
System Identification Summary

In this summary, we examine several systems identification techniques. What is system identification?
How do techniques like the Kalman filter, the least-squares method, the maximum likelihood method and
the two-step method work? And how is system identification related to aircraft? Let’s find out.

1 The basics of aircraft system identification

1.1 Aircraft model identification

Let’s suppose that we are developing an airplane. In the later stages of developement, it is important to
know the dynamics of the aircraft as precisely as possible. Flight tests are often used for this. On-board
flight test instrumentation provides us with data, which we should then use to model the dynamics of
the aircraft. This is called aircraft model identification (AMI) with flight test data, and will be the
subject of this summary. Once an aircraft model has been obtained, it can be used for aircraft guidance
and flight control design.

The aircraft model is split up into a dynamic model and a kinematic model, each having both a trans-
lational and rotational part. The kinematic model is precisely known. The dynamic model is, however,
more difficult to obtain. To find it, we use Newton’s second law, involving forces and moments. But
finding these forces and moments can be very difficult.

Conventionally, AMI is done offline. That is, the flight data is analysed after the flight. But recently,
newer online AMI methods have been developed. In such methods the aircraft model is continuously
updated during the flight. These online methods can be applied very well in adaptive flight control.
(In adaptive flight control, the controller adapts itself to the dynamics of the aircraft, even when these
dynamics change due to, for example, aircraft damage.)

1.2 State and parameter estimation

A linear aircraft model has the form

ẋ(t) = A(θ, t)x(t) +B(θ, t)u(t) +G(θ, t)w(t), (1.1)

ẏ(t) = C(θ, t)x(t) +D(θ, t)u(t) + v(t), (1.2)

where θ is a vector of aircraft parameters, w is the system noise and v is the measurement noise.
Both w and v are assumed to be white noise, having covariance matrices Q(θ, t) and R(θ, t), respectively.

In flight tests, we often try to measure the state x. From this, we then determine/estimate the aircraft
parameters θ. Such a problem is called a parameter estimation problem.

Conversely, it also often occurs that we know the aircraft model, including the parameters θ. However,
we do not know the state of the aircraft. (Measuring it directly may be impossible due to measurement
noise.) This problem of determining the state is called a state estimation problem.

Finally, it may also occur that we know neither the state x or the parameters θ. We are now dealing
with a joint state and parameter estimation problem.

2 Filtering, prediction and smoothing

We will now examine the problem of state estimation in more detail. There are three ways of state
estimation, depending on which data is available. In prediction, only past measurements are available.
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In filtering, past and present measurements are available. Finally, in smoothing, past, present and
future measurements are available.

2.1 Filtering

We’ll start by examining the problem of filtering. (Later on we examine prediction and smoothing.) To
be more precise, we’ll look at the Kalman filter (KF). We will only do this for discrete-time systems.
(Measurement data is usually discrete as well.) The system thus has the form

x(x+ 1) = Φ(x)(k)x(k) + Ψ(k)u(k) + Γ(k)wd(k), (2.1)

y(k) = C(k)x(k) +D(k)u(k) + v(k), (2.2)

where wd now is the discrete version of the system noise w. (It has covariance matrix Qd.) Since we
don’t know the state x, we also treat it as a random variable x. This also means that x has a mean and
a covariance matrix, respectively defined as

E {x(k + 1)} = x̂(k + 1|k), (2.3)

E
{

(x(k + 1)− x̂(k + 1|k))(x(k + 1)− x̂(k + 1|k))T
}

= P (k + 1|k). (2.4)

By the way, the addition ‘|k’ indicates that the expectations are taken, given all data available up to time
k.

What we now would like to do is make a prediction of x(k+1), given all data up to time k+1. (Remember,
we’re doing filtering.) This prediction should be such that it minimizes the cost function

J =
1

2
(x(k + 1)− x̂(k + 1|k))

T
P−1(k + 1|k) (x(k + 1)− x̂(k + 1|k)) + (2.5)

+
1

2

(
y(k + 1)− C(k + 1)x(k + 1)

)T
R−1(k + 1)

(
y(k + 1)− C(k + 1)x(k + 1)

)
. (2.6)

The best estimate of x(k + 1) is denoted as x̂(k + 1|k + 1). To find it, we set ∂J/∂x = 0. After working
out a lot of equations, the Kalman filter is derived.

