
Systems Theory Summary

1. Linear systems theory

What are systems? And how do we respresent them/deal with them? That is what this summary is all
about. In the first chapter, we look at what systems are, and how we deal with basic linear systems.
In the second chapter, we discuss system properties like stability and controllability. Thirdly, we give
some thoughts on how we can use feedback in controlling systems. And finally, in the fourth chapter,
we’ll examine transfer functions in detail. But first, we start by asking the fundamental question: what
is systems theory?

1.1 Basic systems theory principles

1.1.1 What is systems theory?

A system is a part of reality that can be seen as a separate unit. The reality outside the system is
known as the surroundings. Of course, the system and the surroundings influence each other. The
environment influences the system by input, denoted by the input vector u(t). Similarly, the system
influences the environment by means of the output y(t).

Mathematical systems theory (sometimes also called system theory) concerns the study and control
of systems. In particular, input/output phenomena are examined.

1.1.2 Modelling principles

Before we can actually concern ourselves with systems, we need to know how we can model them. This
is done, using modelling principles. The three most important ones are the following principles.

• Conservation laws state that certain quantities (like mass or energy) are conserved.

• Physical laws describe important relations between variables. (Think of Newton’s laws, or the
laws of thermodynamics.)

• Phenomenological principles are principles that are known from experience. (Examples are
Ohm’s law of electrical resistance and Fourier’s law of heat conduction.)

By using these principles, often a model of the system can be achieved. This model can then be used to
examine and control the system.

1.2 Making differential systems linear

The most easy type of differential systems is the linear one. What are linear differential systems? And
how do we get them?
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1.2.1 What are linear differential systems?

A linear differential system is a system that can be written as

ẋ(t) = A(t)x(t) + B(t)u(t), (1.2.1)
y(t) = C(t)x(t) + D(t)u(t). (1.2.2)

These equations are known as the state equation and the output equation, respectively. x(t) denotes
the (n× 1) state vector of the system, u(t) is the (m× 1) input vector and y(t) is the (p× 1) output
vector. Also, A(t) is the (n× n) state matrix, B(t) is the (n×m) input matrix, C(t) is the (r × n)
output matrix and D(t) is the (r ×m) direct (transmission) matrix. If the matrices A, B, C and
D do not depend on time, then the system is said to be time-invariant.

To solve the output y(t) of the system, two things need to be known. First of all, the initial state of
the system x(0) (often also denoted as x0) needs to be known. Second, the input u(t) must be given. If
these two things are given (and have the right properties), then the output y(t) is well defined.

1.2.2 Linearization

Linear systems are quite important in systems theory. This is mainly because they are easy to work with.
Non-linear systems are more difficult to work with. Luckily, non-linear systems can be approximated by
a linear system. This is called linearization. But how does it work?

Let’s suppose we have a non-linear system, described by

ẋ(t) = f(x,u) and y(t) = g(x,u). (1.2.3)

We also suppose that we have a solution x̃(t) and ỹ(t) for given initial conditions x̃0 and input ũ(t).
Now, let’s suppose that we have a problem with a slightly different input function ũ(t) + v(t). (v(t) is
thus the deviation from the original input function.) This will then give a solution x̃(t) + z(t) for the
state and ỹ(t) + w(t) for the output. (Again, z(t) and w(t) are deviations!) It can now be shown (using
a Taylor-expansion about the original solution) that we can write the system of equations as

ż(t) = A(t)z(t) + B(t)v(t), (1.2.4)
w(t) = C(t)z(t) + D(t)v(t). (1.2.5)

In other words, we have linearized the system! The matrices A, B, C and D can be found, using

A(t) =
∂f

∂x
(x̃, ũ) =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn

∂x1
. . . ∂fn

∂xn

 , B(t) =
∂f

∂u
(x̃, ũ) =


∂f1
∂u1

. . . ∂f1
∂um

...
...

∂fn

∂u1
. . . ∂fn

∂um

 , (1.2.6)

C(t) =
∂g

∂x
(x̃, ũ) =


∂g1
∂x1

. . . ∂g1
∂xn

...
...

∂gn

∂x1
. . . ∂gn

∂xn

 , D(t) =
∂f

∂u
(x̃, ũ) =


∂g1
∂u1

. . . ∂g1
∂um

...
...

∂gn

∂u1
. . . ∂gn

∂um

 . (1.2.7)

In other words, you first find the derivative matrices (like ∂f
∂x ). You then insert the original solution x̃, ũ

into this matrices, and the linearization is complete!

However, it is very important to remember that you are dealing with deviations from the original solution.
In other words, your quantities v, z and w are not the real physical quantities. And, to make things even
worse, books often use the symbols u, x and y to indicate both the normal physical quantities, and the
deviations from the original solution. Always make sure that you know what each symbol exactly means!
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1.2.3 Solving linear differential systems

Let’s suppose we have a linear differential system ẋ(t) = A(t)x(t) + B(t)u(t). We now would like to find
a solution. To do this, we need to perform four steps.

1. Find the n independent solutions ξ1(t), ξ2(t), . . . , ξn(t) of the so-called autonomous state equa-
tion ẋ = A(t)x.

2. Assemble the fundamental matrix Y (t), according to

Y (t) =
[
ξ1(t) ξ2(t) . . . ξn(t)

]
. (1.2.8)

3. Assemble the transition matrix Φ(t, s) according to

Φ(t, s) = Y (t)Y −1(s). (1.2.9)

This matrix has several interesting properties, like

Φ(t, t) = I, Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) and Φ−1(t, s) = Φ(s, t). (1.2.10)

4. Find the solution x(t) of the state of the system, using

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t, s) B(s)u(s) ds (1.2.11)

1.3 Time-invariant systems

A time-invariant system is a system described by ẋ(t) = Ax(t) + Bu(t). In other words, the matrices
do not depend on time. How do we deal with this kind of systems?

