω) = Ȳ (ω)/W̄ (ω) has a “low pass filter”
characteristic, see Figure 1. Its asymptotes equal ‘1’ fromzero frequency untilω = 1/γ and
then go down with a -20 dB/decade slope.
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Figure 1: Bode plot (magnitude only) of first order system dynamicsHw̄ȳ(ω)

The input Gaussian white noise has equal power over all frequencies; its auto-covariance func-
tion is a Dirac pulse. The system dynamics “filter out” the higher frequencies of the input signal,
with the filter bandwidth approximately at1/γ [rad/s]. When the system allows more higher
frequencies to pass through, i.e.,1/γ is higher (so whenγ decreases), the more the output will
look like the white noise input. The auto-covariance function of the output̄y will then more
closely resemble a Dirac pulse.

Hence, the lowestγ corresponds to Figure (a) and the highestγ corresponds to Figure (c).

AnswerB

Question 2

Proof:
∞∫

t=−∞

x2(t)dt = 1
2π

∞∫

ω=−∞

|X(ω)|2dω

To prove Parceval’s theorem we will first use the inverse Fourier transform:

x(t) = 1
2π

∞∫

ω=−∞

X(ω)ejωtdω

Starting from the left side, we can substitute the inverse Fourier transform forx(t):
∞∫

t=−∞

x2(t)dt =
∞∫

t=−∞

x(t) ·

[

1
2π

∞∫

ω=−∞

X(ω)ejωtdω

]

dt

1
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The time-related functionx(t) can be brought into the innerω integral:

= 1
2π

∞∫

t=−∞

∞∫

ω=−∞

x(t)X(ω)ejωtdωdt

We change the order of integration:

= 1
2π

∞∫

ω=−∞

∞∫

t=−∞

x(t)X(ω)ejωtdtdω

Now the frequency-related functionX(ω) can be taken out of the innert integral:

= 1
2π

∞∫

ω=−∞

X(ω)

∞∫

t=−∞

x(t)ejωtdt

︸ ︷︷ ︸

= X(−ω)

dω

We recognize that the inner integral equalsX(−ω) and we quite miraculously obtain:
∞∫

t=−∞

x2(t)dt = 1
2π

∞∫

−∞

X(ω)X(−ω)dω = 1
2π

∞∫

−∞

|X(ω)|2dω qed

Question 3

The figure shows that the probability density function is perfectly symmetric aboutx = 0. The
total area always equals 1.

Hence:Pr{x̄ ≤ 0} = Pr{x̄ ≥ 0} = 0.5. The probability is equal to the area under the proba-
bility density function.

Pr{−1 ≤ x̄ ≤ 0} = 0.15 · 1 + 1
2 · 0.15 · 1 = 0.225

Pr{x̄ ≥ −1} = Pr{−1 ≤ x̄ ≤ 0}+ Pr{x̄ ≥ 0} = 0.225 + 0.5 = 0.725

AnswerC

Question 4

Remember that for an even periodical function (x(−t) = x(t)), its Fourier series only has co-
sine components. In a Fourier transform, the cosines correspond to the real part.

For an odd periodical function (x(−t) = −x(t)), its Fourier series only has sine components.
In a Fourier transform, the sines correspond to the imaginary part.

Here, the Fourier transform of a signalx(t), X(ω), is purely imaginary. Clearly then,x(t) must
be odd.

AnswerA
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Basically, this is sufficient for answering this (meant to be simple) question. If you want, feel
free to also prove it mathematically; no additional points are given, but it will lead to a very big
smile on the lecturer’s face.

