
AE4304 Examination April 2012

Question 1

[1] True. This can be proved as follows:

Rx̄ȳ(τ) = E{x̄(t)ȳ(t+ τ)}

Setv = t+ τ , thent = v − τ , substitute:

Rx̄ȳ(τ) = E{x̄(v − τ)ȳ(v)} = E{ȳ(v)x̄(v − τ)}

Now, we are considering stationary processes, sov can be replaced with any other time, includ-
ing t:

Rx̄ȳ(τ) = E{ȳ(t)x̄(t− τ)} = E{ȳ(t)x̄(t+ (−τ))} = Rȳx̄(−τ) qed

[2] True. The proof is very similar to[1]. Note that you need to explain your answer on the exam
in more elaborate terms than this!

[3] True. All auto-functions are even functions (can be proved similar as in[1]).

[4] True. This can be proven as follows:

Kx̄x̄(0) =
Cx̄x̄(0)

σ2
x̄

=
E{(x̄(t)− µx̄)(x̄(t+ 0)− µx̄)}

σ2
x̄

=
E{(x̄(t)− µx̄)

2}
σ2
x̄

=
σ2
x̄

σ2
x̄

= 1

qed

Question 2

This derivation follows directly from the lecture notes, and lecture slides.

The signal̄x(t) can be approximated bȳ̂x(t) through a Fourier Series expansion, an array ofN

sine and cosine functions:

ˆ̄x =
N−1∑

k=0

[ak cos(kω0t) + bk sin(kω0t)] = a0 +
N−1∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]

To find the coefficientsak andbk a quadratic loss function J can be defined:

J(a0, . . . , aN−1, b1, . . . , bN−1) =
t0+T∫

t0

[x̄(t)− ˆ̄x(t)]2dt

=
t0+T∫

t0

[x̄(t)− (a0 +
N−1∑

k=1

[ak cos(kω0t) + bk sin(kω0t)])]
2dt

1
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Minimizing J will yield the best fit, with necessary conditions:

δJ
δa0

= δJ
δal

= δJ
δbl

= 0

for l = 1, 2, . . . , N − 1.

Starting with the parametera0. If δJ
δa0

= 0 then:

t0+T∫

t0

2

[

x̄(t)− (a0 +
N−1∑

k=1

[ak cos(kω0t) + bk sin(kω0t)])

]

(−1)dt = 0

t0+T∫

t0

x̄(t)dt =
t0+T∫

t0

a0dt+
t0+T∫

t0

N−1∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]dt

t0+T∫

t0

x̄(t)dt = Ta0 +
N−1∑

k=1

(

ak
t0+T∫

t0

cos(kω0t)dt+ bk
t0+T∫

t0

sin(kω0t)dt

)

The two integrals on the right hand side are zero for allk which yields:

a0 =
1
T

t0+T∫

to

x̄(t)dt

qed
We continue with deriving an expression for variablesak. If δJ

δal
= 0 (for all ℓ) then:

t0+T∫

t0

2

[

x̄(t)− (a0 +
N−1∑

k=1

[ak cos(kω0t) + bk sin(kω0t)])

]

(− cos(lω0t))dt = 0

t0+T∫

t0

x̄(t) cos(lω0t)dt =
t0+T∫

t0

a0 cos(lω0t)dt+

t0+T∫

t0

N−1∑

k=1

[ak cos(kω0t) cos(lω0t) + bk sin(kω0t) cos(lω0t)]dt

t0+T∫

t0

x̄(t) cos(lω0t)dt = a0
t0+T∫

t0

cos(lω0t)dt+

N−1∑

k=1

(

ak
t0+T∫

t0

cos(kω0t) cos(lω0t)dt+ bk
t0+T∫

t0

sin(kω0t) cos(lω0t)dt

)

The first integral on the right hand-side is zero for alll. The last integral term on the right
hand side is also zero for allk andl, using the fact that all basic cosine and sine functions are
orthogonal. The second integral term is0 if k 6= l and equalsT

2
if k = l. Hence:

t0+T∫

t0

x̄(t) cos(lω0t)dt = al
T
2

Substitutingk for l (both are just our integer indices):

ak =
2
T

t0+T∫

t0

x̄(t) cos(kω0t)dt
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qed
Similarly, for bk we can derive:

bk =
2
T

t0+T∫

t0

x̄(t) sin(kω0t)dt

qed
Note that in the 2nd year BSc courseInstrumentation & Signals another (and perhaps simpler
and more elegant) derivation is given, which you can also follow here.