1.3.1 The solution for time-invariant systems

Time-invariant systems are a lot more easy to solve than time-dependent systems. Normally, it can be
very time-consuming to find the transition matrix Φ. However, for time-invariant systems, we simply
have

Φ = e(t−s)A. (1.3.1)

By the way, the exponential of a matrix is defined as an infinite series, according to

etA = I + tA +
t2A2

2!
+

t3A3

3!
+ . . . =

∞∑
i=0

tiAi

i!
. (1.3.2)

There’s just one problem. To find etA, we have to compute an infinite series. And this usually takes quite
a long time. But luckily, there are some tricks. But before we examine those tricks, we need to recap on
linear algebra.

1.3.2 Linear algebra recap

Let’s suppose we have an n × n matrix A. This matrix has k eigenvalues λ1, λ2, . . . , λk. Each of these
eigenvectors λi has an algebraic multiplicity mi and a geometric multiplicity gi. The algebraic
multiplicity mi is the number of times which λi appears as a root of the characteristic polynomial
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det (λI −A). The geometric multiplicity gi is the number of eigenvectors qij corresponding to the eigen-
value λi. In other words, it is the number of linearly independent solutions qij to the equation

(λiI −A)qij = 0. (1.3.3)

The geometric multiplicity is never bigger than the algebraic multiplicity. So, gi ≤ mi. Also, the sum of
all algebraic multiplicities equals the size of the matrix n. So,

∑k
i=1 mi = n.

We say that the matrix A is diagonalizable if there exists an invertible matrix T such that T−1AT = D,
where D is a diagonal matrix. It can be shown that A is only diagonalizable, if gi = mi for all eigenvalues
λi. If this is indeed the case, then D is the matrix of eigenvalues D = diag (λ1, . . . , λk). In other words,
it is the matrix with the k eigenvalues on its diagonal. (By the way, if an eigenvalue λi has a multiplicity
of mi, then it also appears mi times in D. So, D is an n× n matrix.) Similarly, T is the matrix with as
columns the corresponding eigenvectors qi.

1.3.3 Solutions for diagonalizable systems

Now it’s time to find an alternate expression for etA. Let’s suppose that A is diagonalizable. Then, we
have T−1AT = D. It can now be shown that

etA = Tet(T−1AT)T−1 = TetDT−1 = T


eλ1t 0 0

0
. . . 0

0 0 eλkt

T−1. (1.3.4)

Let’s denote the rows of T by w1, . . . ,wn. The columns are still denoted by q1, . . . ,qn.We can now also
write

A =
n∑

i=1

λiqiwi, and similarly, etA =
n∑

i=1

etλiqiwi. (1.3.5)

Let’s suppose that the system has no input. (Thus, u(t) = 0.) The solution x(t) of the system is now
known as the free response of the system. It is given by

x(t) = e(t−t0)Ax0 =
n∑

i=1

e(t−t0)λiqiwix0 =
n∑

i=1

µie
(t−t0)λiqi, (1.3.6)

where µi = wix0. (Remember that wi is a row vector.) The above equation implies an interesting
fact. The free response of a system x(t) can be decomposed along the eigenvectors qi. The solution
corresponding to one eigenvector qi is called a mode of the system. A system will be in mode i, if the
initial vector x0 is aligned with the eigenvector qi.

1.3.4 The Jordan form

We now know what to do with systems if A is diagonalizable. But what if A is not diagonalizable? In this
case, we don’t have T−1AT = D. Instead, we will use T−1AT = J . In this equation, J is the so-called
Jordan form of A. It has a block-diagonal structure J = diag (J1, J2, . . . , Jk). Every submatrix Ji is an
mi ×mi matrix and corresponds to the eigenvalue λi. In fact, it has the form

Ji =



λi γi1 0 · · · 0

0 λi γi2
. . .

...

0 0 λi
. . . 0

...
. . . . . . . . . γi(mi−1)

0 · · · 0 0 λi


. (1.3.7)
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In this equation, some of the values γij are 0, while others are 1. This, in fact, depends on how T is build
up. We can remember that T−1AT = J and thus AT = TJ . If the individual columns of T are written
as q1, . . . ,qn, then we have

Aqi = λqi + γqi−1, (1.3.8)

with λ the corresponding eigenvalue in J . Note that, if γ = 0, then qi is an eigenvector of A, corresponding
to the eigenvalue λ. If, instead, γ = 1, then we have

qi−1 = (A− λI)qi. (1.3.9)

The vector qi is known as a generalized eigenvector. It can be derived from the (possibly generalized)
eigenvector qi−1.

We can now see a relation between the form of J and T . The zeroes in J correspond with the positions
of the normal eigenvectors in T . Similarly, the ones in J correspond to the positions of the generalized
eigenvectors in T .

1.4 System response

We now know how the state of a system behaves. But what about the output? That’s what we’ll look
at now.

1.4.1 The impulse response

The output of the system is given by

y(t) = C(t)x(t) + D(t)u(t) = C(t)Φ(t, t0)x0 +
∫ t

t0

C(t)Φ(t, s)B(s)u(s) ds + D(t)u(t). (1.4.1)

To simplify matters, we define K(t, s) such that

K(t, s) = C(t)Φ(t, s)B(s). (1.4.2)

Let’s assume that there is some time t0 for which x0 = 0. This eliminates the left term in the output
equation. What we remain with is some sort of mapping function: we map the output onto the input,
without having to know anything about the state. This thus gives us an external description of the
system.

