Problems and Solutions Section 1.1 (1.1 through 1.19)
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The spring of Figure 1.2 is successively loaded with mass and the corresponding (static)
displacement is recorded below. Plot the data and calculate the spring's stiffness. Note
that the data contain some error. Also calculate the standard deviation.

m(kg) 10 11 12 13 14 15 16
x(m) 1.14 1.25 1.37 1.48 1.59 1.71 1.82
Solution:
Free-body diagram: From the free-body diagram and static
equilibrium:
[/ kx ,
f kx=mg (g=9.81m/s)
k k=mg/x
=k
=—=286.164
m ¢ H "
mg
20 T+
The sample standard deviation in
computed stiffness is:
15 +
10 : |
0 1 2

X

Plot of mass in kg versus displacement in m

Computation of slope from mg/x

m(Kkg) x(m) K(N/m)
10 1.14 86.05
11 1.25 86.33
12 1.37 85.93
13 1.48 86.17
14 1.59 86.38
15 1.71 86.05
16 1.82 86.24




1.2 Derive the solution of mx + kx =0 and plot the result for at least two periods for the case
with @, = 2 rad/s, X, = 1 mm, and vo = +/5 mm/s.

Solution:
Given:
mx +kx =0 1)
Assume: x(t) =ae". Then: x=are™ and X =ar?e". Substitute into equation (1) to
get:
mar " + kae" =0
m?+k=0
k
r=d,/— i
m

Thus there are two solutions:

5} = cd )

X =Ce , and X, =c,e

where @, = \/E =2rad/s
m

The sum of x; and x5 is also a solution so that the total solution is:

2it —2it

X=X +X, =ce’ +c,e

Substitute initial conditions: xo =1 mm, vo = Jg mm/s

x(0)=¢ +c,=x,=1=¢,=1-¢, and v(0)=x(0) = 2ic, - 2ic, = v, =/5 mm/s
= —2¢, +2¢, =/5i. Combining the two underlined expressions (2 eqsin 2 unkowns):

—2cl+2—201:\/§i:>c1:%—§i, and C2:%+§i

Therefore the solution is:

_(1 \/gj 2it (1 \/gj -2it
X=|=——i|e"+| =+—i |€
2 4

2 4
Using the Euler formula to evaluate the exponential termsyields:
X = [%—?i](coﬁt +isin2t) +[% +§i)(0052t —isin2t)

= X(t) = cos2t + %sinZt = \/gsin(Zt +0.7297)




Using Mathcad the plot is:
\5
x(t) := cos(2-t) + 7-S|n(2-t)

2 T

o DAATS
VAR




1.3

Solve mx + kx =0 for k=4 N/m, m = 1 kg, Xo =1 mm, and vo = 0. Plot the solution.

Solution:

This is identical to problem 2, except v, = 0. (wn = \/E =2 rad/s). Calculating the
m

initial conditions:
X0)=c +c, =% =1=¢c,=1-¢
v(0) = x(0) = 2ic, - 2ic, =v, =0= ¢, =¢,
c,=¢=05
x(t) = Lo lgal (cos2t +isin2t) + 1(cosZt —isin2t)
2 2 2 2

x(t)= cos (2t)
The following plot is from Mathcad:

x(t) = cos(2-1)

LA
oy

Alternately students may use equation (1.10) directly to get

An:igggigsma+mwwéﬁ)

=mmz+§:mﬂt



1.4

1.5

The amplitude of vibration of an undamped system is measured to be 1 mm. The phase
shift from t = 0 is measured to be 2 rad and the frequency is found to be 5 rad/s.
Calculate the initial conditions that caused this vibration to occur. Assume the response
is of the form x(t) = Asin(e,t + ¢).

Solution:

Given: A=1mm, ¢ = 2rad, w =5rad/s. For an undamped system:
x(t) = Asin(w,t +¢) =1sin(5t +2) and
v(t) = x(t) = Aw, cos(w,t + ¢) = 5cos(5t +2)
Setting t = 0 in these expressions yields:

x(0) = 1sin(2) =0.9093 mm
v(0) =5 cos(2) = - 2.081 mm/s

Find the equation of motion for the hanging spring-mass system of Figure P1.5, and
compute the natural frequency. In particular, using static equilibrium along with
Newton’s law, determine what effect gravity has on the equation of motion and the
system’s natural frequency.

Figure P1.5

Solution:
The free-body diagram of problem system in (a) for the static case and in (b) for the
dynamic case, where x is now measured from the static equilibrium position.

(@) (b)

From a force balance in the static case (a): mg = kx, where Xs is the static deflection of

the spring. Next let the spring experience a dynamic deflection x(t) governed by
summing the forces in (b) to get



1.6

MX(t) = mg — k(x(t) + x,) = mx(t) + kx(t) = mg — kx;

:>rni((t)+kx(t)=0:>con:\/E
__'m

since mg = kx, from static equilibrium.

Find the equation of motion for the system of Figure P1.6, and find the natural frequency.
In particular, using static equilibrium along with Newton’s law, determine what effect
gravity has on the equation of motion and the system’s natural frequency. Assume the
block slides without friction.

Figure P1.6

Solution:

Choosing a coordinate system along the plane with positive down the plane, the free-

body diagram of the system for the static case is given and (a) and for the dynamic case
in (b):

X

X
(et

«— m

mgsin® mgsin®

Y L a .

¥ mgcoso i mgcoso

In the figures, N is the normal force and the components of gravity are determined by the
angle 0 as indicated. From the static equilibrium: —kx, + mgsin6 = 0. Summing forces
in (b) yields:



1.7

ZE = mX(t) = mX(t) = —k(x + x;) + mgsin@
= mMX(t) + kx = —kx, + mgsind =0
= mx(t) +kx=0

:wn:\/Erad/s
_'m

An undamped system vibrates with a frequency of 10 Hz and amplitude 1 mm. Calculate
the maximum amplitude of the system's velocity and acceleration.

Solution:

Given: First convert Hertz to rad/s: @, = 2nf. =2a(10) = 20xrad/s. We also have that
A=1mm.

For an undamped system:
x(t)= Asin(o,t +¢)

and differentiating yields the velocity: v(t) = A, cos(cont + <p). Realizing that both the
sin and cos functions have maximum values of 1 yields:

V... = Ao, =1(207)=62.8 mm/s
Likewise for the acceleration: a(t)=—Aw?sin(w,t+¢)

a,, = Ao’ =1(207) = 3948 mm/s?



1.8

1.9

Show by calculation that A sin (m.t + ¢) can be represented as Bsinw,t + Ccosw,t and

calculate C and B in terms of A and ¢.

Solution:

This trig identity is useful: sin(a+b)=sinacosb + cosasinb
Given: Asin(w,t+¢)= Asin(o,t)cos(p)+ Acos(w,t)sin(p)

=Bsinat+ Ccosapt
whereB=Acos¢ and C=Asng

Using the solution of equation (1.2) in the form x(t) = Bsinw,t + Ccosa,t
calculate the values of B and C in terms of the initial conditions xo and vy.

Solution:
Using the solution of equation (1.2) in the form

x(t)= Bsina,t + Ccosm
and differentiate to get:
X(t) = @,Bcos(w, t) — @ Csin(m, t)

Now substitute the initial conditions into these expressions for the position and velocity

to get:
X, = X(0) =Bsin(0) + Ccos(0) =C
Vo = X(0) = w,Bcos(0) — w,Csin(0)
=0,B1l)-0,C(0)=w,B

Solving for B and C yields:

B:i, and C =X,
0]

n

vy .
Thus X(t) =—2sinw,t + X, cosw t
o

n



1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition.

Solution: Following the lead given in Example 1.1.2, write down the general expression
of the velocity by differentiating equation (1.10):

X(t) = Asin(@,t + ¢) = X(t) = Aw, cos(a,t + @)
= V(0) = Aw, cos(@,0 + ¢) = Aw, cos(¢)
From the figure:

Figure 1.6
\V
wn
v 2
2 41 Yo
<[]

Substitution of these values into the expression for v(0) yields

Vo

2
A= x§+{ } CoSp =
1)

n

VO
v(O):Awncos¢:,/x§+[ﬁ] (@0,)——— =V,
@n 2 Vo i
)

verifying the agreement between the figure and the initial velocity condition.



1.11 (a)A 0.5 kg mass is attached to a linear spring of stiffness 0.1 N/m. Determine the natural
frequency of the system in hertz. b) Repeat this calculation for a mass of 50 kg and a

stiffness of 10 N/m. Compare your result to that of part a.

Solution: From the definition of frequency and equation (1.12)

a o = E: £):0.447rad/s
A 1

m .
=00 220 40504,
2n 21
(b) o, = ‘/@ = 0.447radls, f, = ©n = 0,071 Hz
10 2n

Part (b) is the same as part (a) thus very different systems can have same natural

frequencies.



1.12  Derive the solution of the single degree of freedom system of Figure 1.4 by writing

Newton’s law, ma = -kx, in differential form using adx = vdv and integrating twice.

Solution: Substitute a = vdv/dx into the equation of motion ma = -kx, to get mvdv = -
kxdx. Integrating yields:

2 2

v 2 X° :
— = -, — +C°, wherec isaconstant
2 2
o V=-pX+c’=

dx
v=— = J-0’X’ +¢ =

dt

dx ,

dt = ———==, writeu = o, x to get:

1 du _ 1 . ,(u
t—O—w—nj\/CZ_uz-w—nsnl(Ej+c2

Here c; is a second constant of integration that is convenient to write as ¢, = -¢/.
Rearranging yields

. 0
ot+o= sn‘l(—“) =

c

oxX _ .
—=gn(wt+¢)=
c

X(t) = Asn(ot +¢), A=——
wn

in agreement with equation (1.19).



1.13  Determine the natural frequency of the two systems illustrated.

Figure P1.13

Solution:

(a) Summing forces from the free-body diagram in the x direction yields:
mx = -k X—-k,x=

mx + kX +k,x=0

<« *X mx + x(k, + k,) =0, dividing by myields:
X+ (w)x =0
ox —> L » kX m
1 Examining the coefficient of x

yields:

Free-body diagram for part a o \/m
" m

(b) Summing forces from the free-body diagram in the x direction yields:

_klx

L 5 ke

-kox

Free-body diagram for part b

MX = —k X — kX — k;x,=
MX+ kX+KX+Kx=0=

(k1+k2+k3)X:0
m

O R
m

MR + (K, + k, + k)X =0= K+




1.14* Plot the solution given by equation (1.10) for the case k = 1000 N/m and m = 10 kg for
two complete periods for each of the following sets of initial conditions: a) xo =0 m, vo =

1 m/s, b) xo =0.01 m, vo =0 m/s, and c) Xo = 0.01 m, vo =1 m/s.

Solution: Here we use Mathcad:
a) all units in m, kg, s

‘= k
m =10 k-~ 1000 @, ==
m
x0 = 0.0 _
v~ 1
2:T
®n T=—
fn 1= — wn
2:T
on-x0
0 = aan )
VO x(t) = A-sin(ont + )

parts b and c are plotted in the above by simply changing the initial conditions as

appropriate
02 T
1 2
A= —-,Jxoz-mn +4 V02
®n 01+
<o \ / \ / \
xb(t) — e = +
- 0 0.5 1 1.5
<t \/ \/
-0.1t ,

—0.2-



1.15* Make a three dimensional surface plot of the amplitude A of an undamped oscillator
given by equation (1.9) versus xo and vo for the range of initial conditions given by -0.1 <
Xo < 0.1 mand -1 < vy <1m/s, for a system with natural frequency of 10 rad/s.

Solution: Working in Mathcad the solution is generated as follows:

on =10
=25 i:=0. N
j:=0. N
5 0 = -01 0.2\ .
V0; 1= -1+ —j) S v

A(X0,\0) = —. Jmnz- (x0)2 + (v0)2
wn

Mi,j :=A(x0i,v0j)

0.1—

0.05—

Amplitude vsinitial conditions



1.16 A machine part is modeled as a pendulum connected to a spring as illustrated in Figure
P1.16. Ignore the mass of pendulum’s rod and derive the equation of motion. Then
following the procedure used in Example 1.1.1, linearize the equation of motion and
compute the formula for the natural frequency. Assume that the rotation is small enough
so that the spring only deflects horizontally.

%0
0
k v
V@ :
m
Figure P1.16

Solution: Consider the free body diagram of the mass displaced from equilibrium:

There are two forces acting on the system to consider, if we take moments about point O
(then we can ignore any forces at O). This yields
Y Mg = Joo = mi*6 = —mglsing — k/sin@ « ¢ cosd
= m¢?0 + mg/sind + k(*sinfcos@ = 0




1.17

1.18

Next consider the small 8 approximations to that sin6 ~ 6 and cos6=1. Then the

linearized equation of motion becomes:
.. mg + kfj
o(t) + ot)=0
(t) ( oy (t)

Thus the natural frequency is

wn:,/ngrkg rad/s
m/

A pendulum has length of 250 mm. What is the system’s natural frequency in Hertz?

Solution:
Given: 1=250 mm
Assumptions: small angle approximation of sin

From Window 1.1, the equation of motion for the pendulum is as follows:
10 + mgo =0, where I,=m’> =0 +T96 =0

The coefficient of @yields the natural frequency as:

2
0) :,/g :,/9'8 m/s =6.26 rad/s
n | 0.25m

0]
f =—1=0.996 Hz
" 2

The pendulum in Example 1.1.1 is required to oscillate once every second. What length
should it be?

Solution:

Given: f =1 Hz (one cycle per second)

w,=2nf =3



| = g :9.81
(2nf)?  4rm?

=0.248 m



1.19

The approximation of sin 6 =0, is reasonable for 0 less than 10°. If a pendulum of length
0.5 m, has an initial position of 6(0) = 0, what is the maximum value of the initial angular

velocity that can be given to the pendulum with out violating this small angle

approximation? (be sure to work in radians)

Solution: From Window 1.1, the linear equation of the pendulum is

é(t)+%0(t) =0

For zero initial position, the solution is given in equation (1.10) by

Vi/‘g sin( %t) — Jo|< Vi/‘g

since sin is always less then one. Thus if we need 6 < 10°=0.175 rad, then we need to

o(t) =

solve:

wy05 _ 176

9.81

j

for vo which yields:
Vo < 0.773 rad/s.



Problems and Solutionsfor Section 1.2 and Section 1.3 (1.20to 1.51)
Problems and Solutions Section 1.2 (Numbers 1.20 through 1.30)

1.20* Plot the solution of a linear, spring and mass system with frequency o, =2 rad/s,

X =1mmandv,= 2.34 mm/s, for at least two periods.
Solution: From Window 1.18, the plot can be formed by computing:

1
A== JoixZ +V =154mm, ¢= tan‘l(w\“l—xo) = 40.52
w 0

n

x(t) = Asin(o,t + ¢)
This can be plotted in any of the codes mentioned in the text. In Mathcad the

program looks like.

l===———1.18 HH
=1 w0 =234 wi = 2 | |
| 2 4 2 - x0
(t) 1= —aJwmn -x0% + w0 sin [wn-t + atan
ar
2--
]{[t] /\ } /\: T
VARV
_2__
L + —
-
4 | D

In this plot the units are in mm rather than meters.



1.21* Compute the natural frequency and plot the solution of a spring-mass system with

mass of 1 kg and stiffness of 4 N/m, and initial conditions of X, =1 mm and v, =
0 mm/s, for at least two periods.

Solution: Working entirely in Mathcad, and using the units of mm
yields:

E

=]

I
g

wn = 2

1 2 T
Xty = — aJon -x0¢ + ?ﬂz-sin(mn-t + -

C N AN
ivavs

time in seconds

diplarement in mm

Any of the other codes can be used as well.

| ¥ | mm




1.22 To design a linear, spring-mass system it is often a matter of choosing a spring
constant such that the resulting natural frequency has a specified value. Suppose
that the mass of a system is 4 kg and the stiffness is 100 N/m. How much must
the spring stiffness be changed in order to increase the natural frequency by 10%?
Solution: Given m=4 kg and k = 100 N/m the natural frequency is

a)n:,/¥:5rad/s

Increasing this value by 10% requires the new frequency to be 5x 1.1 = 5.5 rad/s.
Solving for k given mand w, yields:

55= ‘/E =k =(5.5?%4) =121 N/m

Thus the stiffness k must be increased by about 20%.



1.23 Referring to Figure 1.8, if the maximum peak velocity of avibrating system is
200 mm/s at 4 Hz and the maximum allowable peak acceleration is 5000 mm/s?,
what will the peak displacement be?

v = 200 mm/sec

X (mm) a = 5000 mm/sec?
f=4Hz

Solution:

Given: v,,,=200mm/s @ 4Hz
A = 5000 MM/s @ 4 Hz

Xpax = A

Viax = Alh

A = Awn?

o = o Ve o 20 _ 7.95 mm

™ o 2rf 8r

n

At the center point, the peak displacement will be x =7.95 mm



1.24 Show that lines of constant displacement and acceleration in Figure 1.8 have

dopes of +1 and —1, respectively. If rms values instead of peak values are used,

how does this affect the slope?

Solution: Let

Peak values:

Location:

X = X SN, T
X = X 0, COSW, t

X = —X @2 SN0, t

Xoax = Xoax@n = 270 X o

max—n

Koo = X @ = 2 F) X

max—n

INXmax = IN Xmax + 1N 2nf

Since X..,, is constant, the plot of In X,y VversusIn 2xf isastraight line of slope

+1. If In Xnax 1S constant, the plot of In Xyax Vversus In 2xf is a straight line of

dope—1. Caculate RMS vaues

Let

X(t) = Asino, t
x(t) = Aw, cosw,t
X(t)=-Aw 2sno,t



.
Mean Square Value: X* = lim %J‘ X2 (t) dt
0

T—>oo
- 1¢ A2 T A2
2 . 2 .2 .
= —| A“sin tdt = — | (- cos2w_ t) dt =—
K= lim [ st o, = im [ 0 cos20,0 =
- 1T A2 2T 1 A2 2
x2= lim =] Ao2cof o, tdt = lim ——2 [ Z(1+ cos 2w, t) df =
Tow 0 T—oo T 0 2 2
- 1T . Ao, T 1 Ao
x2= lim =] Rolsn’o,tdt = lim ——| =(1+ cos 20, 1) dt = ——n
Tooo 0 T—oo 0 2
Therefore,

The last two equations can be rewritten as:
Xrms = Xps @ = 2mf Xims

Xrms = X, @° = 27tf Xrms

The logarithms are:

IN Xmax = 1IN X, + 1IN 27f
IN Xmax = 1IN Xmax + In 2nf

The plots of In Xms Versus In 2nf isastraight line of slope +1 when X, IS constant, and

—1 when Xms is constant. Therefore the dopes are unchanged.



1.25 A foot peda mechanism for a machine is crudely modeled as a pendulum
connected to a spring asillustrated in Figure P1.25. The purpose of the spring is
to keep the pedal roughly vertical. Compute the spring stiffness needed to keep
the pendulum at 1° from the horizontal and then compute the corresponding
natural frequency. Assume that the angular deflections are small, such that the
spring deflection can be approximated by the arc length, that the pedal may be
treated as a point mass and that pendulum rod has negligible mass. The valuesin
thefigurearem=0.5kg, g=9.8m/s’, /, =0.2mand 7, = 0.3 m.

L L i BLTATLT AL TAATT AL TAALT A

Figure P1.25
Solution: You may want to note to your students, that many systems with springs are
often designed based on static deflections, to hold parts in specific positions asin this
case, and yet allow some motion. The free-body diagram for the systemisgivenin
the figure.



kee M8
For static equilibrium the sum of moments about point O yields (6, isthe static
deflection):

z Mo = _Klel(gl)k-'- mgl, = 0

= 26,k =mgl, ()
k=90 0'5'0';’ = 2106 N/m
016, (0_2)2 =
180

Again take moments about point O to get the dynamic equation of motion:
Y Mg =36 =m0 =—12k(0 +6,) + mgl, = —(2k0 + (2k0, — Mg/ 0
Next using equation (1) above for the static deflection yields:

me20 + (2ke = 0
2
:>é+(£15j0:0

2
:)@n:ﬁ\/E:% @:4327 rad/s
¢ \m 03V 05

1.26 Anautomobile is modeled as a 1000-kg mass supported by a spring of

stiffness k = 400,000 N/m. When it oscillates it does so with a maximum
deflection of 10 cm. When loaded with passengers, the mass increases to as much
as 1300 kg. Calculate the change in frequency, velocity amplitude, and

acceleration amplitude if the maximum deflection remains 10 cm.

Solution:
Given: m; = 1000 kg
m, = 1300 kg
k = 400,000 N/m



Xmax = A =10cm

0, = K - 400,000 20 rad/s
m,_ | 1000

o = | X = JM =1754 rad /s
m, 1300

n2
Aw = 1754 — 20 = —2.46 rad /s
Af = A9 }ﬂ‘: 0.392 Hz
27 27

v; = Aw,; =10 cm x 20 rad/s =200 cnvs

V, = Aw,, =10 cm x 17.54 rad/s =175.4 cnvs
Av = 175.4- 200 = -24.6 cm/s

a, = Aw,* =10 cm x (20 rad/s)® = 4000 c/s®
a, = Aw,,”> =10 cm x (17.54 rad/s)® = 3077 cm/s
Aa = 3077 - 4000 = -923 cm/s



1.27 Thefront suspension of some cars contains atorsion rod asillustrated in Figure
P1.27 to improve the car’ shandling. (a) Compute the frequency of vibration of
the wheel assembly given that the torsional stiffnessis 2000 N m/rad and the
wheel assembly has a mass of 38 kg. Take the distance x = 0.26 m. (b)
Sometimes owners put different wheels and tires on a car to enhance the
appearance or performance. Suppose athinner tireis put on with alarger wheel
raising the massto 45 kg. What effect does this have on the frequency?

Frame

Figure P1.27

Solution: (@) Ignoring the moment of inertial of the rod, and computing the

moment of inertia of the wheel as mx?, the frequency of the shaft mass system is

a)n:\/ kZ: 2000N-m - =27.9 rad/s
mx 38-kg (0.26 m)

(b) The same calculation with 45 kg will reduce the frequency to

a)n:\/ k2: 2000N-m > =25.6 rad/s
mx 45-kg (0.26 m)= —

This corresponds to about an 8% change in unsprung frequency and could
influence wheel hop etc. You could also ask students to examine the effect of
increasing x, as commonly done on some trucks to extend the wheels out for
appearance sake.



1.28

1.29

A machine oscillates in simple harmonic motion and appears to be well modeled
by an undamped single-degree-of-freedom oscillation. Its acceleration is
measured to have an amplitude of 10,000 mm/s* at 8 Hz. What is the machine's

maximum displacement?

Solution:
Given: a,,, = 10,000 mm/s’ @ 8 Hz
The equations of motion for position and acceleration are:
x=Asn(w,t + ) (2.3)
x=-Aw’sn(w t+¢) (15
The amplitude of acceleration is Aa)ﬁ =10,000 mm/s’ and w, = 2rf = 2rn(8) =

16m rad/s, from equation (1.12).
10,000 _ 10,000

0f  Gorf

The machine's displacement is A =

A =3.96 mm

A simple undamped spring-mass system is set into motion from rest by giving it
an initial velocity of 100 mm/s. It oscillates with a maximum amplitude of 10

mm. What isits natural frequency?

Solution:
Given: X, =0, v, = 100 mm/s, A =10 mm
_ Vo _ 100

From equation (1.9), A= Yo or , =—==——, sothat: w,=10rad/s
o A 10



1.30 Anautomobile exhibits avertical oscillating displacement of maximum amplitude
5 cm and a measured maximum acceleration of 2000 cm/s?.  Assuming that the
automobile can be modeled as a single-degree-of-freedom system in the vertical

direction, calculate the natural frequency of the automobile.

Solution:
Given: A=5cm. From equation (1.15)

X = Awf = 2000 cm/s
Solving for m, yields:

, 2000 , 2000
a)n = =
A 5

o, =20rad/s




Problems Section 1.3 (Numbers 1.31 through 1.46)

1.31 Solve x+4x+x=0 for x,=1mm, v, = 0mm/s. Sketch your results and
determine which root dominates.
Solution:
Given X +4x+x =0where xg =1mm,vg =0

Let — rt ; 2t
X=@ae =are' =>X=ar
Substitute these Into the equat| on of motion to get:

ar’e' +4are" +a€' =0
=rl+4r+1=0=r,=-2+3

( 2+J_) e(2+J§ (_Z_Jé)aze(—Z—.E)t
Apply| ng initial conditionsyields,
=at+ta = - =y @
=(-2+43)a+(-2-43)a, @)
Substitute equation (1) into (2)
=(~2+4B) - a) +(~2-3)a,
Vo =(—2+3)% - 234,
Solvefor a, vyt (_2+J§) X,
243

Substituting the value of a, into equation (1), and solving for a, yields,

2+J_

soX(t) = % 2+\/)57 2+t (zjjf) 3t

The response is dommated by the root: —2 ++/3_ as the other root dies off
very fast.




1.32 Solve X +2x+2x =0 for X, = 0mm, v, = 1 mm/s and sketch the response. Y ou
may wish to sketch x(t) = €' and x(t) =-e" first.
Solution:
Given X +2x+x =0 wherex, =0, v, = 1 mm/s
Let: x=ae" = x=are" = x=ar’e"
Substitute into the equation of motion to get
ar’d' +2are" +ae' =0=r’+2r +1=0=1,, = -1%]
So

~1+i)

X = Qe( tg Cze(—l—i)t —x= (_1+i)cle(—1+i)t +(—1—i)Cze(_l_i)t

Initial conditions:

%=x(0)=¢+c=0 = c¢== (I
Vo =X(0)= (-1+i)g +(-1-i)c, =1 2
Substituting equation (1) into (2)

v, = (-1+i)g —(-1-i)g =1

o ——}i —}i

1= 5h G = >

X(t) = _lie(—lﬂ)t + l-ie(—l—i)t - —lieft(e“ B eﬁit)
2 2 2

Applying Euler’ s formula
1. . - .
x(t):—Ele (cost+isint—(cost —isint))

x(t)=e"'sint

Alternately use equations (1.36) and (1.38). The plot issimilar to figure 1.11.



1.33 Derivetheform of A, and A, given by equation (1.31) from equation (1.28)
and the definition of the damping ratio.

Solution:

Equation (1.28): 4, 5 :—%i% c? — 4km

e o e e o

= ) 3 e i S 3 (252

Substitute:
= huy = Lo, 20, |07 {1— [%H

= A,= -0, *w,\{* -1

;I




1.34 Usethe Euler formulas to derive equation (1.36) from equation (1.35) and to
determine the relationships listed in Window 1.4.
Solution:

—jonof1-C"t

)jwn 1~ t_aze

Equation (1.35): x(t)= e *(ae
From Euler,
X(t)=e " (a cos(con 1- cjzt) +ajs n(con 1- cjzt)
+a, cos(wn‘/l—Tt) —a,) sin(a)n‘/l—?t))
= e“(a +a,)coswyt + j(a —a,)sinm,t
Let: A;=(a, +a,), A==(a, —a,), then thislast expression becomes
x(t) = €' A cosw t + A,sinw,t

Next use the trig identity:
A=A +A,, ¢=tan™ %

toget: x(t)=e*“"Asin(w,t + ¢)




1.35 Using equation (1.35) as the form of the solution of the underdamped
system, calculate the values for the constants a, and a, in terms of the initial
conditions x, and v,

Solution:

Equation (1.35):

X(t): e—Cwnt(aiejwn 1-¢°t +aze—jwn 1-¢ t)
()= (<Co, +jo1- 2 )aie(—CwnﬂwnJF ), to —io I TDa, Jeon o

Initial conditions
% =x0)=a+a,=a=%-2a 1
% =X(0) = (¢, + jo1-C)a +(-4w, - jo,i-CP)a, ()
Substitute equation (1) into equation (2) and solve for a,
Vo =~ 0, + 0,107 ) 0= @) +(~ Lo, ~ j0 1T )2,
Vo=( o, + jo 1T %~ 2j01-C a

Solvefor a,
— —Vo— Cwnxo + ja)n 1- CZXO
a = : >
ijn\/l_ C
Substitute the value for a, into equation (1), and solve for a;
g = Yot SO * jo,J1-8%
2ja)n\/l_ Cz




1.36 Caculate the constants A and ¢ in terms of the initial conditions and thus
verify equation (1.38) for the underdamped case.
Solution:
From Equation (1.36),
x(t) = Ae " sin(w,t + ¢)
Applying initial conditions (t = 0) yields,
X, = Asin¢ D
Vo = X, ==L, Asind + w, ACosd (2
Next solve these two simultaneous equations for the two unknowns A and ¢.

