Atmospheric Flight Dynamics
Example Exam 1 — Solutions

1 Question

0 ——

Figure 1: Product function Ry (7)

In figure 1 the product function Ry (7) of the stationary stochastic process @ is given. What can be said
about the properties of the stochastic variable u?

(a) It is white noise.

(b) It is noise with a small bandwidth.

(¢) Tt is white noise plus a sinus.
)

(d) It is a sinus.

1 Solution

It can be noted that R;z(7) is a sinc function. If you transform a sinc function, you will get a block
function. The PSD function Szz(w) is thus a block function. If this block function would be infinitely
wide, then the PSD function would be constant. The result would thus be white noise. However, the
block function is not infinitely wide. The bandwidth is thus limited. We therefore deal with white noise
with a small bandwidth. The correct answer is (b).

2 Question

The random variable Z has a probability density function fz(x) as depicted in figure 2.



Figure 2: Probability density function fz(z)

What is the probability of P(z > —1)?

(a) 0.125
(b) 0.275
(c) 0.725
(d) 0.750
(e) 0.875
(f) Not enough data available

2  Solution
We can note that the probability density function is symmetric about = 0. Thus,
P(z <0)=P(z >0)=0.5. (2.1)

To find P(—1 < Z < 0), we simply find the area under the function fz(z) in this interval. This gives us

1 .
Pl-l<z<0)=1- @ — 0.225. (2.2)
We thus have
P(z>-1)=P(-1<z<0)+ P(z>0) =0.725. (2.3)
The correct answer is therefore (c).
3 Question
Proof that the Fourier transform of the signal y(t) (: d%it)) equals,
Flyt)} = jwY(w) (3.1)

with Y (w) the Fourier transform of y(¢).



3 Solution

We can simply use the definition of the Fourier transform. This is

+oo
f{y(t)}:[ y(t)e 7wt dt. (3.2)

Integration by parts now yields

+oo
Flyt)} = [yt)e 7] — / —jwy(t)e I dt = [y(t)e ) T 4 juF ()}, (3.3)

— 00

Assuming that y(co)e 7> = y(—00)e/“> then gives the desired result.

4 Question

Proof that the Fourier transform of the product of two functions,

1
Flat)y®)} = o -X(w)*Y(w) (4.1)
Note: the symbol ”+” represents the convolution operator.

4 Solution

Before we begin the proof, we mention an important equation which we’ll use. Let’s say that we take
the Fourier transform of a parameter x(t) and then apply the inverse Fourier transform. We then again

wind up with z(¢). So, we have
1 +oo +oo ) )
=5 / / z(a)e 9% doe?% dp. (4.2)
TJ-oo J—o

We start our proof with the left hand side of the equation. Per definition, this equals
+oo )
Flz(t)yt)} = / e vt dt. (4.3)
Applying the theorem above then turns this into

too 1 +oo  ptoo
FA{x(t) }—/ / / Ve 99 dov €79 d y(t)e It dt. (4.4)

We now pull all the exponents and y(t) inside the integral. We also pull 1/27 outside the integral. This

gives
+oo +oo +oo
Fxz(t) =5 / / / Ye I 0a=0t+wh) gy df dt. (4.5)
T

We can rewrite the part inside the integral. If we also change the order of integration slightly, we get

F{z(t) T o / - / - / m a)e %) (y(t)e_’ w= "”) dovdt df). (4.6)

Now note that the part with z(«) does not depend on ¢, while the part with y(¢) does not depend on «.
So, we can split the integral up, resulting in

Flaty(®)) = % /_ :O ( /_ :o 2(a)e—i% da) ( /_ :O y(t)e‘j(“_g)tdt) do. (@.7)



Using the definition of the Fourier transform, this can now be rewritten as

L[ X(0)Y (w — 6)df = —

F{z(t)y(t)} 5 (X (@) xY(w)). (4.8)

:% .

And this is exactly the relation which we were supposed to proof.