2.2 The Kalman filter

Let’s suppose that we know the mean x̂(k|k) and the covariance matrix P (k|k) at time k, how do we find
the data at time k+ 1? First, we can find the estimates of the data at time k+ 1 given the data at time
k. We will have

x̂(k + 1|k) = Φ(k)x̂(k|k) + Ψ(k)u(k), (2.7)

P (k + 1|k) = Φ(k)P (k|k)ΦT (k) + Γ(k)Qd(k)ΓT (k). (2.8)

Of course, if we use the data at time k + 1 as well, we can get a better approximation of x̂(k + 1). If we
assume (without loss of generality) that D = 0, this approximation is found using

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(x+ 1)
(
y(k + 1)− C(k + 1)x̂(k + 1|k)

)
. (2.9)

By doing this, the covariance matrix P (k + 1|k + 1) becomes

P (k + 1|k + 1) = (I −K(k + 1)C(k + 1))P (k + 1|k). (2.10)

The question remains, which Kalman gain matrix K(k+1) should we use? We want to use the matrix
K(k + 1) that minimizes J . By using this fact, we can eventually find that

K(k + 1) = P (k + 1|k)CT (k + 1)
(
C(k + 1)P (k + 1|k)CT (k + 1) +R(k + 1)

)−1
. (2.11)

(Note that you first have to find K(k + 1), before finding x̂(k + 1|k + 1) or P (k + 1|k + 1).)
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2.3 Prediction

Let’s examine prediction. This time, we have data up to time k. So we know x̂(k|k) and P (k|k). To find
x̂ and P at later times, we can make use of the simple recursive relations

x̂(k + i+ 1|k) = Φ(k + i)x̂(k + i|k) + Ψ(k + i)u(k + i), (2.12)

P (k + i+ 1|k) = Φ(k + i)P (k + i|k)ΦT (k + i) + Γ(k + i)Q(k + i)ΓT (k + i). (2.13)

There is one evident downside to prediction. Since Q(k) is a positive definite matrix (for every time k),
the above relation will mean that the covariance matrix P (k + i|k) will grow with i. In other words, the
further ahead you predict in time, the bigger your uncertainties are. Kind of makes sense, doesn’t it?

There is also another problem. In the above relation, we see the future input u(k + i). Often we don’t
know this input yet. To solve this, we can simply assume that u(k + i) = u(k) for all i.

2.4 Single stage smoothing

In smoothing, we can make a distinction between single stage and multistage smoothing. We’ll start by
examining single stage smoothing. Here, we have estimates x̂(0|0) and x̂(1|1), as well as measurements
y(0) and y(1). We now want to find a better estimate of x̂(0) using our data. This estimate is then
denoted by x̂(0|1). It can be found using

x̂(0|1) = x̂(0|0) + P (0|0)ΦT (0)CT (1)R−1(1) (y(1)− C(1)x̂(1|1)) . (2.14)

We can also use the data to find an estimate for the system noise w(0) at time 0. We then use

ŵ(0|1) = ŵ(0|0) +Q(0)ΓT (0)CT (1)R−1(1) (y(1)− C(1)x̂(1|1)) . (2.15)

Note that, since w is white noise, we have ŵ(0|0) = 0. However, we don’t have ŵ(0|1) = 0. This might
seem strange – white noise not having a zero mean. But ŵ(0|1) actually is the expected value of ŵ(0),
given the measurements up to time 1. Of course, using the measured value of y(1), you’re probably able
to derive some indication on what value ŵ(0) had.

Alternatively, we can write

x̂(0|1) = x̂(0|0) + C0 (x̂(1|0)− x̂(1|1)) , with C0 = P (0|0)ΦT (0)P−1(1|0), (2.16)

ŵ(0|1) = ŵ(0|0) +B0 (x̂(1|0)− x̂(1|1)) , with B0 = Q(0|0)ΓT (0)P−1(1|0). (2.17)

The resulting covariance matrices of x and w are now given by

P (0|1) = P (0|0)− C0 (P (1|0)− P (1|1))CT0 , (2.18)

Q(0|1) = Q(0|0)−B0 (P (1|0)− P (1|1))BT0 . (2.19)

Note that we generally have Q(0|0) = Q(0). (At time 0, you can’t have received any information on Q(0)
yet.) Also note that we don’t necessarily have to do these steps for time k = 0. The above steps can be
performed for any time k. (Just replace 0 by k and 1 by (k + 1).)

