
Atmospheric Flight Dynamics
Summary

1. Stochastic variables and processes

In this chapter, we’re going to examine stochastic variables and stochastic processes. First, we look at
one stochastic variable. Then, we examine multiple stochastic variables. Finally, we’re going to examine
stochastic processes. What kind of properties can such processes have?

1.1 Stochastic variables and their properties

1.1.1 Probability distribution and probability density functions

Let’s examine a stochastic variable x̄, also called a random variable. A stochastic variable can be
seen as a normal variable x, but with uncertainty concerning its value. For example, in 1/3 of the cases
its value may be 2, but in the other 2/3 of the cases, its value may be 3.

Every random variable has an associated probability distribution function Fx̄(x), also known as the
cumulative distribution function. This function is defined as the probability that x̄ ≤ x. So, in
formal notation,

Fx̄(x) = Pr {x̄ ≤ x} . (1.1.1)

Such a function has several evident properties. We have Fx̄(−∞) = 0 and Fx̄(+∞) = 1. Also, the
function is monotonically increasing. So, if a ≤ b then also Fx̄(a) ≤ Fx̄(b).

There is also the probability density function fx̄(x), abbreviated as PDF. (Note that PDF does
not mean probability distribution function!) The PDF is defined as the derivative of the probability
distribution function. So,

fx̄(x) =
dFx̄(x)

dx
. (1.1.2)

It immediately follows that fx̄(x) ≥ 0. We also have∫ ∞

−∞
fx̄(x) = 1,

∫ b

−∞
fx̄(x) = Fx̄(b) and

∫ b

−a

fx̄(x) = Fx̄(b)− Fx̄(a). (1.1.3)

1.1.2 Moments of distributions

Often, it is very hard, if not impossible, to exactly determine Fx̄(x) and fx̄(x). But we may try to
determine other quantities. For example, we have defined the ith moment of the PDF as

mi = E
{
x̄i
}

=
∫ ∞

−∞
xifx̄(x) dx. (1.1.4)

So, we have m0 = 1. Also, m1 = µx̄ is the mean or average of x̄. A similar and even more important
quantity is the ith central moment m′

i. It is defined as

m′
i = E

{
(x̄− µx̄)i

}
=
∫ ∞

−∞
(x− µx̄)ifx̄(x) dx. (1.1.5)

Now we have m′
1 = 0. Also, m′

2 = σ2
x̄ is the variance of the stochastic process. The square root of the

variance, being σx̄, is called the standard deviation.
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1.1.3 The normal distribution

There is one very important and common type of distribution. This is the normal distribution, also
known as the Gaussian distribution. Its PDF is given by

fx̄(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (1.1.6)

Quite trivially, this distribution has µ = µx̄ as mean and σ2 = σ2
x̄ as variance.

The central limit theorem states that the PDF of a process, caused by a large number of other random
processes, approximates the PDF of the Gaussian distribution. Such situations often occur in real life.
So, in the remainder of this summary, we will mostly assume that unknown stochastic processes are
normally distributed. All that is then left for us to do is to determine the mean µx̄ and the variance σ2

x̄.

1.2 Multiple stochastic variables

1.2.1 Definitions for multiple random variables

Let’s examine the case where we have two random variables x̄ and ȳ. The joint probability distribution
function Fx̄ȳ(x, y) is now defined as

Fx̄ȳ(x, y) = Pr {x̄ ≤ x ∧ ȳ ≤ y} , (1.2.1)

where the ∧ operator means ‘and’. We thus have Fx̄ȳ(−∞, b) = Fx̄ȳ(a,−∞) = 0, Fx̄ȳ(+∞,+∞) = 1,
Fx̄ȳ(a,+∞) = Fx̄(a) and Fx̄ȳ(+∞, b) = Fȳ(b).

Similarly, the joint probability density function (joint PDF) fx̄ȳ(x, y) is defined as

fx̄ȳ(x, y) =
∂2Fx̄ȳ(x, y)

∂x∂y
. (1.2.2)

The joint PDF has as properties∫ a

−∞

∫ b

−∞
fx̄ȳ(x, y) dx dy = Fx̄ȳ(a, b),

∫ ∞

−∞
fx̄ȳ(x, y) dy = fx̄(x) and

∫ ∞

−∞
fx̄ȳ(x, y) dx = fȳ(y). (1.2.3)

It may occur that the value of one of the two random variables is known. Let’s suppose that it is given
that ȳ = y1. We can then find the conditional distribution of x̄ given ȳ using

fx̄(x|ȳ = y1) =
fx̄ȳ(x, y1)

fȳ(y1)
. (1.2.4)

1.2.2 Moments of joint distributions

The joint moment mij of two random variables x̄ and ȳ is defined as

mij = E
{
x̄iȳj

}
=
∫ ∞

−∞

∫ ∞

−∞
xiyjfx̄ȳ(x, y) dx dy. (1.2.5)

The sum n = i+j is called the order of the joint moment. It can be noted that m10 = µx̄ and m01 = µȳ.
Also, the second order moment m11 is called the average product Rx̄ȳ.

Of course, there is also a joint central moment m′
ij . It is defined as

m′
ij = E

{
(x̄− µx̄)i(ȳ − µȳ)j

}
=
∫ ∞

−∞

∫ ∞

−∞
(x̄− µx̄)i(ȳ − µȳ)jfx̄ȳ(x, y) dx dy. (1.2.6)
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The second order joint moments m′
20 and m′

02 are equal to the variances of x̄ and ȳ: m′
20 = σ2

x̄ and
m′

02 = σ2
ȳ. The other second order joint moment m′

11 is called the covariance Cx̄ȳ. It satisfies

m′
11 = Cx̄ȳ = Rx̄ȳ − µx̄µȳ = m11 −m10m01. (1.2.7)

Finally, we can define the correlation Kx̄ȳ as

Kx̄ȳ =
Cx̄ȳ

σx̄σȳ
=

m′
11√

m10m01
. (1.2.8)

1.2.3 Properties of multiple random variables

Let’s examine two random variables x̄ and ȳ. We say that x̄ and ȳ are. . .

• orthogonal if E {x̄ȳ} = 0.
• fully correlated if E {x̄ȳ} = µx̄µȳ ± σx̄σȳ or, equivalently, if Kx̄ȳ = ±1.
• uncorrelated if E {x̄ȳ} = E {x̄}E {ȳ} = µx̄µȳ or, equivalently, if Kx̄ȳ = 0. We now have Cx̄ȳ = 0

and σ2
x̄+ȳ = σ2

x̄ + σ2
ȳ. Also, x̄− µx̄ and ȳ − µȳ are orthogonal.

• independent if fx̄ȳ(x, y) = fx̄(x)fȳ(y). This also implies that x̄ and ȳ are uncorrelated. (Though
the converse is not always true.)

1.3 Stochastic processes

1.3.1 Basics of stochastic processes

Let’s suppose that we are doing an experiment several times. It could occur that the output signal x(t)
of the experiment is always the same: it is a deterministic function. However, often uncertainty is
involved. In this case, the output x(t) is a bit different every time. The output signal x̄(t) is then called
a stochastic function or a stochastic process. At every time τ , the value of x̄(τ) is a stochastic
variable.

Every time we run the experiment, we get a certain output x(t). This output is called a realization of
the stochastic process x̄(t). The set of all realizations is called the ensemble of the process.

There always is a certain chance that a stochastic process x̄(t) results in a certain realization x(t). If
this chance is constant in time (that is, the distribution of x̄(t) is constant), then we call the process
stationary. It is very hard, if not impossible, to show that a process is stationary. So it is often simply
assumed that stochastic processes are stationary.

1.3.2 The distribution of stochastic processes

Previously, we talked about a stochastic process x̄(t). Every stochastic process also has a probability
distribution and probability density function, which are defined as

Fx̄(x; t) = Pr {x̄(t) ≤ x} and fx̄(x; t) =
∂Fx̄(x; t)

∂x
. (1.3.1)

Now let’s examine two stochastic processes x̄(t) and ȳ(t). The joint distribution of these two processes
is defined as

Fx̄ȳ(x, y; t1, t2) = Pr {x̄(t1) ≤ x ∧ ȳ(t2) ≤ y} and fx̄ȳ(x, y; t1, t2) =
∂2Fx̄ȳ(x, y; t1, t2)

∂x∂y
. (1.3.2)
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Often, it is assumed that the processes x̄(t) and ȳ(t) are stationary. This means that not the times t2
and t1 theirselves are important, but only the time difference τ = t2 − t1. We can thus write

Fx̄ȳ(x, y; τ) = Pr {x̄(t) ≤ x ∧ ȳ(t + τ) ≤ y} and fx̄ȳ(x, y; τ) =
∂2Fx̄ȳ(x, y; τ)

∂x∂y
. (1.3.3)

1.3.3 Properties of stochastic processes

Let’s suppose that we know the joint distribution function fx̄ȳ(x, y; τ) of two stationary processes x̄(t)
and ȳ(t). We can now define the moment function mij(τ) of these processes as

mij(τ) = E
{
x̄(t)iȳ(t + τ)j

}
=
∫ ∞

−∞

∫ ∞

−∞
xiyjfx̄ȳ(x, y; τ) dx dy. (1.3.4)

Similarly, we can define the central moment function m′
ij(τ) as

m′
ij(τ) = E

{
(x̄(t)− µx̄)i(ȳ(t + τ)− µȳ)j

}
=
∫ ∞

−∞

∫ ∞

−∞
(x− µx̄)i(y − µȳ)jfx̄ȳ(x, y; τ) dx dy. (1.3.5)

Several of these moments have special names. The cross product function Rx̄ȳ(τ) is equal to m11(τ)
and the cross covariance function Cx̄ȳ(τ) is equal to m′

11(τ). Also, the cross correlation function
Kx̄ȳ(τ) is defined as

Kx̄ȳ(τ) =
Cx̄ȳ(τ)
σx̄σȳ

. (1.3.6)

Next to these three cross-functions, we also have three auto-functions. They are the auto product
function Rx̄x̄(τ), the auto covariance function Cx̄x̄(τ) and the auto correlation function Kx̄x̄(τ).
They are defined identically as the cross-functions, with the only difference that we substitute ȳ(t + τ)
by x̄(t + τ).

The cross correlation function Kx̄ȳ(τ) is an indication of the correlation between two stochastic processes
x̄(t) and ȳ(t + τ). But you might be wondering, what is the auto correlation function Kx̄x̄(τ) good for?
Well, it gives an indication of how much the value of x̄(t + τ) at time t + τ depends on the value of x̄(t)
at time t. We’ll examine how this works.

First, we can note that Kx̄x̄(τ) gives the correlation between the random variables x̄(t) and x̄(t + τ).
Generally, if τ becomes big, then the signals x̄(t) and x̄(t + τ) will be uncorrelated: Kx̄x̄(τ) will go to
zero. But for small (absolute) values of τ , the signals x̄(t) and x̄(t+ τ) are correlated a lot. (Especially if
τ = 0, because Kx̄x̄(0) = 1.) How fast Kx̄x̄(τ) goes to zero now determines how fast the signal x̄(t) loses
its influence on x̄(t + τ).

1.3.4 Ergodic processes

Let’s examine a stochastic process x̄(t). We can examine all possible realizations x(t) of this process. If
we then take the (weighted) average of these realization values, we will find the ensemble average µx̄(t)
at time t.