Question 3

Starting from the time-domain and the definition of convolution:

z(t) = x(t) ∗ y(t) =
∞∫

τ=−∞

x(τ)y(t− τ)dτ

Fourier transforming:

Z(ω) = F{x(t) ∗ y(t)} =
∞∫

t=−∞

[
∞∫

τ=−∞

x(τ)y(t− τ)dτ

]

e−jωtdt

=
∞∫

t=−∞

[
∞∫

τ=−∞

x(τ)y(t− τ)dτ

]

e−jω(t−τ)e−jωτdt now, change the order of integration

=
∞∫

τ=−∞

∞∫

t=−∞

x(τ)y(t− τ)e−jω(t−τ)e−jωτdtdτ take allτ -functions out of innert integral

=
∞∫

τ=−∞

x(τ)e−jωτ

∞∫

t=−∞

y(t− τ)e−jω(t−τ)d(t− τ)

︸ ︷︷ ︸

= Y (ω)

dτ for σ = t− τ the CTFT ofy(σ) is found

=
∞∫

τ=−∞

x(τ)e−jωτY (ω)dτ Y (ω) can be taken out of theτ -integral

=

∞∫

τ=−∞

x(τ)e−jωτdτ

︸ ︷︷ ︸

= X(ω)

·Y (ω) = X(ω)Y (ω) qed

Question 4

The input signal to the system, white noise, has equal power over all frequencies. Consider
the frequency response (magnitude only) of a second order transfer function (Figure 1). If the
damping ratio decreases, the peak at the natural frequency increases. When the damping ra-
tio becomes smaller and smaller and eventually becomes zero, the output of the second order
system to an inputat the natural frequency will become an undamped sine function; the auto-
correlation of a sine is a cosine function.
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Figure 1: 2nd order system dynamics (horizontal axis isω, in [rad/s])

The white noise signal, containing energy atall frequencies, will excite the system also at the
natural frequency, yielding an undamped sine whenζ is extremely small.

Therefore,ζ1 corresponds to the smallest damping ratio andζ3 to the largest damping ratio.

AnswerB

Question 5

This question is the same as in the exam of April 2011, please look there.

Question 6

The Nyquist rate of this signal is 2·5=10 Hz, so it should be sampled at a frequency higher than
10 Hz.1 Now, the current sampling frequency equals 5 Hz, which is toosmall. Remember that
sampling does two things: (i) it creates an infinite number ofcopies (also called aliases) of the
original spectrum, located at each integer multiple of the sampling frequency, and (ii) all these
copies arescaled with the sampling frequency.

Here, aliasing will occur, the sampling frequency is too lowcausing the copies of the original
spectrum located at the integer multiples of the sampling frequency to overlap, see Figure 2.
The aliases are scaled with the sampling frequency: their maximum values become 10·5=50.
The resulting CTFT of the sampled signal is then the summationof all these individual aliases,
which becomes a straight line atb = 50, see Figure 3.

Question 7

Remember:

Sȳȳ(ω) = |H(ω)|2Sw̄w̄(ω) = |H(ω)|2W

The value of the PSD at zero frequency (ω = 0 [rad/s]) can be easily calculated:

1In this case, sinceY (f)=0 at 5 Hz, sampling at 10 Hz would be just sufficient.
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Figure 2: CTFT of the sampled signal: all individual aliases (figure shows only the positive
frequencies)
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Figure 3: CTFT of the sampled signal: final result (positive frequencies only)

Sȳȳ(0) = |H(0)|2 · 2 = 2,

so we see that PSD(3) is incorrect. Further, the cut-off frequency of the first order system
appears at a frequency of1

τ
= 0.5 [rad/s], eliminating PSD(4) (and again PSD(3) for that

matter!). Finally, the slope of a first order system is “-1” (when the Bode magnitude plot is
shown on a log-log scale, like here). Hence, the slope of the output signal PSD should be “-2”,
eliminating PSD(1). The correct PSD is therefore PSD(2).