Proof:
We start our proof by elaborating on the definition of the Fourier transform:

X(ω) =
∞∫

−∞

x(t)e−jωtdt, using Eulere−jωt = cos(ωt)− j sin(ωt):

=
∞∫

−∞

x(t)(cos(ωt)− j sin(ωt))dt

=
0∫

−∞

x(t)(cos(ωt)− j sin(ωt))dt+
∞∫

0

x(t)(cos(ωt)− j sin(ωt))dt

Substituteσ = −t in the first integral on the right-hand side (then:t = −σ, sodt = −dσ), and the
integral limits change from (t from−∞ to 0) to (σ from∞ to 0):

=
0∫

σ=∞

x(−σ)(cos(−ωσ)− j sin(−ωσ))d(−σ) +
∞∫

0

x(t)(cos(ωt)− j sin(ωt))dt

Now cos(−u) = cos(u) (cosine is even) andsin(−u) = − sin(u) (sine is odd); further, we change the
integral limits on the first integral on the right-hand side, which yields a minus sign that, multiplied with
−dσ yieldsdσ:

=
∞∫

0

x(−σ)(cos(ωσ) + j sin(ωσ))dσ +
∞∫

0

x(t)(cos(ωt)− j sin(ωt))dt

Substituteσ = t in the integral on the left hand side and re-arrange both integrals:

=
∞∫

0

(x(t) + x(−t)) cos(ωt)dt− j
∞∫

0

(x(t)− x(−t)) sin(ωt)dt

Clearly, whenx(t) is odd, i.e.,x(−t) = −x(t), the first integral becomes zero and the result is:

X(ω) = −2j
∞∫

0

x(t) sin(ωt)dt

which is an imaginary and odd function ofω. qed

Question 5

The relationship between all input signals (ū, n̄1, n̄2) and the output signal̄y can be found using
two methods. The first method is by analyzing directly the closed loop relationship between
the inputs and outputs from the block diagram. The second is by calculating the relationships
mathematically step by step.

Method 1 First, rearrange the block diagram by moving then̄1 input andH3 block after the
input ū, see Figure 2. This makes it easier to find the open and closed loop paths. Don’t forget
the minus sign!!
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Figure 2: Block diagram re-arranged

Remember that the closed loop transfer function between an input signal and an output signal
can be easily found using:

Hcl(ω) =
DC

1 +OL ,

whereDC is the ‘direct connection’ between the input and output signals that you consider,
andOL is the ‘open’ loop. Here,OL = H1 ·H2.

Note that in our case, Figure 2,n̄2 is added at the very end,not in the loop, sōy is simply the
result of addinḡn2 to what comes out of the closed loop before the addition.

Find the relationship between inputū and output̄y:

Hūȳ(ω) =
Ȳ (ω)
Ū(ω)

=
H1(ω)

1 +H1(ω)H2(ω)

Find the relationship between inputn̄1 and output̄y. Note the minus sign, becauseH3 is moved
after the input̄u:

Hn̄1ȳ(ω) =
Ȳ (ω)
N̄1(ω)

=
−H3(ω)H1(ω)
1 +H1(ω)H2(ω)

Now the complete relationship between in- and outputs can bedescribed as:

Ȳ (ω) =
H1(ω)

1 +H1(ω)H2(ω)
Ū(ω)−

H1(ω)H3(ω)
1 +H1(ω)H2(ω)

N̄1(ω) + N̄2(ω)

Method 2 From the block diagram, the relations between the signals can also be found as
follows, usingx̄1 andx̄2 as defined in Figure 3.

Ȳ (ω) = N̄2(ω) + X̄1(ω) (*)
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Figure 3: Block diagram definitions

X̄2(ω) = H2(ω)X̄1(ω) +H3(ω)N̄1(ω) (**)

X̄1(ω) = H1(ω)(Ū(ω)− X̄2(ω)) (***)

Substitute (**) in (***):

X̄1(ω) = H1(ω)(Ū(ω)−H2(ω)X̄1(ω)−H3(ω)N̄1(ω))

= H1(ω)Ū(ω)−H1(ω)H2(ω)X̄1(ω)−H1(ω)H3(ω)N̄1(ω)

Rearrange:

(1 +H1(ω)H2(ω))X̄1(ω) = H1(ω)Ū(ω)−H1(ω)H3(ω)N̄1(ω)