However, in real life, we don’t know all realizations of a stochastic process x̄(t). All we have is one
realization x(t). The average value µx of this realization is called the time average. An ergodic
process is now defined as a process in which these averages are equal. Or, more formally, it is defined
as a process for which, for every function g(x), we have

E {g(x̄(t))} = lim
T→∞

1
2T

∫ T

−T

g(x̄(t)) dt. (1.3.7)
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In real life, because we only have one realization, we often assume that a process is ergodic. This implies
that our single realization is representative for the entire process. In other words, we can use it to derive
the process properties. For this, we can use

µx̄ = lim
T→∞

1
2T

∫ T

−T

x(t) dt, σ2
x̄ = lim

T→∞

1
2T

∫ T

−T

(x(t)− µx̄)2 dt = lim
T→∞

1
2T

∫ T

−T

x(t)2 dt− µ2
x̄, (1.3.8)

Rx̄ȳ(τ) = lim
T→∞

1
2T

∫ T

−T

x(t)y(t + τ) dt, and Cx̄ȳ(τ) = lim
T→∞

1
2T

∫ T

−T

x(t)y(t + τ) dt− µx̄µȳ. (1.3.9)

1.3.5 White noise

One special type of a stochastic process is white noise w̄(t). White noise has a zero mean: µw̄ = 0.
Next to this, the value of w̄(t) has absolutely no influence on the value of w̄(t + τ) with τ 6= 0. Thus,
Cw̄w̄(τ) = 0 for τ 6= 0. To be more precise, the auto covariance function of white noise is defined as

Cw̄w̄(τ) = Wδ(τ), (1.3.10)

where W is called the intensity of the white noise and δ(τ) is the Dirac delta function. However,
white noise is only a convenient theoretical trick. In real life, white noise as defined above does not
occur. To show this, we can look at the variance σ2

w̄ of w̄(t). It is given by σ2
w̄ = Cw̄w̄(0) = ∞. This

is physically of course impossible. So instead, in real life, we usually call a stochastic process x̄(t) white
noise if Cx̄x̄(τ) ≈ 0 for |τ | > ε for some sufficiently small ε.
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2. Spectral analysis of continuous processes

In the previous chapter, we have examined systems in the time-domain. In both this chapter and the
next one, we’re going to look at the frequency domain. To do that, we first examine Fourier series and
the Fourier transform. With this theory, we can then examine the properties of systems in the frequency
domain. This chapter concerns the continuous-time case, while the next chapter deals with discrete time.

2.1 Fourier series

2.1.1 Continuous-time Fourier series

Let’s examine a periodic function x(t). (Periodic means that there is some T such that x(t) = x(t + T )
for all t.) We can approximate x(t) by summing up several basis functions. In the continuous-time
Fourier series (CTFS) approximation, we use sines and cosines as basis functions. So, we approximate
x(t) like

x̃(t) =
N−1∑
k=0

(ak cos(kω0t) + bk sin(kω0t)) = a0 +
N−1∑
k=1

(ak cos(kω0t) + bk sin(kω0t)) . (2.1.1)

The fundamental frequency is generally chosen to be ω0 = 2π/T . (The frequency kω0 is now called
the kth harmonic.) In this case, all basis functions are orthogonal on the interval [t0, t0 + T ]. This
means that, if k and l are positive integers, we have∫ t0+T

t0

sin(kω0t) cos(lω0t) dt = 0, (2.1.2)∫ t0+T

t0

sin(kω0t) sin(lω0t) dt =

{
0 if k 6= l
T
2 if k = l,

(2.1.3)

∫ t0+T

t0

cos(kω0t) cos(lω0t) dt =

{
0 if k 6= l
T
2 if k = l.

(2.1.4)

We can use the above equations to find the coefficients a0, ak and bk. We will then find that

a0 =
1
T

∫ t0+T

t0

x(t) dt, (2.1.5)

ak =
2
T

∫ t0+T

t0

x(t) cos(kω0t) dt, (2.1.6)

bk =
2
T

∫ t0+T

t0

x(t) sin(kω0t) dt. (2.1.7)

It is interesting to note that a0 is, in fact, the average of the signal x(t).

2.1.2 Continuous-time Fourier series in complex form

Using complex numbers, we can write the equations of the previous paragraph in a much easier form.
Let’s denote j =

√
−1 as the complex number. As you know, we can write ejωt = cos(ωt) + j sin(ωt), so

cos(ωt) =
1
2
(
ejωt + e−jωt

)
and sin(ωt) =

1
2j

(
ejωt − e−jωt

)
. (2.1.8)
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We can now rewrite equation (2.1.1) to

x̃(t) =
N−1∑

k=−(N−1)

ckejkω0t, with ck =
1
T

∫ t0+T

t0

x(t)e−jkω0t dt. (2.1.9)

Note that the coefficients ck are complex numbers as well. However, they are set such that the approx-
imation x̃(t) is a real-valued function. In the above equation, the left relation is called the synthesis
equation. This is because it constructs/synthesizes the approximation x̃(t) from basis functions. The
right relation is called the analysis equation. This is because it analyses how to approximate x(t) using
basis functions.

We can also find the relationships between the coefficients ak, bk and ck. These are

c0 = a0, ck =
1
2
(ak − jbk), c−k =

1
2
(ak + jbk), (2.1.10)

a0 = c0, ak = 2Re{ck} = 2Re{c−k}, bk = −2Im{ck} = 2Im{c−k}. (2.1.11)

The latter relations follow from the fact that ck and c−k are complex conjugates. We denote this by
ck = c∗−k.

2.1.3 Properties of the Fourier series

The Fourier transform has several properties. We’ll mention a couple of them. First of all, let’s examine
N . When N increases, then the approximation x̃(t) of x(t) becomes better. And, if N → ∞, then
x̃(t) → x(t).

When we find the Fourier transform of an even function, then we will only get cosine terms. So, bk = 0
for all k. (An even function x(t) satisfies x(t) = x(−t).) Similarly, when we find the Fourier transform
of an odd function, we only get sine terms. So, ak = 0 for all k. (An odd function x(t) satisfies
x(t) = −x(−t).)

Let’s look at the average of the squared signal x(t)2. It can be shown that this equals the sum of the
squared Fourier series coefficients. So,

1
T

∫ t0+T

t0

x(t)2 dt = a2
0 +

∞∑
k=1

1
2
(
a2

k + b2
k

)
=

∞∑
k=−∞

|ck|2. (2.1.12)

This relation is called Parseval’s theorem for the Fourier series expansion.

Finally, we can consider the Fourier series expansion of the nth derivative of x(t). We then find that it
equals

dnx(t)
dtn

=
∞∑

k=−∞

(jkω0)nckejkω0t. (2.1.13)

2.2 The continuous-time Fourier transform

2.2.1 The Fourier transform equations

Previously, we have derived the Fourier series of periodic functions. However, now we examine an aperi-
odic function. This function can, in fact, be seen as a periodic function with period T = ∞. So we can
approximate it using a Fourier series. If we take N = ∞ and t0 = − 1

2T , then we get

x̃(t) = lim
T→∞

(
+∞∑

k=−∞

ω0

2π

(∫ + 1
2 T

− 1
2 T

x(t)e−jkω0t dt

)
ejkω0t

)
. (2.2.1)
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However, if T → ∞, then ω0 = 2π/T becomes infinitesimally small. So, we rewrite it as dω. This then
turns the sum into an integral. We should then also denote kω0 simply as ω. This turns the above
equation into

x̃(t) =
1
2π

∫ +∞

−∞

(∫ +∞

−∞
x(t)e−jωt dt

)
ejωt dω. (2.2.2)

The inner integral from the above equation is called the Fourier integral. In fact, it is the Fourier
transform X(ω) of the signal x(t). This Fourier transform is denoted as

X(ω) = F {x(t)} =
∫ +∞

−∞
x(t)e−jωt dt. (2.2.3)

The outer integral is the inverse Fourier transform. It is written as

x(t) = F−1 {X(ω)} =
1
2π

∫ +∞

−∞
X(ω)ejωt dω. (2.2.4)

It must be noted that, in literature, there is no general consensus on where to place the 1/2π term in
the above two equations. Some people put it in the first, other people put it in the second, and other
people put the term

√
1/2π in both terms. Also, when you use the frequency in Hertz instead of rad/s,

the whole term vanishes altogether. In this summary, however, we’ll simply use the notation of the above
two equations.

2.2.2 Fourier transforms of basic functions

It can be worthwhile to remember the Fourier transform of several basic functions. When remembering
them, it is convenient to keep in mind that X(ω) is an indication of how ‘strong’ the frequency ω is
present in the signal. This may make it easier to remember. Now we’ll list a couple of basic transforms.

• F {1} = 2πδ(ω), where δ(ω) is again the Dirac delta function. So basically, only the frequency
ω = 0 is present in the signal x(t) = 1.

• F {cos(ω0t)} = π (δ(ω + ω0) + δ(ω − ω0)). So, the frequencies ω = ω0 and ω = −ω0 are present in
the signal x(t) = cos(ω0t).

• Let’s define the block function b(t) with width T and the sinc function according to

b(t) =


1 if |t| < T/2,

1/2 if |t| = T/2,

0 if |t| > T/2,

and sinc(x) =
sin(x)

x
. (2.2.5)

Now, we have B(ω) = F {b(t)} = T sinc
(
ω T

2

)
. It is interesting to note that, if T →∞, then b(t) = 1

for all t. Thus, B(ω) → 2πδ(ω).
• Let’s consider the block function b(ω) with width W in the frequency domain. Now let’s take the

inverse Fourier transform. We then get F−1 {b(ω)} = W
2π sinc

(
W
2 t
)
.

By the way, the sinc function is quite an important function. This function has a big peak of sinc(x) = 1
at x = 0. For the rest, it is zero if ω = 2πk/T , with k a nonzero integer. Also, the sinc function is an
even function. So, sinc(x) = sinc(−x).

It is interesting to note that transforming a block function gives a sinc-function, while transforming the
sinc-function gives a block-function. This is due to the duality property of the Fourier transform. This
property states that

if F {x(t)} = X(ω) or, equivalently, x(t) = F−1 {X(ω)} then F {X(t)} = 2πx(−ω). (2.2.6)
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2.2.3 Making a function periodic

Let’s suppose that we have some function x(t). We can make this function periodic by ‘copying’ it and
moving it by integer multiples of T0. This gives us the periodic function xp(t), being

xp(t) =
+∞∑

n=−∞
x(t + nT0). (2.2.7)

Because the above function is periodic with period T0, we can find the Fourier series. But now it can
be shown that the coefficients ck of this series actually equal X(kω0)/T0, where X(ω) = F {x(t)} and
ω0 = 2π/T0. So, the coefficients ck can simply be derived from X(ω).

Alternatively, we can also find the continuous-time Fourier transform of xp(t). This then becomes

Xp(ω) =
+∞∑

n=−∞

X(ω)
T0

δ(ω − nω0). (2.2.8)

Note that this is a discrete function: it only has values at certain points.

Let’s see how this trick works for the block function b(t). First, we define the periodic block function
bp(t) as

bp(t) =


1 if |t| < T/2 + nT0,

1/2 if |t| = T/2 + nT0,

0 if |t| > T/2 + nT0.

(2.2.9)

We can now find the Fourier series coefficients ck. They will turn out to be equal to T
T0

sinc
(
kω T

2

)
, which

is exactly what the above trick predicts them to be.

2.3 Spectral analysis applied to systems

2.3.1 Spectral analysis

Let’s examine a stochastic process x̄(t). If we try to analyze it in the frequency domain, we run into a
problem. The resulting Fourier transform will be different for every realization x(t). However, usually
we aren’t interested in x(t). Instead, we are interested in the energy of the process x̄(t). This energy is
generally proportional to x̄(t)2 or, when two processes are involved, to x̄(t)ȳ(t+ τ). (Here, we do assume
that x̄(t) and ȳ(t) have zero mean. If not, they can be normalized by subtracting the mean from the
process.)

We know that the product x̄(t)ȳ(t+τ) is related to Cx̄ȳ(τ). So, let’s examine this parameter. We assume
that both x̄(t) and ȳ(t) are ergodic processes. x(t) and y(t) are realizations of these processes, with
corresponding Fourier transforms X(ω) and Y (ω). It can now be shown that Cx̄ȳ(τ) equals

Cx̄ȳ(τ) = lim
T→∞

1
2T

1
2π

∫ +∞

−∞
Y (ω)X(−ω)ejωτ dω. (2.3.1)

We can define the power spectral density function (PSD function) Sx̄ȳ(ω) as

Sx̄ȳ(ω) = lim
T→∞

1
2T

Y (ω)X(−ω). (2.3.2)

The relation between the covariance function Cx̄ȳ(τ) and the power spectral density function Sx̄ȳ(ω) is
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then very easy. It is given by

Sx̄ȳ(ω) = F {Cx̄ȳ(τ)} =
∫ +∞

−∞
Cx̄ȳ(τ)e−jωτ dτ, (2.3.3)

Cx̄ȳ(τ) = F−1 {Sx̄ȳ(ω)} =
1
2π

∫ +∞

−∞
Sx̄ȳ(ω)ejωτ dω. (2.3.4)

By the way, if Sx̄ȳ(ω) concerns two different processes, then we call it the cross-power spectral density
function. If it concerns only one process, then we have the auto-power spectral density function
Sx̄x̄(ω).