From (1),

X
A=-° 3
sing ®)
Substituting (3) into (1) yields
_ Wy Xy _ X0y
=- tang = ——<4—
v, ==L, X, + ano = tan¢ v+ o
Hence,
=t -1 XOwd 4
(P o |:V0 + Cwnx0:| ( )
From (3), sing = X—AO\ 5)
and From (4), cos¢ = Yo * 0o (6)

(%o@4)” + (o +EwnXo)”

Substituting (5) and (6) into (2) yields,
A= \/(VO + C(OnXO)Z + (X0, )2

;

which are the same as equation (1.38)



1.37 Cadculate the constants a, and a, in terms of the initial conditions and thus verify

equations (1.42) and (1.43) for the overdamped case.

Solution: From Equation (1.41)
X(t) = e_gwnt(aiewn 401t + aze—wnﬁz—_lt)

taking the time derivative yields:
X(t) = (_Cwn +(1)n‘/ CZ —1) ale(_gw"+w" JC -1 )t + (_Cwn _wnm)az e(—Cwn—wnm)t

Applying initial conditions yields,
%=x(0)=a+a, = %-8=a @

v, = x(0) =(—§wn +wn\/§2——1)a1 + (—Ca)n - a)n\/gzi—l)a2 (2)

Substitute equation (1) into equation (2) and solve for a,
Vo =( =0, + 0, JT71) (%~ 3) + (- G0, ~ 0,1 )3,
Vo :(_Cwn +wn\‘§2 _1)X0 - an\lgz —132

Solvefor a,
—Vo _Cwnxo + @, é‘Z -1 X
20,07 -1
Substitute the value for a, into equation (1), and solve for a;

a =0 +{, X, + 0,5 -1 %,
an\/Cz -1

a2:




1.38 Calculate the constants a, and a, in terms of theinitial conditions and thus verify

equation (1.46) for the critically damped case.

Solution:
From Equation (1.45),

X(t) = (&, + at)e
=X = - 0,36 —wate™ +a,e "
Applying theinitial conditionsyields:
X, =4, Q)
and
vV, =X(0)=a, —o,a, (2
solving these two simultaneous equations for the two unknowns a, and a..
Substituting (1) into (2) yields,
a, = X,
a, =V, +m,X,

which are the same as equation (1.46).



1.39 Using the definition of the damping ratio and the undamped natural frequency,

1.40

derive equitation (1.48) from (1.47).

Solution:
o, =\/E thus, —=w
m m
€= ¢ thus, © _ 26km = 2w,
2+/km m m
Therefore, X +£>’< +£x =0
m m
becomes,

X(t) + 28w X(t) + 0, *X(t) =0

For a damped system, m, ¢, and k are known to be m = 1 kg, ¢ = 2 kg/s, k = 10
N/m. Calculate the value of £ and . Is the system overdamped, underdamped, or
critically damped?

Solution:

Given: m =1Kkg, ¢ =2 kg/s, k=10 N/m

Natural frequency: o, = \/7 \/: =3.16rad/s

Damping ratio: = =0.
PINg 6= 2(om 2(3 16)(1)

Damped natural frequency: o, —x/7 J = 3.0 rad/s

Since 0 < { < 1, the system is underdamped.




1.41  Plot x(t) for a damped system of natural frequency w, = 2 rad/s and initial
conditions Xo = 1 mm, vo = 1 mm, for the following values of the damping ratio:
£=001,{=0.2,=01,,=04,and {=0.8.

Solution:

Given: m, = 2 rad/s, Xo =1 mm, vo = 1 mm, {; =[0.01; 0.2; 0.1; 0.4; 0.8]
Underdamped cases:

S04 = 0,41- Ciz

From equation 1.38,

A - (vo +{ioX )Z+ (%04)" 4 = tant — X%
O Vot G0,

The response is plotted for each value of the damping ratio in the following using
Matlab:

x10°

0 2 4 6 8 10 12 14 16 18 20



1.42

002 [ 4
|
004 1 : §
006 i
|

-0.08 I I I I I I I I I

Plot the response x(t) of an underdamped system with w, = 2 rad/s, { = 0.1, and
vo = 0 for the following initial displacements: xo = 10 mm and X, = 100 mm.

Solution:
Given: o, = 2 rad/s, { = 0.1, vo=0, Xo = 10 mm and xo = 100 mm.

Underdamped case:

f @y =0, \1-§? = 2\1-0.12 = 1.99 rad/s

A~ ‘/(vo +{w X )22 + (%0,) _ L01x

Wy

XoWy

—— =147 rad
VO + gwnxo

¢=tan"

where

x(t) = Ae*" sin(w,t + ¢)

The following is a plot from Matlab.

0.1

0.08 - I x0 =10 mm B

77777 X0 =100 mm
0.06 |- ! E

0.04 - | i

002 | ‘ ! ) J




143 Solve Xx—x+x =0 withx, =1 and v, =0 for x(t) and sketch the response.

Solution: Thisisa problem with negative damping which can be used to tie into
Section 1.8 on stability, or can be used to practice the method for deriving the
solution using the method suggested following equation (1.13) and eluded to at
the start of the section on damping. To thisend letx(t) = Ae™ the equation of
motion to get:

(A -A+De" =0
Thisyields the characteristic equation:

12—,1+1:0:>/1:%¢§j, where j =+/-1

There are thus two solutions as expected and these combine to form
By A,

xt)=e'(Ae” +Be’ )
Using the Euler relationship for the term in parenthesis as given in Window 1.4,

this can be written as
x(t) =e”™(A cos%t +AS n%t)
Next apply theinitial conditions to determine the two constants of integration:
x0)=1=AD+A(0)=A=1

Differentiate the solution to get the velocity and then apply the initial velocity
condition to get
X(t) =

B B B B3

1, . A3 0 . 3
—e cos—0+A an—0)+e —(-Asn—0+A cos—0)=0
S (A0S 20+ A= 0) + €' (-ASNT-0+ A 0s-0)

:»A1+ﬁ(Az):o:»A2:—%,

_osye N3, 1 V3
= X(t)=e€ (cos?t—ﬁsm7t)

This function oscillates with increasing amplitude as shown in the following plot
which shows the increasing amplitude. Thistype of responseisreferred to asa
flutter ingtability. Thisplot is from Mathcad.
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144 A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m and
damping coefficient of 300 kg/s. Calculate the undamped natural frequency, the
damping ratio and the damped natural frequency. Does the solution oscillate?

Solution: Working straight from the definitions:

o, = ‘/E = [3ONM _ o 47 radis
m 100 kg
c 300

SRR RN covo)lico

Since { islessthen 1, the solution is underdamped and will oscillate. The damped

natural frequency isw, = w,y1-¢? =5.27 radls.



1.45 A sketch of avalveand rocker arm system for an internal combustion engineis
givein Figure P1.45. Modéd the system as a pendulum attached to a spring and a
mass and assume the oil provides viscous damping in the range of {=0.01.
Determine the equations of motion and calcul ate an expression for the natural
frequency and the damped natural frequency. Here Jistherotationa inertia of
the rocker arm about its pivot point, k is the stiffness of the valve spring and mis
the mass of the valve and stem. Ignore the mass of the spring.

Rocker arm 0 J

] 4
Figure P1.45
Solution: The modd is of the form given in the figure. Y ou may wish to give thisfigure

asahint asit may not be obviousto all students.

Taking moments about the pivot point yields:
(J + me?)0(t) = —kx¢ — cxt = —k¢*0 — c/?0
= (J+me?)O(t) + cl’0 + kr*0 =0

Next divide by the leading coefficient to get;

k2
J + my?

C€2
J + my?

éa)+( Jéa)+ o(t)=0



1.46

From the coefficient of g, the undamped natural frequency is

k2
w, = : > rad/s
J+m/

From equation (1.37), the damped natural frequency becomes

2 2
Wy =0, 1—@'2:0.99995\/ Kt . ~\/ ke S
J+m/ J+m/

Thisis effectively the same as the undamped frequency for any reasonable

accuracy. However, it isimportant to point out that the resulting response will
still decay, even though the frequency of oscillation is unchanged. So even
though the numerical value seems to have a negligible effect on the frequency of
oscillation, the small value of damping still makes a substantial differenceinthe

response.

A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and
damping coefficient of 200 kg/s. Calculate the undamped natural frequency, the
damping ratio and the damped natural frequency. |s the system overdamped,
underdamped or critically damped? Does the solution oscillate?

Solution: Working straight from the definitions:

‘/7 1500 N/m =3.162 rad/s
150 k

Ccr Z‘IR 2‘/11500531505

This last expression follows from the equation following equation (1.29). Since {
islessthen 1, the solution is underdamped and will oscillate. The damped natural

frequency isw, = wn‘ll— ¢? = 3.091 rad/s, which follows from equation (1.37).



1.47* The system of Problem 1.44 is given a zero initial velocity and an initial
displacement of 0.1 m. Calculate the form of the response and plot it for as long
asit takesto die out.

Solution: Working from equation (1.38) and using Mathcad the solution is:

OAlaraD"D")rf——————————————— 142 =————————[H
m =100 kK :'=3000 ¢ = 300 =
k . -
wn = — E= wd = on gl — £
" 2am-k
v =0 x0:=0.1
1 - Z
&= —,‘J[('i.?l:l + q-}:ﬂ.mnj + (KD'UJIijI
w wd - x0
¢ 1= aten | ————
v + -wn-x0
& =10.104 b= 1.293 n = 5 a7
wd = 5.268
¢ = 0.274
x |:t:| '= A 3in I[r_|_'||j_.t + ¢|:|-E't"'-'\-"n't
0.1 -
0.0s -+
x[t]
TN |
0 \/1 : A )
—nnsL
t M=
A [ <[




1.48* The system of Problem 1.46 is given an initial velocity of 10 mm/s and an initial
displacement of -5 mm. Calculate the form of the response and plot it for as long
asit takesto die out. How long does it take to die out?

Solution: Working from equation (1.38), the form of the response is programmed
in Mathcad and is given by:

F
k = 1500 m =150 ¥0 = -0.005 0 :=0.010 - 200 =
all units inm, kg, 5
c
k q = —_—
T il . = 2
i m Zoafm k =021 od 1= wne a1l —f wid = 3.091
. 21
1 2 2 - Ti=—
A= —alv0 + oxtwn]” + (x0wd]® & = 5.445-10 wd
iod
. | ' od - 10
— A . —foemt  Ihmebers ‘= atan
(1) Asmlimdt+¢:| B ¥0 + £-on-x0

0003 1

ﬂ /\ N y — .

0 1\/ e 6

=000 -~

Skl

4 [»

It appearsto take alittle over 6 to 8 seconds to die out. This can also be plotted in
Matlab, Mathematica or by using the toolbox.



1.49* Choose the damping coefficient of a spring-mass-damper system with mass of
150 kg and stiffness of 2000 N/m such that it’s response will die out after about 2
s, given a zero initial position and an initial velocity of 10 mm/s.
Solution: Working in Mathcad, the response is plotted and the value of cis
changed until the desired decay rate is meet:

c = 800 k = 2000 0 i 0,010 )
x0:=0
m ;= 150
C
g =
2: /\’m' k B k 2
wn .= m od = onal -
X(t) = Agn(wnt + q))_e—c.(l)n.t
wd- x0
0 = aan
VO + (- on-x0
In this case { = 0.73 which is very large!
0.002 +
il ’ —— ' : | |
—_ 0 0.5 1 15 5 , )

—0.002 4




1.50 Derivethe equation of motion of the system in Figure P1.50 and discuss the effect
of gravity on the natural frequency and the damping ratio.

: LI

Solution: This requirestwo free body diagrams. One for the dynamic case and

one to show static equilibrium.

ky  cdy/dt KAX
i B

mg X(t) mg y(®

@ (b)
From the free-body diagram of static equilibrium (b) we have that mg = kAX,
where AX represents the static deflection. From the free-body diagram of the
dynamic case given in (a) the equation of motion is:
my(t) +cy(t) + ky(t) -mg =0
From the diagram, y(t) = x(t) +Ax. Since Ax is aconstant, differentiating and
substitution into the equation of motion yields:
y(t) =x(t) and ¥(t) = X(t) =
mX(t) + cx(t) + kx(t) + (kAx —mg) =0
—_—
where the last term is zero from the relation resulting from static equilibrium.
Dividing by the mass yields the standard form
X(t) + 28w, X(t) +w?x(t) =0
It is clear that gravity has no effect on the damping ratio C or the natural
frequency w,. Not that the damping forceis not present in the static case because
the velocity is zero.



151 Derivethe equation of motion of the system in Figure P1.46 and discuss the effect
of gravity on the natural frequency and the damping ratio. You may have to make
some approximations of the cosine. Assume the bearings provide a viscous
damping force only in the vertical direction. (From the A. Diaz-Jimenez, South
African Mechanical Engineer, Vol. 26, pp. 65-69, 1976)

|

Solution: First consider afree-body diagram of the system:
5O L s kas

v
X(t)

I
[

i
i
s

Let o be the angel between the damping and stiffness force. The equation of

motion becomes

mx(t) = —cx(t) — k(A +6,) cosor
From static equilibrium, the free-body diagram (above with ¢ = 0 and stiffness
force kdy) yields: > F, =0 =mg— kd,cosc. Thusthe equation of motion

becomes
mX + cX + kAlcosa =0 (1)
Next consider the geometry of the dynamic state:



C+AY

X 0

From the definition of cosine applied to the two different triangles:
h+x

(+AL
Next assume small deflections so that the angles are nearly the same cos o = cos
6, so that

coso = 7 and cos@ =

+
hohX o exloarX
0 I+ A h coso

For small motion, then this last expression can be substituted into the equation of
motion (1) aboveto yield:

mx +cx +kx =0, o and x small
Thus the frequency and damping ratio have the standard values and are not
effected by gravity. If the small angle assumption is not made, the frequency can
be approximated as

c
2mo,
as detailed in the reference above. For a small angle these reduce to the normal

values of
0, = ‘,E and { = ¢
m 2mw,

k 2 g.o
w, = |—cos’a+=sin"a, ¢ =
n J,. h C

as derived here.



Problems and Solutions Section 1.4 (problems 1.52 through 1.65)

1.52 Caculate the frequency of the compound pendulum of Figure 1.20(b) if amass m;
is added to the tip, by using the energy method.
Solution Using the notation and coordinates of Figure 1.20 and adding a tip mass

the diagram becomes:

I
:_/
|
6 m
If the mass of the pendulum bar is m, and it is lumped at the center of mass the
energies become:
U =—(¢/-(cos@)mg + (¢ — ¢cosf)mg

Potential Energy:

(1- cos8)(mg +2mQ)

N~ NP

. . 2, .
1=10 +1'\]t92 _1m e +1m5292
2 2 2 3 2

Kinetic Energy:
= (1m+ 1 )0%6°
6 2 m

Conservation of energy (Equation 1.52) requires T + U = constant:

é(l— cosf)(mg +2m,g) + (% m+%m)£2é2 =C
Differentiating with respect to time yields:

~(sino)(mg + 2mg)d + G m-+ m) 766 =0

1 .1 .
= (§m+ m)/e + E(mg +2mg)sneé =0

Rearranging and approximating using the small angle formulasin 6 ~ 6, yields:



1.53

m
9(t)+ ]-Z—g 0(t):0:}a)n: M graj/s
3m+m€ \/2m+6m 14

Note that this solution makes sense because if m, = 0 it reduces to the frequency of
the pendulum equation for abar, and if m= 0 it reduces to the frequency of a

masd ess pendulum with only atip mass.

Calculate the total energy in a damped system with frequency 2 rad/s and
damping ratio { = 0.01 with mass 10 kg for the case x, = 0.1 and v, = 0. Plot the
total energy versustime,

Solution: Given: o, =2rad/s, { =0.01, m=10kg, X, =0.1 mm, v, = 0.

Calculate the stiffness and damped natural frequency:

k=mm?=10(2)% = 40 N/m
0, = 0,41-° =241-0.012 = 2 rad/s
The total energy of the damped system is
1 -2 1
E(t)=— t) + = kx(t
(t)= Smic () + S hot)

. X(t) = Ae%%'sin(2t +¢)

where _
X(t) =-0.02Ae *%'sin(2t + ¢) + 2Ae %% cos(2t + ¢)

Applying theinitial conditions to evaluate the constants of integration yields:
X(0)=0.1=Asn¢
x(0) = 0=-0.02Asin¢g + 2Acosp
= ¢=156radls, A=0.1 m

Substitution of these values into E(t) yields:



O 1.48
-0.04-¢
E (1) [0 Lsin(z t+ 156000 + 2enz(zt+ 1569 | + 0.5¢7 MM (0t sim 2t + (1,562
003 +
PRI I




1.54 Use the energy method to calculate the equation of motion and natural frequency
of an airplane's steering mechanism for the nose wheel of its landing gear. The
mechanism is modeled as the single-degree-of-freedom system illustrated in
Figure P1.54.

{ Reeerioa w heel}

111“"\&

{Tira-wheos
rs s Enb |

W‘\.

M :‘hl"‘-:"'h""

5 . -
The steering whed and tire assembly are modeled as being fixed at ground for

this calculation. The steering rod gear system is modeled as a linear spring and
mass system (m, k,) oscillating in the x direction. The shaft-gear mechanism is
modeled as the disk of inertia J and torsional stiffness k,. The gear J turns
through the angle 6 such that the disk does not dip on the mass. Obtain an
equation in the linear motion x. 7
Solution: From kinematics: X =r0,= X =r0

Kinetic energy: :%Jéz +%m>‘(2

- : _1o . 1
Potential energy: —Ekzx +§k10
Substitute § = ;T +U :lizxz +Lme +1k2x2 +£k—;x2

r 2r
Derivative: M:O
dt
J

r_2s<>'<+m'>'<>'<+|<2x>'<+rﬁz><>'<=o




1.55 A control pedal of an aircraft can be modeled as the single-degree-of-freedom
system of Figure P1.55. Consider the lever as a masdess shaft and the pedal asa
lumped mass at the end of the shaft. Use the energy method to determine the

equation of motion in 6 and calculate the natural frequency of the system. Assume

the spring to be unstretched at 6 = 0.

Figure P1.55

Solution: In thefigurelet themass at 6 = 0 be the lowest point for potential energy.
Then, the height of the mass mis (1-cos9)/,.
Kinematic relation: x=/,0

N 1 . 1 :
Kinetic Energy: T = me2 = Em€§92

Potential Energy: U = %k(fle)z + mgl,(1— cosh)
Taking the derivative of the total energy yields:
:—t(T +U) = mr200 +K(/26)0 + mgt, (sin@)d = 0

Rearranging, dividing by do/dt and approximating siné with 8 yields:
me20 +(keZ +mgl,)0 =0

ko2 +
=>60n:’ 1 T%
m£2



1.56

To save space, two large pipes are shipped one stacked inside the other as
indicated in Figure P1.56. Calculate the natural frequency of vibration of the
smaller pipe (of radius R)) rolling back and forth inside the larger pipe (of radius
R). Use the energy method and assume that the inside pipe rolls without slipping
and has amass m.

Lirpe g

smeall pape

Truck bed

Solution: Let 6 be the angle that the line between the centers of the large pipe and
the small pipe make with the vertical and let o be the angle that the small pipe
rotates through. Let R be the radius of the large pipe and R, the radius of the
smaller pipe. Then the kinetic energy of the system is the trandational plus
rotational of the small pipe. The potentia energy isthat of therisein height of

the center of mass of the small pipe.
/

From the drawing:
y+(R-R)cos6 +R =R

= y=(R- R)(1-cos6)
= y=(R-R)sin(6)0
Likewise examination of the value of x yields:
x=(R-R)sin6
= x=(R- Rl)coseé
Let B denote the angle of rotation that the small pipe experiences as viewed in the
inertial frame of reference (taken to be the truck bed in this case). Then thetotal



Kinetic energy can be written as:

T=Ttrans+T =mez+1mf +%I0ﬁ2

rot 2 2
_1 2/ 2 o 1 o
—Em(R— R)?(sin®@ + cos’ 6)0 +§Ioﬁ

=T :%m(R— Rl)2é2+%|0[32

The total potential energy becomes just:

V = mgy = mg(R- R)(1- cosb)

Now it remainsto evaluate the angel 3. Let o be the angle that the small pipe
rotates in the frame of the big pipe asit rolls (say) up the inside of the larger pipe.
Then

B=6-0

were o isthe angle “rolled” out asthe small piperollsfromatob infigure
P1.56. Therolling with out dipping condition implies that arc length a’b must
equal arc length ab. Using the arc length relation thisyieldsthat RO =R 0.
Substitution of the expression § = 6—a. yields:

RO=R(O-P)=RO-RS=(R-R)0=-Rp
=—(R-R@ and f=—(R-RO

which is the relationship between angular motion of the small pipe relative to the
ground () and the position of the pipe (6). Substitution of thislast expression into
the kinetic energy term yields:

_l _ 22 1— i _ P\n)2
T=3MR-R)" +5lo(z (R~ Re)
= T=m(R-R)%

Taking the derivative of T +V yields
%(T +V) = 2m(R- R )?69 + mg(R- R))sin6f =0

= 2mR- R)?6 +mg(R-R)sing =0
Using the small angle approximation for sine this becomes
2mR- R)’0 + mg(R- R)6 =0
9
2(R-R)

- g
S Py

:>é+ 6=0



157 Congder the example of a simple pendulum given in Example 1.4.2. The
pendulum motion is observed to decay with a damping ratio of { = 0.001.
Determine a damping coefficient and add a viscous damping term to the

pendulum equation.

Solution: From example 1.4.2, the equation of motion for asimple pendulumis

d+30=0
]

So w, = ‘/% . With viscous damping the equation of motion in normalized form

becomes:
6 +2(w, 0+ =0 or with { asgiven :
= 0 +2(.00)w 6+ w0 =0

The coefficient of the velocity termis




1.58

1.59

Determine a damping coefficient for the disk-rod system of Example 1.4.3.
Assuming that the damping is due to the material properties of the rod, determine
c for therodif it is observed to have adamping ratio of { = 0.01.

Solution: The equation of motion for adisc/rod intorsiona vibrationis

Jo+k6 =0
- 5 k
or 0+w0o=0 Wherewn:‘/;
Add viscous damping:
6 +2lw 6 +w6=0
0+ 2(.01)‘/?9 +®20=0

From the velocity term, the damping coefficient must be

~= (0.02)\/5

= ¢=0.02vk]

The rod and disk of Window 1.1 are in torsional vibration. Calculate the damped
natural frequency if J=1000 m?- kg, c =20 N- m- g/rad, and k = 400 N-m/rad.
Solution: From Problem 1.57, the equation of motion is

J6 +cH+ko =0
The damped natural frequency is

0, = 010

where ‘/7 400 =0.632 rad/s
\} 1000

and 0.0158

6= 2J_ 2J4oo %1000
Thus the damped natural frequency is @, = 0.632 rad/s



1.60 Consder the system of P1.60, which represents a simple model of an aircraft
landing system. Assume, x =r0. What is the damped natural frequency?

Solution: From Example 1.4.1, the undamped equation of maotion is
(m+ r—‘]z)x +kx=0
From examining the equation of motion the natural frequency is:
J k | k
o, = = 3
meq d m+ —
p

An add hoc way do to thisisto add the damping force to get the damped equation

of motion:
JY.. .
(m+F)x+cx+kx:O

The value of { is determined by examining the velocity term:

CJ:ZCa)n:>C: (o 1

k
m+- m+-
r.2 r2 2\/ J
m+-—

==

Thus the damped natural frequency is



1.61 Consider Problem 1.60 with k = 400,000 N-m, m = 1500 kg, J = 100 m*kg, r = 25
cm, and ¢ = 8000 N-m-s. Calculate the damping ratio and the damped natural

frequency. How much effect does the rotationa inertia have on the undamped
natural frequency?
Solution: From problem 1.60:

C k C
4 =—J and o, = 3 T
ZJKE”‘H—J mez e

k = 4x10° Nm/rad
m=15x10° kg
J =100 m*kg
r =0.25 mand
c=8x10° N-m-grad
Inserting the given values yields
¢ =0.114 and w, =11.16 rad/s

Given:

k
For the undamped natura frequency, o, = .|[———
P Yo O SN eIl
With the rotational inertia, w, = 36.886 rad/s

Without rotational inertia, w, = 51.64 rad/s



1.62

1.63

The effect of the rotational inertiaisthat it lowers the natural frequency by almost
33%.

Use Lagrange’ s formulation to calculate the equation of motion and the natural
frequency of the system of Figure P1.62. Model each of the brackets as a spring
of stiffnessk, and assume the inertia of the pulleysis negligible.

m

Figure P1.62

Solution: Let x denote the distance mass m moves, then each spring will deflects
adistance x/4. Thus the potentia energy of the springsis

2
U:2><Ek X zhx2
2 \ 4 16
The kinetic energy of the massis

1
T=mx’
2

Using the Lagrange formulation in the form of Equation (1.64):

2
4 i L w2 s 9k :O:E(mx)+3x=0
dt| ox\ 2 ox| 16 dt 8
:>m>‘<+5x:0:>co :1,{L rad/s
8 " 2\V2m

Use Lagrange's formulation to calculate the equation of motion and the natural
frequency of the system of Figure P1.63. This figure represents a simplified
model of a jet engine mounted to a wing through a mechanism which acts as a
spring of stiffness k and mass m,. Assume the engine has inertial J and mass m
and that the rotation of the engine is related to the vertical displacement of the

engine, x(t) by the“radius’ r, (i.e. x=r0).



Wing, QlOllnd

|
\ I / Mount, &, m
|
i
|

/“ =

Enginc. J, m {
x(t)
Figure P1.63
Solution: This combines Examples 1.4.1 and 1.4.4. Thekinetic energy is
r=lmisLagrer, 1[ijT |
2 2 spring 2 rO2 spring
The kinetic energy in the spring (see example 1.4.4) is
im, ,
==X
spring 2 3

Thusthe total kinetic energy is

The potential energy isjust
U=tk
2
Using the Lagrange formulation of Equation (1.64) the equation of motion results

from:
g i 1 m+i+ﬂ )'(2 +i lkx2 =0
dt| ox| 2 P 3 ox\ 2

1.64 Lagrange sformulation can also be used for non-conservative systems by adding

the applied non-conservative term to the right side of equation (1.64) to get
dfdT | dT aT L 9u oU . oR,
dt

+—1=0
aqi aq dq.  aq,



Here R isthe Rayleigh dissipation function defined in the case of aviscous
damper attached to ground by

1
R ==cq?
1 2 ql

Use this extended L agrange formulation to derive the equation of motion of the
damped automobile suspension of Figure P1.64

Figure P1.64

Solution: The kinetic energy is (see Example 1.4.1):
1 J
T==(m+=)X°
S(m+3)
The potential energy is.
U= 1 kx?
2
The Rayleigh dissipation function is
1 .,
==CX
2
The Lagrange formulation with damping becomes
d{dT | oT  oU OR
-+ —+ =
Jdq  dq,  dq

d(of1 J .\, o(1, ,), 91 ,
—| = =(m+= —| =k |+ —| Zcx* |=0
zdt[ax[z(m+r2)x D+ax[2 " j+ax[2cxj

:>(m+%)>‘<+c>‘<+kx:0

—| — —1=0
dt| g,




1.65 Congder the disk of Figure P1.65 connected to two springs. Use the energy
method to calculate the system's natural frequency of oscillation for small angles

o(t).