2.5 Multistage (Kalman) smoothing

Now suppose that we have measurements y for times 0 to N . We want to use all these measurements to
improve our estimate of x̂(k) at some time k. This process is called multistage smoothing. The resulting
value will be denoted by x̂(k|N).
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We assume that the values of x̂(k|k) and P (k|k) are already known for all times k (with 0 ≤ k ≤ N). If
not, then these values have to still be determined using a basic Kalman filtering, starting from time 0,
going step by step to time N .

To find x̂(k|N) and ŵ(k|N), we can use the recursive relations

x̂(k|N) = x̂(k|k)− Ck (x̂(k + 1|k)− x̂(k + 1|N)) , with Ck = P (k|k)ΦT (k)P−1(k + 1|k), (2.20)

ŵ(k|N) = ŵ(k|k)−Bk (x̂(k + 1|k)− x̂(k + 1|N)) , with Bk = Q(k|k)ΓT (k)P−1(k + 1|k). (2.21)

(Note that the matrix Q(k|k) here again means the same as Q(k).) The covariance matrices of these two
parameters are then given by

P (k|N) = P (k|k)− Ck (P (k + 1|k)− P (k + 1|N))CTk , (2.22)

Q(k|N) = Q(k|k)−Bk (P (k + 1|k)− P (k + 1|N))BTk . (2.23)

It is interesting to see that (contrary to the Kalman filter) we are now going back in time. So at every
point in time, we are updating our data using information gained in all the future times.

3 The extended Kalman filter

3.1 Linearizing and discretizing a continuous nonlinear system

The Kalman filter only works for linear systems. In case we run into a nonlinear system, we need to
extend the Kalman filter. In this part, we’ll examine how that works. So, let’s examine a continuous
nonlinear system, like

ẋ(t) = f(x(t),u(t), t) +G(x(t), t)w(t), (3.1)

y(t) = h(x(t),u(t), t) + v(t). (3.2)

At a certain time tk, the expected state is denoted as x̂(k|k). This state is also called the nominal state
x∗(tk). (So per definition x̂(k|k) = x∗(tk).) We will linearize the system about it. The deviations from
the nominal values x∗(t), u∗(t) and y∗(t) are denoted as

δx(t) = x(t)− x∗(t), δu(t) = u(t)− u∗(t) and δy(t) = y(t)− y∗(t). (3.3)

We can now linearize the system about the nominal state. The linearized system will take the form of

δẋ(t) = Fx(x∗(t),u∗(t), t)δx(t) +G(x∗, t)w(t) (3.4)

δy(t) = Hx(x∗(t),u∗(t), t)δx(t) + v(t). (3.5)

Here, the Jacobians Fx and Hx are defined as the derivatives of f and h at the nominal state, so

Fx(x∗(t),u∗(t), t) =
∂

∂x
f(x(t),u(t), t)

∣∣∣∣
x(t)=x∗(t),u(t)=u∗(t)

(3.6)

and similarly for Hx. Also, we have made the assumption that G(x(t), t) ≈ G(x∗(t), t). This linear
system can then be discretized. We wind up with

δx(k + 1) = Φ(k + 1, k; ∗)δx(k) + Γ(k + 1, k; ∗)wd(k), (3.7)

δy(k) = Hx(k; ∗)δx(k) + v(k + 1), (3.8)

where the discrete system matrix for the nominal state Φ(k + 1, k; ∗) can be found using

Φ(k + 1, k; ∗) = e(tk+1−tk)Fx =

∞∑
n=0

(tk+1 − tk)nFnx
n!