2.3.2 The Laplace transform versus the Fourier transform

Let’s examine a system. This system has input ū(t), output ȳ(t) and an impulse response function h(t).
When dealing with systems, people often confuse the Laplace transform with the Fourier transform.
These two transforms are, respectively, defined as

X(s) = L{x(t)} =
∫ +∞

−∞
x(t)e−st dt and X(ω) = F {x(t)} =

∫ +∞

−∞
x(t)e−jωt dω. (2.3.5)

The Laplace transform is more general than the Fourier transform. (If you insert the special case s = jω
in the Laplace transform, you get the Fourier transform.) The Laplace transform H(s) = Y (s)/U(s) of
the impulse response function h(t) is called the transfer function. It can be used very well to investigate
the transient responses of the system. (Think of the final value theorem and such.)

However, the Fourier transform has its qualities as well. The Fourier transform H(ω) = Y (ω)/U(ω)
of h(t) is called the frequency response function (FRF). It can be used very well to examine the
frequency response of the system. Since, in this chapter, we’re examining the frequency response of
time-invariant processes, we will use the FRF.

2.3.3 System analysis in the frequency domain

Let’s suppose that we know the properties of the stochastic input process ū(t) which we put into a system.
We also know the system dynamics, in the form of the impulse response function h(t) or, alternatively,
its Fourier transform H(ω). Can we then find the properties of the stochastic output process ȳ(t)?

The answer is simple: yes we can. First of all, we can find the mean µȳ of ȳ(t). It is given by µȳ = H(0)µū.
However, usually we assume that the mean is zero. (If not, then we can normalize the signals by
subtracting the mean.) If this is the case, then we can find the covariance function for ū and ȳ. We have

Cūȳ(τ) = Cūū(τ) ∗ h(τ) =
∫ +∞

−∞
Cūū(τ − θ)h(θ) dθ. (2.3.6)

The ∗ operator indicates the convolution integral, which is defined as shown above. Also,

Cȳū(τ) = Cūȳ(−τ) = Cūū(τ) ∗ h(−τ) and Cȳȳ(τ) = Cūū(τ) ∗ h(τ) ∗ h(−τ). (2.3.7)

To find the power spectral density function, we can simply take the Fourier transform. And luckily, the
convolution integral in the time domain is simply multiplication in the frequency domain. So,

Sūȳ(ω) = F {Cūȳ(τ)} = H(ω)Sūū(ω), Sȳū(ω) = H(−ω)Sūū(ω) and Sȳȳ(ω) = |H(ω)|2Sūū(ω).
(2.3.8)

The variance of the output process can now be found using

σ2
ȳ = Cȳȳ(τ = 0) =

1
2π

∫ +∞

−∞
Sx̄x̄(ω) dω =

1
π

∫ +∞

0

Sx̄x̄(ω) dω =
1
π

∫ +∞

0

|H(ω)|2Sūū(ω) dω. (2.3.9)
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2.3.4 White and colored noise in the frequency domain

Previously, we have defined white noise w̄(t). The covariance function was Cw̄w̄(τ) = Wδ(τ). The power
spectral density function now becomes

Sw̄w̄(ω) =
∫ +∞

−∞
Cw̄w̄(τ)e−jωτ dτ = W. (2.3.10)

In real life, this of course isn’t possible. (A signal can’t have energy at all frequencies.) So instead, we
call a signal white noise if Sw̄w̄(ω) = W for −ω1 < ω < ω1, with ω1 sufficiently big.

Now let’s suppose that we use white noise as the input ū(t) of a system. The resulting output has a
power spectral density function of Sȳȳ(ω) = |H(ω)|2W . The variance of the output can then be found
using

σ2
ȳ = W

(
1
2π

∫ +∞

−∞
|H(ω)|2 dω

)
. (2.3.11)

The output can be seen as filtered white noise, also known as colored noise, with the FRF H(ω) as the
shaping filter.

2.3.5 A system with noise

Let’s consider a system with input ū(t) and output x̄(t). Assume that we don’t know the frequency
response function H(ω) of the system. But luckily, we can measure the output. However, the measured
output ȳ(t) is distorted by a noise n̄(t). Thus, ȳ(t) = x̄(t) + n̄(t). The question is, can we find H(ω)?
Yes, we can. After some derivation, we can find that

H(ω) =
Sūȳ(ω)
Sūū(ω)

. (2.3.12)

We can also find information about the noise n̄(t). Its PSD function is given by

Sn̄n̄(ω) = Sȳȳ(ω)− |H(ω)|2Sūū(ω) = Sȳȳ(ω)− |Sūȳ(ω)|2

Sūū(ω)
. (2.3.13)

Finally, we can also compare the real output signal x̄(t) to the measured output signal ȳ(t). We then
find that

Sx̄x̄(ω)
Sȳȳ(ω)

=
|H(ω)2|Sūū(ω)

Sȳȳ(ω)
=

|Sūȳ(ω)2|
Sūū(ω)Sȳȳ(ω)

= Γūȳ(ω)2, where Γūȳ(ω) =

√
|Sūȳ(ω)2|

Sūū(ω)Sȳȳ(ω)
.

(2.3.14)
The function Γūȳ(ω) is called the coherence between the system input ū(t) and the measured output
ȳ(t). A value of 0 indicates no coherence, while a value of 1 indicates full coherence.
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3. Spectral analysis of discrete processes

In the previous chapter, we have examined spectral analysis for continuous-time processes. However,
when working with computers, we can only deal with discrete-time processes. So, that’s we’ll focus on in
this chapter. First, we’ll look at how we can make a signal discrete. Second, we examine multiple ways
to transform such discrete signals. Finally, we find out how can actually estimate the PSD function from
a transformed discrete signal.

3.1 Making a signal discrete: sampling

3.1.1 The working principle of sampling

Let’s suppose that we have a continuous signal x(t). The Fourier transform of this function is X(ω). But
we don’t want a continuous signal. Instead, we want a discrete signal. To acquire one, we first define the
pulse train y(t) as

y(t) =
+∞∑

n=−∞
δ(t− n∆t), (3.1.1)

where n is an integer, ∆t is the sampling period and ωs = ω0 = 2π/∆t is the sampling frequency.
According to a trick from the previous chapter, this pulse train has a Fourier transform of

Y (ω) =
2π

∆t

+∞∑
n=−∞

δ

(
ω − n

2π

∆t

)
. (3.1.2)

We can use y(t) to create the discrete signal z(t) of x(t). To do this, we multiply x(t) by y(t). Thus,

z(t) = x(t)y(t) =
+∞∑

n=−∞
x(t) δ(t− n∆t). (3.1.3)

Now we would like to find the Fourier transform Z(ω) of z(t). Since multiplication in the time domain
means convolution in the frequency domain, we get

Z(ω) =
1
2π

X(ω) ∗ Y (ω) =
1
2π

∫ +∞

−∞
X(ξ)Y (ω − ξ) dξ. (3.1.4)

By inserting the relation for Y (ω) and by working things out further, we can then find that

Z(ω) =
1

∆t

+∞∑
n=−∞

X(ω − nω0). (3.1.5)

So basically, to find Z(ω), we take X(ω), scale it by 1/∆t, make copies of it and then shift it by integer
multiples of ω0. This thus makes Z(ω) periodic. By the way, the above function Z(ω) is the continuous-
time Fourier transform (CTFT) of the discrete signal. We will examine the discrete-time Fourier
transform later in this chapter.

It is interesting to note the duality with the ‘making-a-function-periodic’ trick from the last chapter.
There, we made a normal function x(t) periodic by copying it and shifting these copies by integer multiple
of T0. The result was a discrete version of the original Fourier transform, scaled by a factor 1/T0. Here,
we make a function discrete with time step ∆t. The result is a copied-and-shifted version of the original
Fourier transform, scaled by a factor 1/∆t.
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3.1.2 Losing data due to sampling

Of course, the downside of sampling is that data is lost. In the time domain, we only have data at
the points z(k∆t) (or alternatively, z[k]). The data in between these points is lost. In the frequency
domain, something different occurs. Let’s examine the function Z(ω) in the interval [−ωs/2, ωs/2]. In
this interval, we don’t only have the original function X(ω). Instead, copies of shifted versions of X(ω)
are also added. This often makes it impossible to extract the original function X(ω) in this interval. This
phenomenon is called aliasing.

Luckily, there is a trick to reduce this problem. We simply take the original signal X(ω) and, before we
alias it, we remove all frequencies higher than the so-called Nyquist frequency ωn = ωs/2. (Alterna-
tively, we can select the sampling frequency ωs to be twice as high as the highest frequency that already
exists.) This does mean that we lose some data about the higher frequencies. However, the resulting
adjusted signal X(ω) won’t be effected by the sampling. In other words, we keep perfect information
about the more important lower frequencies.

Based on this information, we can also answer the question when we can reconstruct the exact original
signal x(t) from the sampled signal z(t). Let’s suppose that X(ω) is a bandlimited signal. This
means that there is a frequency ωM such that if |ω| > ωM , then X(ω) = 0. If we now choose the
sampling frequency ωs such that ωs > 2ωM , then we can perfectly reconstruct the original signal x(t)
from the sampled signal z(t). If this is not the case, then there will be errors. (This theorem is called
the (Shannon) sampling theorem.)

3.1.3 Reconstruction of the original signal

The transformation of the discrete-time signal z(t) back to the continuous-time signal x(t) is called
signal reconstruction. To do this, we should simply take Z(ω) and only use the values in the interval
[−ωs/2, ωs/2]. In other words, if we take as reconstruction filter R(ω) a block function with width ωs,
then we will simply have as reconstructed signal

Xr(ω) = Z(ω)R(ω). (3.1.6)

If we put this equation in the time-domain, then the reconstruction filter will be a sinc function. So,
r(t) = sinc

(
ωst
2

)
= sinc

(
πt
∆t

)
. To find the reconstructed signal xr(t) in the time domain, we can then use

the convolution integral

xr(t) = z(t) ∗ r(t) =
∫ +∞

−∞
x(θ)δ(θ − n∆t) sinc

(ωs

2
(t− θ)

)
. (3.1.7)

The above integrand only gives a nonzero value if θ = n∆t. Thus, we find that

xr(t) =
+∞∑
−∞

x(n∆t) sinc
(ωs

2
(t− n∆t)

)
. (3.1.8)

So, the reconstructed signal is a sum of sinc functions. The nth sinc function has its center at t = n∆t
(so, at the nth sample) and has magnitude x(n∆t) (which is the magnitude of the nth sample). Also,
the sinc function is zero at the position of the other samples. So, at least we can always be sure that
x(n∆t) = xr(n∆t) for all n. That is, the reconstructed signal equals the original signal at the position
of the samples. In between these samples. xr(t) usually only approximates x(t).

3.1.4 Reconstruction with insufficient data

The previous reconstruction method requires us to have z(t) available at all times t. But in practice,
this often isn’t the case, as we can’t look into the future. To solve this problem, we use a different
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reconstruction method, called the zero-order hold (ZOH). We now simply say that the reconstructed
signal xr(t) equals the last sample that we have found. So,

xr(t) = z(k∆t) for k∆t ≤ t < (k + 1)∆t. (3.1.9)

This method is actually equivalent with using as reconstruction signal r(t) a block with width ∆t, shifted
in time by ∆t/2. So, r(t) = b(t−∆t/2). In the frequency domain, we then have

R(ω) = e−jω∆t/2B(ω) = e−jω∆t/2∆t sinc
(

ω∆t

2

)
. (3.1.10)

Alternatively, there is also the first-order hold (FOH), but we won’t discuss that method here.

3.2 Discrete Fourier transforms

3.2.1 The discrete-time Fourier transform

It is time to really start to work in discrete time. First, we will denote x(n∆t) simply as x[n], and similarly,
z(n∆t) = z[n]. (Note that x[n] and z[n] in fact are the same.) Now we define the discrete-time Fourier
transform (DTFT) of a discrete signal x[n] as

X(Ω) = F {x[n]} =
+∞∑

n=−∞
x[n]e−jΩn and x[n] = F−1 {X(Ω)} =

1
2π

∫ +∞

−∞
X(Ω)ejΩn dΩ.

(3.2.1)

The DTFT X(Ω) is very similar to the CTFT Z(ω) of the discrete signal z(t). The fundamental difference
is that we now don’t use ω but Ω. The relation between the two is given by Ω = ω∆t. Also, as can be
seen from the above relation, the DTFT X(Ω) has a period of 2π, whereas the CTFT Z(ω) has a period
of 2π/∆t. And finally, we don’t use times n∆t anymore, but we simply use indices n. So, the DTFT can
be seen as a ‘normalized’ version of the CTFT, such that the factor ∆t has been taken out.