Now, let’s assume that D(t) = 0. Also, the input function is given by u(t) = δ(t− t1)ei. In this relation,
δ denotes the unit impulse function and ei denotes the i’th basis vector. The output y(t) is now given
by

y(t) =
∫ t

t0

K(t, s)δ(s− t1)ei ds = K(t, t1)ei = the i’th column of K(t, t1). (1.4.3)

The matrix K(t, t1) can thus be seen as the response to an impulse function. For this reason, K(t, t1) is
known as the impulse response matrix.

1.4.2 The step response

After examining the impulse function, we will now look at the step function. This time, we assume that
the input is given by u(t) = H(t− t1)ei, where H(t) is known as the unit step function. This results
in an output

y(t) =
∫ t

t0

K(t, s)H(s− t1)ei ds =
∫ t

t1

K(t, s)ei ds = S(t, t1)ei. (1.4.4)
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The matrix S(t, t1) is known as the step response matrix. It is related to K(t, s) according to

S(t, t1) =
∫ t

t1

K(t, s) ds and
d

ds
S(t, s) =

d

ds

∫ t

s

K(t, τ) dτ = −K(t, s). (1.4.5)

You might wonder why the minus sign on the right side is present. In short, this is because s is the lower
limit of the integration.
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2. System properties

There are many ways to characterize a system. We can for example divide systems in stable/unstable
systems, controllable/uncontrollable systems or observable/unobservable systems. This chapter discusses
the meanings of these terms.

2.1 Stability

2.1.1 Definitions

Let’s consider the time-invariant systems ẋ = f(x). Given an initial point x0, the system will have a
solution x(t,x0). Now it’s time to make some definitions.

• We say that a vector x̄, which satisfies ˙̄x = f(x̄) = 0, is an equilibrium point. If we take x0 = x̄,
then x(t,x0) = x̄.

• An equilibrium point x̄ is called stable if, for every boundary ε > 0, there is a distance δ > 0 such
that, if ||x0 − x̄|| < δ, then ||x(t,x0)− x̄|| < ε for all t ≥ 0. An equilibrium point that is not stable
is termed unstable.

• A stable equilibrium point is also called asymptotically stable if limt→∞ ||x(t,x0) − x̄|| = 0,
given that ||x0 − x̄|| < δ for some δ > 0.

2.1.2 Eigenvalue method

The question is, how do we know if an equilibrium point is stable? There are several methods to find that
out. We start with the eigenvalue method. This trick works for linear time-invariant systems, with
ẋ = Ax. These systems have x̄ = 0 as equilibrium solution. (There are also other equilibrium solutions
if detA = 0, but we won’t go into detail on that.)

Let’s denote the k eigenvalues of A by λ1, λ2, . . . , λk. We now have to look at the real parts Re λi of
these eigenvalues.

• The point x̄ = 0 is asymptotically stable if and only if Re λi < 0 for all eigenvalues λi.

• The point x̄ = 0 is stable if Re λi ≤ 0 for all eigenvalues λi. Also, for the eigenvalues λi with
Re λi = 0, the algebraic multiplicity mi must equal the geometric multiplicity gi.

• In any other case, the point x̄ = 0 is unstable. So, either there is an eigenvalue λi with Re λi > 0,
or there is an eigenvalue λi with Re λi = 0 for which gi < mi.

Now we can ask ourselves, what do we do with a non-linear system ẋ = f(x) with equilibrium point
x̄ = 0? Well, we simply linearize it. In other words, we write it as ẋ = Ax + h(x), where h(x) only
contains higher-order terms of x. The stability of x̄ now depends on the matrix A. In other words, if the
eigenvalues of A all have negative real parts, then the equilibrium point x̄ = 0 is asymptotically stable.
There is one side-note though: h(x) has to be real and continuous for x near x̄ = 0.

2.1.3 Routh’s criterion

To apply the eigenvalue method, we need to find the eigenvalues λi. They are usually found, by solving
the characteristic polynomial

det (A− λI) = a0 + a1λ + a2λ
2 + . . . + anλn. (2.1.1)
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Especially for big n, it can be very difficult to solve the above equation. But, in fact, we don’t need to
know the exact eigenvalues. We only want to know whether they’re all in the negative (left) part of the
complex plane! And to find this out, we can use Routh’s criterion. According to Routh’s criterion, we
first construct the Routh table.

an an−2 an−4 . . .

an−1 an−3 an−5 . . .

bn−2 bn−4 bn−6 . . .

cn−3 cn−5 cn−7 . . .

dn−4 dn−6 dn−8 . . .
...

...
...

. . .

(2.1.2)

There are a few important rules. Any number with a negative coefficient (like for example a−1) is equal
to zero. You also continue calculating this pattern, until you wind up with only zeroes. (This happens
after at most n + 1 rows.) For the rest, you can find the coefficients bi, ci, di, etc. using

bn−2 =
an−1an−2 − anan−3

an−1
, bn−4 =

an−1an−4 − anan−5

an−1
, (2.1.3)

cn−3 =
bn−2an−3 − an−1bn−4

bn−2
, cn−5 =

bn−2an−5 − an−1bn−6

bn−2
. (2.1.4)

Do you see the pattern? To calculate a number x, you always use four numbers. Two of these numbers
come from the column just right of x. The other two numbers come from the leftmost column. All four
numbers come from the two rows just above x.