. (3.9)

(The star ∗ means that the matrix is derived from a linearization about the nominal state x∗.) We can
then apply the Extended Kalman Filter (EKF) to this discrete linear system.
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3.2 Application of the Kalman filter

Let’s assume that we have an estimate of x̂(k|k) at time k. We also know the corresponding covariance
matrix P (k|k). We can now predict the values of these two parameters at time k+ 1. This is done using

x̂(k + 1|k) = x̂(k|k) +

∫ tk+1

tk

f(x̂(t|tk),u∗(t), t) dt, (3.10)

P (k + 1|k) = Φ(k + 1, k; ∗)P (k|k)ΦT (k + 1, k; ∗) + Γ(k + 1, k; ∗)Qd(k + 1, k; ∗)Γ(k + 1, k; ∗). (3.11)

Of course, using measurements from time k + 1, we can update the estimate and its covariance matrix.
This is done according to

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1; ∗)
(
y(k + 1)− h(x̂(k + 1|k),u∗(k + 1), k + 1)

)
, (3.12)

P (k + 1|k + 1; ∗) = (I −K(k + 1; ∗)Hx(k + 1; ∗))P (k + 1|k; ∗). (3.13)

Again the question remains which Kalman matrix K(k + 1; ∗) is the best. This time, it’s the matrix

K(k + 1; ∗) = P (k + 1|k; ∗)HT
x (k + 1; ∗)

(
Hx(k + 1; ∗)P (k + 1|k; ∗)HT

x (k + 1; ∗) +R(k + 1)
)−1

. (3.14)

3.3 The iterated extended Kalman filter

The EKF has a big downside. It uses linearization. But if the actual state is far away from the expected
state, the linearization might not apply. The model may diverge. To reduce this problem, the Iterated
Extended Kalman Filter (IEKF) can be used.

The basic idea of the Kalman filter is to update x̂(k+1|k) to find x̂(k+1|k+1). Previously, we linearized
about the nominal state x∗(k + 1) = x̂(k + 1|k) to do this compensation. In the IEKF, we do the same,
except that we do it multiple times. But in every iteration we use a different nominal state x∗(k + 1).

We start with the nominal state x∗1(k + 1) = x̂(k + 1|k). (For simplicity of notation, we write x∗i (k + 1)
as η

i
.) We then update η

i
= x∗i (k + 1) recursively, through

η
i+1

= x̂(k + 1|k) +K(k + 1; η
i
)
(
y(k + 1)− h(η

i
,u(k + 1), k + 1)−Hx(k + 1; η

i
)(x̂(k + 1|k)− η

i
)
)
.

(3.15)
The term on the right might be surprising, since it didn’t occur in the previous equation for x̂(k+1|k+1).
This is because, in the first iteration, we have ηi = x̂(k + 1|k), so the term dropped out.

After several iterations, the nominal state ηi doesn’t change much anymore. In fact, we can use as
stopping condition

|ηl − ηl−1|
|ηl−1|

≤ ε, (3.16)

for a certain ε. The number of iterations is then denoted by l. When the above condition is reached, we
set x̂(k + 1|k + 1) and P (k + 1|k + 1) as

x̂(k + 1|k + 1) = ηl, (3.17)

P (k + 1|k + 1) = (I −K(k + 1; ηl)Hx(k + 1; ηl))P (k + 1|k; ηl) (I −K(k + 1; ηl)Hx(k + 1; ηl))
T

+K(k + 1; ηl)R(k + 1)KT (k + 1; ηl). (3.18)

In case of significant nonlinearities, this version of the Kalman filter gives a more exact approximation of
x̂(k + 1|k + 1) than the original version.
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4 The least-squares method

4.1 Least-squares definitions

In this part, we’ll examine the least-squares method. This is a form of off-line parameter estimation.
Suppose that we have a set of measurements of the form

y(k) = f(k,p) + e(k), (4.1)

where y is the measurement vector, f is a known vector function, e(k) is the unknown error vector
and k is the measurement number. Our goal is to find the parameter vector p such that the model
f(k,p) matches the measurements y(k) as well as possible.

Let’s say that we already have some estimate p̂ of the parameter vector p. The least-squares method
can only be applied to linear functions. So we apply linearization to the set of measurements about our
estimate p̂. This turns the above relation into

y(k) = f(k, p̂) +

(
∂f(k,p)

∂p

)
p=p̂

(p− p̂) + e(k) = f(k, p̂) + h(k, p̂)δp + e(k), (4.2)

where we have defined h(k, p̂) as the derivative ∂f/∂p at p = p̂ and δp = (p− p̂). (Note that h(k, p̂) is
in fact a matrix.) The residual of the provisional fit f(k, p̂) is now denoted by

z(k) = y(k)− f(k, p̂) = h(k, p̂)δp + e(k). (4.3)

Of course, we don’t have just one measurement. We have k = 1 . . .m measurements. With all these
measurements, we can assemble

Z =


z(1)

z(2)
...

z(m)

 , H =


H(1)

H(2)
...