3.2.2 The discrete Fourier transform

A different type of transform is the discrete Fourier transform (DFT). (Don’t confuse the DTFT with
the DFT!) Let’s suppose that we have N samples x[n] (0 ≤ n < N), taken with a sampling time ∆t over
a measurement time T . (So, T = N∆t.) The DFT X[k] of x[n] is now given by

X[k] =
N−1∑
n=0

x[n]e−jk 2π
N n and, as inverse, x[n] =

1
N

N−1∑
k=0

X[k]ejn 2π
N k. (3.2.2)

Just like the DTFT resembles the CTFT, so does the DFT resemble the CTFS. To see how, compare the
above equation with the relations for the CTFS, given by

ck =
1
T

∫ t0+T

t0

x(t)e−jk 2π
T t dt and x(t) =

+∞∑
k=−∞

ckejk 2π
T t. (3.2.3)

So, the period T from the CTFS resembles the number of measurements N in the DFT. In fact, the
function X[k] is periodic with period N . So, X[k] = X[k + N ] for all k. Also, it can be noted that
X[−k] = X[n− k] = X∗[k], where X∗[k] is the complex conjugate of X[k]. (Remember that we also had
c−k = c∗k with the CTFS.)

Let’s denote fs = 1/∆t as the sampling frequency (in Hertz). Also, we say that fs/N = 1/N∆t = 1/T is
the frequency resolution (FR) of the DFT in Hertz. (The FR in radians per second is 2πfs/N .) The
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DFT can now be used to measure how ‘strong’ the frequency f = mfs/N (with −N/2 < m < N/2) is
present in the signal x[n]. To see how this works, let’s examine a signal with frequency f0, like

x(t) = cos(2πf0t), or equivalently, x[k] = cos(2πf0k∆t). (3.2.4)

Let’s first assume that we can write f0 = mfs/N for some integer m. (That is, f0 is a multiple of the
frequency resolution. We do ought to have m < N/2 though, since higher frequencies can’t be measured
with only N measurements.) In this case, |X[±m]| will have a relatively high value, while X[k] = 0 if
k 6= ±m. But now assume that we can’t write f0 = mfs/N for some integer m. In this case, spectral
leakage occurs. This means that X[k] will have a value for about all k. This makes it hard to determine
the actual frequency of the signal.

3.2.3 Applying a window

The DFT has leakage, while the DTFT does not. So, to prevent leakage, we can in a way draw inspiration
from the DTFT. We start with a signal x[n]. (For example, the one of equation (3.2.4).) When we use
the DFT to acquire X[k], we only consider the signal x[n] for 0 ≤ n < N . We want to do a similar thing
with the DTFT. So, we define the rectangular time window w[n] as

w[n] =

{
1 if 0 ≤ n < N,

0 otherwise.
(3.2.5)

We then define the signal y[n] = w[n]x[n]. We put this signal y[n] into the DTFT and find Y (Ω). It can
now be shown that X[k] actually equals Y (Ω) on the corresponding points. (That is, if Ω = 2πk/N .)

Although the above is interesting, it doesn’t solve the leakage problem. However, things are different if
we use a different time window. Several good time windows are available. We could, for example, try the
Hanning window

h[k] =

{
1
2

(
1− cos

(
2πk
N

))
= sin2

(
πk
N

)
if 0 ≤ k < n,

0 otherwise.
(3.2.6)

If we apply this window to the signal x[k] (and thus get y[k] = h[k]x[k]) and put this new signal into the
DFT, then there generally is less leakage. So, this significantly reduces our problem.

3.2.4 The fast Fourier transform

Let’s suppose that we have a signal x[n] and we want to find the DFT X[k]. We could simply use equation
(3.2.2). However, this would require N2 computations. The fast Fourier transform (FFT) is a very
efficient algorithm that finds the DFT with only N log2 N computations. Especially for big N , this saves
a lot of computation time.

To apply the FFT, we first split the sequence x[n] up into even terms y[r] and odd terms z[r]. So,

y[r] = x[2r] and z[r] = x[2r + 1] for 0 ≤ r < N/2. (3.2.7)

For each of the sequences y[r] and z[r], we now find the DFTs Y [k] and Z[k] for 0 ≤ k < N/2. We then
put these two together to find X[k], according to

X[k] = Y [k] + e−j 2πk
N Z[k]. (3.2.8)

There is, however, a problem. During computations, we only have the values for Y [k] and Z[k] for
0 ≤ k < N/2. So the above equation only works for 0 ≤ k < N/2. But we need to find X[k] for
0 ≤ K < N . To solve this problem, we make use of the fact that Y [k] and Z[k] are, in reality, periodic
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functions with period N/2. So, Y [k] = Y [k + N/2] and Z[k] = Z[k + N/2]. By using this fact, we can
find that, for N/2 ≤ K < N , we have

X[k + N/2] = Y [k + N/2] + e−j
2π(k+N/2)

N Z[k + N/2] = Y [k]− e−j 2πk
N Z[k]. (3.2.9)

(Note that we have used the fact that e−jπ = −1.) In this way, we can derive X[k] from Y [k] and Z[k]
in a very efficient way. The question remains, how do we find Y [k] and Z[k]? Well, this is simply done
recursively: we again use the FFT.

3.3 Calculating spectral estimates

3.3.1 An initial estimate

The DFT is quite popular, because it can be used to approximate the PSD function. Let’s suppose that
we have a stochastic process x̄(t). We have several samples x[n] of a realization of this process. We have
also found the DFT X[k] of x[n]. The Periodogram INx̄x̄

[k] of this signal x[n] is now defined as

INx̄x̄
[k] =

1
N

X[−k]X[k] =
1
N

X∗[k]X[k] =
1
N
|X[k]|2. (3.3.1)

This periodogram is an unbiased estimate of the discrete-time PSD function Sx̄x̄[k]. That is,

lim
N→∞

E {INx̄x̄
[k]} = Sx̄x̄(ω). (3.3.2)

However, it is not a consistent estimate: the variance doesn’t go to zero as N →∞. Instead, we have

lim
N→∞

var {INx̄x̄
[k]} = σ2

IN
= σ4

x̄ 6= 0. (3.3.3)

3.3.2 Improving the estimate

We would like to reduce the variance of our estimate INx̄x̄
[k]. One way to do this is to take multiple

signals x[n] and derive an estimate INx̄x̄
[k] for each one of them. However, the problem is that we usually

only have one signal x[n]. According to Bartlett’s procedure, we then simply divide this signal into K
signals, each having M samples, with N = KM . The ith signal would thus be x(i)[n] = x[n + (i− 1)M ],
with 0 ≤ i < K and 0 ≤ n < M . The estimate Ŝx̄x̄[k] of the discrete-time PSD function now becomes

Ŝx̄x̄[k] =
1
K

K∑
i=1

I
(i)
M [k], with I

(i)
M [k] =

1
M

∣∣∣∣∣
M−1∑
n=0

x(i)[n]e−j 2πk
M n

∣∣∣∣∣
2

. (3.3.4)

The variance of the estimate Ŝx̄x̄[k] is now 1/K times the variance of each periodogram. So, that’s
a significant improvement. However, there of course is a downside. The frequency resolution equals
2πfs/M . So, decreasing the variance of the estimate means that you decrease the frequency resolution
as well. When applying Bartlett’s procedure, you thus have to make a tradeoff between these two
parameters.

Let’s suppose that we’ve finally found a satisfactory estimate Ŝx̄x̄[k] of the discrete-time PSD function
Sx̄x̄[k]. Now we want to find an estimate of the actual continuous-time PSD function Ŝx̄x̄(ω). What
is the relation between the two? Well, at the end of paragraph 3.1.1, we’ve seen that transforming a
discrete version of a signal with time step ∆t is the same as transforming the continuous signal, copying-
and-shifting it and scaling it by 1/∆t. To reverse this, we thus need to scale the function Ŝx̄x̄[k] back by
a factor ∆t. So,

Ŝx̄x̄(ω) = ∆tŜx̄x̄[k]. (3.3.5)

Here, we have ω∆t = 2πk
N . Do note though, that the estimate Ŝx̄x̄(ω) is only valid for −2πfs/2 < ω <

2πfs/2. Also, the resulting frequency resultion is given by 2πfs/M .
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4. Multivariable stochastic processes

Previously, we have only dealt with single-input single-output systems. But what happens if you insert
a stochastic vector into a multi-input system? That’s what we’ll look at in this chapter. First, we’ll look
at some multivariable probability theory. After that, we’re going to examine the properties of signals as
they are passed through a system. Finally, we discuss how we can use the impulse response function.

4.1 Multivariable probability theory

4.1.1 Distribution functions of stochastic vectors

Let’s examine a stochastic vector x̄. This is simply a vector of stochastic variables. So, we have

x̄ =
[
x̄1 x̄2 . . . x̄n

]T
. (4.1.1)

The probability distribution function and the probability density function simply equal the joint proba-
bility distribution/density functions of the variables x̄i. So,

Fx̄(x) = Pr {x̄1 ≤ x1 ∧ x̄2 ≤ x2 ∧ . . . ∧ x̄n < xn} and fx̄(x) =
∂nFx̄(x)

∂x1 ∂x2 . . . ∂xn
. (4.1.2)

4.1.2 Properties of stochastic vectors

In practice, we generally can’t determine the exact distribution functions. Instead, we’ll simply look at
important parameters. For example, the mean (or average) µx̄ is defined as

µx̄ = E {x̄} =
[
E {x̄1} E {x̄2} . . . E {x̄n}

]T
. (4.1.3)

So, applying the expectation operator E to a vector or matrix simply means applying it to every individual
element of the vector/matrix. Similarly to the mean, we also have the n ×m covariance matrix Cx̄ȳ

of two stochastic vectors x̄ (size n) and ȳ (size m). It is defined as

Cx̄ȳ = E
{
(x̄− µx̄)(ȳ − µȳ)T

}
. (4.1.4)

In the above equation, we again simply have to take the expectation of every parameter (x̄i−µx̄i
)(ȳj−µȳj

)
of the matrix (x̄− µx̄)(ȳ − µȳ)T to find Cx̄ȳ.

Next to the covariance matrix, we of course also have the autocovariance matrix Cx̄x̄. It can be noted
that this is a symmetric matrix (Cx̄ix̄j

= Cx̄j x̄i
). Also, its diagonal elements are the variances of the

individual parameters (Cx̄ix̄i
= σ2

x̄i
). We can use the autocovariance matrix to find the correlation

matrix Kx̄x̄. This matrix is defined as

Kx̄x̄ =


Cx̄1x̄1
σx̄1σx̄1

Cx̄1x̄2
σx̄1σx̄2

· · · Cx̄1x̄n

σx̄1σx̄n
Cx̄1x̄2
σx̄1σx̄2

Cx̄2x̄2
σx̄2σx̄2

· · · Cx̄2x̄n

σx̄2σx̄n

...
...

. . .
...

Cx̄1x̄n

σx̄1σx̄n

Cx̄2x̄n

σx̄2σx̄n
· · · Cx̄nx̄n

σx̄n σx̄n

 =


1 Cx̄1x̄2

σx̄1σx̄2
· · · Cx̄1x̄n

σx̄1σx̄n
Cx̄1x̄2
σx̄1σx̄2

1 · · · Cx̄2x̄n

σx̄2σx̄n

...
...

. . .
...

Cx̄1x̄n

σx̄1σx̄n

Cx̄2x̄n

σx̄2σx̄n
· · · 1

 . (4.1.5)

Stochastic vectors can be transformed linearly. For example, we may have ȳ = Ax̄. Let’s suppose that
we know the properties of the vector x̄. The properties of ȳ can then be found using

µȳ = Aµx̄ and Cȳȳ = ACx̄x̄AT . (4.1.6)
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4.1.3 Properties of multivariable stochastic processes

We can extend the above properties to stochastic processes. Let’s examine the multivariable stochastic
processes x̄(t) and ȳ(t). Once more, we assume that these properties are stationary. In a previous
chapter, we defined the covariance function Cx̄ȳ(τ) of the signals x̄(t) and ȳ(t) as the covariance between
x̄(t) and ȳ(t + τ). We do exactly the same to define the covariance function Cx̄ȳ(τ) of the two processes
x̄(t) and ȳ(t). We thus get

Cx̄ȳ(τ) = E
{
(x̄(t)− µx̄(t))(ȳ(t + τ)− µȳ(t + τ))T

}
. (4.1.7)

Once we have the covariance function, we can find the power spectral density Sx̄ȳ(ω) function for
multivariable stochastic processes. This is once more simply the Fourier transform of Cx̄ȳ(τ). So,
Sx̄ȳ(ω) = F {Cx̄ȳ(τ)}. By the way, when you want to take the Fourier transform of a matrix, you simply
transform all the individual elements of the matrix separately.