We still have one question remaining. What does this tell us about the eigenvalues? Well, according
to Routh’s criterion, we have to look at the left column. There must be n + 1 nonzero numbers in this
column. Also, all these numbers must have the same sign. Only if this is the case, then the eigenvalues of
A all have a negative real part. And this then of course implies that the system is asymptotically stable.

2.1.4 Lyapunov stability

There is another way in which we can determine whether a system ẋ = Ax is asymptotically stable. For
this method, we first have to define some kind of ‘generalized’ energy V (x(t)) = xT Px, where P is a
positive-definite matrix. (Positive-definite means that xT Px > 0 for all vectors x 6= 0. So, V is always
positive, unless x = 0.) The derivative of V is

d

dt
V (x(t)) = ẋT Px + xT P ẋ = xT

(
PA + AT P

)
x = −xTQx, (2.1.5)

where Q is defined as
Q = −

(
PA + AT P

)
. (2.1.6)

Now let’s look at what happens if Q is also positive definite. In this case, we have dV/dt < 0 as long
as x 6= 0. (V can only decrease.) But we also have V > 0 as long as x 6= 0. This implies that
limt→∞ V (x(t)) = 0. In other words, V eventually becomes zero, and so does x.

The conclusion? Let’s suppose we can find any positive definite matrices P and Q that satisfy the so-called
Lyapunov equation (2.1.6). In this case, x will converge to 0 and the system is thus asympotically
stable.

2.1.5 Interval stability

Let’s again examine the polynomial

p(λ) = a0 + a1λ + a2λ
2 + . . . + λn. (2.1.7)
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(Note that this time we have divided out an. This of course does not change the roots of the equation.)
Sometimes, the coefficients ai are not exactly known. Instead, we only know the interval [a−i , a+

i ] in which
the coefficient ai must lie. We usually denote this by the interval polynomial

p(λ, [a−,a+]) = [a−0 , a+
0 ] + [a−1 , a+

1 ]λ + [a−2 , a+
2 ]λ2 + . . . + [a−n−1, a

+
n−1]λ

n−1 + λn. (2.1.8)

Associated to this polynomial are four polynomials, called the Kharitonov polynomials. They are

p−−(λ) = a−0 + a−1 λ + a+
2 λ2 + a+

3 λ3 + a−4 λ4 + a−5 λ5 + a+
6 λ6 + . . . + λn, (2.1.9)

p+−(λ) = a+
0 + a−1 λ + a−2 λ2 + a+

3 λ3 + a+
4 λ4 + a−5 λ5 + a−6 λ6 + . . . + λn, (2.1.10)

p−+(λ) = a−0 + a+
1 λ + a+

2 λ2 + a−3 λ3 + a−4 λ4 + a+
5 λ5 + a+

6 λ6 + . . . + λn, (2.1.11)
p++(λ) = a+

0 + a+
1 λ + a−2 λ2 + a−3 λ3 + a+

4 λ4 + a+
5 λ5 + a−6 λ6 + . . . + λn. (2.1.12)

Note that all these polynomials alternately have two pluses and two minuses. The subscripts of p simply
indicate the start of the series.

The Karitonov polynomials are important when determining the stability of the system. Let’s suppose
that all eigenvalues of all these four polynomials p have a negative real part. Only in this case will all
eigenvalues of every polynomial p(λ,a) (with parameter vector a ∈ [a−,a+]) have a negative real part.
In other words, if the Karitonov polynomials are asymptotically stable, then every polynomial within the
interval is asymptotically stable, and vice versa.

2.1.6 Input-output stability

Let’s examine a system in state-space form. So,

ẋ(t) = A(t)x(t) + B(t)u(t), (2.1.13)
y(t) = C(t)x(t) + D(t)u(t). (2.1.14)

Let’s suppose that the input u(t) is bounded. (There is a constant c such that ||u(t)|| ≤ c for all t.) If the
output y(t) also remains bounded (||y(t)|| ≤ k for some k), then the system is said to be BIBO stable.
(BIBO stands for bounded input, bounded output.)

BIBO stability is often also referred to as external stability. (It concerns the external parts u and y of
the system.) On the other hand, the stability of ẋ = Ax is referred to as internal stability. A system
that is internally stable is always externally stable as well. But the opposite is not always true.

2.2 Controllability

2.2.1 Definitions

Next to stability, also controllability is an important aspect of systems. Let’s examine a system (A,B, C, D).
If both the initial state x0 and the input u(t) at any time t are given, then the solution x(t,x0,u) is fully
determined.

Now let’s suppose that we have a system (A,B,C, D) and a desired state x1. We say that the system
is controllable if there is an input u(t) such that the state of the system x(t,x0,u) equals x1 at some
finite time t1 > 0. (This must hold for every desired state x1.)

Sometimes it is assumed that x1 = 0 with x0 6= 0: we want to achieve/keep a zero state. In this case,
we are talking about null-controllability. On the other hand, sometimes it is assumed that x1 6= 0
but x0 = 0: we want to reach a certain point x1 starting from zero. In this case, we are talking about
reachability. However, it can be shown that the controllability-problem, the null-controllability-problem
and the reachability problem are equivalent. (If a system is controllable, it is also reachable and vice
verse.) So, we will only consider ourselves with the controllability problem.
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2.2.2 The controllability matrix

An important aspect in controllability is the controllability matrix R. It is defined as the n × nm
matrix

R =
[
B AB A2B . . . An−1B

]
. (2.2.1)

Now let’s look at the image of R, denoted by im R. (The image of R means the column space of R. It
consists of all vectors b that can be reached by linear combinations of the columns of R: Ra = b.) It
can be shown that this image consists of all reachable vectors. In other words, all linear combinations of
R are reachable. For this reason, im R is also known as the reachable subspace or the controllable
subspace.