H(m)

 and E =


e(1)

e(2)
...

e(m)

 . (4.4)

We thus have Z = Hδq + E. (By the way, don’t confuse the assembled matrix H with the individual
matrices H(k).)

4.2 The least-squares solution

In the least-squares problem, we would like to find the value of p (or similarly, δp) which gives the best
fit. That is, the value which would minimize the cost function

V (p) =
1

2

m∑
i=1

zT (i)W−1(i)z(i) =
1

2
ZTW−1Z, (4.5)

withm the number of measurements. Also, the matricesW (i) are symmetric weight matrices. Assemble
them diagonally to find the assembled matrix W = diag(W (1), . . . ,W (m)). (Often, we select W (i) =

E
(
z(i)zT (i)

)
and thus W = E

(
ZZT

)
.) Differentiation could now show that the optimal value for δp

satisfies
HTW−1Hδp = HTW−1Z, so, δp = (HTW−1H)−1HTW−1Z. (4.6)

The covariance matrix of this parameter estimation error gives an indication of the accuracy of our
estimate. This matrix equals

E
(
δpδpT

)
= (HTW−1H)−1HTW−1E

(
ZZT

)
W−1H(HTW−1H)−1 = (HTW−1H)−1. (4.7)
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Of course, this whole estimate is based on the linearization of f(k,p) about p̂. In case there are non-
linearities, multiple iterations might be necessary. If we do this, then during every iteration we linearize
f(k,p) about a new point p̂i. This gives a new value for δp. We then update our parameter estimate
according to

p̂i+1 = p̂i + δp. (4.8)

After several iterations the algorithm will converge. And, unless the algorithm gets stuck in a local
minimum, this converged value p̂l is the optimal value for p.

4.3 Recursive least-squares

Previously, we have considered the least-squares method as an offline method. We just had a batch of
information and needed to derive the parameter vector p. Now we’ll try to expand it to an online method.
However, for simplicity, we’ll only examine the linear problem,

y(k) = H(k)p + e(k). (4.9)

(Note that, because the model is linear, we have z(k) = e(k).) Let’s suppose that we have data up to
time k. The parameter estimate is thus given by

p̂(k) =

(
k∑
i=1

HT (i)W−1(i)H(i)

)−1 k∑
i=1

HTW−1(i)y(i). (4.10)

(Note that this is essentially the same equation as equation (4.6).) Now let’s suppose we obtain the
measurement vector y(k+ 1) at time k+ 1. It would be nice if we could find p̂(k+ 1) from p̂(k), without
having to perform the whole summation from time k = 1 all over again. To do this, we first define

R(k) =

k∑
i=1

HT (i)W−1(i)H(i). (4.11)

It can then be shown that

p̂(k + 1) = p̂(k) +R−1(k + 1)HT (k + 1)W−1(i+ 1)
(
y(k + 1)−H(k + 1)p̂(k)

)
. (4.12)

Note that the term between brackets (y−Hp̂) can, roughly speaking, be seen as the error in the predicted

output. This is left-multiplied by R−1HTW−1 to find the error in the parameter vector.

The question remains, how do we find R−1(k + 1)? We could use

R−1(k + 1) =
(
R(k) +HT (k + 1)W−1(k + 1)H(k + 1)

)−1
, (4.13)

but this requires the inversion of a matrix of size q × q (with q the size of the parameter vector p). An
alternative is to use

R−1(k + 1) =
(
I −R−1(k)HT (k + 1)W−1(k + 1)

(
H(k + 1)R−1(k)HT (k + 1) +W

)−1
H(t)

)
R−1(k).

(4.14)
This requires the inversion of a matrix of size n×n (with n the size of the measurement vector y). Which
option is best depends on q and n.