X̄1(ω) =
H1(ω)Ū(ω)−H1(ω)H3(ω)N̄1(ω)

1 +H1(ω)H2(ω)

Substitute this result in (*):

Ȳ (ω) = N̄2(ω) +
H1(ω)Ū(ω)−H1(ω)H3(ω)N̄1(ω)

1 +H1(ω)H2(ω)

Ȳ (ω) =
H1(ω)

1 +H1(ω)H2(ω)
︸ ︷︷ ︸

“dynamics′′

Ū(ω)
︸ ︷︷ ︸

“signal′′

−
H1(ω)H3(ω)

1 +H1(ω)H2(ω)
︸ ︷︷ ︸

“dynamics′′

N̄1(ω)
︸ ︷︷ ︸

“signal′′

+N̄2(ω)

Methods 1 and 2 should yield the same result. Note that you should always get an equation
that is the addition of terms that each consist of a “dynamics” part multiplied with a “signal”.1

When you obtain “dynamics” parts that also consist of “signal”-components, something has
gone terribly wrong somewhere! Its better to start all over again in that case.

1Think for yourself: where are the “dynamics” in case ofN̄2(ω)?
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Methods 1 and 2 continued Now, the found relationship can be expressed as follows:

Ȳ (ω) = 3(ω)Ū(ω) +△(ω)N̄1(ω) + N̄2(ω),

where:

3(ω) =
H1(ω)

1 +H1(ω)H2(ω)
,

and

△(ω) = −
H1(ω)H3(ω)

1 +H1(ω)H2(ω)
.

Then:
Ȳ (−ω) = 3(−ω)Ū(−ω) +△(−ω)N̄1 + N̄2(ω)

The Power Spectral Density of the output signalȳ can now be derived:

Sȳȳ(ω) = E{Ȳ (ω)Ȳ (−ω)}

Sinceū, n̄1 andn̄2 are all uncorrelated, the expectation of all the cross-multiplications between
them will become zero and can be neglected. What remains is:

Sȳȳ(ω) = E{3(ω)3(−ω)Ū(ω)Ū(−ω)+△(ω)△(−ω)N̄1(ω)N̄1(−ω)+ N̄2(ω)N̄2(−ω)}

The transfer functions3(ω) and△(ω) are deterministic and can thus be moved outside of the
brackets of the expectation:

Sȳȳ(ω) = |3(ω)|2E{Ū(ω)Ū(−ω)}+ |△(ω)|2E{N̄1(ω)N̄1(−ω)}+ E{N̄2(ω)N̄2(−ω)}

And from this equation we can easily see that all expectations on the right-hand side are them-
selves the auto-PSDs of the input signals:

Sȳȳ(ω) = |3(ω)|2Sūū(ω) + |△(ω)|2Sn̄1n̄1
(ω) + Sn̄2n̄2

(ω)

which is our final result.2

Question 6

[a] Start the proof by Discrete Fourier Transforming the (auto)circular covariance function
Cxx[r]:

2You can further practice with this example through looking for instance at the situation whereū andn̄1 are
correlated, and̄n2 uncorrelated with the other two inputs.
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Ixx[k] =
N−1∑

r=0

Cxx[r]e
−jk 2π

N
r =

N−1∑

r=0

[

1
N

N−1∑

n=0

x[n]x[n+ r]

]

e−jk 2π

N
r

Change the order of the summation:

= 1
N

N−1∑

n=0

x[n]
N−1∑

r=0

x[n+ r]e−jk 2π

N
r

Expand the exponential term:

= 1
N

N−1∑

n=0

x[n]
N−1∑

r=0

x[n+ r]e−jk 2π

N
(r+n−n)

= 1
N

N−1∑

n=0

x[n]

[
N−1∑

r=0

x[n+ r]e−jk 2π

N
(r+n)

]

ejk
2π

N
n

The part between brackets is the DFT ofx[n], andx[n] is assumed to beperiodic in N (circular
covariance used here!), soX[k] can be substituted:

