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Question 1

1 F 8 F
2 F 9 T
3 T 10 F
4 F 11 T
5 F 12 F
6 F 13 T
7 T 14 F

Question 2

1) See sketch
2) Control volume fixed in space, x coordinate used whose reference does not change. 3) Idealizations:

V

• Speed V constant in magnitude and direction

• Potential energy changes of the system are negligible

• Constant air density ρ

• Constant efficiency

4) Time basis is a differential interval dt after which we evaluate on rate basis
5) See sketch
6) The energy balance is:

d−W = dEk

First find the amount of kinetic energy flowing through the windmill per second:

dEk =
1

2
MV 3 =

1

2
ρAV 2dx

Then taking the time derivative and using that A = πR2:

dEk

dt
= π

1

2
ρR2V 3

The amount of this energy converted into electrical power is found by applying the given efficiency η:

Ẇ = ηπ
1

2
ρR2V 3

Note that we are given the amount of power for 30 windmills and hence have the equality:

Ẇwind farm

30
= ηπ

1

2
ρR2V 3

1



AE1240-I Exam April 2017 Solutions No distribution outside of AE1240 Participants allowed

Solve this equation for R:

R =

√
Ẇwind farm

15πηρV 3
=

√
50 MW

15 · π · 0.63 · 1.2 kg
m3 · (7 m

s )3
= 63.97 m

Question 3

s

T

1
2

Figure 1: T-s diagram for question 3a

a. Out of saturation dome, along line of constant enthalpy. The process line should be close to the vapour line.

b. 1) Is on the exam sheet 2) Fixed control volume in space 3)

• Only inlets and outlets are the ones shown

• Steady state

• Kinetic and potential energy transfers are negligible

• System is adiabatic

4) Rate basis 5) Already on exam sheet 6) Energy balance for the valve only:

Ṁh1 = Ṁh2

7) The state is fixed as T2 and P2 are known. Finding the value of h2 requires interpolation. First, the student should
compose a table as shown in 1 by finding the enthalpy value at the saturation temperature of pressure P = 0.2 MPa
for the pressure P = 0.101235 MPa. He should show that this is found by:

h(T = 393.4 K, P = 0.101235 MPa) =
h(T = 400 K)− h(T = 373.1 K)

400 K− 373.1 K
(393.4 K− 373.1 K)

+ h(T = 373.1 K)

=
2730.3− 2675.5

400− 371.1
· (393.4− 373.1) + 2675.5

= 2716.85
kJ

kg

Table 1: Intermediate specific enthalpy values for question 3b.

T = 393.4 K T = 400 K

P = 0.101325 MPa 2716.85 2730.3
P = 0.2 MPa 2706.2 2720.5
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Then another interpolation using the table gives the desired enthalpy value:

h2(T = 393.4 K, P = 0.12 MPa) =
h(P = 0.2 MPa)− h(P = 0.101325 MPa)

0.2 MPa− 0.101325 MPa
(0.12 MPa− 0.101325 MPa)

+ h(P = 0.101325 MPa)

=
2706.2− 2716.85

0.2 MPa− 0.101325 MPa
· (0.12 MPa− 0.101325 MPa) + 2716.85

= 2714.83
kJ

kg

As the quality at state 1 is unknown, we solve it by using that:

h1 = h2 = x1h
V
1 + (1− x1)hL1

Hence:

x1 =
h2 − hL1
hV1 − hL1

=
2714.83− 762.7

2777.1− 762.7
= 0.969

Question 4

1) 2) Control mass 3)

Q
∆U

• Constant volume

• Changes in potential energy are negligible

4) Interval basis 5) See sketch 6) Interval based energy balance:

0 = ∆U +Q

7) Rewrite energy balance as:
0 = M(u2 − u1) +Q

Hence:
Q = M(u1 − u2)