5 Question
Proof that the periodogram Iy;[k| of the signal y[n| = az[n] + b equals,
Iyglk] = a® Iz [k] + (2aRe { X K]} + bN)bS[K] (5.1)

with,
Iz (k] = X*[k] X [k]/N (5.2)

and Re {X[k]} the real part of the Fourier transform of x[n].
Note: the Discrete Fourier Transform (FFT) of a constant b equals,

N—-1
FFT{b} = (Z beizz”v"”> = bNS[k] (5.3)

n=0

with §[k] the Kronecker delta function. Use the result FFT{b} = bNJ[k] in your proof. Remember that
d[k] equals 0 for k # 0 and d[k] equals 1 for k = 0.

5 Solution
First, we’ll find an expression for Y [k]. We have
Y[k] = FFT{y[n]} = FFT{az[n] + b} = a FET{z[n]} + FFT{b} = aX[k] + bNOk].  (5.4)
Since a and b are real constants, we also have
Y*[k] = aX*[k] + bNS[K]. (5.5)
The periodogram of y[n] is now given by
Iyglk] = Y*[E]Y[k]/N = (aX™[k] + DNO[k]) (a X [k] + DNO[K]) /N. (5.6)
Working out brackets gives
Iglk] = a® X*[K] X [k]/N + ab (X*[k] + X [K]) 0[k] + b NO[k]>. (5.7)
In the discrete domain, we have §[k]*> = §[k]. Also, adding a complex number to its complex conjugate
gives twice its real part. (That is, X*[k] + X [k] = 2Re {X[k]}.) And, if we also apply the definition for

Izz k], we will find that
Iyglk] = a® Iz [k] + (2aRe { X [k]} + bN) b [k]. (5.8)

And this is exactly what we needed to show.

6 Question

Make a qualitative sketch for the auto power spectral density functions of the following signals,

(a) y1(t) = sin(wot)



(b)
()

ya(t) = cos(wit) + 1

y3(t) = sin(wqt) + 1

6 Solution

(a)

First, let’s determine the covariance matrix. We have

+oo
Cyig, (1) = / sin(t) sin(t + 1) dt. (6.1)
If 7 = 0+ 27k, then the integral will become 1/2. However, if 7 = 7 + 27k, then the integral will
become —1/2. This kind of hints at the solution of the integral. Using a goniometric integral table
could confirm this. We thus have

0131?31 (T) = % COS(T)' (6.2)

To find the PSD function, we need to apply the Fourier transform. This gives us

1 1 s
S () = F (Couan (1} = 5 { S cos(r) | = 57 foos(r)) = § (6 = o) + 8 +wa)) . (63
(Note that the Fourier transform of a cosine function is something you should know by heart.) A
sketch of this function would look like one peak at w = wg and another peak at w = —wy.

This function is not a zero-mean function. It has mean pg, = 1. So the covariance function is now
given by

“+o0
Con(r) = [ (sin(t) 41 = g sinlt +7) 1 = ) . (6.4)
It is now quite trivial that we again have
1
Cg2g2 (T) = 5 COS('T). (65)

However, to find the PSD function, we need to know the product function Rg,, (7). It is given by

1
Ry (7) = Coayy (7) + g1, = 5 cos(7) + 1. (6.6)

The PSD function can now be found using the Fourier transform. So,
1
Spaga (W) = F {Rpaga (1)} = 5 F {cos(r)} + F {1} = g (0(w —wo) + 6(w +wo)) +2m0(w).  (6.7)

If we want to sketch this, then we should place one peak at w = wy and another peak at w = —wyg.
Also, there should be a peak four times as big as the previous ones on w = 0.

Note that this function has exactly the same covariance function as y2(t). (In fact, ys(t) is only a
time-shift of y2(¢).) So, also the PSD function is the same. We thus have

Sa (@) = 5 (8w — wo) + 8(w + wo)) + 2md(w). (6.8)

The sketch of this function is also the same as the sketch of Sy, 7, (w).



