AE4304 Examination April 2011

Question 1

The frequency response of the first order systém(w) = Y (w)/W (w) has a “low pass filter
characteristic, see Figure 1. Its asymptotes equal ‘1’ fremo frequency untiv = 1/ and
then go down with a -20 dB/decade slope.
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Figure 1: Bode plot (magnitude only) of first order system alyita H.;;(w)

The input Gaussian white noise has equal power over all &negjas; its auto-covariance func-
tion is a Dirac pulse. The system dynamics “filter out” then@gfrequencies of the input signal,
with the filter bandwidth approximately ay~ [rad/s]. When the system allows more higher
frequencies to pass through, i.&/;y is higher (so when decreases), the more the output will
look like the white noise input. The auto-covariance fumctof the outputy will then more
closely resemble a Dirac pulse.

Hence, the lowest corresponds to Figure (a) and the highesbrresponds to Figure (c).

[ AnswerB|

Question 2

Proof: . .
[ edt=24 [ [X(w)fdw

27
t=—00 w=—00

To prove Parceval’s theorem we will first use the inverse ieowransform:
() =5 [ X(w)e'dw

wW=—00

Starting from the left side, we can substitute the inveragrieotransform forz(¢):

[ 2Z2)dt= [ z(t)- |5 [ X(w)e'dw|dt
t=—o0 t=—o0 w=—00
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The time-related functiom(t) can be brought into the innerintegral:
=4 f f w)eltdwdt

t=—00 w=—00

We change the order of integration
=L f f yeltdtdw

21
w=—00 t=—00

Now the frequency-related functioki(w) can be taken out of the inneintegral:

o0

L | X / o(t)edt duw

W=—00

t\zfoo ,
= X(-w)
We recognlze that the i mner mtegral eqquS—w) and we quite miraculously obtain:
f x? = f X(w) X (~w)dw = &= f | X (w)Pdw ged
t=—o0 —00
Question 3

The figure shows that the probability density function iS@etty symmetric about = 0. The
total area always equals 1.

Hence:Pr{z < 0} = Pr{z > 0} = 0.5. The probability is equal to the area under the proba-
bility density function.

Pr{-1<z<0}=015-1+4-015-1=0.225
Pr{z > -1} =Pr{-1<z <0} + Pr{z >0} =0.225+ 0.5 =0.725

Question 4

Remember that for an even periodical functiatit) = x(t)), its Fourier series only has co-
sine components. In a Fourier transform, the cosines quuresto the real part.

For an odd periodical function:(—t) = —x(t)), its Fourier series only has sine components.
In a Fourier transform, the sines correspond to the imaygipart.

Here, the Fourier transform of a signdl), X (w), is purely imaginary. Clearly thent) must
be odd.
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Basically, this is sufficient for answering this (meant to beme) question. If you want, feel
free to also prove it mathematically; no additional poinesgiven, but it will lead to a very big
smile on the lecturer’s face.

Proof
We start our proof by elaborating on the definition of the Fourier transfor

X(w) = T z(t)e Iwtdt, using Eulere /%! = cos(wt) — j sin(wt):
= jf x(t)(cos(wt) — j sin(wt))dt
0 00
= [ x(t)(cos(wt) — jsin(wt))dt + bfx(t)(cos(wt) — jsin(wt))dt

— 00

Substitutes = —t in the first integral on the right-hand side (then= —o, sodt = —do), and the
integral limits change fron(from —oo to 0) to (o from oo to 0):

0

= [ z(—0)(cos(—wo) — jsin(—w )+ f (cos(wt) — jsin(wt))dt
Now cos(—u) = cos(u) (cosine is even) angin(—u) = —sin(u) (sine is odd); further, we change the

integral limits on the first integral on the right-hand side, which yields a minumsthit, multiplied with
—do vyieldsdo:

= f (cos(wo) + jsin(wo))do + :fo )(cos(wt) — jsin(wt))dt

Substitutes = ¢ in the integral on the left hand side and re-arrange both integrals:

= [(x(t) + z(—t)) cos(wt)dt — j [(z(t) — z(—t)) sin(wt)dt
0 0
Clearly, whenz(t) is odd, i.e.;z(—t) = —z(t), the first integral becomes zero and the result is:
X(w) = -2 f ) sin(wt)dt
which is an imaginary and odd function of ged
Question 5

The relationship between all input signais 41, 72) and the output signai can be found using

two methods. The first method is by analyzing directly thesetbloop relationship between
the inputs and outputs from the block diagram. The secong malrulating the relationships
mathematically step by step.