= 1
N

N−1∑

n=0

x[n]X[k]ejk
2π

N
n

Re-arrange:

= 1
N

[
N−1∑

n=0

x[n]ejk
2π

N
n

]

︸ ︷︷ ︸

= X[−k]

X[k]

Again the DFT is found, and substitution yields the final result:

Ixx[k] =
1
N
X[−k]X[k] qed

[b] Note that the DFTsX[k] andX[−k] can be expressed as complex tensors:

X[k] =
N−1∑

n=0

x[n]e−jk 2π

N
n, wheree−jk 2π

N
n = cos(k 2π

N
n)− j sin(k 2π

N
n)

X[−k] =
N−1∑

n=0

x[n]ejk
2π

N
n, wheree+jk 2π

N
n = cos(k 2π

N
n) + j sin(k 2π

N
n)

When multiplying these DFTs, the imaginary parts will cancelout, and the periodogram be-
comes real valued for allk.

[c] This can be explained similarly as in the former question. This time the imaginary parts
of the DFTsX[k] andY [k] will not cancel out, because the imaginary part of the complex
tensors are likely to have very different values. The chancethat different signals have exactly
the opposite complex tensor at the same frequency indexk is very small. Hence, the cross
periodogram will, generally speaking, always be complex valued.
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[d] The periodogramIx̄ȳ[k] is an estimate of the discrete-timepower spectral densitŷSx̄ȳ[k].
From the relationship between in and output with a transfer function Ȳ (ω) = H(ω)Ū(ω) an
expression can be found which relates the power spectral densities of the input and output.

Ȳ (ω) = H(ω)Ū(ω)

So:
Ȳ (ω)Ū(−ω) = H(ω)Ū(ω)Ū(−ω)

Take expectation (only ‘works’ on the stochastic elements):

E{Ȳ (ω)Ū(−ω)} = H(ω)E{Ū(ω)Ū(−ω)}

And we see the auto- and cross-PSD appearing:

Sūȳ(ω) = H(ω)Sūū(ω)

Hence we obtain:

H(ω) =
Sūȳ(ω)
Sūū(ω)

(*)

Now, in discrete-time we work with the periodograms,

Sūȳ[k] =
1
N Ū [−k]Ȳ [k], and Sūū[k] =

1
N Ū [−k]Ū [k]

and substituting these in (*) will yield:3

H(ω) = H[k] =
Ȳ [k]
Ū [k]

[e] The discrete frequency arrayωk is defined ask 2π
N

1
∆t

(always remember to check the units!
(here [rad/s])).

Question 7

When sampling a continuous-time signaly(t) to obtain a discrete-time signaly[k], the continuous-
time Fourier transform of the latter simply consists of an infinite number of aliases (copies of
the original CTFT spectrumY (f)) that occur at integer multiples of the sampling frequencyfs,
scaled withfs. This follows directly from theory (Chapter 4 of the lecture notes).

3Note that the correction needed when moving from discrete-time spectra to it continuous-time counterpart –
multiply with sample time△t – is irrelevant here since we take the quotient of two discrete-time spectra, which
both need to be corrected by the same amount.
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Hence, in this question we obtain at each integer multiple of20 [Hz] (the sampling frequency) a
copy of the original CTFT spectrumY (f), multiplied with 20 (the sampling frequency). Figure
(b) is therefore the right answer.4

AnswerB

Question 8

We start by inverse Laplace transforming the system transfer functionH(s) to the system gov-
erning differential equation:

H(s) =
Ȳ (s)
Ū(s)

= 1

1 +
2ζ

w0

s+ (
s

w0

)2

So:
1
w2

0

s2Ȳ (s) + 2ζ
w0

sȲ (s) + Ȳ (s) = Ū(s)

Transform to the time-domain (the system is at rest, all initial conditions are zero):

1
w2

0

¨̄y(t) + 2ζ
w0

˙̄y(t) + ȳ(t) = ū(t)

Transform the differential equation to state space; definex̄1(t) = ˙̄y(t) andx̄2(t) = ȳ(t):