7 Question

Assume the stochastic process & which is defined as the wave-height in the North-Sea at a certain position.
At a certain instant in time ¢1, this stochastic process has a certain probability density function fz(x;t1),
with ¢; the time during the day when hardly any wind is present. At time instant ¢5, representing a time
in a period with strong winds, the probability density function is written as fz(z;t2).

Make a qualitative sketch of the probability density functions fz(x;¢1) and fz(x;ts2).
Note: assume that fj;o fz(x;t) do = 1Vt.

7 Solution

Due to the central limit theorem, it can be assumed that the wave-height is normally distributed. The
mean is given by uz(t) and the standard deviation by oz(t). At time t;, the waves aren’t very high, so
uz(t1) is low. Also, the height of the waves doesn’t vary a lot, so oz(¢1) is also low. However, at time
to, the waves are high. Also, the height will vary quite a bit. Thus, both pz(t2) and oz(t2) are relatively
big.

Now let’s examine the shape of the probability density functions. (This is what we need to sketch.) Since
T is normally, distributed, the PDF has a bell-shaped curve. In theory this curve has a nonzero value for
every z from —oo to co. However, in reality a wave height below 0 isn’t really possible. So, on the left,
we cut off the PDF at « = 0.

The PDF at time ¢; has a low mean. So its peak is relatively close to 0. Also, the standard deviation is
low, so the curve’s value drops quite quickly. However, the integral over the PDF does have to equal 1.
This implies that the peak of the bell curve has to be quite high.

The PDF at time ¢5 has a higher mean. So its peak is further away from 0. Also, the standard deviation
is big, so the curve’s value drops less quickly to zero. And, because the integral over the PDF has to
equal 1, the peak of the bell curve is not very high.

8 Question

N(w)

Y
O

Figure 3: System description

Given the system in figure 3 of which the frequency response functions H; (w) and Hz(w) are known. The



input U(w) and the noise on the output N(w) are stochastic and their power spectral density functions
are also known (both U(w) and N(w) are white noise).

(a) Calculate the power spectral density function of the output Sy, (w).

(b) Calculate the power spectral density function of the output for the case the input U(w) and the
noise N(w) do not resemble white noise 4nd may even be correlated.

8 Solution
The system can be described by
Y(w) = Hi(w)U(w) + Hy(w)U(w) + N(w). (8.1)
If we define H(w) = Hy(w) + Ha(w), then we have
Y(w) = Hw)U(w) + N(w). (8.2)
For this system description, the PSD functions are related through
Syy(w) = |H(w)|*Saa(w) + San(w)- (8.3)

This is the solution to the second part of the question. In the special case that both U(w) and N(w) are
white noise, we have Sz (w) = Spn(w) = 1 and thus

Sg(w) = [H(w)* + 1. (8.4)

9 Question

i
a b —
Figure 4: The probability distribution function Fj(z) for a uniformly distributed stochastic variable Z

The probability distribution function Fz(z) of a uniformly distributed stochastic variable Z is written as

(with b > a, see also figure 4),
0 for x < a,
Fp(z) =52 fora<az<b, (9.1)

b—
1 forx >0

Calculate the probability density function fz(z) and proof that the stochastic variable’s mean value and

variance are respectively,
b 1
My = a—2&— and Ui = E(b — a)2. (9.2)

9 Solution



To find the probability density function, we simply take the derivative of the probability distribution

function. This gives
0 forx <a
dF;z (1’) -
= = = <
fz(x) I — fora<uaz<b,
for z > b.

‘ —_

S -

To find the mean, we can use

Feo 1 227" 182—-a® 1(b—a)lb+a) a+b
7 = z dr=|-——| == = - = .
s / zfs(w) de {Zb—aL 2b—a 2 b-a 2

—0o0

To find the variance, we use

x

(z — Mi)in(l“) dx =

— 00

3 b—a
This can be rewritten to

(59"~ (559" 1 (h—aP+(b—a)® (b—a)?

81N

g

b—a 24 b—a 12

Wl =

2:/+°° [1<x—ux>3r:1(b—“2+”)3—(a—”2+”>3_
. 3

(9.5)