Solution:
Known: x=r@, Xx=r6 and J, —%mr

Kinetic energy:
. 2 .
'I',m:EJO g =1 mr ) 0 = L 2@
2 2\ 2 ) 4
Ttrans= 1- m).(z = i mrzéz
2 2

T=T,+T, .= Lot + Lo = S
4 2 4
. 1
Potential energy: U = Z(Ek[(aﬂ )6] ) Ka+r)¢

Conservation of energy:
T+U = Constant

d
Z(m+u)=0

d 3 2,42 2 2)
—| —=mr°e” +k(a+r)°0° |=0
dt(4 (a+r)
3 2 2 . _

S (266) +k(a +1)*(200) = 0

gmrzé +2k(a+r)’0=0

Natural frequency:

a)ankeﬂ _ [K(@+r)”

M g’mrz
2

_2a_+r ’ rad/s



Problems and Solutions Section 1.5 (1.66 through 1.74)

1.66 A helicopter landing gear consists of a metal framework rather than the cail
spring based suspension system used in a fixed-wing aircraft. The vibration of the
frame in the vertical direction can be modeled by a spring made of a dender bar
asillustrated in Figure 1.21, where the helicopter is modeled as ground. Herel =
0.4m, E =20x 10" N/m? and m= 100 kg. Calculate the cross-sectional areathat
should be used if the natural frequency isto be f, = 500 Hz.

Solution: From Figure 1.21

_ |k _ |EA
wn_J%_J; (1)

2rrad ) _
1cyc|e)_

and

3142 rad/s

, =500 Hz[

Solving (1) for Ayields:

_ o Im _ (3142)*(.4)(100)
E 20x 10"
A=0.0019 m? = 19cm?

A




1.67 The frequency of oscillation of a person on a diving board can be modeled as the
transverse vibration of a beam as indicated in Figure 1.24. Let m be the mass of
the diver (m= 100 kg) and | =1 m. If the diver wishes to oscillate at 3 Hz, what
value of El should the diving board material have?

Solution: From Figure 1.24,

, _ SEl
“n e
and
0, = 3Hz[ 2z red ) =6m rad/s
1cycle )
Solving for El

i’ (6%)2(200)(1)3

El =11843.5 Nm?

1.68 Consder the spring system of Figure 1.29. Let k; = k; = k, =100 N/m, k; = 50
N/m, and k, = 1 N/m. What isthe equivalent stiffness?

Solution: Given: k; =k, =k; =100 N/m,k; = 50 N/m, k, =1 N/m
From Example 1.5.4

_ KKy
= k,, =300.98 N/m




1.69 Springs are available in stiffness values of 10, 100, and 1000 N/m. Design a
spring system using these values only, so that a 100-kg mass is connected to

ground with frequency of about 1.5 rad/s.

Solution: Using the definition of natural frequency:

= [k

“ =\

With m= 100 kg and w, = 1.5 rad/s the equival ent stiffness must be:

Keg = Mo = (100)(L.5)° =225 N/m
There are many configurations of the springs given and no clear way to determine
one configuration over another. Here is one possible solution. Choose two 100
N/m springsin parale to get 200 N/m, then use four 100 N/m springsin seriesto
get an equivalent spring of 25 N/m to put in parallel with the other 3 springs since
K = = =25
= 1,1,1,1 4100

ko Kk ks Kk

Thus using six 100 N/m springs in the following arrangement will produce an
equivaent stiffness of 225 N/m




1.70

1.71*

Calculate the natural frequency of the system in Figure 1.29(a) if k; = k, = 0.
Choose m and nonzero values of ks, k,, and k; so that the natural frequency is 100
Hz.

Solution: Given: k, =k, =0 and w, = 27(100) = 628.3 rad/s
From Figure 1.29, the natural frequency is

_ [k Rk K, _( kgkAJ
0, = and =k +———
i+ k) SR
Equating the given value of frequency to the analytical value yields:
o = (628.3) = ek F ek ke

mk; +k,)

Any values of ks, k,, ki, and mthat satisfy the above equation will do. Again, the

answer is not unique. One solutionis
k, =1N/m,k, =1N/m, k; =50,000 N/m,and m =0.127 kg

Example 1.4.4 examines the effect of the mass of a spring on the natural
frequency of asimple spring-mass system. Use the relationship derived there and
plot the natural frequency versus the percent that the spring mass is of the
oscillating mass. Use your plot to comment on circumstances when it is no longer
reasonabl e to neglect the mass of the spring.

Solution: The solution here depends on the value of the stiffness and mass ratio
and hence the frequency. Almost any logical discussion is acceptable aslong as
the solution indicates that for smaller values of m,, the approximation produces a
reasonable frequency. Hereisone possible answer. For



kEi=1000 m =100

p.=0,0001..01

21 | | | |
0 0.02 0.04 0.06 0.0% 0.1

From this plot, for these values of mand k it looks like a 10 % spring mass
causeslessthen a 1 % error in the frequency.



1.72 Calculate the natura frequency and damping ratio for the system in Figure P1.72
given the values m = 10 kg, ¢ = 100 kg/s, k; = 4000 N/m, k, = 200 N/m and k; =
1000 N/m. Assume that no friction acts on the rollers. |sthe system overdamped,

critically damped or underdamped?

] — &

e

Figure P1.72
Solution: Following the procedure of Example 1.5.4, the equivalent spring

congtant is;

(200)(1000)

keq:k1+kk2—k3=4000+ =4167 N/m

2+3

Then using the standard formulas for frequency and damping ratio:

k
o, =1/i“ =1/@ =20.412 rad/s
m 10
C 100

= =0.245

2mo.  2(10)(20.412)

n

Thus the system is underdamped.

1.73 Repeat Problem 1.72 for the system of Figure P1.73.

Figure P1.73

Solution: Again using the procedure of Example 1.5.4, the equivalent spring
congtant is:

Keg = kg +Ky +Kg+ k4k4+k5k5 =(10+1+4+

23\ | NIm=16.2 KN/m
2+3

Then using the standard formulas for frequency and damping ratio:



3
o, = J% = ‘/% = 40.25 rad/s
1 _

c=—% = =0.00158
2mw,  2(10)(40.25)

Thus the system is underdamped.

1.74 A manufacturer makes a cantilevered leaf spring from steel (E = 2 x 10" N/m?)
and sizes the spring so that the device has a specific frequency. Later, to save weight, the
spring is made of aluminum (E = 7.1 x 10" N/m?). Assuming that the mass of the spring
ismuch smaller than that of the device the spring is attached to, determineif the
frequency increases or decreases and by how much.

Solution: Use equation (1.68) to write the expression for the frequency twice:

o, :"::é’; and @, :‘/3539' rad/s

’SE_,,
3 10
0y, _ Vm® _ 7.1x10 — 059

Oy [Egm ¥V 2x10"
3

Dividing yields:

Thus the frequency is decreased by about 40% by using aluminum.



Problems and Solutions Section 1.6 (1.75 through 1.81)

1.75 Show that the logarithmic decrement is equal to

o= 1- |nﬁ
n X
where x, isthe amplitude of vibration after n cycles have elapsed.

Solution:

In —X(t) =1In Aeicwntsm(wdt +¢)
x(t + nT) Ae<enle) sin(a)dt +o,nT + q))
Since nw, T =n(2x), sin(w,t+nw,T +¢) =sin(w,t+¢)

Hence, EqQ. (1) becomes

Ae! sin(w L+ q))

In
[Aeiwn(HnT)eCwnntsin(wdt+wdnt+¢)

] = In(eg“’”“T) =nlw T

. x(t)
Since In =(w T =9,
X(t+T
X t)
Then In =nod
X{(t+nT

Therefore,

x, < original amplitude
X, < amplitude n cycleslater

Here X, = x(0).

(1)



1.76 Derivethe equation (1.70) for thetrifalar suspension system.
Solution: Using the notation given for Figure 1.29, and the following geometry:

Write the kinetic and potential energy to obtain the frequency:
o 1 - 1.
Kinetic energy: T :EI002+§I62

From geometry, x =r0 and X =r6

1 X2
T, :E(Io-l_l)_z

max r
Potential Energy:
lJmax = (mo + m)dl =1 COS¢)

2
Two term Taylor Series Expansion of cos ¢= 1— % :
- )
Umax - (mo + m)gl[ 2 J
. ro . ro
For geometry, sin ¢ :T, and for smal ¢, Sn ¢ = ¢ sothatq):l—
r_202
Upec = (M, +m) gILTJ
2n2
U = (m0 + m)g(r 6%) whererf = x
2l )
Unex = (m. *m)g m)gx2
2l

Conservation of energy requires that:



Tmax =U max 7

1(1,+1) o (m+mlg
2 r? 2l

At maximum energy, x=A and x = w,A

l(|°+|)w2A2: (mo+m)gA2

2 r? : 21

=>(|0+|):M

o’
. 2r
Substitute w, = 2xf, = e

(1, +1)= 2+ m)

(2m I T)?|

= gTer*(m, +m)_I
B 4r?| °

were T isthe period of oscillation of the suspension.




1.77 A prototype composite material is formed and hence has unknown modulus. An
experiment is performed consisting of forming it into a cantilevered beam of
length 1 m and | = 10° m* with a 6-kg mass attached at its end. The system is
given an initia displacement and found to oscillate with a period of 0.5 s.
Calculate the modulus E.

Solution: Using equation (1.66) for a cantilevered beam,

3
T:2—ﬂ=27r ﬂ
, v3EI

Solving for E and substituting the given values yields
_ 4n?ml® _ 4n%(6)(1)’
E= 2, 2{1 -9
3T’ 3(5)°(107)
= E=3.16x10" N/m?




1.78 The free response of a 1000-kg automobile with stiffness of k = 400,000 N/m is

1.79

observed to be of the form given in Figure 1.32. Modeling the automobile as a
single-degree-of-freedom oscillation in the vertical direction, determine the
damping coefficient if the displacement at t, is measured to be 2 cm and 0.22 cm
at,.

Solution: Given: x, =2cmandx, =0.22cmwheret,=T+1t,

N 2
Logarithmic Decrement: 6 = Inﬁ =In 0 =2.207

X2
Damping Ratio: { = S = 2.207 =0.331
Varn? +8%  Jag? +(2.207)

Damping Coefficient: ¢ = 2¢+/km = 2(0.331),/(400,000)1000) = 13,256 kg/s

A pendulum decays from 10 cm to 1 cm over one period. Determine its damping
ratio.

Solution: Using Figure 1.31:x, =10 cmand x, =1 cm

Logarithmic Decrement: § = In— = InE =2.303

X2
2.303

J47r o0 Jar +(2303)

Damping Ratio:{ = =0.344




1.80 The relationship between the log decrement & and the damping ratio ( is often

approximated as 6 =2rn{. For what values of { would you consider this a good

approximation to equation (1.74)?

Solution: From equation (1.74), 6 = \/i
1-¢
For small , 6 =2nf

A plot of these two equations is shown:
¢ :=0,0001. 09

sife) =275 sl =zne

a

1-g +

15 T+

The lower curve represents the approximation for small £, while the upper curve

is equation (1.74). The approximation appears to be valid to about £ = 0.3.



1.81 A damped system is modeled as illustrated in Figure 1.10. The mass of the
system is measured to be 5 kg and its spring constant is measured to be 5000 N/m.
It is observed that during free vibration the amplitude decays to 0.25 of itsinitial
value after five cycles. Calculate the viscous damping coefficient, c.
Solution:
Note that for any two consecutive peak amplitudes,

%4 = & by definition
XX X5 X,

a2z =R A R 25 e
X 025 X % X3 X X
30,
1
=>In(4)=0.277
5
and
(=20  -oom
Var? +6°
Solving for c,

¢ = 2¢ /km = 2(0.044),/5000(5)

c=13.94N-s/m



Problems and Solutions Section 1.7 (1.82 through 1.89)

1.82

1.83

Choose a dashpot's viscous damping value such that when placed in parale with
the spring of Example 1.7.2 reduces the frequency of oscillation to 9 rad/s.
Solution:

The frequency of oscillationis w, = wn‘/1—7
From example 1.7.2: w, = 10 rad/'s, m=10kg, andk =10° N/m
So, 9=10y1-¢?

= 09=41-% = (0.9 =1-¢2

¢ =\1-(0.9) =0.436

Then
¢ =2mw, ¢ =2(10)(10)(0.436) = 87.2 kg/s

For an underdamped system, X, = 0 and v, = 10 mm/s. Determine m, ¢, and k such
that the amplitudeisless than 1 mm.

Solution: Note there are multiple correct solutions. The expression for the
amplitudeis:
AZ — X§ + (Vo + Z.:a)nxo)2

o
forx. =0 A= <0001m = @, >—e_ = 20 _
, 0.001  0.001
So
w, =‘/5(1— £?) >10
m
k 100

:>E(1— £?) >100,= k =Mz

K
(1) Choose { =001= —>100,01

(2) Choose m=1kg = k>100.01
(3) Choose k =144 N/m >100.01
rad rad

=0, =J144==12-=
S S

ad
=0, = 11.99%

= c=2mlw,=0.24 kg
—S




1.84 Repeat problem 1.83 if the massisrestricted to lie between 10 kg < m< 15 kg.

Solution: Referring to the above problem, the relationship between mand k is
k>1.01x10"m
after converting to metersfrom mm. Choose m =10 kg and repeat the calculation

at the end of Problem 1.82 to get w, (again taking { = 0.01). Then k= 1000 N/m

_ ,1.0>< 10° rad _, . rad
=0, = — =10 —
10 S S

— @y =9.998 %

and:

= ¢=2m{w, =2.000 kg
ﬁ



1.85

1.86

Use the formula for the torsional stiffness of a shaft from Table 1.1 to design a 1-
m shaft with torsional stiffness of 10° N-m/rad.
Solution: Referring to equation (1.64) the torsiona stiffnessis

k = —E

l
Assuming a solid shaft, the value of the shaft polar moment is given by
ﬂd 4
P T 32
Substituting this last expression into the stiffness yields:
_ Grd®

‘32
Solving for the diameter d yields

J

Thus we are left with the design variable of the material modulus (G). Choose
steel, then solve for d. For steel G = 8 x 10" N/m? From the last expression the

numerical answer is

s Nm g
10 E(32)(1m)

(8 x 10" r:lz](n)

d= =0.0597 m

Repeat Example 1.7.2 using duminum. What difference do you note?
Solution:
For aluminum G = 25 x 10° N/m?

Gd*
64nR

From example 1.7.2, the stiffnessisk = 10° = andd=.01m

3

25 x10°)(.01)"
So, 10° = (
64nR’

Solving for nR? yields: nR® = 3.906 x 10°m?

Choose R=10cm = 0.1 m, so that



1.87

_ 3.906x10°
n=———
(0.0)

Thus, aluminum requires 1/3 fewer turns than steel.

=4turns

Try to design a bar (see Figure 1.21) that has the same stiffness as the spring of
Example 1.7.2. Note that the bar must remain at least 10 times as long as it is
wide in order to be modeled by the formula of Figure 1.21.

Solution:

From Figure 1.21, k = ?

For steel, E=210x 10° N/m?
From Example 1.7.2, k= 10° N/m

3 9A
_(210%10
S0,10° = A———

| =(2.1x10°)A
If A=0.0001 m?(1cm?), then
| =(2.1x10°)(10*) =21,000 m (21km or 13 miles)
Not very practical at all.



1.88 Repeat Problem 1.87 using plastic (E = 1.40 x 10° N/m?) and rubber (E = 7 x 10°
N/m?). Areany of these feasible?
Solution:

From problem 1.53, k =10° N/m :?

For plastic, E =1.40x 10° N/m®

So, | =140m
For rubber, E = 7x10° N/m?
So, 1=0.7m

Rubber may be feasible, plastic would not.

1.89 Congder the diving board of Figure P1.89. For divers, a certain level of dtatic
deflection is desirable, denoted by A. Compute a design formula for the dimensions
of the board (b, hand /) in terms of the static deflection, the average diver’ s mass, m,
and the modulus of the board.

mg

4 L /= bh’
12

C—/ ok end view

Figure P1.89
Solution: From Figure 1.15 (b), Ak = mg holds for the static deflection. The

T:Z—EZZE\/EZZTC m =21 é (1)
o, k mg/ A g

From Figure 1.24, we also have that

periodis.

2 3
:_n =21 % (2)
o, 3EI

T

Equating (1) and (2) and replacing | with the value from the figure yields:



/m£3 /12m£3 Z
3El 3Ebh? bh3 4mg

Alternately just use the static deflection expression and the expression for the
stiffness of the beam from Figure 1.24 to get
7 AE

Ak:mg:Agﬂzmg:———
A bh® 4mg



Problems and Solutions Section 1.8 (1.90 through 1.93)

1.90 Consder the system of Figure 1.90 and (a) write the equations of motion in terms
of the angle, 6, the bar makes with the vertical. Assume linear deflections of the
springs and linearize the equations of motion. Then (b) discuss the stability of the
linear system’ s solutions in terms of the physical constants, m, k, and /. Assume
the mass of therod acts at the center as indicated in the figure.

k k

QWTWE

o T c.g. [
i vy mg
2
__/ A
/ o4

Figure P1.90
Solution:  Note that from the geometry, the springs deflect a distance
kx = k(¢sin@) and the cg moves a distance /cos®. Thus the tota potential
energy is
1 ., mg/
U :2x§k(£sm9) —Tcose

and the total kinetic energy is

2
T :1\]092 :l_mg 92
2 2 3
The Lagrange equation (1.64) becomes

2
i[aTJ+aU _ [mg 9J+2k€sin6cose—%m955in9:0

dtl 06 ) 96 dt| 3
Using the linear, small angle approximations sin@ =0 and cosf =1 yields

2
A M gifakee-M9 g0
3 2

Since the leading coefficient is positive the sign of the coefficient of 6 determines
the stability.

if 2k/— % >0= 4k > % = the system is stable

b) if 4k =mg = 6(t) = at + b= the system is unstable

if 2k/— % <0=4k< % = the system is unstable



191

Note that physically this results states that the system’s response is stable as long
as the spring stiffness is large enough to over come the force of gravity.

Consider the inverted pendulum of Figure 1.37 as discussed in Example 1.8.1.
Assume that a dashpot (of damping rate c) also acts on the pendulum parallel to
the two springs. How does this affect the stability properties of the pendulum?
Solution: The equation of motion isfound from the following FBD:

m

Fdash

mg

+

2F,

éﬁl
C
NNANN

NN

I PRI 77777

Moment about O: XM, = 16

mi%0 =mgl sin — ZEsinH(l cos@) - c(l—ell— cose)
2 2 2 2

When 0 issmall, sind = 0 and cosh = 1
. |2. k|2 \
m2+Z 6+ L _mgllo=0
4 [2 mg)
-~ ¢l - (K
mI9+—0+(—— )0:0
4 2 M9
... K
For stability, E> mg and ¢ > 0.

The result of adding a dashpot is to make the system asymptotically stable.



1.92

1.93

Replace the masdess rod of the inverted pendulum of Figure 1.37 with a solid
object compound pendulum of Figure 1.20(b). Calculate the equations of
vibration and discuss values of the parameter relations for which the system is

stable.

Solution:
my

O
A my e myg
ANAANAT \_j |
/ 2F5p | +
o e |
ok k |7 o |

A .

NN sl

Moment about O: M, =16

I—sin0+m Isine—ZESinG(l—cose)—(} 1% + Iz)é
”‘192 L0 5 5 Sml m,
When 0 issmall, sind = 6 and cosh = 1.

LR TP 1 DR
(3+mz)le+[2 2gI ngI)0 0

(3o )i[4-(3emppo

R
For stability, E>(%+m2)g.

A smple model of a control tab for an airplane is sketched in Figure P1.93. The

equation of motion for the tab about the hinge point is written in terms of the
angle 6 from the centerline to be

JO+(c—f,)0+k6=0.
Here J isthe moment of inertia of the tab, k isthe rotational stiffness of the hinge,

cistherotational damping in the hingeand f dé is the negative damping provided



by the aerodynamic forces (indicated by arrows in the figure). Discuss the

stability of the solution in terms of the parameters c and f, .

Figure P1.93 A simple model of an airplane control tab

Solution: The stability of the system is determined by the coefficient of & since
the inertia and stiffness terms are both positive. There are three cases

Casel c-f,;>0 andthe system’s solution is of the form 6(t) = e ™ sin(w t + ¢)
and the solution is asymptotically stable.
Case 2 ¢ - f;< 0 and the system’s solution is of the form 6(t) = e* sin(w t + ¢)

and the solution is oscillates and grows without bound, and exhibits flutter
instability asillustrated in Figure 1.36.

Case 3 c=f; andthe system’s solution is of the form 6(t) = Asin(w t + ¢) and
the solution is stable asillustrated in Figure 1.34.



Problems and Solutions Section 1.9 (1.94 through 1.101)

1.94* Reproduce Figure 1.38 for the various time steps indi cated.
Solution: The code is given here in Mathcad, which can be run repeatedly with different

At to see the importance of step size. Matlab and Mathematica can aso be used to show

this.
[I=——————mample 1.0.I=————HH
F N
- 4 =
AUE0S  yopr 2 %pi= 1wy = - At
At
xh (1) =
#
s [i-5t) /\
T . ~
0 1o 2 3 q
05l
i At
- |
A |1l DE




1.95* Use numerical integration to solve the system of Example 1.7.3 with m = 1361 kg,
k =2.688 x 10° N/m, ¢ = 3.81 x 10° kg/s subject to the initial conditions x(0) = 0 and v(0)

= 0.01 mm/s.

Compare your result using numerical integration to just plotting the

analytical solution (using the appropriate formula from Section 1.3) by plotting both on

the same graph.

Solution: The solution is shown here in Mathcad using an Euler integration. This can

also been done in the other codes or the Toolbox:

O 1.84 HE
5 F
k = 2655 10 m = 1361 g = 0.0 Vg = 0.01 co= a0 all units in m, kg, 8 -
i i o 2
wn = |— fn = — = wd 1= Al =&
m 2 2 ofk
T o= -1
1 Z Z -
A = E.J(vn + Q-xn-mnjl + (xn-md) il x, wd
b= e =01
¥y + Cownexg
X (1) = Asinfwd-t + ¢)e Eont
]
N = 10000 b1 =
&= 7 [D.Dl }
win- M
i=0..H
lxi"'l]-— vi-&+xi
. . 2
Vit —r.un-(ﬂ]l-xi—z-lz-mn-vi-ﬂ.+vi .
0001 T
o107
!
Z[i-a) /\ /.
0 02 0 06 \uy 1
51077 L
iA




1.96* Consider again the damped system of Problem 1.95 and design a damper such that

the oscillation dies out after 2 seconds. There are at least two ways to do this. Here it is

intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or 1.9.4,

using different values of the damping parameter ¢ until the desired response is achieved.
Solution: Working directly in Mathcad (or use one of the other codes). Changing c until

the response dies out within about 2 sec yields ¢ =6500 kg/s or £ = 0.17.
l=— 185

HH

= 07 = = = W
k= 2688107 mi= 1361 % i=00 v =00l oo ouinkinm ks

k i
wn = |—  fmi=— &= 2
m

c
Zn 2 afmk wd 1= w0 fl = § Ti=—

vy + C-wnexg

1 :
&= E-J(vu + Q'xu'mﬂ)z + (xu'md)z EE atan{m—xu] ¥ = rnl

¥
Dl:t.lj'?:l = 2
—(Z-Qr.un-j.rljl - (um :l-j.fu
Z i= rlfixed (¥,0,20 , 1000, D)

& =7221-107"  inmeters o
— =0 indegrees 1= z70*
deg
wn = 14.054 fn = 2.237 T = 0.454 y = 251> N
if rachs in Hz ingec f =017
wd = 13.549
0001 T

s 1
L
P\ o —

DU LW ’ ;

e

A [

4




1.97* Consider again the damped system of Example 1.9.2 and design a damper such
that the oscillation dies out after 25 seconds. There are at least two ways to do this. Here
it is intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or
1.9.4, using different values of the damping parameter ¢ until the desired response is
achieved. s your result overdamped, underdamped or critically damped?

Solution: The following Mathcad program is used to change c until the desired response
results. Thisyieldsavalue of ¢ = 1.1 kg/s or { = 0.225, an underdamped solution.

=18 10— [MH
— — — — F
k=2 m=3 X, = 0.0 vy = 023 S 5
all units inm, kg, s —
k i c 2 2
wn = |— fi=— &= wd = wnafl =& T:=—
m 21 ook ood
— | 1
x .=
7y DI:'I_,}::I =
- 2-|’;-mn-x1) — (um ) X Z = ikfived (2 ,0,25,1000,D)
ti=z50% x=251F +
0.z
0z
0l +
®
- : 4’/_?\\ 1 .:-'-'_‘—-—\_:
0 5 ] an 25
=1
=12
4
wd = 0.7 wn = 0.316 fn=10.13 T = 7.897 ¢ = 0225
inradls _____ inHz .. insec .

-
Kl

[P




1.98* Repeat Problem 1.96 for theinitial conditions x(0) = 0.1 m and v(0) = 0.01 mm/s.

Solution: Using the code in 1.96 and changing the initial conditions does not change the
settling time, which is just afunction of { and w,. Hence the value of ¢ = 6.5x10° kg/s (¢
=0.17) asdetermined in problem 1.96 will still reduce the response within 2 seconds.



1.99* A spring and damper are attached to a mass of 100 kg in the arrangement given in
Figure 1.9. The system is given the initial conditions x(0) = 0.1 m and v(0) = 1 mm/s.
Design the spring and damper ( i.e. choose k and c) such that the system will come to rest
in 2 s and not oscillate more than two complete cycles. Try to keep ¢ as smal as
possible. Also compute L.

Solution: In performing this numerical search on two parameters, several underdamped
solutions are possible. Students will note that increasing k will decrease {. But increasing

k also increases the number of cycles which is limited to two. A solution with ¢ = 350
kg/s and k =2000 N/misillustrated.

Iee=a=a=a=as\,———— 1= 1
k =000 m = 100 X

¢ = 350 all units inm, kg, 5

k i o 2 21T
wi = — fmi=— &= wd = wneall — & Ti=—

in 21 oalm k und

2
[—(z-q-mn-xlj - (um J-xD] % = rkfixed (x ,0,4, 1000 , D)

ti=z250F x = 271F
0.1 1
0.05 T
X
1 i =
0 \_/1./ 2 3 4
+

—0.05 -

wd = 4116 wn=4472  fn= 0712 T = 1.527 ¢ = 0.391

inradis in Hz [R=L=0e




1.100* Repeat Example 1.7.1 by using the numerical approach of the previous 5

problems.

Solution: The following Mathcad session can be used to solve this problem by varying

the damping for the fixed parameters given in Example 1.7.1.

| 1.89 NS
F.
B=an o ome=e n =l =hd oy allunitsinm, kg, s[5
k o z 2-11
wn = — fni=— = wid = wnall =8 Ti=—
m 21 oakmk wid
}:u :,:1
.
iy DI:t_,:C:I =
—(z-r;-um-xlj - (mn J-xn % := rkfixed (x,0,4,1000, D)
1= 2707 ¥ = z5F +
0.1
005 +
X
0 e 1 15 2
—0.05
4
wd = 9,795 wn = 10 fn = 1592 T = 0.641 £=02
inradls inHz insec | |
-
A [ D

The other codes or the toolbox may also be used to do this.



1.101* Repeat Example 1.7.1 for theinitial conditions x(0) = 0.01 m and v(0) = 1 mm/s.

Solution: The above Mathcad session can be used to solve this problem by varying the
damping for the fixed parameters given in Example 1.7.1. For the given values of initial
conditions, the solution to Problem 1.100 also works in this case. Note that if x(0) gets

too large, this problem will not have a solution.



Problems and Solutions Section 1.10 (1.102 through 1.114)

1.102

1.103

A 2-kg mass connected to a spring of stiffness 10° N/m has a dry diding friction
force (F.) of 3 N. As the mass oscillates, its amplitude decreases 20 cm. How
long does this take?

Solution: With m = 2kg, and k = 1000 N/m the natural frequency isjust

0, = ‘,&SO = 22.36 rad/s

—2umge,  2F®,  Ax
rk rk At

Solving the last equality for At yields:

_ —Axnk _ —(0.20)(r)(10%)
C2fw,  2(3)(22.36)

From equation (1.101): slope =

=4.68s

Consider the system of Figure 1.41 with m = 5 kg and k = 9 x 10° N/m with a
friction force of magnitude 6 N. If the initia amplitude is 4 cm, determine the
amplitude one cycle later as well as the damped frequency.