State 1 is fixed as it is given that it is the critical state. We find from the tables that:

v1 = vc = 0.004444
m3

kg

u1 = uc = hc − Pvc = 1262.38
kJ

kg
− (11.333 · 103kPa) · (0.004444

m3

kg
) = 1212.02

kJ

kg

As T2 = 310 K and the tank is rigid meaning that v2 = v1 = vc we can determine the internal energy for state 2.
Observation of the provided table (and chart) should allow the student to conclude that the ammonia is a saturated
mixture at this temperature. First determine the quality from:

x2 =
vc − vL2
vV2 − vL2

=
0.004444 m3

kg − 0.001708 m3

kg

0.09230m3

kg − 0.001708m3

kg

= 0.032
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Then the specific internal energy follows from:

u2 = (1− x2)hL2 + xhV2

= (1− 0.032)(515.36
kJ

kg
− (1.4 · 103kPa) · (0.001708

m3

kg
)

+ 0.032(1631.95
kJ

kg
− (1.4 · 103kPa) · (0.09230

m3

kg
)

= 544.64
kJ

kg

Thus the energy transferred as heat out of the system is:

Q = M(u1 − u2) = 13 kg · (1212.02
kJ

kg
− 544.64

kJ

kg
) = 8.67 MJ

b. The volume occupied by the liquid at state 2 is found by:

V L
2 = ML

2 v
L
2 = (1− x2)MvL2 = (1− 0.032) · 13 kg · 0.001708

m3

kg
= 0.021 m3

c. Process line should be close to liquidus line along an isochoric line.

h

P

1

2

Figure 2: P-h diagram for question 4c

Question 5

1)

x

dM
dt

Ṁ1h

2) Time-varying control volume. All boundaries are fixed to the cylinder except one, which moves along with the
piston face. The inertial coordinate x is used to quantify work.
3) Idealizations:

• Only one outlet

• The temperature at the outlet is equal to the temperature of the entire system

• Kinetic and potential energy transfer of the working fluid is negligible.
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x

ẆdU
dt

Ṁ1h

Q̇

4) Rate basis 5) See sketch 6) The mass balance is:

Ṁ1 =
dM

dt

The energy balance is:

Ṁ1h =
dU

dt
+ Ẇ + Q̇(T )

7) Individually the terms of the energy balance can be stated as:

Ṁ1h =
dM

dt
cpT

dU

dt
= M

du

dt
+ u

dM

dt
= Mcv

dT

dt
+ cvT

dM

dt

Ẇ =
dW

dt
=

d

dt
(PAdx) = PA

dx

dt
=
MRT

V

dV

dt

Re-substitute in the energy balance:

dM

dt
cpT = Mcv

dT

dt
+ cvT

dM

dt
+
MRT

V

dV

dt
+ Q̇(T )

Question 6

1) See sketch 2) Control mass 3) Idealizations

∆U

• Adiabatic container

• Constant specific heats for the computer chips

• Fluid remains saturated over the process

• Pressure remains constant

4) Interval basis 5) See sketch 6)The energy balance is:

0 = ∆U

The entropy balance is:
Ps = ∆S
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7) a. Using the Gibbs equation:

dschips =
duchips
T

+
Pdvchips

T
=
dhchips
T

− vchipsdP

T

Given is that dP = 0. We also know that dh = cpdT , hence integration of above equation now gives:

∆schips = cp ln(
T2
T1

)

For solving this problem, it is required to assume that the R134a is a saturated mixture at the final state. This is
reasonable, as it is a saturated liquid at the initial state and can only become a mixture as energy will be added in
order to reach thermal equilibrium with the chips. Hence, the final temperature of the whole system is T2 = −40◦C.
Thus we can evaluate the entropy change:

∆schips = 0.3
kJ

kg ·K
ln

(
(273.15− 40) K

(273.15 + 20) K

)
= −0.0687

kJ

kg ·K

And in extensive form:

∆Schips = Mchips∆schips = 0.010 kg · −0.0687
kJ

kg ·K
= −0.69

J

K

b. The energy balance can be rewritten as:

0 = Mchipscv(T2 − T1) +MR134a(u2 − u1)

Solve for the specific internal energy of the R134a at the final state:

u2 = u1 −
Mchipscv(T2 − T1)