5 The maximum likelihood method

5.1 The idea behind the maximum likelihood method

We have seen a method for state estimation (the Kalman filter) and parameter estimation (the least-
squares method). Now we’ll examine a method that can do both: the maximum likelihood (ML)
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method. For this reason, we examine a general system of the form

ẋ(t) = f(x(t),u(t), θ) +G(x(t))w(t), (5.1)

y(k) = h(x(tk),u(tk), θ) + v(k). (5.2)

It is assumed that measurements are only taken at certain times tk. Also, we assume that the covariance
matrices Q(θ) and R(θ), of the noises w and vk, respectively, both depend on the parameter vector θ,
but that they do not vary with time t.

We define the prediction error vector ε̂(k + 1|k) at time k + 1, given the data at time k, as the
difference between the measured output and the expected output

ε̂(k + 1|k; θ) = y(k + 1)− ŷ(k + 1|k; θ), with ŷ(k + 1|k; θ) = h(x̂(k + 1|k),u(k + 1), θ). (5.3)

We denote the probability that this error vector occurs, given a parameter vector θ, as p(ε̂(k+ 1|k; θ)|θ),
or more briefly, as p(ε̂k+1,k(θ)|θ). The function p is known as the probability density function. We
generally assume that it is Gaussian. So,

p(ε̂k+1,k(θ)) = ((2π)q det(Λk+1,k(θ)))
− 1

2 exp

(
−1

2
ε̂k+1,k(θ)T )Λ−1

k+1,k(θ)ε̂k+1,k(θ))

)
. (5.4)

But of course, we don’t have only the measurements at time k + 1. We have measurements from time
k = 1 to some time k = m. We assume that all these measurements are independent. In this case, the
probability that all errors ε̂k+1,k(θ) (with k = 0 . . .m− 1) occurred equals

p(ε̂1,0(θ), . . . , ε̂m,m−1(θ)) =

m−1∏
k=0

p(ε̂k+1,k(θ)). (5.5)

In the maximum likelihood method, we choose our parameter vector θ such that the actual situation is the
most likely situation that could occur. In other words, we choose θ such that p(ε̂1,0(θ), . . . , ε̂m,m−1(θ))
is maximized. This is is equivalent to using (and minimizing) the cost function

Vm(θ) = − log

(
m−1∏
k=0

(det(Λk+1,k(θ)))
− 1

2 exp

(
−1

2
ε̂k+1,k(θ)T )Λ−1

k+1,k(θ)ε̂k+1,k(θ))

))
(5.6)

=
1

2

m−1∑
k=0

(
ε̂k+1,k(θ)TΛ−1

k+1,k(θ)ε̂k+1,k(θ) + ln (det(Λk+1,k(θ)))
)
. (5.7)

Note that, in the above equation, we have dropped away the constant (2π)q terms. When minimizing a
function, constant values in the function don’t matter, so they can be removed.

5.2 Minimizing the cost function

A difficult question is, how do we minimize the cost function Vm? This is in fact done iteratively. At
some point, we have an estimate θi. We then find a new (and hopefully improved) estimate θi+1 using

θ̂i+1 = θ̂i + αiξi. (5.8)

Here, αi is a constant scalar value, similar to a learning rate. The difficulty lies in choosing the direction
of adaptation ξi. There are several ways to do this. In the Newton-Raphson iteration method, we
use

ξi = −
(
∂2Vm(θ)

∂θ∂θT

)−1
∂Vm(θ)

∂θ

∣∣∣∣
θ=θ̂i

. (5.9)
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The problem is that the second partial derivative of Vm may not always be invertible. As a solution to
this, we could use the expectation matrix E(∂2Vm(θ)/∂θ∂θT ) (also known as the Fisher information
matrix) and invert that instead. We are then actually using the Gauss-Newton iteration method.

Finding the Fisher information matrix can be quite difficult though. The reason lies in the error vectors
ε̂. They ought to be derived from the (extended) Kalman filter. This is computationally quite a hard
problem. As a solution, we could also ignore the noise and assume that the state equations are deter-
ministic. This significantly simplifies the problem. The resulting method is called the output error
method.

5.3 The recursive maximum likelihood method

The above offline method can be turned into an online method, called the recursive maximum likeli-
hood (RML) method. The idea behind this is actually quite simple. At some point in time tk, we are
simply iterating using equation (5.8), just like in the normal ML method. But then, at time tk+1, we get
a new measurement y(k + 1). We add this measurement to our data, and use the new data set in our
iterations.