4.2 Stochastic processes in systems

4.2.1 Continuous-time and discrete-time systems

Let’s examine a multivariable linear system. We denote the state vector by x, the input vector by u and
the output vector by y. We can write the system in its state space form. This is done for continuous
(left) and discrete systems (right) like

ẋ(t) = Ax(t) + Bu(t), x[k + 1] = Φx[k] + Γu[k], (4.2.1)

y(t) = Cx(t) + Du(t), y[k] = Cx[k] + Du[k]. (4.2.2)

Now let’s ask ourselves an interesting question. What will happen if we don’t put a deterministic input
vector u into the system, but a stochastic input vector ū? Well, we usually assume that ū is a Gaussian
vector. And in this case, it can be shown that x̄ and ȳ will be Gaussian vectors as well. How to find
their properties will be discussed in the upcoming two sections.

4.2.2 Properties for continuous-time systems

Let’s examine the state equation ẋ(t) = Ax(t) + Bu(t) of a continuous system. This equation can be
solved. We will then find that

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ)Bu(τ) dτ, (4.2.3)

where Φ(t, t0) is the transition matrix, defined as

Φ(t, t0) = e(t−t0)A = I + (t− t0)A +
(t− t0)2A2

2!
+

(t− t0)3A3

3!
+ . . . =

+∞∑
n=0

(t− t0)nAn

n!
. (4.2.4)

Now let’s suppose that we use white noise w̄(t) as input. We thus have µw̄ = 0 and Cw̄w̄(τ) = Wδ(τ),
where W is the intensity matrix. We can use the above equations to find the mean µx̄(t) and the
covariance matrix Cx̄x̄(t) of the resulting stochastic state vector x̄(t) at time t. We will have µx̄(t) =
Φ(t, t0)µx̄(t0) and

Cx̄x̄(t1, t2) = Φ(t1, t0)Cx̄x̄(t0, t0)Φ(t2, t0)T +
∫ min(t1,t2)

t0

Φ(t1, τ)BWBT Φ(t2, τ)T dτ. (4.2.5)
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Note that we have used the notation Cx̄x̄(t1, t2), instead of the normal notation Cx̄x̄(τ). The reason
for this is that the stochastic process x̄(t) is not necessarily stationary. If we simply want to know the
covariance matrix of x̄(t) at time t, then we can insert t1 = t2 = t. We denote this matrix then as Cx̄x̄(t).
(Note that this is a different matrix function than Cx̄x̄(τ).)

When dealing with systems, we usually aren’t interested in transient behavior. Instead, it would be nice
to know the steady state solution Cx̄x̄,ss of the above equation. By setting dCx̄x̄(t, t)/dt to zero, it can
be derived that

0 = ACx̄x̄,ss + Cx̄x̄,ssA
T + BWBT . (4.2.6)

This is the continuous-time Lyapunov equation. A unique solution only exists if the matrix A is
exponentially stable. (In other words, all eigenvalues are strictly negative.) If this is the case, then the
solution is given by

Cx̄x̄,ss =
∫ +∞

t0

eτABWBT eτAT

dτ. (4.2.7)

It is interesting to note that the above equation is equal to equation (4.2.5) when t →∞. The covariance
matrix of exponentially stable systems thus always converges to the steady state covariance matrix.

4.2.3 Properties for discrete-time systems

In the previous paragraph, we considered a continuous system. Now, let’s examine a discrete system.
The state of this system satisfies the linear difference equation x[k+1] = Φx[k]+Γu[k]. Let’s suppose
that we derived this discrete system from a continuous system. If ∆t is the sampling time, then we have

Φ = Φ(tk+1, tk) = e∆t A = I + ∆t A +
∆t2A2

2!
+

∆t3A3

3!
+ . . . =

+∞∑
n=0

∆tnAn

n!
, (4.2.8)

Γ = ∆t B +
∆t2AB

2!
+

∆t3A2B

3!
+ . . . =

+∞∑
n=1

∆tnAn−1B

n!
. (4.2.9)

Note the similarity between the discrete-time system matrix Φ and the continuous-time transition matrix
Φ(t, t0). (That’s the reason why the same symbol is used for both parameters.) The direct equation for
finding x[k] is now given by

x[k] = Φkx[0] +
k−1∑
n=0

ΦnΓu[k − n− 1]. (4.2.10)

Let’s suppose that we use white noise w̄[k] as input. So, we have µw̄ = 0 and Cw̄w̄[k] = Wdδ[k]. (By the
way, δ[k] is the Kronecker delta function. We have δ[k] = 1 if k = 0 and δ[k] = 0 otherwise. Also,
Wd is the intensity of the discrete noise.) With this data, the properties of x[k] can be derived. We find
that µx̄[t] = Φnµx̄[0] and

Cx̄x̄[k1, k2] = Φk1 x̄[0, 0]
(
ΦT
)k2 +

min(k1,k2)−1∑
n=0

ΦnΓWdΓT
(
ΦT
)n

. (4.2.11)

Often, we only want to find the covariance matrix of the stochastic variable x̄[k] at time k. We then
simply take k1 = k2 = k. The resulting matrix is denoted as Cx̄x̄[k].

Let’s suppose that we have some continuous process, and we are turning this into a discrete process. We
already know how to find the system matrices Φ and Γ. However, given that we know the continuous
noise intensity matrix W , how do we find the discrete noise intensity matrix Wd? It can be shown that,
for small time steps ∆t, we approximately have Wd = W/∆t. If we use this intensity matrix, then our
discrete system is a good approximation of our non-discrete system.
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We remain with the question of how to find the steady state covariance matrix Cx̄x̄,ss. This time, it can
be shown that it must satisfy

Cx̄x̄,ss = ΦCx̄x̄,ssΦT + ΓWdΓT . (4.2.12)

This is the discrete-time Lyapunov equation. A unique solution exists if Φ is exponentially stable.
(That is, if all eigenvalues λ of Φ satisfy |λ| < 1.) However, no analytic solution is available. Instead, the
solution is usually found using computational/numerical methods.

4.3 The impulse response function

4.3.1 Finding the impulse response function

When examining a system, it is always interesting to look at the relation between the input and the
output. Let’s suppose that this relation is given by the impulse response matrix hȳū(t) or, in an
abbreviated notation, simply h(t). If we denote the Fourier transform of this matrix by H(ω), then we
have

ȳ(t) = h(t) ∗ ū(t) and Ȳ(ω) = H(ω)Ū(ω). (4.3.1)

The question remains: how can we find the impulse response function? For that, we can use the equation

h(t) = CΦ(t, t0)B + D. (4.3.2)

Let’s suppose that we have a system of which we do not know the system matrices. However, we are able
to experiment with the system. How do we now find the impulse response function? Well, first we set the
initial state x(t0) to zero. Then, we simply set all inputs to zero, except for one input ui(t). We put an
impulse function on this input. (So, ui(t) = δ(t).) The resulting output y(t) now equals the ith column
hi(t) of the impulse response matrix h(t). Perform this trick for all inputs/columns i and we have found
the impulse response matrix h(t).

There is also a slightly alternative method. It can be shown that putting an impulse function on ui(t) is
equivalent to giving the system an initial condition x(t0) = Bi, with Bi the ith column of B. So, if we
apply this trick for all inputs/columns i, then we have again found the impulse response matrix h(t).

4.3.2 The covariance matrix and the PSD function

Having the impulse response matrix can be very convenient. We can use it to find the covariance matrices
between ū(t) and ȳ(t). This is done using

Cūȳ(τ) = Cūū(τ) ∗ h(τ)T , Cȳū(τ) = Cūȳ(−τ)T = h(−τ) ∗ Cūȳ(τ), (4.3.3)

Cȳȳ(τ) = h(−τ) ∗ Cūū(τ) ∗ h(τ)T . (4.3.4)

If we Fourier transform the above equations to the frequency domain, then we will find the power spectral
density function. So,

Sūȳ(ω) = Sūū(ω)H(ω)T , Sȳū(ω) = Sūȳ(−ω)T = H(−ω)Sūȳ(ω), (4.3.5)

Sȳȳ(ω) = H(−ω)Sūū(ω)H(ω)T . (4.3.6)

By the way, all the above tricks also work if you use x̄ instead of ȳ. But you then of course need to use
the impulse response matrix hx̄ū(t) instead of hȳū(t).
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5. Describing atmospheric turbulence

The previous chapters only discussed theory. It is time to look at how we can apply this theory to
aircraft. First, we need to get a mathematical framework of turbulence. That’s what we’ll derive in this
chapter. We start by examining some basic information about turbulence. We then look at how we can
model turbulence as a stochastic process. Finally, we examine possible covariance and PSD functions for
turbulence.

5.1 Basics of turbulence

5.1.1 Causes of turbulence

Let’s examine the atmosphere. This atmosphere is often subject to turbulence. We’ll take a look at where
this turbulence comes from. First of all, it depends on the temperature lapse rate λ = dT/dh in the
atmosphere. This is the temperature change for every meter which we go up. In the ICAO standard
atmosphere, up to 11 km, we have λ = −0.0065 ◦C/m.

Now examine a small parcel of air in the atmosphere. When this parcel goes up, its temperature will
decrease. The rate of temperature decrease during adiabatic ascent is denoted by β. This parameter
mostly depends on how much water is in the air. For dry air, we roughly have βdry = 0.0098 ◦/m. For
saturated air, this is less, though the exact value strongly depends on the temperature and the pressure.

Let’s suppose that |λ| > |β|. (The absolute sign is present to prevent confusion with minus signs and
such.) When our parcel of air now goes up, it cools less than the surrounding air. So, its density ρ is
lower than the surrounding air. This causes buoyancy, causing our parcel of air to go up faster. We thus
have vertical instability. (If, however, we have |λ| < |β|, then we have vertical stability.) Vertical
instability is a common cause of vertical gusts.

Another cause of turbulence is windshear. Let’s assume that the wind vector is directed horizontally.
We can now distinguish horizontal windshear (∂Vw/∂x and ∂Vw/∂y), where the wind velocity varies
per horizontal position, and vertical windshear (∂Vw/∂z), where the wind velocity varies per vertical
position. Windshear causes friction between layers of air, which in turn causes turbulence.

5.1.2 Types of turbulence

To be able to quantify turbulence, we introduce the eddy energy equation

dE

dt
= S + H + B −D. (5.1.1)

Here, E is the turbulent kinetic energy, S is a term relating to vertical windshear and H is a term
relating to horizontal windshear. Both S and H are positive. The term B is related to vertical stability.
If we have vertical stability, then it is negative. In case of vertical instability, it is positive. Finally, D
represents heat dissipation. Although the term is always positive, its exact value depends on E.

Let’s examine the above equation for some conditions. We start on the ground. Here, we have a relatively
big value for S. However, if we go up, S quickly decreases. The parameter B is positive during the day
and negative during clear nights. It doesn’t change much with height. So, close to the ground, S is
dominant, while a bit higher up, B is dominant.

In clouds, we have saturated air. Such air is vertically unstable. So, B is positive. This is especially the
case for rain-producing cumulonimbus clouds. Also, once the vertical instability has caused air to go
up/down, windshears will be present. So, S and H will be positive too.
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The term clear-air turbulence concerns turbulence high up, in clear air. It often occurs around jet
streams, at altitudes of 10.000 to 12.000 meters. For this kind of turbulence, the horizontal windshear
term H is often the most important term.

Finally, there is mountain wave turbulence, which occurs in the vincinity of mountains. These
mountains perturb the air flow, causing turbulence. This type of turbulence can become very strong.

We can distinguish four degrees of turbulence intensity. In light turbulence, objects in the aircraft still
remain at rest. In moderate turbulence, unsecured objects start to move about. In severe turbulence,
the aircraft may momentarily be out of control. Finally, in extreme turbulence, it is impossible to
control the aircraft. Structural damage may very well be present.

