
Atmospheric Flight Dynamics
Example Exam 1 – Solutions

1 Question

Figure 1: Product function Rūū(τ)

In figure 1 the product function Rūū(τ) of the stationary stochastic process ū is given. What can be said
about the properties of the stochastic variable ū?

(a) It is white noise.

(b) It is noise with a small bandwidth.

(c) It is white noise plus a sinus.

(d) It is a sinus.

1 Solution

It can be noted that Rūū(τ) is a sinc function. If you transform a sinc function, you will get a block
function. The PSD function Sūū(ω) is thus a block function. If this block function would be infinitely
wide, then the PSD function would be constant. The result would thus be white noise. However, the
block function is not infinitely wide. The bandwidth is thus limited. We therefore deal with white noise
with a small bandwidth. The correct answer is (b).

2 Question

The random variable x̄ has a probability density function fx̄(x) as depicted in figure 2.
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Figure 2: Probability density function fx̄(x)

What is the probability of P (x̄ ≥ −1)?

(a) 0.125

(b) 0.275

(c) 0.725

(d) 0.750

(e) 0.875

(f) Not enough data available

2 Solution

We can note that the probability density function is symmetric about x = 0. Thus,

P (x̄ ≤ 0) = P (x̄ ≥ 0) = 0.5. (2.1)

To find P (−1 ≤ x̄ ≤ 0), we simply find the area under the function fx̄(x) in this interval. This gives us

P (−1 ≤ x̄ ≤ 0) = 1 · 0.15 + 0.3
2

= 0.225. (2.2)

We thus have
P (x̄ ≥ −1) = P (−1 ≤ x̄ ≤ 0) + P (x̄ ≥ 0) = 0.725. (2.3)

The correct answer is therefore (c).

3 Question

Proof that the Fourier transform of the signal y(t)
(
= dy(t)

dt

)
equals,

F {ẏ(t)} = jω Y (ω) (3.1)

with Y (ω) the Fourier transform of y(t).
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3 Solution

We can simply use the definition of the Fourier transform. This is

F {ẏ(t)} =
∫ +∞

−∞
ẏ(t)e−jωt dt. (3.2)

Integration by parts now yields

F {ẏ(t)} =
[
y(t)e−jωt

]+∞
−∞ −

∫ +∞

−∞
−jωy(t)e−jωt dt =

[
y(t)e−jωt

]+∞
−∞ + jωF {y(t)} . (3.3)

Assuming that y(∞)e−jω∞ = y(−∞)ejω∞ then gives the desired result.

4 Question

Proof that the Fourier transform of the product of two functions,

F {x(t)y(t)} =
1
2π

X(ω) ∗ Y (ω) (4.1)

Note: the symbol ”∗” represents the convolution operator.

4 Solution

Before we begin the proof, we mention an important equation which we’ll use. Let’s say that we take
the Fourier transform of a parameter x(t) and then apply the inverse Fourier transform. We then again
wind up with x(t). So, we have

x(t) =
1
2π

∫ +∞

−∞

∫ +∞

−∞
x(α)e−jθα dα ejθt dθ. (4.2)

We start our proof with the left hand side of the equation. Per definition, this equals

F {x(t)y(t)} =
∫ +∞

−∞
x(t)y(t)e−jωt dt. (4.3)

Applying the theorem above then turns this into

F {x(t)y(t)} =
∫ +∞

−∞

1
2π

∫ +∞

−∞

∫ +∞

−∞
x(α)e−jθα dα ejθt dθ y(t)e−jωt dt. (4.4)

We now pull all the exponents and y(t) inside the integral. We also pull 1/2π outside the integral. This
gives

F {x(t)y(t)} =
1
2π

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
x(α)y(t)e−j(θα−θt+ωt) dα dθ dt. (4.5)

We can rewrite the part inside the integral. If we also change the order of integration slightly, we get

F {x(t)y(t)} =
1
2π

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

(
x(α)e−jθα

) (
y(t)e−j(ω−θ)t

)
dα dt dθ. (4.6)

Now note that the part with x(α) does not depend on t, while the part with y(t) does not depend on α.
So, we can split the integral up, resulting in

F {x(t)y(t)} =
1
2π

∫ +∞

−∞

(∫ +∞

−∞
x(α)e−jθα dα

)(∫ +∞

−∞
y(t)e−j(ω−θ)t dt

)
dθ. (4.7)
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Using the definition of the Fourier transform, this can now be rewritten as

F {x(t)y(t)} =
1
2π

∫ +∞

−∞
X(θ)Y (ω − θ) dθ =

1
2π

(X(ω) ∗ Y (ω)) . (4.8)

And this is exactly the relation which we were supposed to proof.