Based on the above fact, we can find something very important. If the matrix R has rank n (meaning
that all n rows of R are linearly independent), then the system (A,B) is controllable! This condition
is known as the rank condition for controllability. (Note that we have denoted the system by (A,B).
This is because C and D don’t influence the controllability of the state.)

2.2.3 The modal form

If A is diagonalizable, we can apply a little trick. In this case, we can write A = TDT−1. Now, let’s
define

Ã = D = T−1AT, B̃ = T−1B, C̃ = CT, and D̃ = D. (2.2.2)

If we also define x̃ = T−1x, then we can rewrite the state space representation to

˙̃x = Ãx̃ + B̃u and y = C̃x̃ + D̃u. (2.2.3)

This system has exactly the same properties as the old (A,B,C, D) system. (Only the state parameters
have changed.) But now, we have a matrix A which is diagonal! For diagonal matrices, it’s not hard to
find the controllability matrix. So, solving this problem further won’t be difficult.

2.2.4 Seperating noncontrollable parts

Let’s suppose that we have a noncontrollable matrix. What do we do now? Well, there is a way in which
we can separate the noncontrollable part from the controllable part. We’ll examine that method now.

First, we find the matrix R. Let’s denote the dimension of im R as k = rank R < n. We can find a
basis {q1, . . . ,qk} of k linearly independent vectors qi for the subspace im R. Let’s add (n − k) more
vectors qk+1, . . . ,qn to this basis, such that we have n linearly independent vectors. We now put all
these vectors in a matrix. So,

T =
[
q1 q2 . . . qn

]
. (2.2.4)

Just like in the previous paragraph, we can define Ã = T−1AT and B̃ = T−1B. This again gives us an
equivalent system. But we now have

Ã =

[
Ã11 Ã12

0 Ã22

]
and B̃ =

[
B̃1

0

]
. (2.2.5)

In this equation, A11 has size k× k. (The rest of the matrices are sized accordingly.) The controllability
matrix of our new system is

R̃ = TR =
[
B̃ ÃB̃ Ã2B̃ . . . Ãn−1B̃

]
=

[
B̃1 Ã11B̃1 Ã2

11B̃1 . . . Ãn−1
11 B̃1

0 0 0 . . . 0

]
. (2.2.6)

So, we have split up our system into a controllable part and an uncontrollable part.
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2.3 Observability

2.3.1 Definitions and theorems

Let’s suppose that we have some system (A,B,C, D), of which we do not know the initial state x0. But
we are observing the output y(t), and also the input u(t) is known. If, after some time t1, we are always
able to uniquely determine the initial state x0 of the system, then the system is called observable. This
must hold for every input function u(t).

Just like controllability completely depends on A and B, so does observability completely depend on A
and C. We therefore usually talk about the system (C,A). (Note that this time A is mentioned last.)
Now, let’s define the observability matrix W as

W =



C

CA

CA2

...
CAn−1

 . (2.3.1)

The size of W is np× n (with p the height of C). It can be proven that the system (C,A) is observable
if and only if rank W = n. (This condition is known as the rank condition for observability.) In other
words, this is the case if all n columns of W are linearly independent.

Let’s look at the kernel ker W of W . (The kernel is also known as the null-space: all x for which Wx = 0.)
It can be shown that ker W is the non-observable subspace. In other words, any vectors x0 and x1

in the kernel of W (thus satisfying Wx0 = Wx1 = 0) can not be destinguished from each other by just
looking at the output.

2.3.2 Seperating nonobservable parts

Previously, we have separated the noncontrollable part of a system. Now, we will separate the nonobserv-
able part from a nonobservable system. We denote the dimension of ker W as k = n− rank W . We can
find a basis {q1, . . . ,qk} of k linearly independent vectors qi for the subspace ker W . Let’s again add
(n− k) more vectors qk+1, . . . ,qn to this basis, such that we again have n linearly independent vectors.
Once more, we put all these vectors in a matrix T = [q1 q2 . . . qn]. This time we have

Ā = T−1AT =

[
Ā11 Ā12

0 Ā22

]
and C̄ = CT =

[
0 C̄2

]
. (2.3.2)

Again, A11 has size k × k. (The rest of the matrices are sized accordingly.) The observability matrix of
our new system now is

W̄ = WT =



C̄

C̄Ā

C̄Ā2

...
C̄Ān−1

 =



0 C̄2

0 C̄2Ā22

0 C̄2Ā
2
22

0
...

0 C̄2Ā
n−1
22

 . (2.3.3)

And we have split up the system into an observable part and a nonobservable part.
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2.3.3 The Hautus test

There are plenty of other ways in which to check if a system is controllable/observable. Although we
won’t treat all of them, we will treat the Hautus test.

• The Hautus test for controllability states that the pair (A,B) is controllable if and only if, for all
(possibly) complex s, we have

rank
[
(sI −A) B

]
= n. (2.3.4)

• Similarly, the Hautus test for observability states that the pair (C,A) is controllable if and only if,
for all (possibly) complex s, we have

rank

[
(sI −A)

C

]
= n. (2.3.5)

It is nice to note that sI −A already has rank n for all s unequal to an eigenvalue λi. So, you only have
to check the above matrices for values of s equal to one of the eigenvalues of A. That should save us some
work. Finally, it is interesting to note that, if the pair (A,B) is controllable, then the pair (BT , AT ) is
observable and vice verse.
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3. Feedback control

When controlling a system, the trick is to provide the right input. But what input will control the
system? And how do we find it? That’s what we’ll look at in this chapter.