5.2 Modeling turbulence as a stochastic process

5.2.1 Splitting up the wind velocity

In principle, turbulence is a deterministic process, just like everything else in nature. But, because it is so
hard to predict, it is much easier to simply consider it as a stochastic process. In fact, let’s consider the
‘deterministic’ gust vector Vg(r, t), being the velocity of air with respect to the ground. We generally
split it up into two parts. These are the average wind velocity Vg,av and the deviations ū(r, t), which we
consider to be stochastic. So,

Vg(r, t) = Vg,av − ū(r, t). (5.2.1)

(The minus sign is present due to convention.) We hereby declare the average wind velocity Vg,av a matter
of navigation/guidance. We will only concern ourselves with the velocity deviation vector ū(r, t). This
velocity vector has three components ū1(r, t), ū2(r, t) and ū3(r, t). Each of these components depends on
four parameters: the position r = [ξ1, ξ2, ξ3]T and the time t.

An important parameter is the covariance matrix of the wind velocity. This matrix can be found using

Cūū(r, t; r + ξ, t + τ) = E
{
ū(r, t)ū(r + ξ, t + τ)T

}
. (5.2.2)

We can also find the power spectral density function Sūū(r, t;Ω, ω). To do this, we simply take the
Fourier transform of Cūū(r, t; r + ξ, t + τ). However, this is slightly more difficult now, since this matrix
now depends on four parameters. Because of this, the Fourier transform has become

Sūū(r, t;Ω, ω) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
Cūū(r, t; r + ξ, t + τ)e−j(ΩξT +ωt) dξ1 dξ2 dξ3 dτ. (5.2.3)

By the way, Ω is called the spatial frequency. It is related to the wavelength λ of the turbulence
according to Ω = 2π/λ.

5.2.2 Simplifying assumptions

Currently, atmospheric turbulence is still a bit too difficult to work with. So we have to make some
simplifying assumptions.

• We assume that turbulence is normally distributed. So, ū(r, t) has a normal distribution. Since
ū(r, t) has zero mean, we thus only need to know Cūū(r, t; r + ξ, t + τ) to fully describe ū(r, t).

• We assume that turbulence is a stationary process. In fact, we assume that ū(r, t) does not depend
on time at all. We thus write ū(r), Cūū(r; r+ξ) and Sūū(r;Ω). (This assumption is called Taylor’s
hypothesis.)

• We assume that turbulence is homogeneous along the flight path. So, the turbulence does not
depend on the position. We thus write Cūū(ξ) and Sūū(Ω). This assumption also implies that
turbulence is an ergodic process.
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• We assume that turbulence is an isotropic process: the statistical properties are independent of
direction. We thus have σ2

ū1
= σ2

ū2
= σ2

ū3
= σ2. This assumption seems to hold for high altitudes,

but is not so accurate close to the ground.

5.2.3 The fundamental correlation functions

To see the effect of the assumptions that have been made, we will examine two points a and b in the
atmosphere. We denote the relative position of these points by the vector ξ = b − a. Now examine
the components of the velocities u(a) and u(b) in the direction of ξ in both points. (The so-called
longitudinal components.) There is a correlation between these velocity components. Due to our
assumptions, this correlation only depends on the distance |ξ| and is denoted as f(|ξ|).
In a similar way, we can look at each of the velocity components perpendicular to the vector ξ. (The
so-called lateral components.) Once more, the correlation between these components only depends on
the distance |ξ|. We denote this correlation by g(|ξ|). Both fundamental correlation functions f and
g can be found from the PSD function Sūū(Ω). Once we have them, we can find the covariance matrix
of the turbulence. It is given by

Cij(ξ) = σ2

(
(f(|ξ|)− g(|ξ|)) ξiξj

|ξ|2
+ g(|ξ|)δij

)
, (5.2.4)

where δij is the Kronecker delta function. (It equals 1 if i = j and is zero otherwise.)

Turbulence occurs on many scales. An indication of the scale is the integral scale of turbulence. The
longitudinal scale Lg and the lateral scale L′g are, respectively, defined as

Lg =
∫ ∞

0

f(ξ) dξ and L′g =
∫ ∞

0

g(ξ) dξ. (5.2.5)

The continuity condition for incompressible fluids imposes a relation between these two scales. This
relation is Lg = 2L′g.

5.3 Finding the covariance and PSD functions for turbulence

5.3.1 The von Kármán spectra

The question remains what kind of PSD function we should use for turbulence. This is where the difficult
mathematical equations come in. The von Kármán functions yield spectra that seem to match quite
well with theoretical and experimental data on turbulence. So, let’s examine it. The longitudinal and
lateral spectra Slo(Ω) and Sla(Ω) are, respectively, given by

Slo(Ω) = 2σ2Lg
1(

1 + (1.339LgΩ)2
)5/6

and Sla(Ω) = σ2Lg

1 + 8
3 (1.339LgΩ)2(

1 + (1.339LgΩ)2
)11/6

. (5.3.1)

If we take the inverse Fourier transform, then we find that

f(ξ) =
2

2
3

Γ
(

1
3

) ( ξ

1.339Lg

) 1
3

K 1
3

(
ξ

1.339Lg

)
, (5.3.2)

g(ξ) =
2

2
3

Γ
(

1
3

) ( ξ

1.339Lg

) 1
3
(

K 1
3

(
ξ

1.339Lg

)
− 1

2

(
ξ

1.339Lg

)
K 2

3

(
ξ

1.339Lg

))
. (5.3.3)

In the above equation, Γ(z) denots the Gamma function and Km(z) denotes that modified Bessel function
of the second kind. For reasons of brevity, we won’t examine their rather lengthy definitions. However,
if the functions f and g are found, then the covariance matrix could be found using equation (5.2.4).
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5.3.2 The von Kármán spectra applied to aircraft

Previously, we have considered an arbitrary reference frame and seperation vector ξ. Now, we can specify
these for an aircraft. Let’s use the aircraft stability reference frame. In this case, the turbulence velocity is
ū = [ūg, v̄g, w̄g]T , with ūg the longitudinal gust velocity (positive backwards), v̄g the lateral gust velocity
(positive to the left) and w̄g the vertical gust velocity (positive upward). We also choose ξ = [V τ, 0, 0]T .

The result is that we can express the covariance matrix as a function of time τ again, instead of position
ξ. (We simply use ξ = V τ .) Also, we can express the PSD function in the angular frequency ω again,
instead of the spatial frequency Ω. (We now use ω = V Ω.) The relations between the old and the new
functions are given by

Cūū,new(τ) = Cūū,old(ξ = V τ) and Sūū,new(ω) =
1
V

Sūū,old(Ω = ω/V ). (5.3.4)

If we apply this to the von Kármán spectra, then we find that

Sūgūg (ω) = 2σ2 Lg

V

1(
1 +

(
1.339Lgω

V

)2
)5/6

, (5.3.5)

Sv̄g v̄g
(ω) = Sw̄gw̄g

(ω) = σ2 Lg

V

1 + 8
3

(
1.339Lgω

V

)2

(
1 +

(
1.339Lgω

V

)2
)11/6

. (5.3.6)

In this special situation, the cross-PSD functions Sūg v̄g
(ω), Sūgw̄g

(ω) and Sv̄gw̄g
(ω) are zero.

5.3.3 The Dryden spectral form

There is a problem with the von Kármán spectra. They are not rational functions. Having rational
functions would simplify computations. To solve this, the Dryden spectral form is introduced. This
function is a rational function. And furthermore, it more or less equals the von Kármán spectra on all
frequencies except for really high ones.

In the Dryden spectral form, we again have ξ = [V τ, 0, 0]T . However, this time

Sūgūg
(ω) = 2σ2 Lg

V

1

1 +
(

Lgω
V

)2 and Sv̄g v̄g
(ω) = Sw̄gw̄g

(ω) = σ2 Lg

V

1 + 3
(

Lgω
V

)2

(
1 +

(
Lgω
V

)2
)2 . (5.3.7)

To find the covariance matrix, we can again use equation (5.2.4). But this time, we need to insert

f(ξ) = e
− ξ

Lg and g(ξ) = e
− ξ

Lg

(
1− ξ

2Lg

)
. (5.3.8)

5.3.4 Generating a turbulence signal

Let’s suppose that we have chosen which spectral form to use. We now want to generate a set of turbulence
data. So how do we do that? The main idea is that we use the equation

Sȳȳ(ω) = |H(ω)|2Sūū(ω) or |H(ω)|2 =
Sȳȳ(ω)
Sūū(ω)

. (5.3.9)
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The output PSD function Sȳȳ(ω) is known: it is the spectral form which we selected. As input, we
usually take white noise, so Sūū(ω) = 1. Now we need to find the function H(ω) which satisfies the above
equation. The solution H(ω) is called the forming filter. Once we have H(ω), we generate a white
noise signal U(ω) and use Y (ω) = H(ω)U(ω) to form our turbulence signal Y (ω).

Once we have the forming filter H(ω), we can also put it in a state space form. This can, however, be
quite complicated. So we won’t treat this in depth here. Instead, we’ll only mention that the forming
filters for the Dryden spectral form are

Hūgw̄1(ω) =
ūg(ω)
w̄1(ω)

= σ

√
2Lg

V

1

1− Lg

V jω
and Hw̄gw̄3(ω) =

w̄g(ω)
w̄3(ω)

= σ

√
Lg

V

1 +
√

3Lg

V jω(
1− Lg

V jω
)2 .

(5.3.10)
If we subsitute/generalize s = jω, then we can put the above equations into state space form. If we define

w∗g(t) = ẇg(t)− σ

√
3V

Lg
w3(t), (5.3.11)

then we get

u̇g(t) = − V

Lg
ug(t) + σ

√
2V

Lg
w1(t), (5.3.12)

[
ẇg(t)
ẇ∗g(t)

]
=

[
0 1

−V 2

L2
g

−2 V
Lg

][
wg(t)
w∗g(t)

]
+

 σ
√

3V
Lg(

1− 2
√

3
)
σ

√(
V
Lg

)3

w3(t). (5.3.13)

5.3.5 Finding the quantative parameters close to the ground

When setting up a turbulence model, we do need the parameters σūg
, σv̄g

, σw̄g
and Lg. These parameters

are based on experimental data. Tables are available to find the parameters. Using these tables for
relatively low altitudes (below 450 m) can be difficult. This is mainly because, for these low altitudes,
the homogeneous and isotropic flow assumptions don’t hold anymore. To solve this problem, we need
some data.

First of all, we need to know the temperature lapse rate λ. Second, we also need an indication of the
wind speed. For this, usually the wind speed at a reference height is used. (30 ft/9.15 m is an often-used
reference height.) With these two parameters, we can find σw̄g

from tables. The quantities σūg
and σv̄g

are a bit harder to find though. This is because they strongly depend on the height h at which we want
to know the turbulence properties. A guideline that is often used to find them is

σūg

σw̄g

=
σv̄g

σw̄g

= 2.5︸ ︷︷ ︸
0m≤h<15m

,
σūg

σw̄g

=
σv̄g

σw̄g

= 1.25− 0.001h︸ ︷︷ ︸
15m≤h<250m

and
σūg

σw̄g

=
σv̄g

σw̄g

= 1︸ ︷︷ ︸
250m≤h

. (5.3.14)

We can then simply insert the values for σūg , σv̄g and σw̄g in the right positions of equations (5.3.5),
(5.3.6) and (5.3.7).

To find the value of Lg, we have to use tables again. All we have to know for this parameter are the
temperature lapse rate λ and the height h at which we want to know the turbulence properties.
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6. Symmetric responses to turbulence

In the previous chapter, we’ve created a model for turbulence. Now, we’re going to apply it to an aircraft.
How will an aircraft in turbulent air behave? In this chapter we’ll examine the symmetric response. (The
asymmetric response is left for the next chapter.) We start by finding a way to include turbulence into
our equations of motion. After that, we will turn these equations of motion into a state space form.

By the way, in this chapter, we will not use the formal notation for stochastic variables ū anymore, since
otherwise some of the formulas will be a bit unreadable. You’ll just have to remember yourself which
variables are stochastic.