The difficulty arises in updating the partial derivatives ∂Vk/∂θ and ∂2Vk(θ)/∂θ∂θT , such that they include
the new measurement y(k+ 1). There are methods to do this. However, explaining these methods would
be too complicated for a summary. Instead, we’ll just give you the equations.

Let’s denote θ as the last found value for the parameter vector, with data up to time k. We then have

∂Vk+1(θ)

∂θ

∣∣∣∣
θ=θ̂

=
∂Vk(θ)

∂θ

∣∣∣∣
θ=θ̂

+
∂ε̂k+1,k(θ̂)T

∂θ
Λ−1
k+1,k(θ̂)ε̂k+1(θ̂) +

1

2

(
ηk+1(θ̂)− µk+1(θ̂)

)
, (5.10)(

∂2Vk+1(θ)

∂θ∂θT

)
=

(
∂2Vk(θ)

∂θ∂θT

)
+
∂ε̂k+1,k(θ̂)T

∂θ
Λ−1
k+1,k(θ̂)

∂ε̂k+1,k(θ̂)

∂θ
+

1

2
ηk+1(θ̂)ηk+1(θ̂)T . (5.11)

The terms ηk+1(θ̂) and µk+1(θ̂) are, respectively, defined as

ηk+1(θ) =


tr
(

Λ−1
k+1,k(θ)

∂Λk+1,k(θ)
∂θ1

)
...

tr
(

Λ−1
k+1,k(θ)

∂Λk+1,k(θ)
∂θq

)
 , (5.12)

µk+1(θ) =


ε̂k+1,k(θ)TΛ−1

k+1,k(θ)
∂Λk+1,k(θ)

∂θ1
Λ−1
k+1,k(θ)ε̂k+1,k(θ)

...

ε̂k+1,k(θ)TΛ−1
k+1,k(θ)

∂Λk+1,k(θ)
∂θq

Λ−1
k+1,k(θ)ε̂k+1,k(θ)

 . (5.13)

There are several further possibilities to simplify the (recursive) maximum likelihood method. However,
these methods are all too extensive for this summary, so we won’t discuss them here.

6 System identification applied to an aircraft

6.1 The input, output, state and parameters

It is time to see how we can apply system identification techniques to an aircraft. The input and state
of an aircraft are

u =
[
δe δa δr Tc

]T
, (6.1)

x =
[
u v w x y z p q r φ θ ψ

]T
. (6.2)
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But what about the output? In an aircraft, we have several measurement devices. There is the Inertial
Measurement Unit (IMU), which measures the accelerations Ax = X/m, Ay = Y/m and Az = Z/m,
as well as the angular rates p, q and r. (It does this by integrating angular accelerations.) Next to this,
there are air data measurements, which provide V , α and β, and there is the GPS system. If we put it
all together, we will have

y = [Axm Aym Azm pm qm rm xmGPS ymGPS zmGPS

umGPS vmGPS wmGPS φmGPS θmGPS ψmGPS Vm αm βm]
T
. (6.3)

The subscript m indicates that these are not actual values but measured values. A noise will be present
in the signals. (So Axm = Ax + vAx , and similarly for the other parameters.)

Finally, there are the parameters that need to be estimated. These parameters include the IMU biases
λx, λy, λz, λp, λq and λr, defined such that

Axm = Ax + λx + wx, Aym = Ay + λy + wy, Azm = Az + λz + wz, (6.4)

pm = p+ λp + wp, qm = q + λq + wq, rm = r + λr + wr. (6.5)

Other parameters are the wind velocities WxE , WyE and WzE . (These velocities are expressed in the
Earth-based reference frame.) And there are the aerodynamic parameters, like CX0 , CXα , CX2

α
, CXq ,

CXδe and so on. (For a complete overview of all aerodynamic parameters, see relation (6.25).)