AnswerB

Question 8

The relationship between all input signals (which are just two here,ū and n̄) and the output
signalȳ can be found using two methods. The first method is by analysing directly the closed
loop relationship between the inputs and outputs from the block diagram. The second is by
calculating the relationships mathematically, step by step.

Method 1 First, rearrange the block diagram by moving theN̄ input andH3 block before the
loop, see Figure 4. This makes it perhaps a little easier to find the open and closed loop paths.
Remember that the closed loop transfer function between an input and output can be found by
where DC is the ‘direct connection’ between that input and output, and OL is the ‘open loop’:
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Figure 4: Block diagram re-arranged

Hcl(ω) =
DC

1 +OL

Find the relationship between inputŪ(ω) and output̄Y (ω):

Hūȳ(ω) =
Ȳ (ω)
Ū(ω)

=
H1(ω)H2(ω)

1 +H1(ω)H2(ω)

Find the relationship between input̄N(ω) and output̄Y (ω):

Hn̄ȳ(ω) =
Ȳ (ω)
N̄(ω)

=
H2(ω)H3(ω)

1 +H1(ω)H2(ω)

The complete relationship between the output and all inputscan be described as:

Ȳ (ω) =
H1(ω)H2(ω)

1 +H1(ω)H2(ω)
Ū(ω) +

H2(ω)H3(ω)
1 +H1(ω)H2(ω)

N̄(ω)

Method 2 From the block diagram the relations between the signals canbe found as follows:

X̄(ω) = H1(ω)(Ū(ω)− Ȳ (ω)) (*)
Ȳ (ω) = H2(ω)(H3(ω)N̄(ω) + X̄(ω)) (**)

Substituting (*) in (**) yields:

Ȳ (ω) = H2(ω)(H3(ω)N̄(ω) +H1(ω)(Ū(ω)− Ȳ (ω)))
= H2(ω)H3(ω)N̄(ω) +H1(ω)H2(ω)Ū(ω)−H1(ω)H2(ω)Ȳ (ω)

Re-arranging:

(1 +H1(ω)H2(ω))Ȳ (ω) = H1(ω)H2(ω)Ū(ω) +H2(ω)H3(ω)N̄(ω)

And the same relationship is found as in Method 1:

Ȳ (ω) =
H1(ω)H2(ω)

1 +H1(ω)H2(ω)
︸ ︷︷ ︸

“dynamics′′

Ū(ω)
︸ ︷︷ ︸

“signal′′

+
H2(ω)H3(ω)

1 +H1(ω)H2(ω)
︸ ︷︷ ︸

“dynamics′′

N̄(ω)
︸ ︷︷ ︸

“signal′′
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Note that one should always end up with something in the form of summations of ‘dynamics’
multiplied with ‘signals’; when these two mix up somewhere,something has gone terribly
wrong and it is better to start all over again!

Methods 1 and 2 continued... Now, to save time, the relationship that we just derived can be
expressed as follows:

Ȳ (ω) = 2(ω)Ū(ω) +△(ω)N̄(ω),

where:

2(ω) =
H1(ω)H2(ω)

1 +H1(ω)H2(ω)
,

and:

△(ω) =
H2(ω)H3(ω)

1 +H1(ω)H2(ω)

The conjugate is then described by:

Ȳ (−ω) = 2(−ω)Ū(−ω) +△(−ω)N̄(−ω)

Now the PSD of the output signal can be easily calculated:

Sȳȳ(ω) = E{Ȳ (ω)Ȳ (−ω)}

= E{2(ω)2(−ω)Ū(ω)Ū(−ω)+2(ω)△(−ω)Ū(ω)N̄(−ω)+△(ω)2(−ω)N̄(ω)Ū(−ω)+
△(ω)△(−ω)N̄(ω)N̄(−ω)}

= |2(ω)|2E{Ū(ω)Ū(−ω)}+2(ω)△(−ω)E{Ū(ω)N̄(−ω)}+△(ω)2(−ω)E{N̄(ω)Ū(−ω)}+
|△(ω)|2E{N̄(ω)N̄(−ω)}

Filling in all auto- and cross-PSDs that we see in this equation:

Sȳȳ(ω) = |2(ω)|2Sūū(ω)+2(ω)△(−ω)Sn̄ū(ω)+△(ω)2(−ω)Sūn̄(ω)+|△(ω)|2Sn̄n̄(ω)

Note that becausēu andn̄ are correlated, none of the cross-PSDs are zero. They all aremain-
tained in the equations!