3.1 State feedback

3.1.1 Definitions

Let’s suppose we’re controlling a boat. When doing this, we use the output (the current heading) to
determine the rudder position. In this case, the output is used to determine the input. When this is
the case, we are dealing with a feedback control system, also known as a closed-loop system. When
the input is independent of the output, then we have an open-loop system. In this chapter, we will
examine closed-loop systems.

The important question is, how do we choose our input? Well, let’s suppose that C = I and D = 0.
Thus, the output y(t) equals the state x(t). In this case, we can take u(t) = Fx(t), with F a matrix.
This is called state feedback. The equation u = Fx is called a control law. In fact, this specific
control law is known as a static compensator. (This is because F does not vary with time.)

3.1.2 Stabilizability

With the static compensator, our system equation turns into ẋ = Ax + Bu = (A + BF )x. We should
choose our F, such that the system A + BF is stable. In other words, the eigenvalues of A + BF should
all have a negative real part. We call the system stabilizable if there is a matrix F , such that A + BF
is stable.

You may wonder, when is a system stabilizable? To find this out, we can use the Hautus test for
stabilizability. This test states that the system (A,B) is stabilizable if and only if, for all (possibly)
complex s with Re(s) ≥ 0, we have

rank
[
(sI −A) B

]
= n. (3.1.1)

Again, note that the rank of the above matrix always equals n, when s is not an eigenvalue. We thus
only need to check the above equation for values s = λi, where λi is (in this case) an unstable eigenvalue.
(Also note that stable systems are stabilizible by default, since they don’t have any unstable eigenvalues.
Similarly, controllable systems are also always stabilizable.)

3.1.3 The pole-assignment theorem

Let’s suppose that the system (A,B) is controllable. The pole-assignment theorem now states that we
can actually choose the poles of (A + BF ) ourselves! This implies that the system is surely stabilizable.
(We can simply choose poles with negative real parts.) All we need to do is choose F in the right way.
But how do we choose F? That is, however, not very easy. But we will describe the process here for the
single-input case.
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The first step is to put the matrices A and B into so-called controller (canonical) form, being

Ā = T−1AT =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
−p0 −p1 · · · −pn−2 −pn−1

 and B̄ = T−1B =



0
0
...
0
1

 . (3.1.2)

In this equation, the coefficients p1, . . . , pn−1 are the coefficients of the characteristic polynomial of A. In
fact, we have

det(λI −A) = det(λI − Ā) = p(λ) = λn + pn−1λ
n−1 + . . . + p1λ + p0. (3.1.3)

The only difficult part here is finding the right transformation matrix T . Luckily, T can be constructed.
We simply have T = [q1 q2 . . . qn], where the vectors q1, . . . ,qn are defined as

qn = B, (3.1.4)
qn−1 = AB + pn−1B = Aqn + pn−1qn, (3.1.5)
qn−2 = A2B + pn−1AB + pn−2B = Aq1 + pn−2qn, (3.1.6)

... (3.1.7)
q1 = An−1B + pn−1A

n−2B + . . . + p1B = Aq2 + p1qn. (3.1.8)

Once we have put A and B into the controller form, we can continue with step 2. Let’s suppose that
we want to have a certain set of poles. These poles then fully determine the characteristic equation of
A + BF , being

det(λI − (A + BF )) = r(λ) = λn + rn−1λ
n−1 + . . . + r1λ + r0. (3.1.9)

Now, all we need to do is define

F̄ =
[
p0 − r0 p1 − r1 . . . pn−1 − rn−1.

]
(3.1.10)

This immediately gives Ā+ B̄F̄ the required eigenvalues, and thus also A+BF . (Linear transformations
don’t change the eigenvalues of a matrix.) Once we know F̄ , finding F itself is not difficult. We just use
F = F̄ T−1.

3.2 The observer

3.2.1 Detectability

Previously, we have assumed that C = I. In other words, the state x(t) was known. But this is of course
not always the case. What do we do if we don’t know the state x? One option is to approximate it,
by using an observer. This observer uses the input u(t) and the output y(t) to make an estimate x̂
of the state x. The observer can now be modeled as a separate system. This system has as output the
estimated state x̂ of the system. We thus have

˙̂x = P x̂ + Qu + Ky and x̂ = Ix̂. (3.2.1)

The question remains, what should P , Q and K be? We use two simple rules to derive them. First of all,
if we have a correct estimate of the state at some time, then we would like to keep the estimate correct.
So, if x = x̂, then we want to have

d

dt
(x− x̂) = 0 = Ax + Bu− P x̂−Qu−Ky = (A−KC)x− P x̂ + (B −Q)u, (3.2.2)
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where we have used y = Cx. The above equation should hold for every u(t). By using this fact, and by
also using x = x̂, we can find that

A−KC = P and B = Q. (3.2.3)

Second, we would like the error e = x− x̂ to decrease to zero. The derivative of this error is given by

ė =
d

dt
(x− x̂) = (A−KC) (x− x̂) = (A−KC) e. (3.2.4)

This means that, if A−KC is asymptotically stable, then the error will converge to 0. The observer will
thus be able to estimate the state x. We therefore say that a system is detectable if there is a matrix
K such that the eigenvalues of A−KC all have negative real parts.