6.2 The aircraft model

To apply system identification techniques, we need some sort of model of the aircraft. This model has
the form

ẋ(t) = f(x(t),u(t), θ), (6.6)

y(t) = h(x(t),u(t), θ). (6.7)

So let’s see what we can calculate with our state. First of all, we can calculate the force and moment
coefficients, using

CX = CX0
+ CXαα+ CX2

α
α2 + CXq

qc̄

V
+ CXδe δe + CXTcTc, (6.8)

CY = CY0
+ CYββ + CYp

pb

2V
+ CYr

rb

2V
+ CXδa δa + CXδr δr, (6.9)

CZ = CZ0
+ CZαα+ CZq

qc̄

V
+ CZδe δe, (6.10)

Cl = Cl0 + Cl0 + Clββ + Clp
pb

2V
+ Clr

rb

2V
+ Clδa δa + Clδr δr, (6.11)

Cm = Cm0
+ Clαα+ Cmq

qc̄

V
+ Cmδe δe, (6.12)

Cn = Cn0
+ Cnββ + Cnp

pb

2V
+ Cnr

rb

2V
+ Cnδa δa + Cnδr δr. (6.13)

We can use these coefficients to calculate the actual forces and moments acting on the aircraft. This is
done according to

X =
1

2
ρV 2SCx, Y = 1

2ρV
2SCy, Z =

1

2
ρV 2SCz, (6.14)

L =
1

2
ρV 2SbCl, M = 1

2ρV
2Sc̄Cm, N =

1

2
ρV 2SbCn. (6.15)
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The derivatives of u, v and w can now be found using

u̇ =
X

m
− qw + rv − g sin θ, (6.16)

v̇ =
Y

m
− ru+ pw + g cos θ sinφ, (6.17)

ẇ =
Z

m
− pv + qu+ g cos θ cosφ. (6.18)

The derivatives of p, q and r satisfy M = Iω̇ + ω × Iω or, equivalently,ṗq̇
ṙ

 =

 Ix 0 −Ixz
0 Iy 0

−Izx 0 Iz


−1 LM

N

−
 Ix 0 −Ixz

0 Iy 0

−Izx 0 Iz


−1 pq

r

×
 Ix 0 −Ixz

0 Iy 0

−Izx 0 Iz


pq
r

 . (6.19)

We can find φ̇, θ̇ and ψ̇ using the kinematic equations for rotational motion

φ̇ = p+ q sinφ tan θ + r cosφ tan θ, (6.20)

θ̇ = q cosφ− r sinφ, (6.21)

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
. (6.22)

Finally, we can find the derivatives of the position coordinates usingẋEẏE
żE

 =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ


uv
w

+

WxE

WyE

WzE

 .
(6.23)

(The above matrix LEB transforms the velocities from the body reference frame to the Earth-based
reference frame.) The model above is now ready to be used in a state/parameter estimation method.

6.3 The two-step method

Finding both the state and the parameters of a system simultaneously can be difficult. For an aircraft,
there is a technique which makes this a bit easier. It is called the two-step method.

Remember that we want to know both the state values of x and the parameter values of θ. We’ll now
move the wind values W and the bias values λ from θ to x, giving

x = [u v w x y z φ θ ψ λx λy λz λp λq λr WxE WyE WzE ]
T
, (6.24)

θ =
[
CX0

CXα CXα2 CXq CXδe CXTc CY0
CYβ CYp CYr CYδa CYδr

CZ0
Czα CZq CZδe Cl0 Clβ Clp Clr Clδa Clδr

Cm0
Cmα Cmq Cmδe Cn0

Cnβ Cnp Cnr Cnδa Cnδr
]T
. (6.25)

In the two-step method, we assume that with all our measurement data, we can already estimate the
state x. So we don’t need to use our aerodynamic model, with all its difficult coefficients, for that. Simply
by combining IMU data, GPS data and air measurement data, we can derive the state of the aircraft
with a state estimator like the Kalman filter. This is called the first step of the two-step method.

Once we know the state of the aircraft, we can start to estimate the aerodynamic parameters θ. (This
is the second step.) To do this, we first predict the aerodynamic forces and moments X, Y , Z, L, M
and N that were present. This is done based on the estimated state of the aircraft. We can then use
equations (6.8) to (6.13) with the least-squares method to derive the aircraft parameters.

So we see that the two-step method splits the state and parameter estimation problem up into two steps,
significantly simplifying the computations. This makes the two-step method a very useful method.
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