Solution: Given m=5kg, k=9x10° N/m, f, =6 N, x, =0.04 m, the amplitude

after one cycleis x, = X, _4ch =0.04- % =0.0373m

Note that the damped natural frequency is the same as the natural frequency in the

3
case of Coulomb damping, hence w,, = ‘/% = ‘, 9X510 =42.43rad/s




1.104* Compute and plot the response of the system of Figure P1.104 for the case where
X =0.1m,v,=0.1m/s, p.= 0.05 m= 250 kg, 6 = 20° and k =3000 N/m. How long

does it take for the vibration to die out?

Figure P1.104

Solution: Choose the x y coordinate system to be along the incline and perpendicular to
it. Let p, denote the static friction coefficient, p, the coefficient of kinetic friction and A
the static deflection of the spring. A drawing indicating the angles and a free-body
diagram is given in the figure:

mg cosé

k(x+A)« —_— >

mgsiné

mgsin® ¥ | X
mg mecosd
For the static case
D F =0=kA=puN +mgsing, and Y F =0= N =mgcos6
For the dynamic case
Y F =mx=-k(x+A)+uN +mgsin9—ukN|7):(|

Combining these three equations yields

X
X

Note that as the angle 6 goes to zero the equation of motion becomes that of a spring
mass system with Coulomb friction on aflat surface asit should.

mX + 4, mgcosf— +kx =0



Answer: The oscillation dies out after about 0.9 s. This is illustrated in the following
Mathcad code and plot.

LR
= [I. J:| k = 3K m = 250 o= k03

IJ{:.H} ==k ) L
T-h,. — cos (20 d..-::}-i--.--m

£ (= rkfined (X, 70, 10, 5000, T

s

X = :r'_‘;“

| =

(= 7S

Alternate Solution (Courtesy of Prof. Chin An Tan of Wayne State Univer sity):
Static Analysis:

In this problem, x(t) is defined as the displacement of the mass
from the equilibrium position of the spring-mass system under
friction. Thus, thefirst issue to addressis how to determine this
equilibrium position, or what is this equilibrium position. In
reality, the massis attached onto an initially unstretched spring on
theincline. The free body diagram of the system isas shown. The
governing equation of motionis:

m)-(- - _k)(zero initially _ Ff + mg sin 9

where X (t) isdefined as the displacement measured from the unstretched position of the
spring. Note that since the spring isinitially unstretched, the spring force F, =kX iszero



initially. If the coefficient of static friction L issufficiently large, i.e., p, >tan(0), then

the mass remains stationary and the spring is unstretched with the mass-spring-friction in

equilibrium. Also, inthat case, thefriction force F, <, mg cosé , not necessarily equal
FN

to the maximum static friction. In other words, these situations may hold at equilibrium:

(1) the maximum static friction may not be achieved; and (2) there may be no

displacement in the spring at al. In thisexample, tan(20°) =0.364 and one would expect

that i, (not given) should be smaller than 0.364 since u, =0.05 (very small). Thus, one

would expect the mass to move downward initially (due to weight overcoming the
maximum static friction). The mass will then likely oscillate and eventually settle into an
equilibrium position with the spring stretched.



Dynamic Analysis:

The equation of motion for thissystemis:
mX = —kx — umg coseﬁ
X

where x(t) isthe displacement measured from the equilibrium position. Define
X, (t) = x(t) and x,(t) = x(t) . Employing the state-space formulation, we transform the

original second-order ODE into a set of two first-order ODEs. The state-space equations
(for MATLAB code) are:

X,(t)

dx d [x(t)
= = k
dt dt{xz(t)} —H9 coseﬁ—%

%

MATLAB Code:

x0=[0.1, 0.1];

ts=[0, 5];

[t,x]=0ded45( "1l 937 ,ts,x0);

plot(t,x(:,1), t,x(:,2))

title(Cproblem 1.93%); grid on;

xlabel ("time (s)");ylabel("displacement (m), velocity (m/s)");

function xdot = f1 93(t,x)

% computes derivatives for the state-space ODEs
m=250; k=3000; mu=0.05; g=9.81;

angle = 20*pi/180;

xdot(1) = x(2);

xdot(2) = -k/m*x(1) - mu*g*cos(angle)*sign(x(2));

% use the sign function to Improve computation time
xdot = [xdot(1l); xdot(2)];

Plotsfor 1 =0.05 and p =0.02 casesare shown. Fromthe u =0.05 simulation results,

the oscillation dies out after about 0.96 seconds (using ginput(1) command to
estimate). Note that the acceleration may be discontinuous at v =0 due to the nature of
the friction force.

Effects of u:

Comparing the figures, we see that reducing u leads to more oscillations (takes longer
time to dissipate the energy). Note that since thereis apositiveinitial velocity, the mass
is bounded to move down theincline initially. However, if uis sufficiently large, there
may be no oscillation at all and the mass will just come to a stop (as in the case of



u =0.05). Thisisanaogous to an overdamped mass-damper-spring system. On the

other hand, when pisvery small (say, close to zero), the mass will oscillate for along
time before it comes to a stop.

( problem 1.93
y 015
; | | |
c 4):0.1m,v0:0.1mls
o 01
| u= 0.05, m=250kg
v \ ) k=3,000N/m, §=20°
0.05 |
|
{ \
0
. 1 \Jr
n | T
e 005 || / X =-0.0261
\ ] ss
s [ The mass has no oscillation due
a1 to sufficiently large friction.
p
N
4 015
")
0.2
-0.25
0 0.5 1 15 2 25 3 35 4 45 5
time (s)
/
z“ problem 1.93
0.3
y
t
P ) xO:O.l m,vO:O.l m's
o 02 =0.02, m=250 kg
I M ’
e M0 /] k=3,000N/m, g=20°
v
01 /
Z"‘ \ / \
e \\L X =-0.0114
m SS
e \ M _
c o1l / —
a /
| \ /
§ /
gy o2 a(t) is discontinuous due to friction
\ / force changes direction as the mass
/ changes its direction of motion.
0.3
0.4
0 0.5 1 15 2 2.5 3 35 4 4.5 5
time (s)

Discussion on the ceasing of motion:

Note that when motion ceases, the mass reaches another state of equilibrium. 1n both
simulation cases, this occurs while the mass is moving upward (negative velocity). Note
that the steady-state value of x(t) isvery small, suggesting that thisis indeed the true

equilibrium position, which represents a balance of the spring force, weight component
along the incline, and the static friction.



1.105* Compute and plot the response of a system with Coulomb damping of equation

(1.90) for the case where x, = 0.5m, v, =0, p = 0.1, m= 100 kg and k =1500 N/m. How

long does it take for the vibration to die out?

Solution: Here the solution is computed in Mathcad using the following code. Any of

the codes may be used. The system dies out in about 3.2 sec.

1 1.94 H B
0.5 o
= 0 k = 1500 m = 100 p=01 =]
L)
D, %) o= |-k L)
H-}iu — cos (20 degj-p-g-ﬁ +
Z 1= rkfixed (3,0, 10,5000 , D
1= ge0= x = 251
06 T
04 +
0z +
x
0 1 z\_{/s-:' 4
0zt
—n.4-+
k _—
-
4 |l DE




1.106* A mass moves in a fluid against diding friction as illustrated in Figure P1.106.
Model the damping force as a dow fluid (i.e., linear viscous damping) plus Coulomb
friction because of the diding, with the following parameters. m = 250 kg, 4 =0.01, ¢ =
25 kg/s and k =3000 N/m . @) Compute and plot the response to the initial conditions: X,
=0.1m, v, = 0.1 m/s. b) Compute and plot the response to the initial conditions: x, = 0.1

m, v, = 1 m/s. How long does it take for the vibration to die out in each case?

Figure P1.106
Solution: A free-body diagram yields the equation of mation.

“ 0 (50 + SK(D) + o) = 0
mx(t) + n(x) +cx(t) + =
NS HMgSy
mg — f, where the vertical sum of forces gives
v kx(®)

N f

the magnitude uN = umg for the

Coulomb force asin figure 1.41.

The equation of motion can be solved by using any of the codes mentioned or by using
the toolbox. Here a Mathcad session is presented using a fixed order Runge Kutta
integration. Note that the oscillations die out after 4.8 seconds for v,=0.1 m/s for the
larger initial velocity of v,=1 m/sthe oscillations go on quite a bit longer ending only
after about 13 seconds.  While the next problem shows that the viscous damping can be
changed to reduce the settling time, this example shows how dependent the response is
on the value of theinitial conditions. In alinear system the settling time, or time it takes
to die out is only dependent on the system parameters, not theinitial conditions. This
makes design much more difficult for nonlinear systems.
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1.107* Consider the system of Problem 1.106 part (a), and compute a new damping
coefficient, c, that will cause the vibration to die out after one oscillation.

Solution: Working in any of the codes, use the smulation from the last problem and
change the damping coefficient ¢ until the desired response is obtained. A Mathcad
solution is given which requires an order of magnitude higher damping coefficient,

c=275kg/s
F N
i o= | k 1= 3000 = 250 = 0.01 E
o " = bo=u c = 275 -
X, +
DI:T,X:I = -k Xl C
T RE T T
o % m Z 1= tkfixed (¥ ,0,6,3000,D)
t.= E{D} . _2{1}
015 +
I
K_ oos +
a \7 2 2 4 5 6
—.05+
) - |
4| [ e ]




1.108 Compute the equilibrium positions of X + w’x+ fx* = 0. How many are there?

Solution: The equation of motion in state space form is
X =X,
X, = =i = X
The equilibrium points are computed from:
X =0
—0 %~ Px; =
Solving yields the two equilibrium points:

=7

2 2 O

1.109 Compute the equilibrium positions of X+ w’x— f°x° + > = 0. How many are
there?

Solution: The equation of motion in state space formis
X =X,
X, = =%, + X - Py
The equilibrium points are computed from:
X =0
—o X + X - =0
Solving yields the five equilibrium points (one for each root of the previous
equation). The first equilibrium (the linear case) is:
[%1_[0]
[ ]™ o]
Next divide—w’x, + X — %’ = 0 by x, to obtain:
—o, + B -y, =0
which is quadratic in x,? and has the following roots which define the remaining
four equilibrium points: x, =0 and

N +yB* - 4yo?
+ =

. ‘/—ﬂz VB 4p;

_2}/

X




1.110* Consider the pendulum example 1.10.3 with length of 1 m an initial conditions of

6, =n/10 rad and éo = 0. Compare the difference between the response of the linear

version of the pendulum eguation (i.e. with sin(6) = 6) and the response of the nonlinear

version of the pendulum equation by plotting the response of both for four periods.

Solution: First consider the linear solution. Using the formula s given in the text
the solution of the linear system is just: 6(t) :O.314sin(3.132t+%). The

following Mathcad code, plots the linear solution on the same plot as a numerical
solution of the nonlinear system.

i =0.. 800

At = 0.01

T
Gi = 0.314-Sin(3.132-At-i + >

lxi_l_l] . xi+vi-At

Vie v, — At (sin(x;)) 9.81



04 +

0.2 +

X

I _®
o

—0.6-

i-At

Note how the amplitude of the nonlinear system is growing. The difference
between the linear and the nonlinear plots are a function of the ration of the linear
spring stiffness and the nonlinear coefficient, and of course the size of the initial
condition. It iswork it to investigate the various possibilities, to learn just when
the linear approximation completely fails.



1.111* Repeat Problem 1.110 if theinitial displacement is 6, = n/2 rad.

Solution: The solution in Mathcad is:

Here both solutions oscillate around the “stable” equilibrium, but the nonlinear
solution is not oscillating at the natural frequency and is increasing in amplitude.
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1.112 If the pendulum of Example 1.10.3 isgiven an initial condition near the
equilibrium position of 6, = = rad and 6, = 0, does it oscillate around this

equilibrium?

Solution The pendulum will not oscillate around this equilibrium as it is
unstable. Rather it will “wind” around the equilibrium as indicated in the solution

to Example 1.10.4.



1.113* Calculate the response of the system of Problem 1.109 for the initial conditions
of X, =0.01 m, v, = 0, and anatural frequency of 3 rad/sand for § = 100, y = 0.

Solution: In Mathcad the solution is given using asimple Euler integration as follows:

At = 0.01
X0 [0.01 ]
= 12
VO 0 o'=3 A= — (!)'(XO)
o
B:=100
i = 0.. 1000
[xi_”] 3 X + Vv, At
i+1 vi—At-[oo-xi—B-(xi)]
6, = A-sin|3 At +g Thisisthe linear solution (t)
0.02 T
0.01 4
%i
) 0
-0.01+
-0.02+

i-At

The other codes may be used to compute this solution as well.



1.114* Repeat problem 1.113 and plot the response of the linear version of the system (B
=0) on the same plot to compare the difference between the linear and nonlinear versions
of this equation of motion.

Solution: The solution is computed and plotted in the solution of Problem 1.113. Note
that the linear solution starts out very close to the nonlinear solution. The two solutions
however diverge. They look similar, but the nonlinear solution is growing in amplitude

and period.



Problems and Solutions Section 2.1 (2.1 through 2.15)

2.1  To familiarize yourself with the nature of the forced response, plot the solution of a
forced response of equation (2.2) with @ = 2 rad/s, given by equation (2.11) for a variety
of values of the initial conditions and w, as given in the following chart:

Case X, Vv, fo On
1 0.1 0.1 0.1 1
2 -0.1 0.1 0.1 1
3 0.1 0.1 1.0 1
4 0.1 0.1 0.1 2.1
5 1 0.1 0.1 1
Solution: Given: @ = 2 rad/sec.
From equation (2.11):
x(t):v—osin o, t+ (X, - fo ~) Cos @, t+ o ~ cosmt
o, 0] ®, -0
Insert the values of x,,v,, f,, and o, for each of the five cases.
x10t) :=0.1-sin(t) + 0.133-cos(t) — 0.0333 - cos(2-1)
x2it) '=0.1-sin(t) — 0.0667-cos (1) — 0.0333 coz (2-1)
x30t) = 0.1-sin(t) + 0.433-cos(t) — 0.0333 cos (2-1)
x4 (1) = 0.0467-5in (2.1-1) + 0.244-co3 (2-1) — 0.144-co3 (2.1-1)
x501) = 0.1-sin(t) + 1.033-cos(t) — 0.0333 coz (2-1)
15 T
1 _
x1(r]
]{2[:] |:|5 T,
2 [t] e e Tt 2 e e
0 z =57 g D
x4 [t]
05+
% [t]
_1 -4




2.2

2.3

Repeat the calculation made in Example 2.1.1 for the mass of a simple spring-mass
system where the mass of the spring is considered and known to be 1 kg.

Solution: Given: m , =1 kg, Example 1.4.4 yields that the effective mass is

mg, 1
m, =m+ 3 :10+§:10.333kg.

Thus the natural frequency, X and the coefficients in equation (2.11) for the system now
become

o, = 1000 =9.837 rad/s, w = 2a)n =19.675 rad/s
\/10 + %

f 2.338 Y,
0 = . ~=—8.053x 10° m, -2 =0.02033 m
' -w* 9.837°-19.675 ®

Thus the response as given by equation (2.11) is

X =

x(t) = 0.02033sin9.837t + 8.053x 10~3(c0s9.837t — c0s19.675t) m

A spring-mass system is driven from rest harmonically such that the displacement
response exhibits a beat of period of 0.2z s. The period of oscillation is measured to be
0.027 s. Calculate the natural frequency and the driving frequency of the system.

Solution: Given: Beat period: T, = 0.27 s, Oscillation period: T,=002xs

O -0 o +o
Equation (2.13): x(t) = 22 fo = sin [ ”2 t}sin[ ”2 t}
So, T.=027= 2%
®, -0
0, -0 = AT 20 rad/s
0.27
T,=0027 = —F
o, +0
dr
0, to = =200 rad/s
0.02r

Solving for w,and o gives:
Natural frequency: o, =110 rad/s
Driving frequency: @ =90 rad/s
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2.4 Anairplane wing modeled as a spring-mass system with natural frequency 40 Hz is
driven harmonically by the rotation of its engines at 39.9 Hz. Calculate the period of the
resulting beat.

Solution: Given: ®,=2mr (40) =80x rad/s, w =2m (39.9) =79.87 rad/s
4r Ar

= =20s.
w,-0 80r—-79.87

Beat period: T, =

2.5  Derive Equation 2.13 from Equation 2.12 using standard trigonometric identities.

Solution: Equation (2.12):  x(t) = Zfo > [cos wt—cos w,1]
W, -0
fO
o’ -
X(t) = A[coswt-cos w,t]

=A[l+coswt-(1+cos w,t)]

Let A=

2

= A[2c0s% 2t - 2c0s? &t]
2 2

= 2A [(cos® Lt - cos? D 52 @ty - (cos? Dt cos? Lot cos? 20
2 2 2 2 2 2

» O

=

=2A[(1 - cos? &t) cos? Lt —(1-cos? £t) cos
2 2 2
= 2A [sin? Lt cos? Lt - cos? Lt sin? L]
2 2 2 2

=2A [sin&t cos 2t - cosLnt singt] [sin&t cos 2t - cosPnt singt]
2 2 2 2 2 2 2
Jo,—0,] . [o,to ]
=2Asin | ——1t sin | —/——t
L 2 170 2 7]

_2f, . Jo,-o,] . |o,to.] .. . :
X(t) = . smL > tJ smL > tJ which is Equation (2.13).

n



2.6

2 -

Compute the total response of a spring-mass system with the following values: k = 1000
N/m, m = 10 kg, subject to a harmonic force of magnitude F, = 100 N and frequency of

8.162 rad/s, and initial conditions given by x, = 0.01 mand v, = 0.01 m/s. Plot the
response.

Solution: Given: k =1000 N/m, m = 10 kg, Fo=100 N, o = 8.162 rad/s

X0=0.01m, vo=0.01 m/s
From Eq. (2.11):

Vo . f f
x(t) = ~9 sin opt + (X —2—02) cos wnt +2—02cos ot

Wn (P () wp°—o
wn:\/K:,/@:lorad/s f,=0 =190 1oN/m
m 10 m 10
In Mathcad the solution is
x =001 v =001 wh = 10 w:= 8162 =10
xt) = ﬂ-si.n(c-.;tn-'f,) + [0 - _ 0 -cos(wn-t) + L-cos(w-t)
whn 2 2 ( 2 2)
Wl — w w1 — w
I L
0.5t || f |l
1 | “ f
ol | I
| - i |
| I i
| A | I ’
JUUL L L
t / l& | | 1 I 1 lel I 1l ll“"-'I I | ]
© T TRNRERRRAY, | | |6 1] |l F
|| || | | ‘ | | ||,I| ||| |
V| | | . |
| | | | | | | \
Iy
I Y I
- 0.5 | ||| |II !
v [}
t
=1x10 & x - D = -0.2895% = [.29954

A

i - o)

4



2.7

Consider the system in Figure P2.7, write the equation of motion and calculate the
response assuming a) that the system is initially at rest, and b) that the system has an
initial displacement of 0.05 m.

= 10 zin LN

Friction
Fre

sl o

R EEER S

Solution: The equation of motion is
mx + kx =10sin10t
Let us first determine the general solution for
X+’ x=f,snot
Replacing the cosine function with a sine function in Eq. (2.4) and following the same
argument, the general solution is:
X(t) = Asinw,t+ A, cosm,t +%sinwt

n

Using the initial conditions, x(0) = x, and X(0) = v,, a general expression for the

response of a spring-mass system to a harmonic (sine) excitation is:

v, f . f .
X(t) = (=% -— —2—)sinw,t + X, cosw,t + ———sinwt
. 0, 0 -0 0," -0

Given: k=2000 N/m, m=100 kg, =10 rad/s,

\/7 2000 = /20 rad/s = 4.472 rad/s fo,= irrol - 10 = 0.1N/kg

n

100
a) X=0 m,vo—O m/s
Using the general expression obtained above:

10 0.1 0.1
X(t) =(0 - . st 20t + 0 + ———sin10t
= J20 ,/202—102) J20° - 10?

=2.795%103sin4.472t —1.25x1073sin10t
b) Xo=0.05m,vp=0 m/s

10 0.1
x(t) = (0 - siny/20t + 0.05c08/20t + ————sin10t
®=( V20 J —102) J2 0 -10?

= 0.002795sin 4.472t +0.05c0s4.472t — 0.00125sin10t
=5.01x107%sin(4.472t +1.515) — 1.25x 10 sin 10t




2.8

Consider the system in Figure P2.8, write the equation of motion and calculate the
response assuming that the system is initially at rest for the values k, =100 N/m, k, =

500 N/m and m = 89 kg.

ky &
e o e lbsm N
—
Solution: The equation of motion is
. ) 1
mx + kx =10sin10t where k:ﬁ
—_—t —
ko k

The general expression obtained for the response of an underdamped spring-mass system
to a harmonic (sine) input in Problem 2.7 was:

. fs .
X(t) = ( —Z)smwnt + X, COSw, t + ———=Sinwt
o, w 0, -0 0, -0
Substituting the following values
k= 1/(1/100+1/500) 83.333 N/m, m =89 kg o =10 rad/s

and initial condltlons Xo=0, Vo=
The response of the system is evaluated as
X(t) =0.0117sin 0.968t —0.00113sin10t



2.9

Consider the system in Figure P2.9, write the equation of motion and calculate the
response assuming that the system is initially at rest for the values 6 = 30°, k = 1000 N/m
and m = 50 kg.

dapn L2 h

Figure P2.9

Solution: Free body diagram:
Assuming x = 0 to be at equilibrium:

5

Fs

F=40 sin .5 (Forces that are normal
to the x direction are
neglected)
D F = mx =—Kk(x +A) + mgsin§ +90sin25t (1)

where A is the static deflection of the spring. From static equilibrium in the x direction
yields
—kA+mgsing 2
Substitution of (2) onto (1), the equation of motion becomes
mx + kx = 90sin2.5t
The general expression for the response of a mass-spring system to a harmonic (sine)
excitation (see Problem 2.7) is:

v, f . f .
X(t) = (=% —-— —2—)sinw,t + X, cosw,t + ———sinwt
o, 0, 0 -0 0," -0

n

Given: vg=0, X0=0, =25 rad/s

o = | %= 190 _ o5 4472 radis | 1, =
m 50

izﬂng/kg
m 50 5

So the response is:
X(t) =-0.0732sin4.472t + 0.1309sin 2.5t



2.10

211

2.12

Compute the initial conditions such that the response of :
mX +kx= F, cosmt

oscillates at only one frequency ().

Solution: From Eg. (2.11):
Vo . f f
x(t) =0 sin opt +(Xg — 5 0 2)cos wnpt +2—02
Wn (OPE () (P
For the response of mX +k x = F, cos wt to have only one frequency content, namely,

of the frequency of the forcing function, , the coefficients of the first two terms are set
equal to zero. This yields that the initial conditions have to be

cos wt

and v, =0

Then the solution becomes

f
X(t) = —5——; cos wt
0, -0

n

The natural frequency of a 65-kg person illustrated in Figure P.11 is measured along
vertical, or longitudinal direction to be 4.5 Hz. a) What is the effective stiffness of this
person in the longitudinal direction? b) If the person, 1.8 m in length and 0.58 m? in cross
sectional area, is modeled as a thin bar, what is the modulus of elasticity for this system?

x(1)

Figure P2.11 Longitudinal vibration of a person
cycles 2x rad
s cycles

=97 rad/s.

Solution: a) First change the frequency in Hz to rad/s: w_=4.5

Then from the definition of natural frequency:
k =mw? =65-(97)° =5.196 x10" N/m
b) From section 1.4, the value of the stiffness for the longitudinal vibration of a beam is
EA ko (5.196x10%)(.8)
= =E=—=
1 A 0.58

K =1.613x10° N/m* =1.613x10° Pa

If the person in Problem 2.11 is standing on a floor, vibrating at 4.49 Hz with an
amplitude of 1 N (very small), what longitudinal displacement would the person “feel”?
Assume that the initial conditions are zero.
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Solution: Using equation (2.12) for a cosine excitation and zero initial conditions yields
(converting the frequency from Hertz to rad/s and using the value of k calculated in 2.11):

1
2
(OME ()

a0 |
65(k _
m

F
=2

2

(4.49-2r)°

o
65/5.196 % 10*
65

=0.00443347 = 0.0043 m
—(4.49-21)°

Vibration of body parts is a significant problem in designing machines and structures. A
jackhammer provides a harmonic input to the operator’s arm. To model this situation,
treat the forearm as a compound pendulum subject to a harmonic excitation (say of mass
6 kg and length 44.2 cm) as illustrated in Figure P2.13. Consider point O as a fixed pivot.
Compute the maximum deflection of the hand end of the arm if the jackhammer applies a
force of 10 N at 2 Hz.

Figure P2.13 Vibration model of a forearm driven by a jackhammer

Solution: Taking moments about point O yields (referring to Example 1.4.6 for the
inertial of a compound pendulum):

me? . (.

Te +mg Esme = F,/cosfcosmt
Using the linear approximation for sine and cosine and dividing through by the inertia

yields:

. 3F
6+ 3—99 = —2coswt
20 m/¢

Thus the natural frequency is
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W = 1/3—9 = | 308D 527 vads (=0.92 Hz)
"\ 20 T\ 2(0.442)

and the system is well away from resonance. Referring to equation (2.13), the amplitude
for zero initial conditions is (converting the driving frequency from 2 Hertz to 2(2r)

rad/s):
2(3&4}
2f me?
6] = || = 3 =0.182 rad
@, =07 198 _ 5 opy
20

Note that sin(0.182) = 0.181 so the approximation made above is valid. The maximum
linear displacement of the hand end of the arm is just

\x\ = r\e\ =0.442-0.182 =0.08 m

Consider again the camera problem of Example 2.1.3 depicted in Figure P2.14, and
determine the torsional natural frequency, the maximum torsional deflection experienced
by the camera due to the wind and the linear displacement corresponding to the computed
torsional deflection. Model the camera in torsional vibration as suggested in the figure
where Jp = 9.817x10° m* and L = 0.2 m. Use the values computed in Example 2.1.3 for
the mass (m =3 kg), shaft length (¢ = 0.55m), torque (Mp = 15 x L Nm) and frequency (®
= 10 Hz). Here G is the shear modulus of aluminum and the rotational inertia of the
camera is approximated by J = mL2. In the example, torsion was ignored. The purpose
of this problem is to determine if ignoring the torsion is a reasonable assumption or not.
Please comment on this assumption based on the results of the requested calculation.

+—> .
e L wind M coswt

camera — ®_

_ —
( mounting
«—

bracket —, |7 &A1)

p— k==
/

JO(1) + kO(1) = M coswt

Figure P2.14 Torsional vibration of a camera

Solution: First calculate the rotational stiffness and inertia from the data given:
GJ, 267x10"x9.817x10°

/ 0.55
where the modulus is taken from Table 1.2 for aluminum. The inertia is approximated by

J =mL?=3(0.2)> =0.12 kg - m?

k= =4.766x10° N-m
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The torsional natural frequency is thus

o, = \/g =1.993x10° rad/s

This is well away from the driving frequency. To see the effect, recall equation
magnitude of the forced response given in Example 2.1.2:

2f, | _|amy 193] _
corf—a)z‘ - a)rf—a)z‘ -
Clearly this is very small. To change this to a linear displacement of the camera tip, use
X =r6=(0.2)(1.26x10°)=2.52x10"° m
well within the limit imposed on the camera’s vibration requirement of 0.01 m. Thus, the

assumption to ignore torsional vibration in designing the length of the mounting bracket
made in example 2.1.3 is justified.

1.26 x10° rad

An airfoil is mounted in a wind tunnel for the purpose of studying the aerodynamic
properties of the airfoil’s shape. A simple model of this is illustrated in Figure P2.15 as a
rigid inertial body mounted on a rotational spring, fixed to the floor with a rigid support.
Find a design relationship for the spring stiffness k in terms of the rotational inertia, J, the
magnitude of the applied moment, My, and the driving frequency, m, that will keep the
magnitude of the angular deflection less then 5°. Assume that the initial conditions are

zero and that the driving frequency is such that @? - »* >0.