Question 9

Start by transforming the transfer function to the differential equation (note that I skipped the
bars over the signal symbols to save typing effort):

H(s) =
Y (s)
U(s)

= 1
(1 + sτ1)(1 + sτ2)
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(1 + (τ1 + τ2)s+ τ1τ2s
2)Y (s) = U(s)

Transform to the time-domain:

τ1τ2ÿ(t) + (τ1 + τ2)ẏ(t) + y(t) = u(t)

Transform the differential equations to state space:x1(t) = y(t) andx2(t) = ẏ(t):

ẋ1(t) = ẏ(t) = x2(t)

ẋ2(t) = ÿ(t) = − τ1+τ2
τ1τ2

ẏ(t)− 1
τ1τ2

y(t) + 1
τ1τ2

u(t) = − τ1+τ2
τ1τ2

x2(t)−
1

τ1τ2
x1(t) +

1
τ1τ2

u(t)

[
ẋ1(t)
ẋ2(t)

]

=

[
0 1

− 1
τ1τ2

− τ1+τ2
τ1τ2

] [
x1(t)
x2(t)

]

+

[
0
1

τ1τ2

]

u(t)

y(t) =
[
1 0

]
[
x1(t)
x2(t)

]

+
[
0
]
u(t)

SubstituteA, B andW in the Lyapunov equation and solve for the steady-state covariance ma-
trix Cxx,ss:

ACxx,ss + Cxx,ssA
T + BWBT = 0, with W = 1 so

[
0 1

− 1
τ1τ2

− τ1+τ2
τ1τ2

] [
C11 C12

C21 C22

]

+

[
C11 C12

C21 C22

] [
0 − 1

τ1τ2

1 − τ1+τ2
τ1τ2

]

+

[
0
1

τ1τ2

]
[
0 1

τ1τ2

]
=

[
0 0
0 0

]

Matrix multiplication:

[
C21 C22

− 1
τ1τ2

C11 −
τ1+τ2
τ1τ2

C21 − 1
τ1τ2

C12 −
τ1+τ2
τ1τ2

C22

]

+

[
C12 − 1

τ1τ2
C11 −

τ1+τ2
τ1τ2

C12

C22 − 1
τ1τ2

C21 −
τ1+τ2
τ1τ2

C22

]

+

[
0 0
0 1

(τ1τ2)2

]

=
[
0 0
0 0

]

Matrix summation:

[
C21 + C12 C22 −

1
τ1τ2

C11 −
τ1+τ2
τ1τ2

C12

C22 −
1

τ1τ2
C11 −

τ1+τ2
τ1τ2

C21
1

(τ1τ2)2
− 1

τ1τ2
(C12 + C21)− 2 τ1+τ2

τ1τ2
C22

]

=

[
0 0
0 0

]

This gives us four equations with four unknowns (C11, C12, C21 andC22):

C21 + C12 = 0 (1)
C22 −

1
τ1τ2

C11 −
τ1+τ2
τ1τ2

C12 = 0 (2)
C22 −

1
τ1τ2

C11 −
τ1+τ2
τ1τ2

C21 = 0 (3)
1

(τ1τ2)2
− 1

τ1τ2
(C12 + C21)− 2 τ1+τ2

τ1τ2
C22 = 0 (4)

Inserting (1) into (4) allowsC22 to be computed; adding (2) and (3) and then substituting (1)
allowsC11 to be computed. This yields:
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Cxx,ss =

[
1

2(τ1+τ2)
0

0 1
2τ1τ2(τ1+τ2)

]

From the earlier defined transformationy(t) = x1(t) the variance of the output signal is found:

σ2
y = σ2

x1
= C11 =

1
2(τ1+τ2)

qed

That’s all Folks!