6.1 The effects of turbulence on the aircraft

6.1.1 Definitions

Let’s consider an aircraft in a steady symmetric flight. Its velocity with respect to the ground is denoted
by V. Its velocity with respect to the air is Va. Finally, the velocity of air with respect to the ground is
Vg (the gust velocity). So, we have

V = Va + Vg = Va + Vg,av − u. (6.1.1)

In this chapter, we’re considering symmetric aircraft motions. So, we will be interested in the components
ug and wg of u, but not in vg. (We leave that for the next chapter.) Also, for simplicity we assume that
there is no wind. So, Vg,av = 0.

As you probably know, the pitch angle θ is defined as the angle between the aircraft’s X axis and the
horizontal plane. The flight path angle γ is the angle between the velocity vector V and the horizontal
plane. The angle of attack α is now defined as α = θ− γ. That is, it’s the angle between the aircraft’s
X axis and the velocity vector V.

Usually, α is the angle between the aircraft’s X axis and the airflow. But when there are gusts, this is
not the case anymore. So, assuming that ug and wg are small relative to the velocity V , we define the
gust angle of attack αg = wg/V . The total angle of attack is now defined as αtot = α+αg. Finally,
we define the non-dimensional gust velocity ûg = ug/V . This implies that Va = V (1 + ûg).

6.1.2 Equations for forces and moments

If we want to consider the aircraft response, we need to look at the forces and moments that act on the
aircraft. The symmetric forces and moments acting on the aircraft due to gusts are denoted by Xg, Zg

and Mg. These forces/moments are turned into non-dimensional coefficients using

CXg
=

Xg
1
2ρV 2S

, CZg
=

Zg
1
2ρV 2S

and Cmg
=

Mg
1
2ρV 2S

. (6.1.2)

To find an expression for CXg , we can use linearization. This gives us

CXg =
1

1
2ρV 2S

∂Xg

∂ûg
ûg +

1
1
2ρV 2S

∂Xg

∂
˙̂ug c̄
V

˙̂ug c̄

V
+

1
1
2ρV 2S

∂Xg

∂αg
αg +

1
1
2ρV 2S

∂Xg

∂
α̇g c̄
V

α̇g c̄

V
. (6.1.3)

Using some coefficients, we can make the above equation a lot shorter. We then get

CXg
= CXug

ûg + CXu̇g

˙̂ug c̄

V
+ CXαg

αg + CXα̇g

α̇g c̄

V
. (6.1.4)

Here, c̄ is the mean chord length of the aircraft. The coefficients CZg
and Cmg

can be written in a similar
way. The partial derivatives CXug

, CXu̇g
and such are called gust derivatives.
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6.1.3 Implementing the turbulence model

Let’s try to implement the turbulence model which was derived in the previous chapter. We often assume
that the gust field only varies in the X direction. So, it does not vary in the Y and Z direction. We thus
write

ûg = ûgmaxejΩx = ûgmaxej ωx
V and αg = αgmaxejΩx = αgmaxej ωx

V . (6.1.5)

The wavelength in this field is still given by λ = 2π/Ω = 2πV/ω. However, we often don’t work with ω
and x, but with the non-dimensional distance sc and the reduced frequency kc, defined as

sc =
x

c̄
=

V t

c̄
and kc = Ωc̄ =

ωc̄

V
. (6.1.6)

Note that now Ωx = kcsc. If we use this fact and combine it with equations (6.1.4) and (6.1.5), we find
that

CXg
=
(
CXug

+ CXu̇g
jkc

)
ûg +

(
CXαg

+ CXα̇g
jkc

)
αg. (6.1.7)

Once more, a similar expression can be derived for CZg and Cmg .

6.2 Finding coefficients and state space representations

6.2.1 Finding the gust derivatives

It would be nice if we could find expressions for the gust derivatives. First, we will examine the steady
gust derivatives like CXug

, CZug
and CMug

. These coefficients simply represent the forces/moment
acting on the aircraft when the velocity changes. However, these coefficients are already known from
normal flight dynamics. In fact, we have

CXug
= CXu CZug

= CZu and CMug
= CMu . (6.2.1)

Now let’s examine the unsteady gust derivatives CXu̇g
, CZu̇g

and CMu̇g
. It can be shown that the

term CXu̇g
jkc (and also the term CXα̇g

jkc) is very small. Next to this, it is also very hard to derive a
relation for it. So, it is usually neglected.

Deriving expressions for CZu̇g
and CMu̇g

is quite difficult as well. But it can be done for an aircraft with
a normal wing-fuselage-horizontal tailplane configuration. In fact, there are two methods for it. Both
methods use the fact that the turbulence first hits the main wing. A time τ = (xh − xw)/V later, it
hits the horizontal tailplane. (This is called the gust penetration effect.) Here, xw and xh are the
x-positions of the aerodynamic centers of the wing and the horizontal tailplane, respectively. Also, we
denote the x-position of the aircraft center of gravity by xcg.

In the first method, we look at dynamic pressures. When a gust hits the wing, the dynamic pressure at
the wing changes. The same holds for the horizontal tailplane, but this happens a time τ later. By using
this data, we can derive that

CZu̇g
= 2

(
CZw

xcg − xw

c̄
+ CZh

xcg − xh

c̄

)
= 2Cmac , (6.2.2)

Cmu̇g
= 2

(
Cmw

xcg − xw

c̄
+ Cmh

xcg − xh

c̄

)
= −2Cmh

lh
c̄

. (6.2.3)

In the second method, we don’t consider the change in dynamic pressure. Instead, we look at how much
the wing changes the flow velocity. The gust hits the wing first. When this happens, the velocity of the
gust is changed by an amount ∆u. A time τ later, a gust with a velocity

(
1− ∂∆u

∂û

)
ûg arrives at the
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horizontal tailplane. Based on this data, we can’t only derive relations for the unsteady gust derivatives,
but also for the steady gust derivatives. In fact, we will find that

CXug
= CXu

= CXwu
+ CXhu

(
Vh

V

)2
Sh

S

(
1− ∂∆u

∂û

)
, (6.2.4)

CXu̇g
= −CXhu

(
Vh

V

)2
Shlh
Sc̄

(
1− ∂∆u

∂û

)
, (6.2.5)

CZug
= CZu

= CZwu
+ CZhu

(
Vh

V

)2
Sh

S

(
1− ∂∆u

∂û

)
, (6.2.6)

CZu̇g
= −CZhu

(
Vh

V

)2
Shlh
Sc̄

(
1− ∂∆u

∂û

)
, (6.2.7)

Cmug
= Cmu

= Cmwu
+ CZhu

(
Vh

V

)2
Shlh
Sc̄

(
1− ∂∆u

∂û

)
, (6.2.8)

Cmu̇g
= −CZhu

(
Vh

V

)2
Shl2h
Sc̄2

(
1− ∂∆u

∂û

)
. (6.2.9)

Now let’s try to find the coefficients for αg. This time, we only use one method, which is similar to the
second method which we just saw. The gust αg that hits the wing causes a change in downwash ε. By
using this knowledge, we can derive for the steady gust derivatives that

CXαg
= CXα

CZαg
= CZα

and CMαg
= CMα

. (6.2.10)

(Although usually, it is simply assumed that CXαg
= 0.) For the unsteady gust derivates, we have

CXα̇g
= CXα̇

− CXq
CZα̇g

= CZα̇
− CZq

and CMα̇g
= CMα̇

− Cmq
. (6.2.11)

6.2.2 The symmetric equations of motion for aircraft turbulence

Now that we have values for the gust derivatives, we can derive the equations of motion. If we take the
equations of motion, known from flight dynamics, and add the gusts in the input vector, we find that

CXu − 2µcDc CXα CZ0 0
CZu CZα + (CZα̇ − 2µc)Dc −CX0 2µc + CZq

0 0 −Dc 1
Cmu

Cmα
+ Cmα̇

Dc 0 Cmq
− 2µcK

2
Y Dc




û

α

θ
qc̄
V

 =

−


CXδe

CXug
0 CXαg

0
CZδe

CZug
CZu̇g

CZαg
CZα̇g

0 0 0 0 0
Cmδe

Cmug
Cmu̇g

Cmαg
Cmα̇g




δe

ûg

Dcûg

αg

Dcαg

 . (6.2.12)

The above equations can be transformed to a state space form. (To do this, you have to use the definition
of the derivative operator Dc = c̄

V
d
dt .) And, if necessary, this state space form can also be combined with

the (normalized) state space form of the forming filter for ug and wg. However, this is quite complicated,
so we won’t go into depth on that here.

6.2.3 Eigenmotions of the aircraft

Let’s suppose that the pilot provides no input to the aircraft. So, δe = 0. If the aircraft is in a gust, how
does it behave? That’s what we’ll investigate now.
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First, we’ll examine the short period motion. During this motion, it is assumed that the velocity and the
flight path angle don’t change. Also, the forces in X direction are zero. Let’s apply these assumptions
to the state space matrix above. We then remain with[

CZα + (CZα̇ − 2µc)Dc 2µc + CZq

Cmα + Cmα̇Dc Cmq − 2µcK
2
Y Dc

][
α
qc̄
V

]
= −

[
CZαg

CZα̇g

Cmαg
Cmα̇g

][
αg

Dcαg

]
. (6.2.13)

With this state space representation, the short period motion of an aircraft in turbulence can be modeled.
A similar trick can be performed for the phugoid motion. This time, we assume that the angle of attack
α remains constant. Furthermore, we neglect CZq

and CX0 and we assume that the moment acting on
the aircraft is approximately zero. We now remain withCXu

− 2µcDc CZ0 0
CZu 0 2µc

0 −Dc 1


 û

θ
qc̄
V

 = −

CXug
0

CZug
CZu̇g

0 0

[ ûg

Dcûg

]
. (6.2.14)

This state space representation can be used to model the phugoid motion of an aircraft in turbulence.
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7. Asymmetric responses to turbulence

In the previous chapter we examined the symmetric response of an aircraft to turbulence. In this chapter,
we’ll focus on the asymmetric response. This is a bit more difficult than the symmetric response. Why
this is the case will be examined first. After that, the asymmetric force and moment coefficients will be
derived. At the end, the asymmetric PSD functions and the equations of motion will be examined.

7.1 The covariance and PSD function in two-dimensional space

7.1.1 Deriving the covariance matrix

Previously, we have assumed that the turbulence only varies in a longitudinal direction. This works when
we’re examining longitudinal motions. But when examining lateral motions, the lateral distance y also
needs to be taken into account. So, in this chapter, the turbulence parameters ug, vg and wg depend on
x and y. The turbulence covariance matrix is thus given by

Cūū(x, y) =

Cugug
(x, y) 0 0

0 Cvgvg (x, y) 0
0 0 Cwgwg (x, y)

 . (7.1.1)

Note that, due to the isotropic assumption, the parameters ug, vg and wg are mutually independent. We
also have Cugug (x, y) = E {ug(0, 0), ug(x, y)} and the same for vg and wg.

Let’s denote the distance to the point P = (x, y) by r =
√

x2 + y2. When the functions f(r) and g(r)
are known, the terms Cugug

(x, y) and Cvgvg
(x, y) of the covariance matrix can be found using

Cugug (x, y) = σ2
ug

(
f(r)

(x

r

)2

+ g(r)
(y

r

)2
)

and Cvgvg (x, y) = σ2
vg

(
f(r)

(y

r

)2

+ g(r)
(x

r

)2
)

.

(7.1.2)
Also, we have Cwgwg

(x, y) = σ2
wg

g(r). However, often the covariance matrices are expressed, not in x
and y, but in the dimensionless parameters x/Lg and y/Lg. It could be worthwhile to keep this in mind
when reading other texts on atmospheric flight dynamics.

7.1.2 Deriving the power spectral density function

To derive the PSD function, we simply take the Fourier transform of the covariance matrix. This time,
the covariance matrix is a function of two variables. The Fourier transform thus becomes

S(ΩxLg,ΩyLg) =
∫ +∞

−∞

∫ +∞

−∞
C

(
x

Lg
,

y

Lg

)
e−j(ΩxxΩyy) d

x

Lg
d

y

Lg
. (7.1.3)

Note that, for the PSD matrix, we have also used dimensionless parameters. This time they are ΩxLg

and ΩyLg.