5 Question

Proof that the periodogram Iȳȳ[k] of the signal y[n] = ax[n] + b equals,

Iȳȳ[k] = a2Ix̄x̄[k] + (2aRe {X[k]}+ bN)bδ[k] (5.1)

with,
Ix̄x̄[k] = X∗[k]X[k]/N (5.2)

and Re {X[k]} the real part of the Fourier transform of x[n].

Note: the Discrete Fourier Transform (FFT) of a constant b equals,

FFT{b} =

(
N−1∑
n=0

be−j 2πk
N n

)
= bNδ[k] (5.3)

with δ[k] the Kronecker delta function. Use the result FFT{b} = bNδ[k] in your proof. Remember that
δ[k] equals 0 for k 6= 0 and δ[k] equals 1 for k = 0.

5 Solution

First, we’ll find an expression for Y [k]. We have

Y [k] = FFT{y[n]} = FFT{ax[n] + b} = aFFT{x[n]}+ FFT{b} = aX[k] + bNδ[k]. (5.4)

Since a and b are real constants, we also have

Y ∗[k] = aX∗[k] + bNδ[k]. (5.5)

The periodogram of y[n] is now given by

Iȳȳ[k] = Y ∗[k]Y [k]/N = (aX∗[k] + bNδ[k]) (aX[k] + bNδ[k]) /N. (5.6)

Working out brackets gives

Iȳȳ[k] = a2X∗[k]X[k]/N + ab (X∗[k] + X[k]) δ[k] + b2Nδ[k]2. (5.7)

In the discrete domain, we have δ[k]2 = δ[k]. Also, adding a complex number to its complex conjugate
gives twice its real part. (That is, X∗[k] + X[k] = 2Re {X[k]}.) And, if we also apply the definition for
Ix̄x̄[k], we will find that

Iȳȳ[k] = a2Ix̄x̄[k] + (2aRe {X[k]}+ bN) bδ[k]. (5.8)

And this is exactly what we needed to show.

6 Question

Make a qualitative sketch for the auto power spectral density functions of the following signals,

(a) y1(t) = sin(ω0t)
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(b) y2(t) = cos(ω1t) + 1

(c) y3(t) = sin(ω1t) + 1

6 Solution

(a) First, let’s determine the covariance matrix. We have

Cȳ1ȳ1(τ) =
∫ +∞

−∞
sin(t) sin(t + τ) dt. (6.1)

If τ = 0 + 2πk, then the integral will become 1/2. However, if τ = π + 2πk, then the integral will
become −1/2. This kind of hints at the solution of the integral. Using a goniometric integral table
could confirm this. We thus have

Cȳ1ȳ1(τ) =
1
2

cos(τ). (6.2)

To find the PSD function, we need to apply the Fourier transform. This gives us

Sȳ1ȳ1(ω) = F {Cȳ1ȳ1(τ)} = F
{

1
2

cos(τ)
}

=
1
2
F {cos(τ)} =

π

2
(δ(ω − ω0) + δ(ω + ω0)) . (6.3)

(Note that the Fourier transform of a cosine function is something you should know by heart.) A
sketch of this function would look like one peak at ω = ω0 and another peak at ω = −ω0.

(b) This function is not a zero-mean function. It has mean µȳ2 = 1. So the covariance function is now
given by

Cȳ2ȳ2(τ) =
∫ +∞

−∞
(sin(t) + 1− µȳ2)(sin(t + τ) + 1− µȳ2) dt. (6.4)

It is now quite trivial that we again have

Cȳ2ȳ2(τ) =
1
2

cos(τ). (6.5)

However, to find the PSD function, we need to know the product function Rȳ2ȳ2(τ). It is given by

Rȳ2ȳ2(τ) = Cȳ2ȳ2(τ) + µ2
ȳ2

=
1
2

cos(τ) + 1. (6.6)

The PSD function can now be found using the Fourier transform. So,

Sȳ2ȳ2(ω) = F {Rȳ2ȳ2(τ)} =
1
2
F {cos(τ)}+ F {1} =

π

2
(δ(ω − ω0) + δ(ω + ω0)) + 2πδ(ω). (6.7)

If we want to sketch this, then we should place one peak at ω = ω0 and another peak at ω = −ω0.
Also, there should be a peak four times as big as the previous ones on ω = 0.