MR134a

The specific internal energy at state 1 for the R134a follows from (approximation is used) :

u1(T = 233.15 K) ≈ uL(T = 232 K) = −277.95
kJ

kg
− (0.04869 · 103 kPa) · 0.000715

m3

kg
= −277.98

kJ

kg

Hence the specific internal energy at state 2 is:

u2 = −277.98
kJ

kg
−

0.01 kg · 0.3 kJ
kg·K (−40− 20) K

0.005 kg
= −241.98

kJ

kg

Knowing this u2 we can find the quality of the saturated R134a at the second state by:

x2 =
u2 − uL2
uV2 − uL2

=
−241.98 kJ

kg − (−277.98 kJ
kg )

−70.75 kJ
kg − (−277.98 kJ

kg )
= 0.174

Where we’ve used that uL2 = uL1 and idem for the vapor values. The entropy change of the R134a is now found by:

∆SR134a = MR134a(s2 − s2) = MR134a(((1− x)sL2 + xsV2 )− sL2 ) = MR134ax(sV2 − sL2 )

= 0.005 kg · 0.174(−0.1370
kJ

kg ·K
− (−1.1108

kJ

kg ·K
)) = 0.85

J

K

c. Sum the change of entropy for both substances (system is adiabatic so no transfer of entropy):

∆Ssystem = ∆SR134a + ∆Schips = 0.85
J

K
+ (−0.69

J

K
) = 0.16

J

K

d. As the change in entropy of the entire system is positive, the process is possible. Re-substitution of the above
result in the entropy balance would lead to the conclusion that the entropy production is positive, which corresponds
to our conceptualization of ’possible’.
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Question 7

1)

Ẇc Ẇt

Q̇h

Q̇c

2 3

41

Ẇc

Ṁh1

Ṁh2

Ẇt

Ṁh3

Ṁh4

Q̇h

Ṁh2 Ṁh3

Q̇c

Ṁh1 Ṁh4

2) For all inter-component balances: fixed control volume 3) Idealizations:

• Compression and expansion are isentropic

• Heating and cooling is isobaric

• Transfer of kinetic and potential energy is negligible.

• Constant specific heats

4) See sketch 5) Rate basis 6) Inter-component energy balances lead to:

Ẇc = Ṁcp(T2 − T1)

Ẇt = Ṁcp(T3 − T4)
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Q̇h = Ṁcp(T3 − T2)

Q̇c = Ṁcp(T4 − T1)

7) a. The efficiency for the ideal case then is:

η =
Net work

Energy input as heat

=
Ẇt − Ẇc

Q̇h

=
Ṁcp(T3 − T4)− Ṁcp(T2 − T1)

Ṁcp(T3 − T2)

=
(T3 − T2)− (T4 − T1)

T3 − T2

= 1− T4 − T1
T3 − T2

= 1−
T1(T4

T1
− 1)

T2(T3

T2
− 1)

Let us use the fact that both the compression and expansion are isentropic. The Gibbs equation for an ideal gas can
be integrated to yield the isentropic relations as follows:

ds =
du

T
+
Pdv

T

=
dh

T
− vdP

T

=
cpdT

T
− RdP

P

Integrate and using that ∆s = 0:

0 = cp ln(
Tf
Ti

)−R ln(
Pf

Pi
)

This can be algebraically manipulated to show that:

Tf
Ti

=

(
Pf

Pi

)cp/R

=

(
Pf

Pi

) γ
γ−1

Where subscripts f and i denote final and initial state respectively, to avoid confusion with any states of the problem
in question.

The student has to note that the compressor and turbine work between the same pressures (and thus same pressure
ratio) as the cycle is closed and the heating and cooling processes are isobaric (and we neglect pressure losses). Thus,
we can show that:

T2
T1

=

(
P2

P1

) γ
γ−1

=
T3
T4

Hence:

T4
T1

=
T3
T2

Thus the expression for the efficiency becomes:
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η = 1− T1
T2

= 1−
(
P1

P2

) γ−1
γ

= 1− 1

Π
γ−1
γ

b. Question b was not included in grading
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