Atmospheric Flight Dynamics Example Exam 1 – Problems

Figure 1: Product function $R_{\bar{u}\bar{u}}(\tau)$

1 Question

In figure 1 the product function $R_{\bar{u}\bar{u}}(\tau)$ of the stationary stochastic process \bar{u} is given. What can be said about the properties of the stochastic variable \bar{u} ?

- (a) It is white noise.
- (b) It is noise with a small bandwidth.
- (c) It is white noise plus a sinus.
- (d) It is a sinus.

2 Question

The random variable \bar{x} has a probability density function $f_{\bar{x}}(x)$ as depicted in figure 2. What is the probability of $P(\bar{x} \ge -1)$?

- (a) 0.125
- (b) 0.275
- (c) 0.725

Figure 2: Probability density function $f_{\bar{x}}(x)$

- (d) 0.750
- (e) 0.875
- (f) Not enough data available

3 Question

Proof that the Fourier transform of the signal $y(t) \left(=\frac{dy(t)}{dt}\right)$ equals,

$$\mathcal{F}\left\{\dot{y}(t)\right\} = j\omega Y(\omega) \tag{3.1}$$

with $Y(\omega)$ the Fourier transform of y(t).

4 Question

Proof that the Fourier transform of the product of two functions,

$$\mathcal{F}\left\{x(t)y(t)\right\} = \frac{1}{2\pi}X(\omega) * Y(\omega)$$
(4.1)

Note: the symbol "*" represents the convolution operator.

5 Question

Proof that the periodogram $I_{\bar{y}\bar{y}}[k]$ of the signal y[n]=ax[n]+b equals,

$$I_{\bar{y}\bar{y}}[k] = a^2 I_{\bar{x}\bar{x}}[k] + (2a \operatorname{Re} \{X[k]\} + bN)b\delta[k]$$
(5.1)

with,

$$I_{\bar{x}\bar{x}}[k] = X^*[k]X[k]/N$$
(5.2)

and $\operatorname{Re} \{X[k]\}\$ the real part of the Fourier transform of x[n].

Note: the Discrete Fourier Transform (FFT) of a constant b equals,

$$FFT\{b\} = \left(\sum_{n=0}^{N-1} be^{-j\frac{2\pi k}{N}n}\right) = bN\delta[k]$$
(5.3)

with $\delta[k]$ the Kronecker delta function. Use the result $FFT\{b\} = bN\delta[k]$ in your proof. Remember that $\delta[k]$ equals 0 for $k \neq 0$ and $\delta[k]$ equals 1 for k = 0.

6 Question

Make a qualitative sketch for the auto power spectral density functions of the following signals,

(a)
$$y_1(t) = \sin(\omega_0 t)$$

- (b) $y_2(t) = \cos(\omega_1 t) + 1$
- (c) $y_3(t) = \sin(\omega_1 t) + 1$

7 Question

Assume the stochastic process \bar{x} which is defined as the wave-height in the North-Sea at a certain position. At a certain instant in time t_1 , this stochastic process has a certain probability density function $f_{\bar{x}}(x;t_1)$, with t_1 the time during the day when hardly any wind is present. At time instant t_2 , representing a time in a period with strong winds, the probability density function is written as $f_{\bar{x}}(x;t_2)$.

Make a qualitative sketch of the probability density functions $f_{\bar{x}}(x;t_1)$ and $f_{\bar{x}}(x;t_2)$.

Note: assume that $\int_{-\infty}^{+\infty} f_{\bar{x}}(x;t) dx = 1 \forall t.$

8 Question

Figure 3: System description

Given the system in figure 3 of which the frequency response functions $H_1(\omega)$ and $H_2(\omega)$ are known. The input $U(\omega)$ and the noise on the output $N(\omega)$ are stochastic and their power spectral density functions are also known (both $U(\omega)$ and $N(\omega)$ are white noise).

- (a) Calculate the power spectral density function of the output $S_{yy}(\omega)$.
- (b) Calculate the power spectral density function of the output for the case the input $U(\omega)$ and the noise $N(\omega)$ do not resemble white noise and may even be correlated.

9 Question

The probability distribution function $F_{\bar{x}}(x)$ of a uniformly distributed stochastic variable \bar{x} is written as (with b > a, see also figure 4),

$$F_{\bar{x}}(x) = \begin{cases} 0 & \text{for } x \le a, \\ \frac{x-a}{b-a} & \text{for } a < x \le b, \\ 1 & \text{for } x > b \end{cases}$$
(9.1)

Calculate the probability density function $f_{\bar{x}}(x)$ and proof that the stochastic variable's mean value and variance are respectively,

$$\mu_x = \frac{a+b}{2} \quad \text{and} \quad \sigma_x^2 \frac{1}{12} (b-a)^2.$$
(9.2)