Method 1 First, rearrange the block diagram by moving theinput andH; block after the
inputw, see Figure 2. This makes it easier to find the open and closgddaths. Don’t forget
the minus sign!!
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Figure 2: Block diagram re-arranged

Remember that the closed loop transfer function betweengrt signal and an output signal
can be easily found using:

Ha(w) = 1257,

where DC' is the ‘direct connection’ between the input and output aigrhat you consider,
andOL is the ‘open’ loop. HereQ L = H; - H,.

Note that in our case, Figure ; is added at the very endot in the loop, saqy is simply the
result of addingz, to what comes out of the closed loop before the addition.

Find the relationship between inputand output;:

Y(w) _ ) (w)

Ulw) 1+ Hi(w)Hs(w)

Find the relationship between input and output;. Note the minus sign, becausk is moved
after the inputu:

Hyy(w) =

_ Y(w) _ —Hy(w)H (w)
Ni(w) 1+ Hi(w)Hs(w)

Now the complete relationship between in- and outputs cadeberibed as:

Hﬁﬂ?(w)

H;(w) 0(w) Hy(w)H3(w) v

Y = 1 mmm@ Y ~ T3 i@ @) @) + Vo)

Method 2 From the block diagram, the relations between the signaisatso be found as
follows, usingz; andz, as defined in Figure 3.

Y (w) = Nao(w) + X1 (w) *)
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Figure 3: Block diagram definitions

Xo(w) = Hy(w) X1 (w) + Hz(w)Ny(w) (**)
X1 (w) = Hy(w)(U(w) = Xa(w)) (***)
Substitute (**) in (***):

Xi(w) = Hi(w)(U(w) — Ha(w) X1(w) — Ha(w) N1 (w))

= Hy(w)U(w) — Hi(w)Hy(w) X1 (w) — Hy(w)Hz(w) Ny (w)

Rearrange:

Xi(w) = T+ () Fo ()
Substitute this result in (*):
= = Hy(w)U(w) — Hy(w)Hs3(w)N; (w
Y(w) = No(w) + () (1-)FH1(W()h)’2(w() )N (w)
SN Hi(w) Fw) — Hi(w)Hz(w) < W) N (w0
Yiw) = 1+ Hl(f)H2(w>"g§;;%/ 1+ Hl(f)Hz(w)/%_FNﬂ )
“dynamics’’

“dynamics’’
Methods 1 and 2 should yield the same result. Note that youldradways get an equation
that is the addition of terms that each consist of a “dynahpast multiplied with a “signal™
When you obtain “dynamics” parts that also consist of “sifqgaimponents, something has
gone terribly wrong somewhere! Its better to start all ogaia in that case.

1Think for yourself: where are the “dynamics” in case/of(w)?
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Methods 1 and 2 continued Now, the found relationship can be expressed as follows:

Y (w) = Ow)U(w) + Aw) Ny (w) + Na(w),

where:
H1 w
Olw) =17 Hl(cg)}lg(w)’
and
H1 w H3 w
Aw)=-17 h(h()w)f(zz()w)
Then:_

Y (~w) = O(—w)U(~w) + A(—w) Ny + Na(w)
The Power Spectral Density of the output signakan now be derived:
Spg(w) = E{Y (w)Y (—w)}

Sinceu, n; andn, are all uncorrelated, the expectation of all the cross-plidations between
them will become zero and can be neglected. What remains is:

Sya(w) = E{O(w)O(=w)U (W)U (=w) + Aw) A(=w) Ny (W) N (~w) + Na(w) Na(—w) }

The transfer function®>(w) andA(w) are deterministic and can thus be moved outside of the
brackets of the expectation:

Spa(w) = [O(W) PE{U (@)U (—w)} + [A(w) PE{N1 (w) N1 (—w)} + E{Na(w) N2 (—w)}

And from this equation we can easily see that all expectatwnthe right-hand side are them-
selves the auto-PSDs of the input signals:

Sgg(w) = [O(w)[*Saa(w) + |A(W)[2Sa,7, (W) + Shgn, (w)
which is our final result.

Question 6

[a] Start the proof by Discrete Fourier Transforming the (awiular covariance function
Coelr]:

2You can further practice with this example through looking ihstance at the situation whetieandn, are
correlated, and, uncorrelated with the other two inputs.
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—1

N-1 e, N[N o
I..[k] = Z_:()Cm[r]e IRNT = Z—:o v 2 rn]zn ]| et

n=0
Change the order of the summation:

N-1

=4 X ali] 3 alnc+rje

r=0

2I~

Expand the exponential term:

N-1 N—-1

= % zln] > zn+ T]e’]k%ﬂ(”"’”)
n=0 r=0
N-1 N-1 o o
=L 3 z[n] | X an+rle kN | edkn
n=0 r=0

The part between brackets is the DFTz0f], andz[n| is assumed to bgeriodic in NV (circular
covariance used here!), 30[k| can be substituted:

=

z[n] X [k]e* 5
0

L
N
n

3 B

J/

Re-arrange:

H

ZIH

— X[k
Again the DFT is found, and substitution yields the final tesu

Lolk) = A X[-HX[K qed

[b] Note that the DFTsX [k] and X[—k| can be expressed as complex tensors:

N-1
X[k] = Z z[n]e "%, wheree k¥ = = cos(k3rn) — jsin(k3In)
Vo1
X[-k] = Z z[n]el* ¥ ", wheree k" = cos(k2n) + jsin(k%n)

When multiplying these DFTSs, the imaginary parts will canget, and the periodogram be-
comes real valued for all.

[c] This can be explained similarly as in the former questionis Time the imaginary parts
of the DFTsX[k] and Y'[k] will not cancel out, because the imaginary part of the comple
tensors are likely to have very different values. The chahagdifferent signals have exactly
the opposite complex tensor at the same frequency ihdexvery small. Hence, the cross
periodogram will, generally speaking, always be compldue.
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[d] The periodograndz;[k] is an estimate of the discrete-timpewer spectral densjtﬁ,fg [k].
From the relationship between in and output with a transfactionY (w) = H(w)U(w) an
expression can be found which relates the power spectraltaenof the input and output.

Y(w) = H(w)U(w)

So: o
Y(w)U(—w) = H(w)U(w)U(—w)

Take expectation (only ‘works’ on the stochastic elements)
E{Y (w)U(~w)} = H(w)E{U(w)U(-w)}

And we see the auto- and cross-PSD appearing:

Hence we obtain:

Sﬁ’(""’) *
Sunl®) )

Now, in discrete-time we work with the periodograms,

Hw) =

Suglkl = UKV,  and  Sulk] = & U[—k]U[K]

and substituting these in (*) will yield:

[e] The discrete frequency array, is defined aﬁr%’rﬁ (always remember to check the units!
(here [rad/s])).

Question 7

When sampling a continuous-time signél) to obtain a discrete-time signglk|, the continuous-
time Fourier transform of the latter simply consists of afinite number of aliases (copies of
the original CTFT spectrurii (f)) that occur at integer multiples of the sampling frequefigy
scaled withf,. This follows directly from theory (Chapter 4 of the lecturaes).