˙̄x1(t) = ¨̄y(t) = −2ζw0 ˙̄y(t)− w2
0ȳ(t) + w2

0ū(t) = −2ζw0x̄1(t)− w2
0x̄2(t) + w2

0ū(t)

˙̄x2(t) = ˙̄y(t) = x̄1(t)

And we obtain the state space description that we need:
[
˙̄x1(t)
˙̄x2(t)

]

=

[
−2ζw0 −w2

0

1 0

] [
x̄1(t)
x̄2(t)

]

+

[
w2

0

0

]

ū(t)

ȳ(t) =
[
0 1

]
[
x̄1(t)
x̄2(t)

]

+
[
0
]
ū(t)

Substitute (A, B, W ) in the Lyapunov equation and solve for the unknown steady-state covari-
ance matrixCx̄x̄,ss:

ACx̄x̄,ss + Cx̄x̄,ssA
T + BWBT = 0, with W = 1, so:

[
−2ζw0 −w2

0

1 0

] [
C11 C12

C21 C22

]

+

[
C11 C12

C21 C22

] [
−2ζw0 1
−w2

0 0

]

+

[
w2

0

0

]
[
w2

0 0
]
=

[
0 0
0 0

]

Matrix multiplication:

4The Nyquist rate of the signal is 2·5=10 [Hz], so we are sampling at a sufficiently high frequency, no overlap
of the aliases, also known as aliasing, occurs.
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[
−2ζw0C11 − w2

0C21 −2ζw0C12 − w2
0C22

C11 C12

]

+

[
−2ζw0C11 − w2

0C12 C11

−2ζw0C21 − w2
0C22 C21

]

+

[
w4

0 0
0 0

]

=

[
0 0
0 0

]

Matrix addition:
[
w4

0 − 4ζw0C11 − w2
0(C12 + C21) C11 − 2ζw0C12 − w2

0C22

C11 − 2ζw0C21 − w2
0C22 C12 + C21

]

=

[
0 0
0 0

]

This gives us four equations with four unknowns:

w4
0 − 4ζw0C11 − w2

0(C12 + C21) = 0 (1)
C11 − 2ζw0C12 − w2

0C22 = 0 (2)
C11 − 2ζw0C21 − w2

0C22 = 0 (3)
C12 + C21 = 0 (4)

Inserting (4) in (1) allows us to solve forC11, adding (2) and (3) and then substituting (4) allows
us to solve forC22. We obtain:

Cx̄x̄,ss =

[
w3

0

4ζ
0

0 w0

4ζ

]

From the earlier defined transformationȳ(t) = x̄2(t) the variance of the output signal is found:

σ2
ȳ = σ2

x̄2
= C22 =

w0
4ζ

qed.

Question 9

The output PSD can be calculated as:

Sȳȳ(ω) = |H(ω)|2 · Sw̄w̄(ω) = |H(ω)|2 ·W

The value of the output PSD at zero frequency (ω=0 [rad/s]) can be easily obtained:

Sȳȳ(0) = |H(0)|2 ·W = 2

PSD(2) has a value of 1 at the smallest frequency and can therefore be directly eliminated.
The cut-off frequency of the second order system is determined by the natural frequency,ω0=1
[rad/s]. Since the output PSD is simply equivalent to the system dynamicssquared, its cut-off
frequency also lies around this frequency of 1 [rad/s]. PSD(4) can therefore be eliminated.

Finally, we look at the slope of the curve for frequencies beyond the cut-off frequency. Note
that both scales are logarithmic. Then, becauseH(ω) is a second order system the slope of its
frequency response is “-2”. The PSD of the output signal is equivalent to|H(ω)|2 so must have
a slope of “-4”. When we look at the two remaining PSDs (1 and 3),over the frequency range
ω=1 to 100 [rad/s] (2 decades), the slope of “-4” should resultin a magnitude change of10−8.
Hence, PSD(3) is the correct spectrum.
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AnswerC

That’s all Folks!