D
-«
-«

<—
«u(t)=M coswt
‘_
‘_
‘.—
‘.—

Figure P2.15 Vibration model of a wing in a wind tunnel
Solution: Assuming compatible units, the equation of motion is:
.. .. M
JO(t) + ko(t) = M cosmt = 6(t) + ge(t) = Tocosa)t

From equation (2.12) the maximum deflection for zero initial conditions is



A
0 = J | <50
max k

——0

mrad _
2 180°
J
2M, - (E g
J J

i rad
36

)irad =
36

36J

2M, N V0%

T

J 36




Problems and Solutions Section 2.2 (2.16 through 2.31)

2.16 Calculate the constants A and ¢ for arbitrary initial conditions, x, and v, inthe case

of the forced response given by Equation (2.37). Compare this solution to the transient
response obtained in the case of no forcing function (i.e. F, = 0).

Solution: From equation (2.37)

X(t) = Ae ™" sin(w t + ¢) + X cos(wt — ) =

X(t) =—Cw Ae " sin(w,t +¢) + Awe " cos(w t + ¢) — Xwsin(ot—6)
Next apply the initial conditions to these general expressions for position and

velocity to get:
x(0) = Asing + Xcos@

x(0) = -{w,Asing + Aw, cosp + Xwsino
Solving this system of two equations in two unknowns yields:

o= tan‘l( (X, — X cosO)m, ]

v, + (X, — X cos0)lw, — Xwsing
A= X, — X 0s6

sing
Recall that X has the form

X = F/m
V(@ - %) +(2f0,0)°
Now if Fo = 0, then X = 0 and A and ¢ from above reduce to:

¢ = tan‘{—xowd ]

VO + XOC(Dn

2
and 6= tan‘l[%]

n_

A Ko [+ LX) + (xgy
sing oZ
These are identical to the values given in equation (1.38).



2.17 Show that Equations (2.28) and (2.29) are equivalent by verifying Equations
(2.29) and (2.30).

Solution: From equation (2.28) and expanding the trig relation yields
x, = X cog(wt — 8) = X[ coswt cosh + sinwtsinb]
= (X cos@)coswt + (XsnO)sinwt
T T
Now with As and Bs defined as indicated, the magnitude is computed:

x=Ji el

B, _ Xsn@ 4 B
—== =0=tan"| =
A, Xcoso A

2.18 Plot the solution of Equation (2.27) for the case thatm =1kg, { =0.01, @, =2
rad/s. F, =3 N, and @ =10 rad/s, with initial conditions x, =1 mandv, =1
m/s.

and

Solution: The particular solution is given in equations (2.36) and (2.37).
Substitution of the values given yields: x; = 0.03125cos(10t + 8.333x 10°%).

Then the total solution has the form:
X(t) = Ae % sin(2t + ¢) + 0.03125cos(10t + 0.008333)

= e "% (Asin2t + Bcos2t) + 0.03125 cos(10t + 0.008333)
Differentiating then yields
X(t) = -0.02¢7°% (Asin2t + Bcos2t) + sin(2t + ¢)
+2e°% (Acos2t — Bsin2t) — 0.3125sin(10t + 0.008333)

Apply the initial conditions to get:
x(0) =1= B+ 0.03125c05(0.00833) = B = 0.969

X(0) =1=-0.02B + 2A - 0.3125sin(0.00833) = A = 0.489
So the solution and plot become (using Mathcad):



FO:=3 w=10 wn=2 =002 e mn[z_ Lo w ] 5 i3
FO Wl — w
AF =
J( 5 2)2 5 AF = 003125
wn - wf + (2 Cwen) B=1-AFcos(¢) B=00969
apo Lt lU~AF-s1;1(6) - 002B .

X =¢e 0'02't~(A1-sin(2-t) + B-cos(2:t)) + AF-cos(10-t - €) +




2.19 A 100 kg mass is suspended by a spring of stiffness 30 x10° N/m with a viscous

2.20

damping constant of 1000 Ns/m. The mass is initially at rest and in equilibrium.
Calculate the steady-state displacement amplitude and phase if the mass is excited
by a harmonic force of 80 N at 3 Hz.

Solution: Given m = 100kg, k =30,000 N/m, ¢ = 1000 Ns/m, Fo =80 N and w =
6m rad/s:

A _E:Q:ogm/sz, , = /5 =17.32 rad/s
m 100 m
c
= =0.289
6 27km
¥ = 0.8 =0.0041m

\/(17.322 +3672)° +(2(0.289)(17.32)(67))°
Next compute the angle from

oo tanl[ 188.702)

—55.323

Since the denominator is negative the angle must be found in the 4" quadrant. To
find this use Window 2.3 and then in Matlab type atan2(188.702,-55.323) or use
the principle value and add = to it. Either way the phase is 8 =1.856 rad.

Plot the total solution of the system of Problem 2.19 including the transient.
Solution: The total response is given in the solution to Problem 2.16. For the

values given in the previous problem, and with zero initial conditions the response
is determined by the formulas:



X=0.0041, 6=1.856
wn = 1732 ¢ = 0.289 2.0.289.17.32.6.9r
g = atan - ; + T
17.327 = (6.71)

X = 0.0041

wd = wnyf 1- 2 & = 1.856

b - atan[ ~¥-cos(8) -wd J o

~X-cos(8)-¢-wn — X-wn-sin(8) b = 2.844

a = -X.cos(9) 3

sin( @)

A=3934x%x10"

x(t) = (Ae— a"wn'tsin(wd't+ ¢u)) + X-cos(6-mt— 8)

Plotting the result in Mathcad yields

6x107 >

4x10” A A A

- | I | |
210 3] ; I,l |II ||I || |I ll I Il

d | i 1 ! L '
=D Vool T s e [

L | :
- 210 ! | I,ll \ |" II III llI II] ||I |II |II lII

—4x] U_ 3" Y l"JII W I'\"l I'v'l

_6x10” L

2.21  Consider the pendulum mechanism of Figure P2.21 which is pivoted at point O.
Calculate both the damped and undamped natural frequency of the system for small
angles. Assume that the mass of the rod, spring, and damper are negligible. What
driving frequency will cause resonance?



|
W

Solution: Assume the driving frequency to be harmonic of the standard form. To get the
equation of motion take the moments about point O to get:

D M, = 36(t) =me?6(t)
= —k¢,sn6(/,cosb) - cﬁzé(éz coso)
—mg(/sinf) + K, cosawt(/ cosh)
Rearranging and approximating sin® ~ 6 and cos6 ~1 yields:
me2e(t) + c20(t) + (k¢? +mgr)6(t) = F,/cosat
Dividing through by the coefficient of the inertia term and using the standard definitions for {
and o yields:

k£i+mg£

= povi which is the resnonant frequency

_ cl3
2,J(ke? + mgoymg!

2 244
0, =0, 1—C2:Jkgl+mf[l CEZ ]

4

m? " 4AKkZ +mg)mg!



2.22  Consider the pivoted mechanism of Figure P2.21 with k = 4 x 10° N/m. I, =0.05
m. 1, =0.07 m.andl=0.10 m. and m =40 kg. The mass of the beam is 40 kg; itis
pivoted at point 0 and assumed to be rigid. Design the dashpot (i.e. calculate c) so that
the damping ratio of the system is 0.2. Also determine the amplitude of vibration of the
steady-state response if a 10-N force is applied to the mass, as indicated in the figure, at a
frequency of 10 rad/s.

Solution: This is similar to the previous problem with the mass of the beam included this
time around. The equation of motion becomes:
M, + C,0 + K0 = Fylcos wt
Here:
mb
l+10;

my, = m¢? +%(€3 +/03) =0.5kg-m?

Cq = Cl5 = 0.25¢C

Ko = K07 + Mgl +%(£ —(,)m,g = 4.326 x10>* Nm

Using the formula the damping ratio and these numbers:
2
(=—C  _02-c=3797.1C° ky's

2mk,

Next compute the amplitude:
10/0.5

X = =2.336x10° rad
‘/(keq /m,—10%)° +(2-0.2-10- o,)*




2.23 In the design of Problem 2.22, the damping ratio was chosen to be 0.2 because
it limits the amplitude of the forced response. If the driving frequency is shifted
to 11 rad/s, calculate the change in damping coefficient needed to keep the
amplitude less than calculated in Problem 2.22.

Solution: In this case the frequency is far away from resonance so the change in
driving frequency does not matter much. This can also be seen numerically by
the following Mathcad session.

L1 :=0.05 k = 4-10° Lz = 0.07 L:=01
m = 40 mh =40
1 mh '=
meq = m L + = (L% + L1¥) ——— meq = 0.5 g 1= 9.8
3 L +L1
¢ = L2d c=49-107"
keq = kL% + mez + : h
1T METIIL oL (e} geq = 4.326-10°
. 0.2 2 afmeq - keq
S c ceq = 3.79710°
won = ﬂ L 1
meq wn = 9302 ¥ =10

e 2 2 2
J[:um —112) + (2.2 wn 1]

W= 2341107

The new amplitude is only slightly larger in this case. The problem would be more
meaningful if the driving frequency is near resonance. Then the shift in amplitude will be
more substantial and added damping may improve the response.

2.24  Compute the forced response of a spring-mass-damper system with the following
values: ¢ = 200 kg/s, k = 2000 N/m, m = 100 kg, subject to a harmonic force of
magnitude F, =15 N and frequency of 10 rad/s and initial conditions of x, =

0.01 mand v, = 0.1 m/s. Plot the response. How long does it take for the
transient part to die off?

Solution:
Calculate the parameters



\/7 ‘/2000 4472 radls ;= F :%20.15 N/kg

-0
m
= 4.472\1- 0.224% = 4.359 rad/s

200
C —_

=0.224
2mw 2 -100-4.472
Initial conditions: Xo=0.01 m, vo=0.1 m/s

Using equation (2.38) and working in Mathcad yields

X(t) = €"(0.0104 c0s4.359t + 0.025sin4.359t) +1.318 x 10°(0.335c0s10t + 37.7sin10t)
£=200 k= 2000 m:=100 FO =15 w:= 10
k FO C
= = x0 =001 vil=01 f=— =— 2
wn J; m < 2 o wd = w1 =g
2 2
A= o - fU-(wn - w )

2
wn2 - wz) + (2-(;~w-wn)2

B an. ﬂ]~[wn2 - wz)

2 d
“ (wn2 - w2)2 + (2‘(}w-um)2 wd[[an - w2) + (2~(;-w-um)2:| Y
il
&

2
(wn2 - wz) + (2-(}w-um)2

Xt =e Gown. (A-cos(wd-f) + B-sin(wd-f)) + C-I:[Lon2 = wz)-cos(wvt) + 2-Q~um-w~sin(w~t):|
0.0z
|r'1
[l
| |I
0.017 h
|
ﬂ || IIlrlllI
|| ||I [II' W |I( A ‘f‘\.'n 1’\ ‘(:". l'I\ A |
o] [ 2y Y VaV VWV Vel WV V3
| \
l'u.f"l
-00r

a plot of m vs seconds. The time for the amplitude of the transient response to be
reduced, for example, to 0.1 % of the initial (t = 0) amplitude can be determined by
€' =0.001, then t =—In0.001= 6.908sec



2.25 Show that Equation (2.38) collapses to give Equation (2.11) in the case of zero damping.

Solution:
Eq. (2.38):
f 2 _ 2
(%= O(f)g ) -)COS o, t
(0," - 0°)" + (20w o)
o {o. f (0 ?—w®)
X(t):egnt (Xo_ 2 022 2
o, (0 - 0°) + (2w o) )
+ , sin w,t
20w o f, Vo
W, |:(wn2 - w2)2 + (Zé’wnw)z:l 0,

f
+(w " 0?)? i(zgw e [(wn2 — m®)cos ot +2Ca)na)sinwt]

In case of =0, this equation becomes:

{(xO — (#) cos ot
[0

n2_w2)+o f
x(®)=1- +-———2—cos wt
v, ). (0,” - %)
+| 0-0+— |sinw,t
wd
VO i f0 fO
=—sino t+(X,————)cos ot +———cos wt
o, o' -0 0° -0

(Note: mg= o, for { = 0)

2.26  Derive Equation (2.38) for the forced response of an underdamped system.

Solution:
From Sec. 1.3, the homogeneous solution is:
x (1) = €' (Asinot + A cosm,t)
From equations (2.29) and (2.35), the particular solution is:
_ (@, —0*)f, 20w ok
X, (t) = 2 22 2 N2
(wn - ) + (Zgwnw) (wn - ) + (ZCa)na))
Then the general solution is:
X(t) = %, (1) + X, (t) = € (A sinwgt + A coswyt)

~COS Wt + =Sinot

2 2

2 (wnZ 2 2 )fo 2 Coswt+ 2 Zg(:)nwfo 2
(wn -0 ) + (ZC(UnCU) (wn - ) + (chnw)
Using the initial conditions, x(0) = xo andx(0) = v,, the constants, A; and Ay, are
determined:

+ sinwt




(a)n2 — wz) fO

A o 0+ @07
_ VY% o 2o ,of @, (0,2 - o)1,
S P I To AP I PR o

Then, Eq. (2.30) is obtained by substituting the expressions for A; and A; into the general
solution and simplifying the resulting equation.

2.27 Compute a value of the damping coefficient ¢ such that the steady state response
amplitude of the system in Figure P2.27 is 0.01 m.

L A

L0 ko S hhcos 6.3 ™

.:.IH'..H:H:: m h:;l
Figure P2.27

Solution:
From Eq. (2.39), the amplitude of the steady state response is given by
— 0

V@7 - 0?) +(2{0,0)’

2 2, 2Y2
Then substitute, 2{a, = c/m, ¢ :J 2F° s —m’ (@, 2(0 ) into this equation
o X 0]
and solve for c:
Given:
X=0.01m ®=6.3rad/s FF,=20N  m=100kg
w’ = k 2000 20 (rad/s)* = ¢ =55.7 kg/s
" m 100 —_—

2.28 Compute the response of the system in Figure P2.28 if the system is initially at
rest for the values k, =100 N/m, k, =500 N/m, ¢ = 20 kg/s and m = 89 kg.

. g
! _7:-'_.‘i..|2_.$.= = ::__.ﬁ. r'-..'.:r:.‘l T s T ooa h

Solution:

The equation of motion is:
1
1k +1/k,
Using Eq. (2.37) in an alternative form, the general solution is:

mX + cX + kx = 25cos3t where k=
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X(t) =e ' (Asino,t+ A cosm,t) + X cos(wt - 6)

where
B f, B 25/89 B
X = = — _=0.0347m
J(@.2 - 0% +(2o,w)?  (0.966% — )2 +(2.0.116 - 0.966 - 3)
0 =tan 2{“’““’2 = ot 20110 '20'96;6' 3 3.088rad (see Window 2.3)
0, -0 0.966" - 3

Using the initial conditions, x(0) = 0 and x(0) = 0, the constants, A; and A,, are
determined:

A, =0.0345 A; =-0.005

Given: clz 20 kg/sec, m =89 kg

k = = =83N/m
1/k +1/k, 1/100+1/500

wn:‘/zz‘/gﬁzo.geerad/s ;=S - 20 _p116
m V8o 2mw,  2.89.0.966

0, = ,J1- % = 0.966v1— 0.1167 = 0.9595rad/s
Substituting the values into the general solution:
X(t) = € ****(~0.0055n0.9595t + 0.0345¢c0s0.9595t) + 0.0347 cos(3t — 3.058)

Write the equation of motion for the system given in Figure P2.29 for the case
that F(t) = F cosw t and the surface is friction free. Does the angled effect the
magnitude of oscillation?

Solution:
Free body diagram:

4

Fs

(Forces that are normal
to the x direction are F(t)=F cos ot
neglected)

Assuming x = 0 to be at the equilibrium:
) F = F+mgsind - F, = mx



where F, =k(x + mgsing

) and F(t) = Fcoswt

Then the equation of motion is:
mx + kx = F coswt

Note that the equation of motion does not contain 6 which means that the
magnitude of the response is not affected by the angle of the incline.

2.30 A foot pedal for a musical instrument is modeled by the sketch in Figure P2.30.
With k = 2000 N/m, ¢ = 25 kg/s, m = 25 kg and F(t) = 50 cos 2 tN, compute the
steady state response assuming the system starts from rest. Also use the small
angle approximation.

i}

[
.
i
=

Ve
Ry 09" m

P Beonde

Summing the moments with respect to the point, O:
Y M, =F@-a)-F(2-a)-F(a)=10
where 1 =m(3a)* =9a’m, F, =kasing
F =c(2-a-sinf) = 2cacosHd
Substituting these equations and simplifying (sin@ =6 , cos6 =1,for small 6):
9a’mé +4a’ch+a’ko =3aF(t)
Given: k =2000 N/m, ¢ =25kg/s , m =25 kg , F(t) =50cos2at , a=0.05m
The equation of motion becomes:  0.56256 +0.250 + 56 = 7.5c0s 2xt

Observing the equation of motion, equivalent mass, damping and stiffness
coefficients are:

Coq=0.25, Meq=0.5625  kyq=5, f =—C=—"_=1333 , @=2xn

K C
o, = ‘/ & =‘/ > _ o081 {=—=—=0.0745
my, 0.5625 2m,, o,
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From Eqg. (2.36), the steady-state response is:

f 20 W
o(t) = Oed cos(owt — tan™* %)
\/(a)nz — %)’ + (24w w)? 0 -0

= 6(t) =0.434cos(2rt —3.051) rad

Consider the system of Problem 2.15, repeated here as Figure P2.31 with the
effects of damping indicated. The physical constants are J =25 kg m?, k = 2000
N/m, and the applied moment is 5 Nm at 1.432 Hz acting through the distance r =
0.5 m. Compute the magnitude of the steady state response if the measured
damping ratio of the spring system is { = 0.01. Compare this to the response for
the case where the damping is not modeled ({ = 0).

<—
=
‘o

D U([) = M() coswt
D
<«
<«
D

Figure P2.31 Model of an airfoil in at wind tunnel including the effects of damping.

Solution From equation (2.39) the magnitude of the steady state response for an
underdamped system is
M,/J

[ tomer

Substitution of the given values yields (here X = r6)
6] =0.2 rad and X =0.1m for {=0
6] = 0.106 rad and X =0.053 m for £=0.01

where X is the vertical displacement of the wing tip. Thus a small amount of
damping can greatly reduce the amplitude of vibration.

o=



Problems and Solutions Section 2.3 (2.32 through 2.36)

2.32

Referring to Figure 2.10, draw the solution for the magnitude X for the case m = 100 kg, ¢

= 4000 N s/m, and k = 10,000 N/m. Assume that the system is driven at resonance by a
10-N force.

Solution:
Given: m =100 kg, ¢ =4000 N s/m, k=10000 N/m, F,=10 N,

w:wn:‘/%:lorad/s

¢ =tan™ =tan™ (40,000) =90° =~ rad
k — mw? (10,000 —10,000) 2
Fo
coX
o
(k-mw?)X
From the figure:
K 10

 Jk—mw?)? +(cw)® /(10,000 —10,000)2 + (40,000)>2
X = 0.00025 m



2.33  Use the graphical method to compute the phase shift for the system of Problem 2.32 if ®
= w,/2 and again for the case ® = 2wy

Solution:
From Problem 2.32 w,= 10 rad/s

€)] W= % =5rad/s

X= 10 =.000468m

/(10,000 2500)? +(20,000)?
kX = (10,000)(.000468) = 4.68 N
cwX = (4000)(5)(.000468) = 9.36 N
ma?*X = (100) (5)2 (.000468) = 1.17 N

From the figure given in problem 2.32:

o =tant —230 _1_ 6940=121rad
| 4.68-1.17]

(b) ® =2m, = 20 rad/s
« 10
/(10000 — 40000)? + (80000)>
kX = (10000)(.000117) = 1.17 N
cwX = (4000)(20)(.000117) = 9.36 N

me?X =(100) (20)? (.000117) = 4.68 N
From the figure:

=.000117m

9.36

¢ = tanl{m} =-69.4°=-1.21rad



2.34 A body of mass 100 kg is suspended by a spring of stiffness of 30 kN/m and dashpot of
damping constant 1000 N s/m. Vibration is excited by a harmonic force of amplitude 80
N and a frequency of 3 Hz. Calculate the amplitude of the displacement for the vibration
and the phase angle between the displacement and the excitation force using the graphical
method.

Solution:
Given: m = 100kg, k =30 kN/m, F,=80 N, ¢ = 1000 Ns/m,
o =3(2r)=18.85 rad/s
kX = 30000 X
cwX = 18850 X
Mo X =35530 X

Following the figure given in problem 2.32:
co X
=tan™’
¢ [‘ k — mw? ’ X ]

¢ :tan‘1r (18850) X —|:106.4°:1.86rad
(30000— 35530)X |

I:0
(k=mo) +(co)
_ 80
/(30000 —35530)? + (18850)°

Also from the figure, X =

X =0.00407 m




2.35 Calculate the real part of equation (2.55) to verify that it yields equation (2.36) and hence

2.36

establish the equivalence of the exponential approach to solving the damped vibration
problem.
Solution:

Equation (2.55) xp(t) = J(k— mw':; v pi(@-0)

wheree:tanl{ co }

k — mw?
Using Euler’s Rule:  x,(t) = J(k mwlZ:;Z o) [cos(wt—0) + j sin(wt — 6)]
The real part is: X, (1) = J(k— mw':‘;z — o) cos(wt - 60)
. F,/m L2 [OX0) 1
Rearranging: X, (t) = N CETRETTT; cog at —tan 1Lw§—w2Jj

which is Equation (2.36).

Referring to equation (2.56) and Appendix B, calculate the solution x(t) by using a table
of Laplace transform pairs and show that the solution obtained this way is equivalent to
(2.36).

Solution: Taking the Laplace transform of the equation of motion is given in Equation

(2.56): X, = (ms® +cs+ K)X(s) = 2F°S
s"+tw

2

Solving this expression algebraically for X yields

X(S) = 2 FOS 2 2 = 2 fos 2 2 2
(ms® +cs+Kk)(s"+o°) (s°+20w,5+0°) (s +w°)
Using Laplace Transform pairs from the table, this last expression is changed into the
time domain to get:

fo

t)=
O ooy  @2toor

cos (at-6)




Problems and Solutions Section 2.4 (2.37 through 2.50)

2.37

2.38

The magnitude is: X = w,Y {

A machine weighing 2000 N rests on a support as illustrated in Figure P2.37. The
support deflects about 5 cm as a result of the weight of the machine. The floor under the
support is somewhat flexible and moves, because of the motion of a nearby machine,
harmonically near resonance (r =1) with an amplitude of 0.2 cm. Model the floor as base
motion, and assume a damping ratio of ¢ = 0.01, and calculate the transmitted force and
the amplitude of the transmitted displacement.

Rubber mount Machine of mass m
modeled as a A = static deflection
stiffness & and \. I
a damper ¢ k
C
|
Flexible floor T (0)
Figure P2.37

Solution:

Given: Y =0.2cm, {=0.01, r =1, mg = 2000N. The stiffness is computed from the

static deflection and weight:
Deflection of 5 cm implies: k= mg_mg _ 2000 = 40,000 N/m
A 5cm  0.05

1+(2Lr)°
(1-r°)" +(2r)y

Transmitted displacement from equation (2.70): X =Y [ } =10cm

2 1/2
Transmitted force from equation (2.77): F,. =kyr? 1+(267) =4001N
(1—r%)? +(2Lr)?

Derive Equation (2.70) from (2.68) to see if the author has done it correctly.
Solution:
Equation (2.68) states:

o, +(28o,)’
() —0)" +(2w,0,)°

1/2
X, (t):wnY{ } cos(w,t—6,-6,)

o’ +(2w,)’ Tz

() - )" +(2w,0,)°



- o { (0,0} + (2%0,)) }
o))

(@, )(@; - ;)" + (28w,

0.y {(wgz)m(zm%} .
(1-r) + ()’
Ao 77
o, [ (1=r')*+ ()’

X :Y[ 1+(20r)° r

(1-r*)*+(2r)’
This is equation (2.71).

n

2.39  From the equation describing Figure 2.13, show that the point (+/2, 1)
corresponds to the value TR > 1 (i.e., for all r <2, TR > 1).

Solution:

Equation (2.71)is TR = X :[ 1+(28r)’ }
Y (1- I’Z)2 +(2§r)2

Show TR> 1 forr < /2
TR:K :|: 1+(2§I’)2 :| >1
Yo [ @-r?)?+(2Lr)
1+ (2r)?
(1-r%)*+(2r)?

1+(20r)* > (@-r*)* +(28r)°
1> (1-r?)?

1-r’<+lor 1-r’<-1=

Take the real solution:
12> 2=r2<2=r <42

28
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2.40 Consider the base excitation problem for the configuration shown in Figure P2.40. In this
case the base motion is a displacement transmitted through a dashpot or pure damping
element. Derive an expression for the force transmitted to the support in steady state.

N \ J\\ \ ]Support
S

P

m

T ¢ T)'(l) =Y sin wyl

| I
Figure P2.40
Solution: The entire force passes through the spring. Thus the support sees the force Fr=
kX where X is the magnitude of the displacement. From equation (2.65)

F =KX= 2fw, o, kY
J(@? - 02) +(2lw,0,)*
20rkY

L Ja- o+ ery?

2.41 A very common example of base motion is the single-degree-of-freedom model of an
automobile driving over a rough road. The road is modeled as providing a base motion
displacement of y(t) = (0.01)sin (5.818t) m. The suspension provides an equivalent
stiffness of k = 4 x 10°> N/m, a damping coefficient of ¢ = 40 x 10% kg/s and a mass of
1007 kg. Determine the amplitude of the absolute displacement of the automobile mass.

Solution:
From the problem statement we have (working in Mathcad)

wh := 5818 k:=410° NMm  c:=40-10° kgh
Y:=001 m  m:=1007 kg
k N c

t = on = 1993 . o wb ,
= 0.997 ri=— 1=029
i 2 -n,fm ‘k . wll

still underdamped, but very high damping. Fom equation (2.70)

wh =

1+ (2-t1)?
¢ |t

X =
J(l - 12)2 + (3.;.1-)2 X=00I11 m




2.42 A vibrating mass of 300 kg, mounted on a massless support by a spring of stiffness
40,000 N/m and a damper of unknown damping coefficient, is observed to vibrate with a
10-mm amplitude while the support vibration has a maximum amplitude of only 2.5 mm
(at resonance). Calculate the damping constant and the amplitude of the force on the
base.

Solution:

Given: m =300 kg, k =40,000 N/m, w, = w,(r =1), X=10mm, Y = 2.5 mm.
Find damping constant (Equation 2.71)

Y (1-r?)*+ (2§r)2 2.5 4L?
2
16 = 1+ 4§ L=t c
4L° 60 4km
[0 _ gy

Amplitude of force on base: (equation (2.76))

1/2

F = kyr?| LT 80

' (1— r2)2 +(2§r)2

1 1/2
o)
F. = (40,000)(0.0025)(1)? — | =
()
60

F. =400 N
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2.43 Referring to Example 2.4.1, at what speed does car 1 experience resonance? At what
speed does car 2 experience resonance? Calculate the maximum deflection of both cars
at resonance.

Solution:
Given: m, =1007 kg, m, =1585 kg, k = 4x10° N/m; ¢ = 2,000 kg/s, Y = 0.01m

Velocity for resonance: (from Example 2.4.1)
®,=0.2909v (v in km/h)

4
Carl: o, = \/% = ,/4;;;3 = @, = 0.2909v,

v, = 21.7 km/h

4
Car2: w,= \/% = ,/4;;;2 = @, = 0.2900v,

v, =17.3 km/h

Maximum deflection: (Equation 2.71 with r = 1)

1 + 4C2 1/2
X:Y[ } =

4
Carl: {,=—— = 2000 =0.158
2/km,  2,/(4x10°)(1007)
2 1/2
X, = (0.01) | L AQL8 6 033 1m
4(0.158)
Car2: {,=—— = 2000 =0.126
2/km,  2,/(4x10*)(1585)
2 1/2
X, = (0.01) | 1AL 16 041 m
4(0.126)



2.44

2.45
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For cars of Example 2.4.1, calculate the best choice of the damping coefficient so that the
transmissibility is as small as possible by comparing the magnitude of { =0.01, {=0.1

and ¢ = 0.2 for the case r = 2. What happens if the road “frequency” changes?