The question remains, when is a system detectable? Again, there is a test. A system is detectable if and
only if, for all (possibly) complex s with Re(s) ≥ 0, we have

rank

[
(sI −A)

C

]
= n. (3.2.5)

Again, we only need to check the above equation for values s = λi, where λi is an unstable eigenvalue.
(Also note that stable and observable systems are always detectable.)

3.2.2 Again the pole-assignment theorem

Let’s suppose that (C,A) is observable. In this case, we can again select the poles of A−KC. In fact, for
every polynomial w(λ) = λn +wn−1λ

n−1 + . . .+w1λ+w0, there is a K such that det (λI − (A−KC)) =
w(λ). Thus, observable systems are always detectable. We just need to select K in the correct way. But
how do we find K?

First, we remember that, if (C,A) is observable, then (AT , CT ) is controllable. The system (AT , CT ) is
thus also stabilizable. There thus is an F such that det

(
λI − (AT + CT F )

)
= w(λ). (To find F , use the

set of steps discussed earlier in this chapter.) If we now take K = −FT , then there is of course also a K
such that

det
(
λI − (AT − CT KT )

)
= det (λI − (A−KC)) = w(λ). (3.2.6)

So, in this way, the correct matrix K can be chosen for the observer.

3.3 The dynamic compensator

3.3.1 Combining state feedback with an observer

Let’s summarize matters. In the first part of this chapter, we saw how we can stabilize a system, if we
know the state. In the second part, we saw how we can estimate the state. What if we use the estimate
of the state to stabilize the system? We simply connect the observer to the static compensator. Doing
this will give us a dynamic compensator (also known as a dynamic controller). This dynamic
compensator can be seen as a separate system. Its input will be the output y of the original system,
while its output is the input u to the original system. The dynamic compensator can thus be described
by

˙̂x = (A + BF −KC)x̂ + Ky, (3.3.1)
u = F x̂. (3.3.2)
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By connecting the dynamic compensator to the original system, we actually get a combined system
without any inputs and outputs. This combined system can be described by ẋc = Acxc, where

xc =

[
x
x̂

]
and Ac =

[
A BF

KC A + BF −KC

]
. (3.3.3)

3.3.2 Stability of the combined system

Let’s ask ourselves, is the combined system stable? To answer that question, we need to examine the
eigenvalues of the matrix Ac. These are given by det (λI −Ac). Interestingly enough, it can be shown
that [

ẋ
ė

]
=

[
A + BF −BF

0 A−KC

] [
x
e

]
. (3.3.4)

This implies that
det (λI −Ac) = det (λI − (A + BF )) · det (λI − (A−KC)) . (3.3.5)

In other words, the set of eigenvalues of Ac is the union of the set of eigenvalues of the state feedback
A + BF and the set of eigenvalues of the observer A−KC. This means that the state feedback and the
observer can be designed independently. (This is known as the separation principle.) It also means
that, if the system is both stabilizable and detectable, then there are F and K such that Ac is stable.
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4. Transfer functions

Systems theory is all about input and output. One common way to relate them to each other, is by using
transfer functions. In this chapter, we’ll go more into depth on what these functions really are.

4.1 Transfer function basics

4.1.1 The Laplace transform

When we are dealing with systems in the normal way, we say we’re working with the system in the time
domain. There is an alternative: the Laplace domain. To use this domain, we have to make use of the
Laplace transform. Let’s examine a function f(t) in the time domain. Its Laplace transform F (s) is
given by

F (s) = L (f(t)) =
∫ ∞

0

f(t)e−stdt. (4.1.1)

Now let’s examine a system with impulse response matrix G(t− τ). If we assume that the input u(τ) is
zero for τ < 0, then we have

y(t) =
∫ t

−∞
G(t− τ)u(τ)dτ =

∫ t

0

G(t− τ)u(τ)dτ. (4.1.2)

The convolution theorem now states that this equation is equivalent to Y (s) = H(s)U(s). Here, U(s)
and Y (s) are the Laplace transforms of u(t) and y(t). (Transforming vectors and matrices is simply done
element-wise.) Also, H(s) is the transfer matrix of the system.

So, to find H(s), we can simply use H(s) = L (G(t)) = L (CeAtB). But there is also another way to find
H(s). For that, we have to use the property that, for any x(t), we have L (ẋ) = sX(s) − x0. Applying
this to the state space equation of a linear time-invariant system gives

sX(s)− x0 = AX(s) + BU(s) ⇒ X(s) = (sI −A)−1x0 + (sI −A)−1BU(s). (4.1.3)

If we assume that x0 = 0 and D = 0, then

H(s) = L (CeAtB) = C(sI −A)−1B. (4.1.4)

The matrix function (sI −A)−1 = L (eAt) is known as the resolvente of the matrix A.

4.1.2 Connecting series

Let’s suppose that we want to connect two systems. When we use state space representations, this will
give us a lot of work. This is where the Laplace transform saves time. Because connecting systems is
easy with the Laplace transform.

Let’s suppose that we want to connect two systems H1(s) and H2(s). What will the resulting transfer
matrix H(s) be? If we connect the systems in series (figure 4.1, left), then we will have H(s) =
H2(s)H1(s). (Note that the order of multiplication is important, since we are using matrices.) If we
connect them in parallel (figure 4.1, middle), then we have H(s) = H1(s) + H2(s). And if we connect
them in a feedback connection pattern (figure 4.1, right), we will get H(s) = (I+H1(s)H2(s))−1H1(s).
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Figure 4.1: Three ways to connect two systems.