For the Dryden spectral form, the above integral can be solved. The obtained results are

Sugug
(ΩxLg,ΩyLg) = πσ2

ug

1 + Ω2
xL2

g + 4Ω2
yL2

g(
1 + Ω2

xL2
g + Ω2

yL2
g

)5/2
, (7.1.4)

Svgvg
(ΩxLg,ΩyLg) = πσ2

vg

1 + 4Ω2
xL2

g + Ω2
yL2

g(
1 + Ω2

xL2
g + Ω2

yL2
g

)5/2
, (7.1.5)

Swgwg
(ΩxLg,ΩyLg) = πσ2

wg

3Ω2
xL2

g + 3Ω2
yL2

g(
1 + Ω2

xL2
g + Ω2

yL2
g

)5/2
. (7.1.6)
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There is a relation with the one-dimensional variant S′ugug
(ΩxLg) of the PSD function which we’ve used

in earlier chapters. To find it from the above equation, we apply the inverse Fourier transform for the
parameter (ΩyLg). We thus have

S′ugug
(ΩxLg) =

1
2π

∫ +∞

−∞
Sugug

(ΩxLg,ΩyLg) d(ΩyLg). (7.1.7)

The same relation holds for S′vgvg
(ΩxLg) and S′wgwg

(ΩxLg).

The turbulence field resulting from the PSD function can be seen as a superpositioning of multiple
turbulence fields. Each turbulence field has spatial frequencies Ωx and Ωy and corresponding wavelengths
λx = 2π/Ωx and λy = 2π/Ωy. The turbulence velocity is now given by

ug = ugmax
Re
(
ej(Ωxx+Ωyy)

)
, (7.1.8)

with the same for vg and wg. The above function can be seen as a sinusoid wave in two-dimensional
space. The direction in which the waves ‘run’ is then given by arctan(Ωy/Ωx).

7.2 Finding the asymmetric forces and moments

7.2.1 Asymmetric forces and moments caused by longitudinal gusts ug

To investigate the aircraft response to turbulence, we need to look at the forces and moments caused by
turbulence. We’ll do that now. First, we will examine the asymmetric forces and moments caused by
longitudinal gusts ug. For this, we use equation (7.1.8). In fact, we rewrite it to

ug(x, y) = ugmax
cos(Ωxx) cos(Ωyy) + ugmax

sin(Ωxx) sin(Ωyy) = ug1(x, y) + ug2(x, y). (7.2.1)

The first part ug1(x, y) of the above equation is symmetric. It will thus not cause any asymmetric forces
and moments. So, we will only examine the asymmetric function ug2(x, y). To do this, we look at a small
strip of the wing. For this small strip, we calculate the change in lift dL. We can then integrate y dL
over the entire wing to calculate the rolling moment caused by the gust. This gives us the coefficient of
rolling motion due to gust

Clg = Clug

(
Ωy

b

2

)
ûg, where Clug

(
Ωy

b

2

)
= − 4

Sb

∫ b
2

0

clc sin(Ωyy)y dy. (7.2.2)

(Keep in mind that cl and c also still depend on y.) The rolling moment due to turbulence Clg is similar
to the rolling moment due to a yawing motion Clrw

caused by the wing. In fact, we can relate the two
parameters through Clug

(
Ωy

b
2

)
according to

Clug

(
Ωy

b

2

)
= −Clrw

h

(
Ωy

b

2

)
, where h

(
Ωy

b

2

)
=

b

2

∫ b
2

0
clc sin(Ωyy)y dy∫ b

2
0

clcy2 dy
. (7.2.3)

Determining the yawing coefficient due to longitudinal gust Cng
goes in a similar way. We now find that

Cng
= Cnug

(
Ωy

b

2

)
ûg, where Cnug

(
Ωy

b

2

)
= −Cnrw

h

(
Ωy

b

2

)
. (7.2.4)

The function h
(
Ωy

b
2

)
is exactly the same as earlier. Finally, the lateral forces due to longitudinal gusts

CYug
are assumed to be negligible. So, CYug

= 0.
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7.2.2 Asymmetric forces and moments caused by lateral gusts vg

Let’s examine the asymmetric forces and moments caused by lateral gusts vg. We can split up vg in a
similar way as ug. However, vg is an asymmetric velocity. So this time we need to use the symmetric
part vg1(x, y) = vgmax cos(Ωxx) cos(Ωyy) in our calculations. Also, we assume that vg is approximately
constant along the wing. Thus, cos(Ωyy) ≈ 1. We now define the gust angle of sideslip βg as

βg =
vg

V
=

vgmax
cos(Ωxx)
V

. (7.2.5)

We would like to find the coefficients CYg
, Clg and Cng

. Using a derivation similar to the one used in the
previous chapter, we can find that

CYg =
(
CYβg

+ CYβ̇g
Db

)
βg, Clg =

(
Clβg

+ Clβ̇g
Db

)
βg and Cng =

(
Cnβg

+ Cnβ̇g
Db

)
βg. (7.2.6)

Also, like in the previous chapter, we have

CYβg
= CYβ

, Clβg
= Clβ and Cnβg

= Cnβ
. (7.2.7)

The other three coefficients can, also analagous to the previous chapter, be approximated using

CYβ̇g
= CYβ̇

+ CYr
, Clβ̇g

= Clβ̇
+ Clr and Cnβ̇g

= Cnβ̇
+ Cnr

. (7.2.8)

For aircraft with straight wings and a relatively small tailplane, these three derivatives are often negligible.
So, for the sake of simplicity, we often simply use CYβ̇g

= Clβ̇g
= Cnβ̇g

= 0.

7.2.3 Asymmetric forces and moments caused by vertical gusts wg

When examining vertical gusts, we use the symmetric part wg2(x, y) = wgmax
sin(Ωxx) sin(Ωyy) of the

vertical gust wg(x, y). The gust angle of attack is still defined as αg(x, y) = wg(x, y)/V . The coefficients
Clαg

and Cnαg
are now very similar to the coefficients Clug

and Cnug
. In fact, we have

Clg = Clαg

(
Ωy

b

2

)
αg and Cng

= Cnαg

(
Ωy

b

2

)
αg. (7.2.9)

Here, the functions Clαg

(
Ωy

b
2

)
and Cnαg

(
Ωy

b
2

)
are similar to the functions Clug

(
Ωy

b
2

)
and Cnug

(
Ωy

b
2

)
,

respectively. The above coefficients can also be related to the coefficients for a rolling motion, according
to

Clαg

(
Ωy

b

2

)
= Clpw

h

(
Ωy

b

2

)
and Cnαg

(
Ωy

b

2

)
= Cnpw

h

(
Ωy

b

2

)
. (7.2.10)

Finally, we assume that the side force due to αg is negligible. So, CYαg
= 0.

7.2.4 Alternative derivation of vg coefficients

There is an alternative way to derive the coefficients CYβg
, Clβg

, Cnβg
, CYβ̇g

, Clβ̇g
and Cnβ̇g

. In this
method, we make use of the gust penetration effect, just like we did in the previous chapter. First, a gust
βg hits the wing and the fuselage. (We assume that the aircraft CG and the wing aerodynamic center
coincide.) A time τ = lv/V later, the gust hits the vertical tailplane. (lv ≈ xv − xcg is the distance
between the wing and the aircraft CG.) However, the gust at the vertical tailplane has a magnitude

βvg
=
(

1− ∂σ

∂β

)
βg, (7.2.11)
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with σ the sidewash caused by the wing/fuselage. We can now approximate

CYg = CYβg
βg + CYβ̇g

Dbβg. (7.2.12)

Based on the above data, the coefficients CYβg
and CYβ̇g

can be determined. They are

CYβg
= CYfβ

− CYvα

(
Vv

V

)2
Sv

S

(
1− ∂σ

∂β

)
, (7.2.13)

CYβ̇g
= CYvα

(
Vv

V

)2
Sv

S

(
1− ∂σ

∂β

)
. (7.2.14)

By the way, CYfβ
is the contribution of the fuselage to CYβ

. It is used because the wing hardly effects
the coefficient CYβ

. A similar expression as the one above can be derived for Clg and Cng
. However, for

these two parameters, the coefficients are given by

CYβg
= Clwβ

− CYvα

(
Vv

V

)2
Sv

S

(
zv − zcg

b
cos α− xv − xcg

sin
α

)(
1− ∂σ

∂β

)
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CYβ̇g
= CYvα

(
Vv

V

)2
Sv

S

(
zv − zcg

b
cos α− xv − xcg

sin
α

)(
1− ∂σ

∂β

)
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CYβg
= Cnfβ

− CYvα

(
Vv

V

)2
Sv

S

(
xv − xcg

b
cos α− zv − zcg

sin
α

)(
1− ∂σ

∂β

)
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CYβ̇g
= CYvα

(
Vv

V

)2
Sv

S

(
xv − xcg

b
cos α− zv − zcg

sin
α

)(
1− ∂σ

∂β

)
. (7.2.18)

7.3 The PSD function and the asymmetric equations of motion

7.3.1 The PSD function of force and moment coefficients

We now know how to find the force and moment coefficients that are acting on the aircraft. The next
step is to find the PSD functions of them. The method for this is mostly the same for all coefficients.
But we’re going to demonstrate it on Clg . Equation (7.2.2) now implies that

SClg Clg
(ΩxLg,ΩyLg, B) = C2

lug
(ΩyLgB) Sûgûg

(ΩxLg,ΩyLg). (7.3.1)

In the above equation, we have defined another dimensionless coefficient: B = b
2Lg

. Usually, the coefficient
B is known. So then the above equation is two-dimensional. It would, however, be preferable for the
equation to be one-dimensional. We can make it one-dimensional using

SClg Clg
(ΩxLg, B) = C2

lrw

∫ ∞

0

h2 (ΩyLgB)Sûgûg
(ΩxLg,ΩyLg) d(ΩyLg) = C2

lrw
Iûgûg

(ΩxLg, B), (7.3.2)

where the effective one-dimensional PSD function Iûgûg
(ΩxLg, B) is defined as the integral in the

above equation. The variance of the force coefficient Clg can now be found using

E
{

C2
lg

}
=

1
2π

∫ +∞

−∞
SClg Clg

(ΩxLg, B) d(ΩxLg) =
1
2π

C2
lrw

∫ +∞

−∞
Iûgûg (ΩxLg, B) d(ΩxLg). (7.3.3)
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7.3.2 Approximating the one-dimensional PSD function

The above method can be simplified. It can be assumed that the product clc has a negligible influence
on the value of h (ΩyLgB). In this case, h (ΩyLgB) can be solved analytically. We then have

h (ΩyLgB) =
b

2

∫ b
2

0
sin(Ωyy)y dy∫ b

2
0

y2 dy
= 3

sin(ΩyLgB)− (ΩyLgB) cos(ΩyLgB)
(ΩyLgB)2

. (7.3.4)

Based on this, the function Iûgûg (ΩxLg, B), and similarly the function Iαgαg (ΩxLg, B) as well, can be
approximated. This is done using the equations

Iûgûg
(ΩxLg, B) = Iûgûg

(0, B)
1 + τ2

3 Ω2
xL2

g

(1 + τ2
1 Ω2

xL2
g)(1 + τ2

2 Ω2
xL2

g)
, (7.3.5)

Iαgαg (ΩxLg, B) = Iαgαg (0, B)
1 + τ2

6 Ω2
xL2

g

(1 + τ2
4 Ω2

xL2
g)(1 + τ2

5 Ω2
xL2

g)
. (7.3.6)

It is important to remember that the above equations are approximations. But they do prove to be quite
acceptable approximations. The constants τ1 to τ6 in the above equation depend on B. Their values can
be found in tables.

7.3.3 The asymmetric equations of motion for an aircraft in turbulence

Let’s derive the asymmetric equations of motion of an aircraft, when turbulence is involved. Based on
the assumptions that have been made, the relations that have been found and the coefficients that have
been calculated, we can find that

CYβ
− 2µbDb CL CYp CYr − 4µb

0 − 1
2Db 1 0

Clβ 0 Clp − 4µbK
2
XDb Clr + 4µbKXZDb

Cnβ
0 Cnp

+ 4µbKXZDb Cnr
− 4µbK

2
ZDb




β

ϕ
pb
2V
rb
2V

 =

−


0 CYδr

0 CYβ
0

0 0 0 0 0
Clδa

Clδr
−Clrw

Clβ Clpw

Cnδa
Cnδr

−Cnrw
Cnβ

Cnpw




δa

δr

ûg

βg

αg

 . (7.3.7)

Just like in the previous chapter, the above equations of motion can be put in state space form. For that,
you would have to use the definition Db = b

V
d
dt . Also, the equations can be combined with a state space

form of the gust filters. But again, we won’t discuss that here.
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