(c) Note that this function has exactly the same covariance function as y2(t). (In fact, y3(t) is only a
time-shift of y2(t).) So, also the PSD function is the same. We thus have

Sȳ3ȳ3(ω) =
π

2
(δ(ω − ω0) + δ(ω + ω0)) + 2πδ(ω). (6.8)

The sketch of this function is also the same as the sketch of Sȳ2ȳ2(ω).
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7 Question

Assume the stochastic process x̄ which is defined as the wave-height in the North-Sea at a certain position.
At a certain instant in time t1, this stochastic process has a certain probability density function fx̄(x; t1),
with t1 the time during the day when hardly any wind is present. At time instant t2, representing a time
in a period with strong winds, the probability density function is written as fx̄(x; t2).

Make a qualitative sketch of the probability density functions fx̄(x; t1) and fx̄(x; t2).

Note: assume that
∫ +∞
−∞ fx̄(x; t) dx = 1∀t.

7 Solution

Due to the central limit theorem, it can be assumed that the wave-height is normally distributed. The
mean is given by µx̄(t) and the standard deviation by σx̄(t). At time t1, the waves aren’t very high, so
µx̄(t1) is low. Also, the height of the waves doesn’t vary a lot, so σx̄(t1) is also low. However, at time
t2, the waves are high. Also, the height will vary quite a bit. Thus, both µx̄(t2) and σx̄(t2) are relatively
big.

Now let’s examine the shape of the probability density functions. (This is what we need to sketch.) Since
x̄ is normally, distributed, the PDF has a bell-shaped curve. In theory this curve has a nonzero value for
every x from −∞ to ∞. However, in reality a wave height below 0 isn’t really possible. So, on the left,
we cut off the PDF at x = 0.

The PDF at time t1 has a low mean. So its peak is relatively close to 0. Also, the standard deviation is
low, so the curve’s value drops quite quickly. However, the integral over the PDF does have to equal 1.
This implies that the peak of the bell curve has to be quite high.

The PDF at time t2 has a higher mean. So its peak is further away from 0. Also, the standard deviation
is big, so the curve’s value drops less quickly to zero. And, because the integral over the PDF has to
equal 1, the peak of the bell curve is not very high.

8 Question

Figure 3: System description

Given the system in figure 3 of which the frequency response functions H1(ω) and H2(ω) are known. The
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input U(ω) and the noise on the output N(ω) are stochastic and their power spectral density functions
are also known (both U(ω) and N(ω) are white noise).

(a) Calculate the power spectral density function of the output Syy(ω).

(b) Calculate the power spectral density function of the output for the case the input U(ω) and the
noise N(ω) do not resemble white noise ánd may even be correlated.

8 Solution

The system can be described by

Y (ω) = H1(ω)U(ω) + H2(ω)U(ω) + N(ω). (8.1)

If we define H(ω) = H1(ω) + H2(ω), then we have

Y (ω) = H(ω)U(ω) + N(ω). (8.2)

For this system description, the PSD functions are related through

Sȳȳ(ω) = |H(ω)|2Sūū(ω) + Sn̄n̄(ω). (8.3)

This is the solution to the second part of the question. In the special case that both U(ω) and N(ω) are
white noise, we have Sūū(ω) = Sn̄n̄(ω) = 1 and thus

Sȳȳ(ω) = |H(ω)|2 + 1. (8.4)

9 Question

Figure 4: The probability distribution function Fx̄(x) for a uniformly distributed stochastic variable x̄

The probability distribution function Fx̄(x) of a uniformly distributed stochastic variable x̄ is written as
(with b > a, see also figure 4),

Fx̄(x) =


0 for x ≤ a,
x−a
b−a for a < x ≤ b,

1 for x > b

(9.1)

Calculate the probability density function fx̄(x) and proof that the stochastic variable’s mean value and
variance are respectively,

µx =
a + b

2
and σ2

x =
1
12

(b− a)2. (9.2)

9 Solution
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To find the probability density function, we simply take the derivative of the probability distribution
function. This gives

fx̄(x) =
dFx̄(x)

dx
=


0 for x ≤ a,

1
b−a for a < x ≤ b,

0 for x > b.

(9.3)

To find the mean, we can use

µx̄ =
∫ +∞

−∞
xfx̄(x) dx =

[
1
2

x2

b− a

]b

a

=
1
2

b2 − a2

b− a
=

1
2

(b− a)(b + a)
b− a

=
a + b

2
. (9.4)

To find the variance, we use

σ2
x̄ =

∫ +∞

−∞
(x− µx̄)2fx̄(x) dx =

[
1
3

(x− µx̄)3

b− a

]b

a

=
1
3

(
b− a+b

2

)3 − (a− a+b
2

)3
b− a

. (9.5)

This can be rewritten to

σ2
x̄ =

1
3

(
b−a
2

)3 − (a−b
2

)3
b− a

=
1
24

(b− a)3 + (b− a)3

b− a
=

(b− a)2

12
. (9.6)
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