Solution:

From Equation 2.62, with r = 2, the displacement transmissibility is:

é_ l+(2§l’)2 1/2_ 1+16§2 1/2
Yol @-r2)2+@er)? | | 9+1602

For £ =0.01, é: 0.334

For {=0.1, é: 0.356

For {=0.2, é: 0.412
The best choice would be = 0.01.
If the road frequency increases, the lower damping ratio would still be the best choice.

However, if the frequency decreases, a higher damping ratio would be better because it
would approach resonance.

A system modeled by Figure 2.12, has a mass of 225 kg with a spring stiffness of 3.5
x10* N/m. Calculate the damping coefficient given that the system has a deflection (X)
of 0.7 cm when driven at its natural frequency while the base amplitude (Y) is measured
to be 0.3 cm.

Solution:

Given: m = 225 kg, k = 3.5x10* N/m, X =0.7cm, Y =0.3cm, 0 = @, .
Base excitation: (Equation (2.71) with r = 1)

2 1/2 2 1/2
X [1+4¢ 0.7 _[1+4¢
—= ; = —= - =
Yo 4 03 | 4

£=0237=

C
2Jkm
¢ = (0.237)(2)[(3.5x10*)(225)] V>
c = 1331 ka/s
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2.46 Consider Example 2.4.1 for car 1 illustrated in Figure P2.46, if three passengers totaling
200 kg are riding in the car. Calculate the effect of the mass of the passengers on the
deflection at 20, 80, 100, and 150 km/h. What is the effect of the added passenger mass
on car 2?

(1)
Figure P2.46 Model of a car suspension with the mass of the occupants, my, included.

Solution:

Add a mass of 200 kg to each car. From Example 2.4.1, the given values are:
m, = 1207 kg, m, = 1785 kg, k = 4x10* N/m; ¢ = 2,000 kg/s, @, = 0.29v.

4
Carl: o, = \/% = ,/4;;;3 =5.76 rad/s
c

2000

¢, = = =0.144

bo2Jkm 2(4x10%)(1207)

4
Car2: ,= \/E = |22 - 473 radss
m 1785

Cz = ¢ = 2000 =0.118

2Jkm,  2,/(4x10°)(1785)

1+(2Lr)?

1/2
Using Equation (2.71): X :Y{ } produces the following:

(L= )+ (@r)’

Speed (km/h) , r r, X X,
(rad/s) (cm) (cm)

20 5.817 1.01 1.23 3.57 1.77

80 23.271 3.871 4,71 0.107 0.070

100 29.088 5.05 6.15 0.072 0.048

150 2.40 7.58 9.23 0.042 0.028

At lower speeds there is little effect from the passengers weight, but at higher speeds the
added weight reduces the amplitude, particularly in the smaller car.



2- 34

2.47 Consider Example 2.4.1. Choose values of ¢ and k for the suspension system for
car 2 (the sedan) such that the amplitude transmitted to the passenger compartment is as
small as possible for the 1 cm bump at 50 km/h. Also calculate the deflection at 100
km/h for your values of ¢ and k.

Solution:

For car 2, m = 1585 kg.
Also, w,=0.2909(50) = 14.545 rad/s and Y = 0.01 m.

From equation (2.70),

X :Y{ 1+(20r)° Tz

(1-r?)*+(2r)’
From Figure 2.9, we can choose a value of r away from resonance and a low damping
ratio. Choose r=2.5and ¢ =0.05.

So, r=25= Do _ 14.545

@ +k/1585
k =53,650 N/m

c
=0.05=
¢ 2\ km
c =922.2 kg/s

1/2

1+[2(0.05)(2.5)]

So, X =(0.01) =0.00196 m

[1- (25| +r00s29r

At 100 km/h, @, = 29.09 rad/s and r = —>— =5,
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Consider the base motion problem of Figure 2.12. a) Compute the damping ratio needed
to keep the displacement magnitude transmissibility less then 0.55 for a frequency ratio
of r = 1.8. b) What is the value of the force transmissibility ratio for this system?

Solution: Working with equation (2.71), make a plot of TR versus { and use equation
(2.77) to compute the value of the force transmissibility. The following Mathcad session
illustrates the procedure.

r:i=13
M(i) =055
TR ()
0
|:|=.Ei =1
Flg) = AR
F{.2) = 1.607

From the plot a value of {'= 0.2 keeps the displacement transmissibility less then 0.55 as
desired. The value of the force transmissibility is then 1.697. Precise values can be
found by equating the above expression to 0.55.

Consider the effect of variable mass on an aircraft landing suspension system by
modeling the landing gear as a moving base problem similar to that shown in Figure
P2.46 for a car suspension. The mass of a regional jet is 13, 236 kg empty and its
maximum takeoff mass is 21,523 kg. Compare the maximum deflection for a wheel
motion of magnitude 0.50 m and frequency of 35 rad/s, for these two different masses.
Take the damping ratio to be { = 0.1 and the stiffness to be 4.22 x 10° N/m.

Solution: Using a Mathcad worksheet the following calculations result:
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Y= 05m k=422x10"kgs ? mf = 21523kg me = 13236.kg
From equation (2.70): rad
wh wh = 35—
i [l =01

— re? + (2- Cre) ¥e = 0.187m
b
k.

’ k -1
— = 14.002s
Yo = j l+(2 (re) of

if =

=25

ﬁ

1+ (2:810)°

2
(167" + @0
Note that if the suspension stiffness were defined around the full case, when empty the
plane would bounce with a larger amplitude then when full. Note Mathcad does not have
a symbol for a Newton so the units on stiffness above are kg/sec? in order to allow
Mathcad to compute the units.

X=71 Xf = 0.106m

Consider the simple model of a building subject to ground motion suggested in Figure
P2.50. The building is modeled as a single degree of freedom spring-mass system where
the building mass is lumped atop of two beams used to model the walls of the building in
bending. Assume the ground motion is modeled as having amplitude of 0.1 m at a
frequency of 7.5 rad/s. Approximate the building mass by 10° kg and the stiffness of
each wall by 3.519 x 10° N/m. Compute the magnitude of the deflection of the top of the
building.

Figure P2.50 A simple model of a building subject to ground motion, such as an
earthquake.

Solution: The equation of motion is
mX(t) + 2kx(t) = 0.1cos 7.5t

The natural frequency and frequency ratio are

® = ,/% ~8389 rad/s and r=2=_"" —0gos
"\ m ®,  8.389
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The amplitude of the steady state response is given by equation (2.70) with { = 0 in this
case:

X=Y =0.498 m

2

1-r
Thus the earthquake will cause serious motion in the building and likely break.
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Problems and Solutions Section 2.5 (2.51 through 2.58)

2.51

2.52

A lathe can be modeled as an electric motor mounted on a steel table. The table plus the
motor have a mass of 50 kg. The rotating parts of the lathe have a mass of 5 kg at a
distance 0.1 m from the center. The damping ratio of the system is measured to be { =
0.06 (viscous damping) and its natural frequency is 7.5 Hz. Calculate the amplitude of
the steady-state displacement of the motor, assuming @, =30 Hz.

Soltuion:
Given: m=50kg, m, =5,e=0.1m, { =0.06, w, = 7.5Hz
Let w,=30 Hz
So, r= O - 4
wn
From Equation (2.84),
y = Mee r _(5)(0.9) 4?
m Ja-r?)?+@r)? 50 \J(1-4%)? +[2(0.06)(4)]
X =0.011m
X=11lcm

The system of Figure 2.18 produces a forced oscillation of varying frequency. As the
frequency is changed, it is noted that at resonance, the amplitude of the displacement is
10 mm. As the frequency is increased several decades past resonance the amplitude of
the displacement remains fixed at 1 mm. Estimate the damping ratio for the system.

Solution: Equation (2.84) is

2

m,e r
X =
m J@-r?)?+(2r)?
Atresonance, X=10mm = moei
2¢
10m _ 1
m,e 28

When r is very large, ;(_n; =1 and X=1mm, so
m o
m,e
1
2
¢ =0.05

Therefore, 10(1) =
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An electric motor (Figure P2.53) has an eccentric mass of 10 kg (10% of the total mass)
and is set on two identical springs (k = 3200 /m). The motor runs at 1750 rpm, and the
mass eccentricity is 100 mm from the center. The springs are mounted 250 mm apart
with the motor shaft in the center. Neglect damping and determine the amplitude of the
vertical vibration.

Solution:
Given mg = 10 kg, m=100 kg, k =2x3.2 N/mm,, e=0.1m
in 2
o =17508 (MIN_27 1ady 10 26139 radss
' min "60sec rev S

Vertical vibration:

o = 1{—2(3.2)(1000) =8 rad/s
" 100

. :&: 183.3: 299
w 8

From equation (2.84)
m_r
m|1-r?|

==0.01m

Consider a system with rotating unbalance as illustrated in Figure P2.53. Suppose the
deflection at 1750 rpm is measured to be 0.05 m and the damping ratio is measured to be
¢ =0.1. The out-of-balance mass is estimated to be 10%. Locate the unbalanced mass

by computing e.

Solution: Given: X=0.05m, £ =0.1, m, =0.1m, and from the solution to problem
2.53 the frequency ratio is calculated to be r = 22.9. Solving the rotating unbalance
Equation (2.84) for e yields:
m e 2 1-r?)*+(2%r)?
X = -0 [ e M YD o4
ma-ry et m r
This sort of calculation can be introduced to discuss the application of machinery

diagnostics if time permits. Machinery diagnostics deals with determining the location
and extend of damage from measurements of the response and input.

99 m

A fan of 45 kg has an unbalance that creates a harmonic force. A spring-damper system
is designed to minimize the force transmitted to the base of the fan. A damper is used
having a damping ratio of { = 0.2. Calculate the required spring stiffness so that only

10% of the force is transmitted to the ground when the fan is running at 10,000 rpm.

Solution: The equation of motion of the fan is
mX + cX + kx = myen’sin(ot + 6)
The steady state solution as given by equation (2.84) is
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2

X(t) = m,e r
M J@-r?) +(2r)’
where r is the standard frequency ratio. The force transmitted to the ground is

kr? | 2
F(t) = kx+ cx = 12 [ T R —

m J@-r?)* +(2r)’ m J@-r?)* +(2r)
Taking the magnitude of this quantity, the magnitude of the force transmitted becomes
_me r’Jk+cdo® . J1+ (20
m LY@ - ()
From equation (2.81) the magnitude of the force generated by the rotating mass F; is
F = meo’
The limitation stated in the problem is that Fo = 0.1F, or

, N1+ (2r)’
JA=r?) +(24r)?
Setting = 0.2 and solving for r yields:
r‘-17.84r-99=0
which yields only one positive solution for r, which is

snot

coswt

F

=0.1myew’

m,ew

2 2
(2 =9pog= @ _ Kk _[10000x27 ) 1
V m 60 22.28
m

=2.21x10° N/m

2
k= 45(1OOOO><275J 1

60 22.28
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2.56  Plot the normalized displacement magnitude versus the frequency ratio for the out of
balance problem (i.e., repeat Figure 2.20) for the case of { = 0.05.

Solution: Working in Mathcad using equation (2.84) yields:

12
Xm(T, 1) =

l:l - 12)2 + (S-t_,~1')2

10 +
Xm (0.05,r)

¥m (0.25,¢) |

|
Xm (0.707, ) s 4 || '|
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2.57 Consider a typical unbalanced machine problem as given in Figure P2.57 with a machine
mass of 120 kg, a mount stiffness of 800 kN/m and a damping value of 500 kg/s. The out
of balance force is measured to be 374 N at a running speed of 3000 rev/min. a)
Determine the amplitude of motion due to the out of balance. b) If the out of balance
mass is estimated to be 1% of the total mass, estimate the value of the e.

Gaide Gride
Iy

Maoline oFtotd mesm \
r.-"‘ """"" LT -
K 1.
II e

[
| ™
| B
T
—"

[nlf

e L
- Enbber Roarmannting, T mﬁf:; =
{ 'l:'{_:. medeled i w spring tj’ .':, =

- ‘ﬁ- and @ damper

Figure P2.57 Typical unbalance machine problem.

-

Solution:
a) Using equation (2.84) with mee = Fo/,? yields:
k 1= 800- 1000 mo= 120 ¢ =500 FO =374
wr 1= 1001 . k = 5-10°
k q [ —
R P 2 ofem
l gl.e5
Ii=— wn = 81,
- r=3.543 & = 0.026

=

o .o _FD
or-m n'{(l _ sz + (2-§-r]2 X = 3.386°10

-5

b) Use the fact that Fo= meea;” to get
. Fo
BT &= 315810 "
oor - (0.01-1m)

in meters.
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2.58 Plot the response of the mass in Problem 2.57 assuming zero initial conditions.

Solution: The steady state response is the particular solution given by equation (2.84)
and is plotted here in Mathcad:

m =120 k=120 ¢ 1= 500 FO =374

man .= E 30002 wir C
m W= — = — &=

ol i 2 afm b
1.2

o _FO (
T s B = atam
W J(1—F]2+(2-q-r)2 -

x(t) 1= }i-sm(mr-t - EIII

5107 -

CNANANN
* PFEUE U

k

—5-10""
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Problems and Solutions Section 2.6 (2.59 through 2.62)

2.59 Calculate damping and stiffness coefficients for the accelerometer of Figure 2.23 with

2.60

moving mass of 0.04 kg such that the accelerometer is able to measure vibration between
0 and 50 Hz within 5%. (Hint: For an accelerometer it is desirable for Z / m?Y =
constant.)

Solution: Use equation (2.90):

Given: m =0.04 kg with error < 5%
0.2f=50Hz — f=250 Hz > w=2xf =1570.8 rad/s

Thus, k= mw?= 98,696 N/m
Whenr = .2, 0.95< ! <1.05 (x5% error)
V@-1r7)? +(24r)?
This becomes 0.8317+0.1444 ¢ *<1<1.016+0.1764¢ *
C
Therefore, {=07=

2:Jkm
¢ = 2(.7)/(98696)(.04)

¢ = 87.956 Ns/m

The damping constant for a particular accelerometer of the type illustrated in Figure 2.23
is 50 N s/m. It is desired to design the accelerometer (i.e., choose m and k) for a
maximum error of 3% over the frequency range 0 to 75 Hz.

Solution: Given 0.2f=75Hz —» f=375Hz - @,=2xaf =2356.2 rad/s. Using
equation (2.93) when r = 0.2:

0.97 < ! <1.03  (* 3% error)
V@-r?)? + ()
This becomes 0.8671 + 0.1505¢ *<1<0.9777+0.1697 ¢ ®
Therefore, 0.3622 < ¢ <0.9395
Choose {=0.7= ¢ - >0
2mw  2m(2356.2)
m = 0.015 kg

k = mw’ = 8.326 x10* N/m
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The accelerometer of Figure 2.23 has a natural frequency of 120 kHz and a damping ratio
of 0.2. Calculate the error in measurement of a sinusoidal vibration at 60 kHz.

Solution:

Given: =120 kHz, { =.2, w,=60 kHz

So, ! = 1 =1.288>1
JA=r)2+20r)?  1-5%)2 +(2(:2)(5))’
The error is 1.288-1 x100% = 28.8%

Design an accelerometer (i.e., choose m, ¢ and k) configured as in Figure 2.23 with very
small mass that will be accurate to 1% over the frequency range 0 to 50 Hz.

Solution:

Given: error < 1% ,0.2f =50 Hz - f=250 Hz — w=2xaf = 1570.8 rad/s

When r =0.2, 0.99< ! <1.01 (x 1% error)
\/(1— r?)? +(24r)?

This becomes 0.9032 + 0.1568¢ *<1<0.9401 + 0.1632¢

Therefore, 0.6057 < ¢ <0.7854

Choose m = 0.01 kg, then k = mw? = 24,674 N/m

Thus {=07= ¢ implies that: ¢ = 21.99 Ns/m

2:Jkm
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Problems and Solutions Section 2.7 (2.63 through 2.79)

2.63  Consider a spring-mass sliding along a surface providing Coulomb friction, with stiffness
1.2 x 10* N/m and mass 10 kg, driven harmonically by a force of 50 N at 10 Hz.

Calculate the approximate amplitude of steady-state motion assuming that both the mass
and the surface that it slides on, are made of lubricated steel.

Solution: Given: m =10 kg, k = 1.2x10*N/m, F,=50 N, ® =10(27) = 20 rad/s

0= \/E = 34.64 rad/s
m

for lubricated steel, u=0.07

1- 4umg
: F n(F,
From Equation (2.109) X ==
ka-r

\/1_ [4(.07)(10)(9.81) T
50 n(50)

X:12X104 20 2
' T
‘(1—( Ik

2

34.64

X =1.79%103m

2.64 A spring-mass system with Coulomb damping of 10 kg, stiffness of 2000 N/m, and
coefficient of friction of 0.1 is driven harmonically at 10 Hz. The amplitude at steady
state is 5 cm. Calculate the magnitude of the driving force.

Solution:
Given: m =10 kg, k =2000 N/m, u=0.1, ®=10(27) =10(27) = 20 rad/s,

W= \/% =14.14 rad/s, X =5cm

I:O

2
Equation (2.108) X = K - — FO — Xk\/(l— r2)2 +|:4ukr;](gj|
(1-r?)*+ 4Hmg d
kX

F, =(0.05)(2000) [1—[ 207 } J +[4(O'1)(10)(9'81)j =1874 N

14.14 7(2000)(.05)
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2.65 A system of mass 10 kg and stiffness 1.5 x 10* N/m is subject to Coulomb damping. If

the mass is driven harmonically by a 90-N force at 25 Hz, determine the equivalent
viscous damping coefficient if the coefficient of friction is 0.1.

Solution:
Given: m = 10 kg, k = 1.5x10* N/m, F,=90N,®=252r) =507 rad/s,

o= \/%: 38.73rad/s, u=0.1
Steady-state Amplitude using Equation (2.109) is

1_{wmg T \/1_[4(0.1)(10)(9.81)}2
x=5EY L7R)] __ 90 =80 =3.85x10™* m
k Ja-r  15x10° sor )
l_(38.73j

From equation (2.105), the equivalent Viscous Damping Coefficient becomes:
_4umg _ 4(0.1)(10)(9.81)
“ moX m(507)(3.85x107)

=206.7 Ns/m
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2.66 a. Plot the free response of the system of Problem 2.65 to initial conditions of x(0) = 0
and x(0) = |F,/m| =9 m/s using the solution in Section 1.10.

b. Use the equivalent viscous damping coefficient calculated in Problem 2.65 and plot
the free response of the “equivalent” viscously damped system to the same initial
conditions.

Solution: See Problem 2.65
€)) x(0)=0and x(0) = R =9 m/s

m
4
W= \/K = 1/1'5)(10 =38.73 rad/s
m 10

From section 1.10:

mx + kx = umg for x <0
mx + kx = —umgfor x>0

Let F, = umg= (0.1)(10)(9.81) = 9.81 N

To start, X(0)=w,B, =9

Therefore, A = %and B = S
[0)

F 9 F
So, x(t) = ~% cosw,t + —snw,t — -2
k W k
This will continue until x = 0, which occurs at timet, :
: F
X(t) = A, cosm,t + B,sinw,t + ?“
X (1) = -w,A,Snhot +,B,cosw,t
: F
X(t,) = A, cosw,t, + B,sSnao,t, + ?“

X(t,))=0=-w,A,sno,t, +®,B,cosw,t,
Therefore, A, =(x(t,)— F, /k)cosw,t,and B, = (x(t,) - F, /k)sne,t,

So, x(t) =[ (x(t,)— F, / k)cosw,t, |cosw,t +[ (x(t,) - F, /k)sinw,t, |sna,t + %
Again, when x=0 at timet,, the motion will reverse:

. F
X(t) = A;cosm,t + B;snw,t — ?d
X (1) = —w,A;Sho,t +w,B;cosw,t

: F
X(t,) = A,cosw,t, + B,sSinw,t, — ?“
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X(t,)=0=-w,A;snw.t, + w,B,cosw,t,
Therefore, A, =(Xx(t,) +F,/k)cosw,t,and B, =(x(t,) - F, /k)sna,t,

So, x(t) =[(x(t,) + F, / k)cosw,t, |cosm,t +[ (x(t,) + F, / k)snw,t, |snw,t - %
This continues until x=0and kx < umg=9.81 N

nz T
Nz A

0.1 A

‘u\lu\uhjh
i

— - wm

—.3

=

—

(b) From Problem 2.65, C,, = 206.7 kg/s

The equivalently damped system would be:
mX+c, X+kx=0

4
Also, \/7 «/1 510 =38.73 rad/s

2067
2% 2\/(1 5x10*)(10)

Wy = w,1-¢* =37.33 rad/s

The solution would be found from Equation 1.36:

0.2668

X(t) = Ae ™ sin(w,t + ¢)

X(t) = —Cw, Ae " sin(w,t + ¢) + w,Ae " cos(m,t + ¢)
x(0)=Asng =0

X(0) = —fw,Asng + w,Acosp = 9
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Therefore, A= 9. 0.2411mand ¢ =0 rad
@y

So, x(t) = 0.2411e7%*5in(37.33t)

x (1) = 024116 P ain (37,331

0.z -
0.1 4
x[t)
e ' : :
0 VD.E 0.4 0.6 0.s 1
0.1t

Referring to the system of Example 2.7.1, calculate how large the magnitude of the
driving force must be to sustain motion if the steel is lubricated. How large must this
magnitude be if the lubrication is removed?

Solution:

From Example 2.7.1 m =10 kg, k= 1.5x10* N/m, F,=90 N,
® = 25(2r) = 507 rad/s

Lubricated Steel u=0.07
Unlubricated Steel ¢ =0.3
Lubricated: F > 4umg _ 4(0.07)(10)(9.81)
7 T
F,=874N
Unlubricated: F > 4pmg _ 4(0.3)(10)(9.81)
7 /4

F=375N
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2.68 Calculate the phase shift between the driving force and the response for the system of
Problem 2.67 using the equivalent viscous damping approximation.

Solution:

From Problem 2.67: m=10kg, k=1.5x10* N/m, F, =90 N,
o = 25(2r) =157.1rad/s

0, = \/E = 38.73rad/s
m

From Equation (2.111), and since r>1

—4pmg

2

Since in Problem 2.67, nF, = 4;_1mg, this reduces to

6 =tan*

0 =tan %1} = % rad = -90°
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Derive the equation of vibration for the system of Figure P2.69 assuming that a viscous
dashpot of damping constant c is connected in parallel to the spring. Calculate the energy
loss and determine the magnitude and phase relationships for the forced response of the
equivalent viscous system.

I OO Wi

Solution: Sum of the forces in Figure P2.69
mMX = —kx — cx— umg sgn (X)
mX + cx + umgsgn (X)+ kx =0
Assume the mass is moving to the left (x(0) = 0,x(0) = X,)
mMX—cX+ umg+ kx =0
X+ 20w, X— g+ w>x=0
The solution of the form:

X(t) aert + 72 I‘lg
a)

n

Substituting:
ar’ed' +2{w are" — ug+w, *a€* + ug=0
r’+2lor+w?=0

_2Ca)n_\/4CCO - o, +w\/—1

—_— (7§wn+wn § 7l)t (7§wn7wn 4271)t Hg
So, X(t) =ae v +a,€e + P

n

ng

n

X(t) =e ' (ae " +ae ) + —

X(t) = Xe ' sn(w,t +6) + — H g
wn

Initial conditions

x(0) = Xsn(@) +— =X,
wn
X(0) = X(-¢w, )(snB) + Xw, cos6 =0
—Xlw,sn6 + Xw, cos6 =0

tanG:&:w =tan™ Oy
¢o (o,

n
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H9 2 2
(Xo - U)nz] a)d + (Ca)n)

X =

o8

(x<0) - a‘ng 0,2+ (o,)’
e “sin (wdt +tan™ [&D + 11_92 (1)
wd Ca)n wn

This will occur until x(t)=0:
X(t) = X(~¢w, )e " sin(w,t + ) + Aje v, cogw,t +6) =0
—{w,sSn(w,t +0) + w, cos(w,t +0) =0

x(t) =

)
= tan(w,t +6) = -

n

T
t=—
Wy

So Equation (1) is valid from0<t < S
@y
For motion to the right

Initial conditions (From Equation (1)):

Hg
n X(O)_ ]gw
X(EJ:Xe [“’d)cose+ H% = n e’ "(”’d)+u—%
wd n wd wn
X{l] =0
Wy
X(t) = A" sin(,t +6,) - L2
wn
o2k iy
x(0) = Asin6, - £9 = e ) K
o, o, o,

X(0) = A (-fw,)sin6, + Xw, cosb, =0

Solution: x(t) = Ae ™ sin(w,t +6,) - ”_?
®

n

_H9
e —

wd wd n
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®
6 =tan?| —-
[Cwn}

Forced Case:
mX — cx + umg sgn (X) + kx = F, cog(wt)

Approximate Steady-state Response:
X<(t) = Xsin(wt - 0)

Energy Dissipated per Cycle:
2r

dx dx
AE=[Fdx= [|cx—+ nx— |dt
[F, ﬂ -+ UGSy dt}
2 2
= | (cxdlt) + umg | sgn(x)xdt
2 2
AE = rcooX? + 4umgX

This results in an equivalent viscously damped system:
%+ 2(8 + g )w X+, ?x = F, cosowt

2g
where {_ =
= W, wX
The magnitude is:
F

_0

X = k
JA=1? +2(C+L)r)?

Solving for X:

2 2 2.2 2 2
8ugcr + 8ugcr —2| (@=r?y? +l 4ugr _ i
ko ko km Tw k

2.2
al@-ryz+ 0
{( pell

The phase is:
4ugr
20r+ ————
2(C+C )r X
6=tan™ A+ o) Cezq) =tan™ —71'(02”(0
1-r 1-r
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2.70 A system of unknown damping mechanism is driven harmonically at 10 Hz with an
adjustable magnitude. The magnitude is changed, and the energy lost per cycle and
amplitudes are measured for five different magnitudes. The measured quantities are:

AEQ) ]0.25 0.45 0.8 1.16 3.0
X (M) [0.01 0.02 0.04 0.08 0.15
Is the damping viscous or Coulomb?
Solution:

For viscous damping, AE = rcwX?
For Coulomb damping, AE = 4umgX

r0.01
0.0z
¥ = |0.04 i=0,1.4 . 5
¥ = (%)
D08 | +
0.15
) ) [0.25 T
0.45
E:=|08
1.16
- 3 =
4 I I 4 I I
Ej 2 - — E 2 - —
a | | a | |
0 0.05 0.1 0.15 0 001 002 002
i ¥

For the data given, a plot of AE vs X? yields a curve, while AE vs X yields a straight
line. Therefore, the damping is likely Coulomb in nature
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Calculate the equivalent loss factor for a system with Coulomb damping.

Solution:
Loss Factor: n= AE
27U
For Coulomb damping: AE = 4umgX
Umax = l kx2
2
__ApmgX _ 4umg
2%(1kX2) X
2
Substituting for X (from Equation 2.109):

_4umg__[1-r7)

2
o | (4umg
k,

A spring-mass system (m = 10 kg, k = 4 x10° N/m) vibrates horizontally on a surface
with coefficient of friction u =0.15. When excited harmonically at 5 Hz, the steady-

state displacement of the mass is 5 cm. Calculate the amplitude of the harmonic force
applied.

n

Solution: Given: m =10 kg, k = 4 x 10°N/m, p=0.15, X =5cm =0.05m,
k
® =5(2r) =107 rad/s, @, = \/% = 20 rad/s

Equation (2.109)
I:0

X = k =

oz, [4umg )’
\/(1—r ) +( kX j

2-54

F, = kx\/ (1-r2)2+ (—4“ rrg]z = (0.05)(4x 10°) \/{1— (10_”)2} ' ( 4(0.15)(10)(9.81)
kX 20 7(4x10°)(0.05)

F,=294N

;



2.73  Calculate the displacement for a system with air damping using the equivalent viscous
damping method.

Solution:
The equivalent viscous damping for air is given by Equation (2.131):
Cy = ioca)X

< 3

From Equation 2.31:

X = F° = Fo
J(w? -0?) + (20,0 J(wg_wz o[ a,j
m
X = F, _ F,m

2 8 2 8 ?
(wf—wz) +(awxj k (1—r2)2+(arzx)
3rm 3rm

Solving for X and taking the real solution:

2 2
Lyl [ oy o 1R
2 2 3km

8ar?
3rm

X =

2-55



2-56

2.74  Calculate the semimajor and semiminor axis of the ellipse of equation (2.119). Then
calculate the area of the ellipse. Use ¢ =10 kg/s, @ = 2 rad/s and X = 0.01 m.