3Note that the correction needed when moving from discliete-spectra to it continuous-time counterpart —
multiply with sample timeAt — is irrelevant here since we take the quotient of two digetighe spectra, which
both need to be corrected by the same amount.
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Hence, in this question we obtain at each integer multip@0dHz] (the sampling frequency) a
copy of the original CTFT spectruivi( f), multiplied with 20 (the sampling frequency). Figure
(b) is therefore the right answér.

Question 8

We start by inverse Laplace transforming the system trafsfietion H (s) to the system gov-
erning differential equation:

o = Y(s) 1
H(s) = 7 1 X (22

So: - _ _ _
L 52V (s) + £V (s) + V(s) = U(s)

0

Transform to the time-domain (the system is at rest, allahitonditions are zero):

|~

§(t) + o) +5(t) = u(t)

w,

(=N

Transform the differential equation to state space; defiti® = y(t) andzy(t) = y(t):

y(t) = —2Cwoy(t) — wiy(t) + win(t) = —2CwoT1(t) — wiz2(t) + wiu(t)
() = T1(t)
And we obtain the state space description that we need:
r(t)]  [-2Cwo —wi| [z1(t) w? a
= [0 + 6]
w0 =0 1) [240)] + o] ato)

Substitute 4, B, W) in the Lyapunov equation and solve for the unknown stedalte £ovari-
ance matrixCzz -

()

-

Zo(t) =

ACzz.45 + Crzss AT + BWBT = 0, with W = 1, so:

_QCUJO —'LUg 011 012 Cll 012 _QCwO 1 w(% ) B 0 0
{ 1 O}[Cﬂ C(22_{—021 Co —wg O+0 [wo O}_OO

Matrix multiplication:

4The Nyquist rate of the signal is2=10 [Hz], so we are sampling at a sufficiently high frequemoyoverlap
of the aliases, also known as aliasing, occurs.
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—2<w0011 — ’w(2]021 —2(71)0012 — UJSCQQ + —2CU}0011 — w(Q)Clz 011 w(‘j 0 . 00
011 012 —2CU)0021 — M%CQQ 021 0 0 o 0 0

Matrix addition:

wé — 4§’LU0011 — w%(om + 021) 011 — 2(100012 — wgCQQ _ 0 0
Cii — 2CwoCy — w(Q)ng Cia 4+ Cy 0 0

This gives us four equations with four unknowns:

wé — 4C'UJ0011 — wg(C’lg + 021) =0 (1)
Ch1 — 2CwoCha — wiCog =0 (2)
Ch1 — 2CwoCa — wiCas =0 (3)
Cia+Cy =0 (4)

Inserting (4) in (1) allows us to solve fdr;;, adding (2) and (3) and then substituting (4) allows
us to solve forCy,. We obtain:

wy
Oiziz,ss - [E 0]

W,
0 %

From the earlier defined transformatigft) = z.(¢) the variance of the output signal is found:

oy =03, =Cn= ZU—E ged.

Question 9

The output PSD can be calculated as:
Syg(w) = [H(w)|* - Spa(w) = [H(w)]* - W

The value of the output PSD at zero frequency@ [rad/s]) can be easily obtained:
Syy(0) = [H(0)* - W =2

PSD(2) has a value of 1 at the smallest frequency and canfoheree directly eliminated.
The cut-off frequency of the second order system is detexdhiny the natural frequenayy=1
[rad/s]. Since the output PSD is simply equivalent to theesysdynamicsquared, its cut-off
frequency also lies around this frequency of 1 [rad/s]. RPI3D&an therefore be eliminated.

Finally, we look at the slope of the curve for frequenciesdrel/the cut-off frequency. Note
that both scales are logarithmic. Then, becali$e) is a second order system the slope of its
frequency response is “-2”. The PSD of the output signal isv@dent to| H (w)|* so must have

a slope of “-4”. When we look at the two remaining PSDs (1 and@@r the frequency range
w=1 to 100 [rad/s] (2 decades), the slope of “-4” should reisuét magnitude change abH—2.
Hence, PSD(3) is the correct spectrum.
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That's all Folks!
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