4.1.3 Transfer function properties

We can assign several properties to transfer functions. We start with the property of rationality. We say
that a function H(s) is a rational function if it can be written as

H(s) =
q(s)
p(s)

=
qksk + qk−1s

k−1 + . . . + q1s + q0

sn + pn−1sn−1 + . . . + p1s + p0
. (4.1.5)

In other words, H(s) can be written as the ratio of two polynomials. Let’s take a closer look at the
numerator q(s) and the denominator p(s). The roots of q(s) are called the zeroes of the function,
whereas the roots of p(s) are called the poles. We also define the degree of a polynomial as the highest
power of the variable s. Thus, in the above equation we have deg(q) = k and deg(p) = n.

We say that a transfer function H(s) is proper if it has deg(q) ≤ deg(p). (This implies that lims→∞H(s) =
constant.) And a function is strictly proper if deg(q) < deg(p). (We now have lims→∞H(s) = 0.) We
can always transform a linear time-invariant state space system to a transfer function. If we do this, we
always get a proper transfer function H(s). And, if D = 0, we even get a strictly proper transfer function.

4.2 State space realizations

4.2.1 The controller form

Let’s examine a proper transfer function H(s). We can always transform this transfer function to a state
space representation. We will illustrate this process for a single-input single-output system h(s). (Later
on, we examine multi-dimensional systems.) First, let’s assume that h(s) is strictly proper, and thus
k < n. This implies that D = 0. We can now find the so-called controller form (also known as the
standard controllable realization). It is given by

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
−p0 −p1 · · · −pn−2 −pn−1

 , B =



0
0
...
0
1

 , and C =
[
q0 q1 · · · qn−2 qn−1

]
.

(4.2.1)
(The reason why they call this the controllable realization is because it is easy to see that the system is
controllable.) You may still wonder, what if k = n? In this case, we first have to rewrite h(s) as

h(s) = qn +
q̄(s)
p(s)

= qn +
(qk−1 − qkpk−1)sk−1 + . . . + (q1 − qkp1)s + (q0 − qnp0)

sn + pn−1sn−1 + . . . + p1s + p0
. (4.2.2)

We now take D = qn and use the strictly proper function q̄(s)/p(s) to find A, B and C in the normal
way. Do note though, that a system can always be represented by infinitely many different state space
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representations. We have just found one of them.

4.2.2 Other forms

Next to the standard controllable realization, we also have a standard observable realization. To
find it, we have exactly the same process as previously. But now, we have the matrices

A =



0 0 · · · 0 −p0

1 0 · · · 0 −p1

0 1
. . .

...
...

...
...

. . . 0 −pn−2

0 0 · · · 1 −pn−1


, B =



q0

q1

...
qn−2

qn−1

 , and C =
[
0 0 · · · 0 1

]
. (4.2.3)

The last representation that we will discuss is the diagonal realization. To find it, we first have to
write

h(s) = D +
q(s)
p(s)

= D +
γ1

s− a1
+

γ2

s− a2
+ . . . +

γn

s− an
. (4.2.4)

This is possible as long as h(s) has n different poles. If this is the case, then we will find that

A =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

 , B =


1
1
...
1

 , and C =
[
γ1 γ2 · · · γn

]
. (4.2.5)

You may wonder, what if some factor (s − ai) occurs more than once in p(s)? In this case, A won’t be
a diagonal matrix. Instead, ones will appear in A and disappear in B. For example, let’s examine the
function

h(s) =
γ

s− 1
+

δ

(s− a)2
+

α

(s− a)3
. (4.2.6)

This will give the state space matrices

A =

a 1 0
0 a 1
0 0 a

 , B =

0
0
1

 , and C =
[
α δ γ

]
. (4.2.7)

4.2.3 Multiple inputs/outputs

We can also turn systems with multiple inputs/outputs into a state space representation. Let’s examine
the p×m transfer matrix H(s). We can write it as

H(s) = D +
1

p(s)
Q(s) = D +

1
p(s)

(
Qn−1s

n−1 + Qn−2s
n−2 + . . . + Q1s + Q0

)
. (4.2.8)
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In this equation, Q(s) denotes a p×m transfer matrix and Qi (with i = 0, 1, . . . , n−1) denotes a constant
p×m matrix. The matrices A, B and C are now given by

A =



0 I 0 · · · 0
0 0 I · · · 0
...

...
. . . . . .

...
0 0 · · · 0 I

−p0I −p1I · · · −pn−2I −pn−1I

 , B =



0
0
...
0
I

 , and C =
[
Q0 Q1 · · · Qk−2 Qk−1

]
.

(4.2.9)
A now is a matrix of size mn×mn. Note that the above matrices are in some sort of controller form. In
a similar way, we can put a multiple input/output system in an observable realization.

4.2.4 The McMillan degree

Now we know how to write a multiple input/output system in state space form. But we did need nm
state variables for that. We could ask ourselves, can’t we use less state variables? Well, that actually
depends on the transfer function H(s). Let’s call the minimum amount of state variables needed z. This
number z is also known as the McMillan degree of H(s). To find it, we can examine

H(s) = L0 + L1s
−1 + L2s

−2 + . . . . (4.2.10)

The McMillan degree z of H(s) is now given by the rank of the matrix L (so z = rank(L)), where

L =


L1 L2 · · · Lr

L2 L3 · · · Lr+1

...
...

. . .
...

Lr Lr+1 · · · L2r−1

 . (4.2.11)

The parameter r is the degree of the least common multiple of all denominators of H(s).

When we use the minimum amount of state variables to create a state space representation, then we
say that we have a minimum realization. If we have a minimum realization system, then it can be
shown that the system is always both controllable and observable. Equivalently, if the system is either
not controllable or not observable (or both), then it is not a minimum realization system.
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