Solution: The equation of an ellipse usually appears when the plot of the ellipse is
oriented along with the x axis along the principle axis of the ellipse. Equation (2.1109) is
the equation of an ellipse rotated about the origin. If k is known, the angle of rotation can
be computed from formulas given in analytical geometry. However, we know from the
energy calculation that the stiffness does not effect the amount of energy dissipated. Thus
only the orientation of the ellipse is effected by the stiffness, not its area or axis. Thus we

can use this fact to answer the question. First re-write equation (2.119) with k = 0 to get:

F2 + CZwZXZ - CZa)ZXZ

F 2 X 2
(5] (3
co X X

This is the equation of an ellipse with major axis a and minor axis b given by

a=X=0.01m, and b=cwX =0.2kgm/s’
The area, and hence energy lost per cycle through the damper then becomes

mcw, X* = (3.14159)(10)(2)(.0001) = 0.006283 Joules.
Alternately, realized that Equation 2.119 is that of ellipse rotated by an angle 6 defined
by tan26 = -2k/(c’w? + k* —1). Then match the ellipse to standard form, read off the

major and minor axis (say a and b) and calculate the area fromzab. See the following
web site for an elipse http://mathworld.wolfram.com/Ellipse.html

2.75 The area of a force deflection curve of Figure P2.28 is measured to be 2.5 N- m, and the
maximum deflection is measured to be 8 mm. From the “slope” of the ellipse the

stiffness is estimated to be 5 x10* N/m. Calculate the hysteretic damping coefficient.
What is the equivalent viscous damping if the system is driven at 10 Hz?

Solution:
Given: Area=2.5Nem, k=5x10" N/m, X =8 mm, w =10(27) = 20r rad/s

Hysteric Damping Coefficient:
AE = Area=rkBX?
2.5 = 1(5x10")(0.008)*
B =0.249

Equivalent Viscous Damping:
_kB _ (5% 10%)(0.249)
0] 207

Ceq

Ceq = 198 kg/s
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2.76  The area of the hysteresis loop of a hysterically damped system is measured to be 5
N mand the maximum deflection is measured to be 1 cm. Calculate the equivalent

viscous damping coefficient for a 20-Hz driving force. Plot ¢, versus o for2z < o <
1007 radfs.

Solution:
Given: Area=5Nem, X=1cm, w = 20(2r) = 407 rad/s

Hysteric Damping Coefficient:
AE = Area=rkBX?
5 = kB(0.02)
k3= 15,915 N/m

Equivalent Viscous Damping:
_ kB _ 15915
“ o 407
Cq = 126.65 kgfs

To plot, rearrange so that
TC,X? = AE
AE 5 50,000

CaeX®  ro(01)? o

Ceq

1000 1
¢ [ea]

a00 -

] 100 200 300
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2.77  Calculate the nonconservative energy of a system subject to both viscous and hysteretic
damping.

Solution:

AE = AE,, + AE,,
AE = rewX? + knBX?
AE = (co + kB)m X?

2.78  Derive a formula for equivalent viscous damping for the damping force of the form, F , =
c(x)"where n is an integer.

Solution:

Given: F, =c(X)"
Assume the steady-state response x = Xsinwt.
The energy lost per cycle is given by Equation (2.99) as:

2 2
AE = pF,dx = T c(X)"xdt = cT ()" dt
0 0

Substituting for X:

2r
AE = T [oo””X”+l cos””(wt)]dt
Letu :Ocot )
AE = cX””a)“T(cos””u)du
Equating this to Equation 2.91O yields:

2r
MCX? = X" " j (cos™™ u)du
0

CXn—lwn—l 2n
= J' (cos™ u)du
T

0

€q
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Using the equivalent viscous damping formulation, determine an expression for the
steady-state amplitude under harmonic excitation for a system with both Coulomb and
viscous damping present.

Solution:

AE = AE\nsc + AEcoul
AE = rcooX? + 4umgX

Equate to Equivalent Viscously Damped System
TC,X? = wewX? + 4pmg

= meoX + 4umg _ ., AHMY = 20,M
X X
2g
=C+
b =6 mww, X
Amplitude:
L} L}
X = k - k
1—r2)? + (20 1)? 2
Ja-r2? +@20.r) Jﬂ—ﬂf+(%T+an)
kX
Solving for X:

_( 8uger? N 8ugcer? 2_4 (112 + ccre || 4ugr 2_(&)2
ko rkaw km w,m k

2,2
ol a—r2z+ S
[( A

X =
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Problems and Solutions Section 2.8 (2.80 through 2.86)

2.80*. Numerically integrate and plot the response of an underdamped system
determined by m= 100 kg, k = 20,000 N/m, and ¢ = 200 kg/s, subject to theinitial
conditions of x, = 0.01 mand v, = 0.1 m/s, and the applied force F(t) = 150cos5t. Then
plot the exact response as computed by equation (2.33). Compare the plot of the exact
solution to the numerical ssimulation.

Solution: The solution is presented in Matlab:

First the m file containing the state equation to integrate is set up and saved as ftp2_72.m

function xdot=F(t, x)
xdot=[-(200/100)*x(1)-(20000/100)*x(2)+(150/100)*cos(5*t); x(1)];

% xdot=[x(1)"; x(2)"]1=[-2*zeta*wn*x(1)-wn"2*x(2)+Fo*cos(w*t) ; x(1)]
% which is a state space form of

% X" + 2*zeta*wn*x" + (wn”2)*x = Ffo*cos(w*t) (fo=Fo/m)

clear all;

Then thefollowing mfileis created and run:

%---- numerical simulation ---

x0=[0.1; 0.01]; %[xdot(0); x(0)]
tspan=[0 10];

[t,x]=oded45("fp2_72" ,tspan,x0);

plot(t, x(:,2), ".%);

hold on;

%--- exact solution ----

t=0: .002: 10;

m=100; k=20000; c=200; Fo=150 ; w=5

wn=sqgrt(k/m); zeta=c/(2*wn*m); Ffo=Fo/m; wd=wn*sqrt(l-zeta”2)

x0=0.01; vO= 0.1;

xe= exp(-zeta*wn*t) .* ( (XO-Fo*(wn"2-w"2)/((wn"2-w"2)"2 ...
+(2*zeta*wn*w)”"2))*cos(wd*t) ...

+ (zeta*wn/wd*( xO0-fo*(wn"2-w"2)/((wn2-wA2)"2+(2*zeta*wn*w)"2)) ...
2*zeta*wn*w 2*Fo/ (wd*((wdN2-wr2)7"2 ..
(2*zeta*wn*w)"2))+v0/wd)*sin(wd*t) ) .
fo/((wn"2- WA2)A2+(2*zeta*wn*w)A2)*((wnA2 wh2)*cos(w*t) .
2*zeta*wn*w*sin(w*t))

+ 4+ o+

plot(t, xe, "w");
hold off;

This produces the following plot:
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Figure No. I=———— I H

0.015

0.013%

0.00% &

-0.00%

-0.m
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0
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2.81*. Numerically integrate and plot the response of an underdamped system
determined by m = 150 kg, and k = 4000 N/m subject to the initial conditions of x, = 0.01
m and v, = 0.1 m/s, and the applied force F(t) = 15c0s10t , for various values of the
damping coefficient. Usethis*“program” to determine avalue of damping that causes the
transent term to die out with in 3 seconds. Try to find the smallest such value of
damping remembering that added damping is usually expensive.

Solution: The solution is given by the following Mathcad session. A value of ¢ = 350
kg/s corresponding to £ = 0.226 gives the desired result.

a"s\)\)\)—7-——— 21— [H|H
il
m = 150 k = 4000 c .= 350 E
= [ ¢=— FO i= 15 = 10
SR 2 ofim =18 wi=
0.01 |
X =
0.1 Dit,x) = ( 2 ) FO
-2 Goonoy —on X, |+ E-sml{m-t}l

Z = rhfived (x,0,10,4000, D) 1= ¢ = 0226
=1>= - -

ti= <0 *I= 2 wn = 5.164
+

0.0

0.0

001 4

| &

—0.01 +

.0z -

4 [ D




2.82*. Solve Problem 2.7 by numerically integrating rather than using analytical
eXpressions.

Solution: The following session in Mathcad illustrates the solution:
a) zero initial conditions
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L Prob 2.74 =
—_ e
ME00 o mi=100 ki=2000 FO= 10 =10 — =]
k x0
W = |’— wi = 4.472 ¥ = [ Xy
m Gl

} Dt,X) :=[

- -Xu + fIII-stLIIUJ-tII

Z 1= rkfixed (3,0, 10,4000,
x =25

ti=g70®

0003 1

n

=005 -

A
IR

i

|

A

ey

b) Using and initia condition of x(0) = 0.05m. Note the difference in the response.



= Prob 2.74 HE
1 — F N
x0 0= 0.05 w0 :=0 m =100 k = =2000 FO =10 w =10 E E
k x0
wi = J: wn = 4,472 M= [ }
m 7l Dit,%) = 5
—mn -}s‘.u + fD'SjIL(U.'I't:l
Z := rkfived (3,0, 10,4000 ,D)
x =z 1i=z%0%
0l T
: \ /\ /\ /\ /\ /\ /\
x !
—n.os 4
-1+ +
3 ___I
-
FRE | e |
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2.83*. Numerically simulate the response of the system of Problem 2.30.

Solution: From problem 2.30, the equation of motion is

9a’ m + 4a’ccoshd + a’ksind = —3aF(t)
where k = 2000 kg, c = 25kg/s , m=25kg,F(t) =50cos2nt , a=0.05m
Placing the equation of motion in first order form and numerically integrating

using Mathcad yields
k = 2000 C:=25 m:=25 a:=0.05 o -3l
3-a- i
_ |0
xi= 0 y
Dit,X) = | -4z E
g_m-}il-cns (}iuj - —g_m-sm(}iuj + f0-coa IIE-rL-t:I
2 = rkfixed (3,0, 10,4000 ,L)
i =0
t=2 E — E{ 1=

L A pannd
N IRATRAVARVARTA'S
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2.84*. Numerically integrate the system of Example 2.8.1 for the following sets of initial
conditions:

a) X =00mandv,=0.1m/s

b) X,=0.01 mand v,= 0.0 m/s

C) X, =0.05mandv,=0.0m/s

d) x,=0.0mandv,=0.5m/s
Plot these responses on the same graph and note the effects of the initial conditions on the

transient part of the response.

Solution: The following are the solutions in Mathcad. Of course the other codes and
Toolbox will yield the same results.

I=""———?2?nh—-~———————HE
_ _ _ -
x0 = 0. =g =100 ki=2000 oo . =
k C
on = = = FO = 150 e o =
m Z afkm fD.—m wi=1n wd 1= wnal — &
- [XU] Xl
vl D1, ¥) = 3
-2 Con- ¥y —wn ¥y + f0-cos (m-t)
Z i=rkfwed (X,0,6,2000,0) =257 g
00d
: A [\ [\
-zt \/ U U
-0t |
-
<[] vz
I="—"——————2ft————————H B
_ — — -
x®0 =001 — m = 100 k= z00o = 200 n =
k C
wn = (— &= FO := 150 . O — z
m 2 ofk-m I'U.—m @ = 10 wd = wmall — &
X = [XD] %
wll D(t,¥) =
-2 Con ¥y —wn ¥y + f0-cos (Lu-t)
Z 1= odied (X,0,6,2000,0) =207 ey
004
N /\ /\ [\
-0z U \f
—amd
' - |
o [l D
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2.76 HE
x0 1= 0.05 vl =0 =100 k = 2000 o = =00 é
k c
wn = [(— &= FO := 150 ,_ F0 —
m 2 afkm W= =0 = 1—§2
_ [xﬂ] %,
¥0 Dit,¥) = a
-2 foan ¥, —wn X, + f0-cos [m-t)
+
Z = rkfed (¥,0,6,2000,D) =207 _eps
0l
t Bl
o [l DE
d)
I==———2mw—"————H|H
x0=0.00 oo M= 100 ki=2000 oo é
k C
wn = — b= FiO := 150 _Fo W
i 2 alk-m m'_E W= = 1—§2
XK= [XD } %
v Dit,X) = 3
-2 fown ¥, - wn X + f0-cos I:w-t:I
Z 1= rkfixed (X,0,6,2000,0) =207 eps
01T +
0.05 A
- ALY,
AR
-0.054
; |
A [ ]z
Note the profound effect on the transient, but of course no effect on the steady state.
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2.85*. A DVD driveis mounted on a chassis and is modeled as a single degree-degree-
of-freedom spring, mass and damper. During normal operation, the drive (having a mass
of 0.4 kg) is subject to aharmonic force of 1 N at 10 rad/s. Because of material
considerations and static deflection, the stiffnessis fixed at 500 N/m and the natural
damping in the system is 10 kg/s. The DVD player starts and stops during its normal
operation providing initial conditions to the module of x, =0.001 m and v, = 0.5 m/s.

The DVD drive must not have an amplitude of vibration larger then 0.008 m even during
the transient stage. First compute the response by numerical simulation to seeif the
congraint is satisfied. If the constraint is not satisfied, find the smallest value of damping
that will keep the deflection less then 0.008 m.

Solution: The solution is given by the following Mathcad session:

F
+ m =04 k =500 co=17 =]
- |k = — FO =1 = 10
on = 2 ofcm =t =
_[D.DDI] %1
| os Dit,x) = 2 F(
(—2-§-mn-x1 — Wil -xujl + —-si:nlir.u-tjl
Z .= rkfixed (x ,0,1.5,1000 ,D)
=27 1F
=20 '
0.005
: ANya
! \0_7 \\/ 15
—0.005 4
t —
1 [ DEZ

Thisyields ¢ =17 kg/s as a solution.
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2.86 Useaplotting routine to examine the base motion problem of Figure 2.12 by
plotting the particular solution (for an undamped system) for the three cases k =
1500 N/m, and k =700 N/m. Also note the values of the three frequency ratios
and the corresponding amplitude of vibration of each case compared to the input
Use the following values: @, = 4.4 rad/s, m= 100 kg, and Y = 0.05 m.

Solution; The following Mathcad worksheet shows the plotting:

kl
m := 100 k1l = 1500 wl = [—
m
K =700
e wh 1= 4.4
KBi=2500 T I I < wl = 3873
w3 = —
m
wb wb wb
1l = — 12 1= — 13 1= — w? = 2.646
wl wl w3 =5
1l = 1.136 12 = 1663 3 = 088 Y =005

y(t) = Y-sin{wb-t)  then from equation 2.68 and 2.70 with zero damping:

1 I 1 I
x1{t) =Y ————cos(wbt——| =(t) =¥ ———cos|wbt——
|1—1~12| 2 |1 - 2| 2
JT
B(t) =Y —————cos wbt——
|1 -3
03 +
02z +
A g | N 3
! A Iy g I Y I I
| | 1 ] | y |
xft) 014 | | P L H | I
| | ' | | | { 1 | 1 I
2 Lo U o T N SN T PN I N
; 4 £ «L//h\ } l’r/f\ (1 '3 lvl"\\l'. ; F‘! !
“ n » vl g 1) FEREES) ) L
(1) o nol ozl Al ferte wA led T
| b I f i
vl 01+ ! | I| Ill 1|I |I Ill ,' ||‘ ! . \I Il
II] ll lllull ll_ Jli ||~||‘ l| '|[I l[ull Il |I
02+
-3t

Note that k2, the softest system (smallest k) has the smallest amplitude, smaller
than the amplitude of the input as predicted by the magnitude plotsin section 2.3
Thuswhenr > \/E , the amplitude is the smallest.
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Problems and Solutions Section 2.9 (2.87 through 2.93)

2.87*. Compute the response of the system in Figure 2.34 for the case that the damping
islinear viscous and the spring is a nonlinear soft spring of the form

k(x) = kx — kx*
and the system is subject to a harmonic excitation of 300 N at a frequency of
approximately one third the natural frequency (o= ®,/3) and initial conditions of x, =
0.01 mand v, = 0.1 m/s. The system has a mass of 100 kg, a damping coefficient of 170
kg/s and a linear gtiffness coefficient of 2000 N/m. The value of k; is taken to be 10000
N/mé. Compute the solution and compare it to the linear solution (k, = 0). Which system
has the largest magnitude?
Solution: The following isa Mathcad ssimulation. The green is the steady state magnitude
of the linear system, which bounds the linear solution, but is exceeded by the nonlinear
solution. The nonlinear solution has the largest response.

x0 i= 0.01 - - el
vl = 0.1 m = 100 k1= 2000 ¢ =170 2 2
kL := 10000 '

F0 =300
i =

x0
o= o=
]

B
oy

I

(]

=

1]

E
=

1]

| &

%
Dft,¥) =
%) -2 Cwn X, - mnz-XD + }]:_1—1 (an + f0-cos Iim-tjl

Y1
Lit,7):= 2
7 = rkfixed (3,0, 10,4000, D) (—z-q-mn-‘fl - wn -YD) + 10 cos [w-1]

t=z0* g1z pElE W 1= rkfixed (¥ ,0,10,4000,L)

KL= WL TORE a

(mnz - mz)z + Iiz-ﬁ-mn-mjlz F .= E

04 T

AWA
2 L \E\/S \10
4 4 a

B Kl

4 [l [»
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2.88*. Compute the response of the system in Figure 2.34 for the case that the damping
islinear viscous and the spring is a nonlinear hard spring of the form

k(x) = kx+kx*
and the system is subject to a harmonic excitation of 300 N at afrequency equal to the
natural frequency (o = w,) and initial conditions of x, =0.01 mand v, =0.1 m/s. The
system has a mass of 100 kg, a damping coefficient of 170 kg/s and alinear stiffness
coefficient of 2000 N/m. The value of k, istaken to be 10000 N/m?®. Compute the
solution and compare it to the linear solution (k; = 0). Which system has the largest
magnitude?
Solution: The Mathcad solution appears below. Note that in this case the linear
amplitude is the largest!

=== PMp 2.7 ="——— [H 3
x0 =001 . — [ |
w0 1= 0.1 m = 100 k= 200 ¢ 1= 170 =
= +
" % =100 Ry = 300
wn .= |— C
= Fi (N}
om g - -
fl 1= — =__
2 ak-m m v 1

Xi
Dit,¥) =
() (—2-:’___'-r.un-15{1 - mnz-}{n] — (Xuf + 10-cos Iim-tjl ]

Yl
Lit,¥) = 2
% := rkfixed (¥ ,0,10, 4000 , D) ~2twn ¥, — wn Y, + 0-cos (1)

ti= =0 ;= pElE W= rkfixed (¥ ,0,10,4000,L)

— 1=
KL = W 4 dit) = 0

c-m = 1-10

04 -

0z

1]
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2.89*. Compute the response of the system in Figure 2.34 for the case that the damping

islinear viscous and the spring is a nonlinear soft spring of the form

k(x) = kx—kx*

and the system is subject to a harmonic excitation of 300 N at afrequency equal to the
natural frequency (o = w,) and initial conditions of x, =0.01 mand v, =0.1 m/s. The

system has a mass of 100 kg, a damping coefficient of 15 kg/s and alinear stiffness

coefficient of 2000 N/m. The value of k; istaken to be 100 N/m?®. Compute the solution

and compare it to the hard spring solution (k(x) = kx + k1x3 ).

Solution: The Mathcad solution is presented, first for a hard spring, then for a soft spring

[=——-°-———————""PFProp 280

2 =]

x0=001 gy miE 100 k=2000 o0 ci=170 FO =300

5l
C
k b= FO wi x0
wn = |— f1=— m=— M= ¥ o=K
M 2 atk-m M 1 s
15{1

Dit,¥) =
.5 |:(—2-§-mn-}s'.1 - mnz-}in) — o (an + f0-cos |[m-t]| ]

Yl
Lit,T) = ,
% := rkfixed (¥ ,0,10,4000 , ') 28 on ¥, — wn ¥y + f0-cos (wt)

t1=z%0% P W= rhfived (Y ,0,10,4000,L)
— 1= m
L= WE i =
Ch I = 1'1III‘1 —
Fi=d(t)
+
0d T+
0.2 +
x
xL

-

Next consider the result for the soft spring and note that the nonlinear response is higher

in the transient then the linear case (opposite of the hardening spring), but nearly the
same in steady state as the hardening spring.
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| Prop 2.80 HH
— — — F
M= g o gy S0 =2 = -100c =170 FD =300 =
Eop=— Fi wn %0
wn = — foi=—  w=— Ho= T =X +
T 2 otk m m 1 Gl
15'g"l
Dt,¥) = 2 .
(—E-an-}il — wn -KD] — o EXD] + 10 cos Iim-tjl
Y1
Lit,7¥) = 5
% := rkfixed (2 ,0,10,4000, D)) 2 gon Y, — wn Y, + 10003 [w-t)
1= z%0> I W= rkfixed (¥ ,0,10,4000 L}
L =W lF T = f
oem = -1 107 . a2 , —
(mn —w ) + Iiz-ﬁ-mn-mjl Fi=41(1)
t -]
A [l %
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2.90*. Compute the response of the system in Figure 2.34 for the case that the damping
islinear viscous and the spring is a nonlinear soft spring of the form
k(x) = kx—kx*

and the system is subject to a harmonic excitation of 300 N at afrequency equal to the
natural frequency (o = w,) and initial conditions of x, =0.01 mand v, =0.1 m/s. The
system has a mass of 100 kg, a damping coefficient of 15 kg/s and alinear stiffness
coefficient of 2000 N/m. The value of k, istaken to be 1000 N/m?®. Compute the solution
and compare it to the quadratic soft spring (k(x) = kx + kix2 ).

Solution: The response to both the hardening and softening spring are given in the
following Mathcad sessions. In each case the linear response is also shown for
comparison. With the soft spring, the response is more variable, whereas the hardening
spring seems to reach steady state.

OI=="—-————Frip28l=———— M0 8
x0 1= 0.01 ._ " =
o0 =01 m = 100 k = 2000 . =
. ® =100 gy - o
wn = = c
= + Fi i
m (. . .
o= —— =
2 afkom m “m

15{1
Oft,®) =
(*.%) [(—Z-Q-mn-xl - mnz-Xu) — (Xujz + f0-cos Iir.u-tjl ]

Y1
i . LI:t_.Y:I = 2
Z 1= rkfixed (¥ ,0,20,4000,D) (—z-q-mn-‘fl wn 'Yu) — ot (35)° + 1-c0s (w-)
T \oeim W= rkfixed (T ,0,20,4000,L)
ti=2 X =2 xL::‘Wil}
oem = 1+10°
4-
X
xL
t - |
4 [v] 2




2.91*.

2. 74

Compare the forced response of a system with velocity squared damping as

defined in equation (2.129) using numerical simulation of the nonlinear equation to that
of the response of the linear system obtained using equivalent viscous damping as
defined by equation (2.131). Use asinitia conditions, x, = 0.01 m and v, = 0.1 m/swith a
mass of 10 kg, stiffness of 25 N/m, applied force of 150 cos (w,t) and drag coefficient of

o = 250.
Solution:
| Prop 2.82 HHE
— — — F
M=l =g MOS0 Ei=& =250 PO 150 =
FO —
k fl = —
won = [ — m w = 1-wn
m gl req
ceq o= -f b=
ol 31 2 A, E-m
¥ = T =¥ w
Lyl 1
Dit,=) 1= 2 o, #y
—wn K, - — [le-— + 0 cos |[UJ-1::|
TiL |15{1|
N v
Lt,T)

t,=z%0F

Z = rkfixed (3 ,0,30,2000,D)

1
; [(—2-§-mn-‘fl - Lunz-“fu) + f0-cos Iim-tjl ]

W= rkiixed (¥ ,0,30,2000,L)

x = 2517
xL ::W{l} d':ﬂ' =
Jlor? )
15 +
I-W A
a5+
AL

PRI
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2.92*. Compare the forced response of a system with structural damping (see table 2.2)
using numerical smulation of the nonlinear equation to that of the response of the linear
system obtained using equivalent viscous damping as defined in Table 2.2. Use asinitia
conditions, X, = 0.01 m and v, = 0.1 m/s with a mass of 10 kg, stiffness of 25 N/m,

applied force of 150 cos (w,t) and solid damping coefficient of b = 25.
Solution: The solution is presented here in Mathcad

— — —_— F 9
=000 gy mEI0 k= b:i=25  FO:=150 —
- . =
wo = |— T w = 1-wmn ceq
m ceq = 23— g =
= =3 %
vl 1
Dit,¥) = £y
wn -3, |Xu| + 10 coz |[r.u t]l
%4
Yl
Lit,¥T) = 5
+ (—Z-Q-mn-“fl — wn -?u) + f0-cos Iir.u-tjl
% = rkfived (¥ ,0,25 2500, D)
N
t=z x =291

Wi rifixed (Y ,0,25 2500, L)

L = welF

n T

4 [ [ »

Skl




Chapter Three Solutions
Problem and Solutions for Section 3.1 (3.1 through 3.14)

3.1 Calculate the solution to
>‘<+2>‘<+2x=5(t—7r)

x(0)=1 x(0)=0

and plot the response.

Solution: Given: >'<‘+2>‘<+2x:6(t—7r) x(O):l, X(O):O

k C
,=\|— =14l4radls, {=——==0707L w,=wy1-{" =
\/; 2+km d

Total Solution: x(t) =X, (t) + X (t)
Homogeneous: From Equation (1.36)
x, (t) = Ae " sin(w,t +¢)

2
d

A= \/(VO ’ Cw"x")z * (X"wd)z , 9= tanl[—xowd } =.785 rad

0] v, + 8o X,
= x, (t) = 1414 sin(t +.785)
Particular: From Equation. (3.9)

1 o) 1
x (t)= o, e "

sma) e sm t—
Ve o)

But, sin(—t):—sint So, X () e gint =
x(t) =1.414¢"sin(t +0.785) O<t<nr

x(t) =1.414¢™" sin(t + 0.785) —e™sint t>rx
This is plotted below using the Heaviside function.



x (1) = 1.d1d-e " sin(t + 0.785) — e '~ ain (1) [t - n)

xt) o5 1

IAN



3.2

Calculate the solution to
X+2x%+3x =sint +§(t - )
x(0)=0 x(0)=1

and plot the response.

Solution: Given:>’<‘+2>‘<+3x:sint+5(t—7r), x(O):O, X(O):O

K
w, = \ﬁ =1.732 radfs, { = —— = 05774, o, = o, \1-{* =1.414 rad/s

m 2+ km

Total Solution:
x(t):xh+xpl O<t<r
x(t)=x, +x +x, t>x
Homogeneous: Eq. (1.36)
X, (t) = Ae ™' sin(a)dt + ¢) = Ae™ sin(1.414t + ¢)

Particular: #1 (Chapter 2)

a1

x,(t)=X sin(wt—e), where @ =1rad/s. Notethat f =-2=1
p 0 m
f 200 o
=X = 20 = = 0.3536, and 6 = tanl|: f n 2}: 0.785 rad
\/(wnz—a)z) +(2§a)nco) G m@

= x,,(t) = 0.3536sin(t - 0.7854)

Particular: #2 Equation 3.9
1

1 e lien) . _(t-x) .
sz (t) = m—a)de ¢ "(t )Slna)d (t - T) = We (t )S|n1414(t - 7[)
= x,,(t)=0.7071¢ " sin1.414(t - )
The total solution for 0< t<m becomes:
x(t) = Ae'sin(1.414t +¢) +0.3536sin t - 0.7854)
)

%(t) =~ Ae~'sin(1.414t + 9) +1.414 Ae™ cos(1.414t +¢) +0.3536 cos(t — 0.7854)
x(0)=0= Asing-0.25= A= 025

sing
%(0)=1=-Asing +1.414Acos¢ +0.25= 0.75 = o.25-1.414(o.25)i

tan¢

=¢=034and A=0.75
Thus for the first time interval, the response is

x(t) = 0.75¢"sin(1.414t +0.34) + 0.3536sin(t — 0.7854) 0 <t<z
Next consider the application of the impulse at t = &:



X(t) =X, + Xpl + Xp2

x(t) = ~0.433¢ *sin(1.414t +0.6155) +0.3536sin t - 0.7854) — 0.7071¢  “/sin(L414t ~ ) t >
The response is plotted in the following (from Mathcad):

na T

. AL

an

3.3  Calculate the impulse response function for a critically damped system.

Solution:

A

The change in the velocity from an impulse isv, = E while xo = 0. So for a critically
m

damped system, we have from Egs. 1.45 and 1.46 with x, = 0:

X(t) = v te™ "

A

F. o
= x(t) = —te ™'
m



3.4  Calculate the impulse response of an overdamped system.

Solution:

The change in velocity for an impulsev, = % while xo = 0. So, for an overdamped

system, we have from Eqs. 1.41, 1.42 and 1.43:

X (t) = e_g“’nt I:_—VO e_w(n VEE -1t + V—o e—cu(n VEE-1t ]
2 2
20,15° -1 20 \J¢? -1
oot [emwgzm B ew<n\/;21)t}

X(*#
2ma /¢ -1

3.5  Derive equation (3.6) from equations (1.36) and (1.38).

Solution:

Equation 1.36: x(t) = Ae‘g"’"tsm(a)dt + ¢)

. (v, +¢o xo)2 +(X0a)d)2 o
Equation 1.38: A= 1 - ¢=tan| —2<4
wd V0 + gwnxo
Since Xo =0 and vp = % Equation 1.38 becomes
A= V_O = i
o, Mo
=tan*(0 )

So Equation 1.36 becomes

x(t) = miwde‘g“’"t sin(a)dt)which is Equation 3.6
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Consider a simple model of an airplane wing given in Figure P3.6. The wing is
approximated as vibrating back and forth in its plane, massless compared to the missile
carriage system (of mass m). The modulus and the moment of inertia of the wing are
approximated by E and I, respectively, and | is the length of the wing. The wing is
modeled as a simple cantilever for the purpose of estimating the vibration resulting from
the release of the missile, which is approximated by the impulse funciton Fo(t).
Calculate the response and plot your results for the case of an aluminum wing 2 m long
with m = 1000 kg, £ = 0.01, and | = 0.5 m*. Model F as 1000 N lasting over 107%s.
Modeling of wing vibration resulting from the release of a missile. (a) system of interest;
(b) simplification of the detail of interest; (c) crude model of the wing: a cantilevered
beam section (recall Figure 1.24); (d) vibration model used to calculate the response
neglecting the mass of the wing.

= T vieaw with
wing modeled

Fenwith mnssibes 2y el mli b v red

[R:)]

NN bt
I L

167 e L] ;
] : " ! -'.-'.'] I
foreres ]
| x[r}

Sinpliied boam model Vibratios mod ek

ich ]

Solution: Given:
m=1000 kg ¢=0.01

I=4m | =0.5m*
F=1000 N At=10%s
From Table 1.2, the modulus of Aluminum is E =7.1x 10 N/m?

The stiffness is

k= 3;' = 3(7'1Xi2m)(0'5) =1.664x10° N/m

o = \/E =1.29x10° rad/s (205.4 Hz)

m
o, =0 \1-§* =1.29x10°



Solution (Eq. 3.6):

(Fat)e

X(t):m—wd

sine,t = 7.753x 102" sin(1290t) m

The following m-file

t =(0: 0.0001: 0.5);

F=1000; dt =0. 01; m=1000; zet a=0. 01; E=7. 1*10710; | =0. 5; L=4;
wn=sqrt ((3*I *E/ L"3)/ m;

wd=wn*sqrt (1-zeta"2);

x=(F*dt/ (mrwd))*exp(-zeta*wn*t). *si n(wd*t);

pl ot (t, x)

The solution worked out in Mathcad is given in the following:



= 7.1-1010
= 1000 L:=4 I1:=05 F:=1000 At = 107%  zen
= 0.01
_3LE
' ]';. = " g
L wn =~ k= 1664710 wn = 1.29+10°
m
o 2 3
fi ;= —  fn = 205.308 wd 1= wiall — & id = 1.29-10
21 H=
C-wn = 12.9 fat) = 77527107
- ood
t:=0,0.00001 .. 0.4
F _t.wn.t .
(1) = -|{.-'l-.t-e ]l-sm (md-tjl MEtELs
- ood
1-107"
x[t] S
— 0.z 0.3

=110

0.4
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A cam in a large machine can be modeled as applying a 10,000 N-force over an interval
of 0.005 s. This can strike a valve that is modeled as having physical parameters: m = 10
kg, ¢ = 18 Nes/m, and stiffness k = 9000 N/m. The cam strikes the valve once every 1 s.
Calculate the vibration response, x(t), of the valve once it has been impacted by the cam.
The valve is considered to be closed if the distance between its rest position and its actual
position is less than 0.0001 m. Is the valve closed the very next time it is hit by the cam?

Solution: Given:
F =10,000 N At =0.005s

m =10 kg c=18 N-s/m k =9000 N/m

k c
o =,—=30radls {= =0.03 o, =w \1-{* =29.99 rad/s
m 2+km ’

Solution Eg. (3.6):

~Co,t
x(t):%sinwdt
10,000)(0.005)e 0%)
x(t) = ( (2(()) (29299) sin(29.99t)

x(t) = 0.1667¢°* sin(29.99t)m

Att=1s: x(1) =0.1667¢ ¢ 5in(29.99) = -.06707 m

Since ‘x(l)‘ =0.06707 > 0.0001, the valve is not closed.
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The vibration packages dropped from a height of h meters can be approximated by
considering Figure P3.8 and modeling the point of contact as an impulse applied to the
system at the time of contact. Calculate the vibration of the mass m after the system falls
and hits the ground. Assume that the system is underdamped.

=

Solution: When the system hits the grdund, it responds as if an impulse force acted on it.

~Co, t

From Equation (3.6): x(t) = Fe sinm,t  where F =v
mw m

0
d

Calculate vo:
: 1 .
For falling mass: X = Eat

So, v, = gt", where t is the time of impact from height h

h:%gt*2=>t*= 2h

g
v, =/2gh

Let t = 0 when the end of the spring hits the ground

x(t): \/ﬁe‘

The response is Ol sineo t
d

()

Where an, @y, and { are calculated from m, ¢, k. Of course the problem could be solved

as a free response problem with xo = 0, Vo = 4/2gh or an impulse response with impact
model as the unit velocity given.



3.9  Calculate the response of
3x(t) +12x (t) +12x(t) = 35 t)

for zero initial conditions. The units are in Newtons. Plot the response.

Solution: Dividing the equation of motion by 3 reveals;
12 .
o = \/Z =2radls {= W = 1= critically damped

FAt
=3 Vo= ——, XOZO

T

n2 T

ﬂ 01




3.10 Compute the response of the system:
3X(t) +12x(t) +12x(t) = 35(t)
subject to the initial conditions x(0) = 0.01 m and v(0) = 0. The units are in Newtons.
Plot the response.

Solution: From the previous problem the system is critically damped with a solution of
the form

X(t) = (a, +at)e™.
Applying the given initial conditions yields
x(0)=0.01=a and x(0)=0=-2(0.01+4a,0)+a,
= X(t) = (0.01+0.02t)e™

Next add to this the solution due to the unit impulse, which was calculated in Problem 3.9
to get:

x(t) =te™ +(0.01+0.02t)e™*
= X(t) = (0.01+1.02t)e™

x{1) 1= (0.01 + 1.02-1)- 672"

Nz T

ﬂ 0.1 -
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x(t)

3.12

Calculate the response of the system

3x(t) + 6%(t) +12x(t) = 35(t) - 8(t - 1)
subject to the initial conditions x(0) =0.01 m and v(0) = 1 m/s. The units are in Newtons.
Plot the response.

Solution: First compute the natural frequency and damping ratio:
o = ,/E =2radls, {= L 0.5, ®, =2v1-0.5" =1.73 rad/s
" 3 2:2-3
so that the system is underdamped. Next compute the responses to the two impulses:

x(t) = mie‘g“’"t sino,t = 3(1—373)e‘“‘1) sin1.73(t—1) =0.577e'sin1.73t,t >0
o, :

A

F oo
X,(t) =——e " Vsinw, (t-1) =
mo, 3(L.73)

Now compute the response to the initial conditions from Equation (1.36)

e'sin1.73t =0.193e “sin1.73(t - 1),t >1

x, (t) = Ae ' sin(w,t +¢)

A= \/(VO ’ Cw"x")z ’ (Xowd )Z NE tanl[—xowd } =0.071 rad

2
a)d VO + Ca)nXO

= x,(t) =0.5775¢sin(t +0.017)
Using the Heaviside function the total response is
X(t) = 0.577¢™sin1.73t +0.583¢ " sin t +0.017) + 0.193e™" ¥ sin1.73(t — 1)®(t - 1)
This is plotted below in Mathcad:

E—t-mn-t
sin {wd 1] + & &5 gin (wd 1 + @)

—towm [t — 1)
+ [;-Sm[md- (t— lj]l-ﬂbl:t —1)

oo =3-md

05 T+

x[t]

54

k
Note the slight bump in the response at t = 1 when the second impact occurs.

A chassis dynamometer is used to study the unsprung mass of an automobile as
illustrated in Figure P3.12 and discussed in Example 1.4.1 and again in Problem 1.64.
Compute the maximum magnitude of the center of the wheel due to an impulse of 5000 N
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applied over 0.01 seconds. Assume the wheel mass is m = 15 kg, the spring stiffness is k
= 500,000 N/m, the shock absorber provides a damping ratio of {= 0.3, and the rotational
inertia is J = 2.323 kg m?. Compute and plot the response of the wheel system to an
impulse of 5000 N over 0.01 s. Compare the undamped maximum amplitude to that of
the maximum amplitude of the damped system (use r = 0.457 m).

Figure P3.12 Simple model of an automobile suspension system mounted on a chassis
dynamometer. The rotation of the car’s wheel/tire assembly (of radius r) is given by A(t)
and is vertical deflection by x(t).

Solution: With the values given the natural frequency, damped natural frequency, and

impulse are calculated to be:
k FAt
o, =,——— =117.67 rad/s =18.73 Hz, w, =112.25rad/s, X =————=0.014 m
m+J/r (m+J/r)w,

The response is then plotted as

F-At
x(t) = ; "8 gin {ad 1)

m -+ —|-wn
:
D015 = - o o o o o o
0.0075 + /r\

" TN

X ' : \\ e ——

== 0 002 004" 0.06 0.08 0.1

= p0075+

£
o
—
wa
1
r



Note that the maximum amplitude of the undamped system, X, is not achieved.

3.13  Consider the effect of damping on the bird strike problem of Example 3.1.1. Recall from

the example that the bird strike causes the camera to vibrate out of limits. Adding
damping will cause the magnitude of the response to decrease but may not be able to
keep the camera from vibrating past the 0.01 m limit. If the damping in the aluminum is

modeled as { = 0.05, approximately how long before the camera vibration reduces to the

required limit? (Hint: plot the time response and note the value for time after which the
oscillations remain below 0.01 m).

Solution: Using the values given in Example 3.1.1 and equations (3.7) and (3.8), the
response has the form

m v
x(t) = m—be“f“’nt sinm,t = 0.026e ™" sin 260.976t
a)n

Here my is the mass of the bird and m is the mass of the camera. This is plotted in
Mathcad below
mb-v

" me-wn

L :=005 T-an = 13.065-sec

Y '=0026 wn = 261303 wd = Wll'qil - t? wd = 260976

x(t) = VetV lginfwd-t) XM(t) := 001

X =0026"m

005
0.025 + ol
x[t] |III \'I a/‘"\
| | 7™
L A S0 2 SRt SRRk
m[ ] | 1 f 'Il 1 " l‘k / L S
4 1 ™ L 7 Ly ;" T \\ /' 1
- ) 0 | 0.0g 04/ 0.0% 0.08 N/ 0.1
- ZI [t .’. i \ A
\__/"
—0.025 +
005+

t

From the plot, the amplitude remains below 0.01 m after about 0.057 s.



3.14  Consider the jet engine and mount indicated in Figure P3.14 and model it as a mass on
the end of a beam as done in Figure 1.24. The mass of the engine is usually fixed. Find a
expression for the value of the transverse mount stiffness, k, as a function of the relative
speed of the bird, v, the bird mass, the mass of the engine and the maximum displacement
that the engine is allowed to vibrate.

///T‘_—’—
Wing, ground;

F&(D) | > x(1)
Engine, m

Figure P3.14 Model of a jet engine in transverse vibration due to a bird strike.

Solution: The equation of motion is
mx(t) + kx(t) = F&(t)
From equations (3.7) and (3.8) the magnitude of the response is
X|= o
me_
for an undamped system. If the bird is moving with momentum mgv then:

2
x| =2 z‘x‘:Ezk:l(mbvj

mo, Jmk m W

This can be used to provide some guidance in designing the engine mount.
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Problems and Solutionsfor Section 3.2 (3.15 through 3.25)
3.15 Calculate the response of an overdamped single-degree-of-freedom system to an
arbitrary non-periodic excitation.
t
Solution: From Equation (3.12): x(t) = J F (‘L')h(t - r)dr
0
For an overdamped SDOF system (see Problem 3.4)
h(t _ T) — ;e—@)n (t—r) (ewn e —l(t—r) _ e—wn I —1(t—1))d1_
2me /% -1
~to, (t-7) (e“’" ¢aft-1) e @ 2 1(tr)jdr

‘ 1
x(t) = b[F (r)me
= x(t) i g lEli=s) _ gronttafi) ) dt

__ e e“wnf(
2me /% -1 'o[ " (T)e
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3.16 Calculate the response of an underdamped system to the excitation given in
Figure P3.16.

Plot of a pulse input of the form f(t) = F,sint.

Figure P"3.16

Solution:

x(t):mi%e—cwntj[p(f)ewsmwd (t-)]ar

F(t) = Fosin(t) t<m (From Figure P3.16)
Fort<m, x(t) = micgdeg“’"ti(sin e sino, (t - r))dr

2[1+ 20, + wan{ecwnt [(wd —1)sint (o, cost}— (a)d —1)sin o,t-lo, coswdt}

+ 2[“ Zaid +wn2}{e§wnt [(wd —1)sint -, cost} + (cod —1)sina)dt -, coswdt}

Forz>r,: j; f(z)h(t-1)d7 = jo” f(z)h(t-7)d7 + j‘ (O)h(t - 7)d7
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X (t) = mia(’)de“:“’nt ]:(sin e sina, (t - r)) dr

F

=_0 gt
M

X
d

{ - {e@n{(wd—1>sm[wd(t—nn—cwncos[wd(t—nm}

2[1+ 20, + o * —(a)d —l)sina) t—Cw cosw,t

d

o {e@’n{(wﬂ+1)sm[wd(t—fnﬂ:wcos[wd(t—nm}

2[1+ 20, + 0’ ] +(0, ~1)sinw,t - Lo, cos,t

Alternately, one could take a Laplace Transform approach and assume the under-damped
system is a mass-spring-damper system of the form

mx(t) + cx(t) + kx(t) = F(t)
The forcing function given can be written as

F(t)=FR(H (t) - H(t-))sin(t)
Normalizing the equation of motion yields

R(t) + 26w, x(t) + w2x(t) = f,(H (t) - H (t - x))sin(t)
where f, = in: andm, candk aresuchthat0 < { <1.

Assuming initial conditions, transforming the equation of motion into the Laplace domain
yields

f0(1+ e‘”s)
s+ 1)(32 +2lw S+ a)ﬁ)

X(s):(

The above expression can be converted to partial fractions

s\ As+B rs Cs+D
X(s)=f0(1+e )(SZ+1)+fO(1+e )(SZ+ZCws+a)2j

where A, B, C, and D are found to be
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e %o,

(1— a),f)z + (ZCcon)2
B = w’ -1

(1— a)rf)2 + (2(;’wn)2
o %o,

(1—a)lf)2 +(24’con)2
D= (1—w§)2+(2§wn)2
(1—w§) +(2§wn)2

Notice that X(s) can be written more attractively as

a As+B Cs+D s As+B Cs+D
X(S)_ fo 2 + 2 2 + foe 2 + 2 2
s+l s°+2{w s+ s+l s°+2{w s+w;

= 1,(G(s)+e™°G(s))
Performing the inverse Laplace Transform yields
x(t)=fo(g(t)+ H (t-7)g(t - 7))

where g(t) is given below

g(t) = Acos(t) + Bsin(t) + Ce™™' cos(m,t ) + (D_—ngnj e dn(w,t)
Wy

o, isthe damped natural frequency, ®, = w,1- > .

Let m=1 kg, c=2 kg/sec, k=3 N/m, and F,=2 N. The system is solved numerically. Both
exact and numerical solutions are plotted below



07 . . .
Y — Exact Solution
06k i;" \-.. — Numerical Solution
\
/ \
05F / |
! \
{ |
0.4} / \ 0.m7 —
@ l/ \ f i
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g0 / 0018 /
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o2r \
/ \ -0.018
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Time(sec)

Figure 1 Analytical vs. Numerical Solutions

Below isthe code used to solve this problem
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% Establish atime vector
t=[0:0.001:10];

% Define the mass, spring stiffness and damping coefficient
m=1;
c=2;
k=3;

% Define the amplitude of the forcing function
FO=2;

% Cal culate the natural frequency, damping ratio and normalized force amplitude
zeta=c/(2* sgrt(k* m));

wn=sgrt(k/m);

fO=FO/m;

% Calculate the damped natural frequency
wd=wn*sgrt(1-zeta*2);

% Below isthe common denominator of A, B, C and D (partial fractions
% coefficients)
dummy=(1-wn"2)"2+(2* zeta* wn)"2;

% Hence, A, B, C, and D are given by
A=-2* zeta* wn/dummy;
B=(wn"2-1)/dummy;

C=2* zeta* wn/dummy;
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D=((1-wn"2)+(2* zeta* wn)"2)/dummy;

% EXACT SOLUTION
%

khkhkkkhkhkkhkhhkkhhhkkhhhkhhhkhdhhkhdhhkhdhhkhdhhkhkhhkhdhhhkhhhkhhhkhdhhkhdhhkhdhhkhdhhkhdhkhdhkkhdkkdkxk,%x%x
*
%
khkhkkkhkhkkhkhhkkhhhkkhhhkhhhkhdhhkhdhhkhdhhkhkhhkhdhhkhkhhhkhhhkhhhkhdhhkhdhhkhdhhkhdhhkhdhhkhdhkkhdhkkdkxk,%x%x
*
for i=1:length(t)
% Start by defining the function g(t)
g(i)=A*cog(t(i))+B* sin(t(i))+C* exp(-zeta* wn* t(i))* cos(wd* t(i)) +((D-
C* zeta* wn)/wd)* exp(-zeta* wn*t(i))* sin(wd*t(i));
% Before t=pi, the response will be only g(t)
if t(i)<pi
xe(i)=f0*g(i);
% d isthe index of delay that will correspond to t=pi
d=i;
else
% After t=pi, the responseis g(t) plus adelayed g(t). The amount
% of delay ispi seconds, and it is d increments
xe(i)=f0* (g(i)+g(i-d));
end;
end;

% NUMERICAL SOLUTION
%

R R R R R b ke e R R R ok e R R o R R Rk ke e R R
*

%

R R R R e b ke e b b e R R R ok e R R o o R R Rk ke R b b

*

% Start by defining the forcing function
for i=1:length(t)
if t(i)<pi
f(i)=fO*sin(t(i));
else
f(i)=0;
end;
end;

% Define the transfer functions of the system
% Thisisgiven below
% 1
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06 Sh\2+2* zeta* wn+wn”2

% Define the numerator and denominator
num=[1];

den=[1 2* zeta* wn wn"2];

% Establish the transfer function
sys=tf(num,den);

% Obtain the solution using Isim
xn=lsm(sysf,t);

% Plot the results

figure;

set(gcf,'Color','White');

plot(t,xet,xn,--");

xlabel (‘'Time(sec)');

ylabel (‘Response);

legend(‘Forcing Function’,'Exact Solution’,'Numerical Solution’);
text(6,0.05,\uparrow','FontSize', 18);

axes('Position’,[0.55 0.3/0.8 0.25 0.25])
plot(t(6001:6030),xe(6001:6030),t(6001:6030),xn(6001:6030),'--");

3.17 Speed bumps are used to force drivers to slow down. Figure P3.17 isamodel of a
car going over a speed bump. Using the data from Example 2.4.1 and an
undamped model of the suspension system (k = 4 x 10° N/m, m = 1007 kg), find
an expression for the maximum relative deflection of the car’ s mass versus the
velocity of the car. Model the bump as a half sine of length 40 cm and height 20
cm. Note that thisis amoving base problem.
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Figure P3.17 Modéd of acar driving over a speed bump.

Solution: Thisis abase motion problem, so the first step isto trandate the
equation of motion into a useable form. Summing forcesyields in the vertical
direction yields
mx(t) + k(x(t) - y(1)) =0
were the displacement y(t) is prescribed. Next defined the relative displacement
to be z(t) = x(t)-y(t), the relative motion between the car’ s wheel and body. The
equation of motion becomes:
mz(t) + my(t) + kz(t) = 0 = mz(t) + kz(t) = —my(t)
Substitution of the form of y(t) into this last expression yields:
mz(t) + kz(t) = mY o’ sina t(@(t) - (t - 1,))

where @ isthe Heavyside step function and a, is the frequency associated with
the bump. The relationship between the bump frequency and the car’ s constant
velocity is

2r V4

waZ_KV:ZV

where v is the speed of the car in m/s. For congtant velocity, the time t =v/,

when the car finishes going over the bump.
Here, z(t) is From equation (3.13) with zero damping the solution is:

t
2(t) = ij f(t-7)sinw rdr  t<t,
mo_ <
Substitution of f(t) =y(t) yields:
Y(l)z t
z(t)=—=2 Jsin(wbt —-o,7)sinw tdr =
n 0

t
2
Ycob

1 sin(a)bt —(o, + a)b)r) sin(a)bt +(w, - a)b)r)
w 2 —(0, +o,) o, -0,

n 0

Yo! 1 : :
= > > (a)nsma)bt—a)bsma)nt) t<tl
(Dn wn - wb

where the integral has been evaluated symbolically. Clearly aresonance situation
prevails. Consider two cases, high speed (w, >> ) and low speed ((o, << ®,))

as when the two frequencies are near each other and obvious maximum occurs.
For high speed, the amplitude can be approximated as

Yo! o

2
b a)b
2

wn wn - a)b

Yo

b . : B .
—— ((a)n /wb)smwbt—smwnt)~ sinw t
wn wn - wb

For the values given, this has magnitude:



2] -

::e <<
—
:81\; ~ ‘ S|
[
S <
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Thisincreases with the cube of the velocity. Thusthe faster the car is going the
more sever the bump is (larger relative amplitude of vibration), hence serving to

dow motorist down. A plot of magnitude versus speed shows bump sizeis

amplified by the suspension system.

5 k
k=410 m .= 1007 wh 1= [—
m
L:=04 Y:=02
2 -
JT JT
i 12 A 3
Z(v) =
wil 12
ot~ 2 4
- L B
1 T
0.75 - -
z(v) p,/
— 05+
b 4
025t .
5 10
¥
For dow speed, magnitude becomes
2
Y(”] Vo
( n
20|~ | =
o \0 -0,

A plot of the approximate magnitude versus speed is given below

wn = 1993
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05 7

0.38 +
2(v) /

023 T /

I RER J/

L'
Clearly at speeds above the designed velocity there is strong amplification of the
bump’ s magnitude, causing discomfort to the driver and passengers, encouraging
a slow speed when passing over the bumb.

3.18 Calculate and plot the response of an undamped system to a step function with a

finiterisetimeof t, forthecasem=1kg, k=1 N/m,t, =4sand F,= 20 N. This
function is described by

Solution: Working in Mathcad to perform the integrals the solution is:
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= ——————————— 314 [FE
k =
=1 k=1 FO =20 LEIIL:=J; =
rlly o
x1(t) = - J T-smlit—'r) dr
- oo 4 1]
x1(t) = %- (ml.?in)- (t — =zin(t))
1
X2 (t) :=‘ l i -(1 —%)-sm[t—*r:l]d*r i
m- oL
4
-1 FO 1 Fo
201 = —(t—4]- —zinft — 43
X2 (1) y (t—d) (m.mn) +¢1 sin (1t — 4) (m-mn]
n(t) = xlit) + x2(t)-$ (1 —4)
1 FO _: FO _ 2
4 |IZ|'.|1 I'.lJl'L:| |IZ|'.|1 l'.l.'ll'l.:I
50
20 T
x[t]
10 -
0 5 10 15 -
[

J il



3- 28

3.19 A wave consigting of the wake from a passing boat impacts a seawall. It is
desired to calculate the resulting vibration. Figure P3.19 illustrates the situation
and suggestsamodel. Thisforcein Figure P3.19 can be expressed as

£(0)- F0[1—%] 0<t<t,

0 t>t

0

Calculate the response of the seal wall-dike system to such aload.

1 o

Tty

i
|
.

WA
i
[~

Solution: From Equation (3.12): x(t) :_t[ F(r)h(t—r)dr
0

From Problem 3.18, h(t — 1) = isin o, (t - r)for an undamped system
Mo

n

0' x(t):ﬁ j e [1__}.% (t_f)df}
()= j s, (1-c)oe-L | rsina t- )df}

00

After integrating and rearrang| ng,

x(t) = :To[wisin ot —t} + %[l— coswt] t<t,

0

Fort >t, j; f(1)h(t - 7)dt = jot f(t)h(t - 7)d7 + j: (O)h(t - 7)d7

=2 ] a(l—tﬁ]smwn(t—f)dr]

nf o0 0

()= | § st cJoe- £ cano - e

nfo0 00
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After integrati ng and rearranging,

x(t) o

3.20 Determine the response of an undamped system to aramp input of the form F(t) =
Fot, where F,isaconstant. Plot the response for three periods for the case m=1kg, k =
100 N/m and F, =50 N.

sin, (t— t)]——[coswt] t>t,

Solution: From Eg. (3.12): x(t)

I F()h(t—)dr

From Problem 3.8, h(t—r):isinwn(t—r)for an undamped system.
mw

n

Therefore,

()= || ()= |= 5 ] csn e o

n

After integrating and rearranging,

F F_F

x(t): : i—isinwr R

mo, | ©, o " k ko,

Using the valuesm = 1 kg, k= 100 kg, and F, =50 N yields

x(t) = 0.5t - .05sin(10t) m
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3.21 A machine resting on an elastic support can be modeled as a single-degree-of -
freedom, spring-mass system arranged in the vertical direction. The ground is subject to
a motion y(t) of the form illustrated in Figure P3.221. The machine has a mass of 5000
kg and the support has stiffness 1.5x10° N/m. Calculate the resulting vibration of the
machine.

- (s}
[ [EXE

Solution: Given m= 5000 kg, k = 1.5x10° N/m, o, = ‘/%1 =0.548 rad/s and that

the ground moation is given by:

2.5t 0<t<0.2
y(t)=40.75-1.25t 0.2<t<0.6
0 t>0.6

The equation of motionis mX +k(x—y) =0 or mX + kx = ky = F(t) Theimpulse
response function computed from equation (3.12) for an undamped systemis

h(t—1) = %Sin o (t-1)

This gives the solution by integrating a yh across each time step:
X() = —— ['ky()sin, (t- 1)z = o, [ y(@)sine, (t- 7)dt
mo, ~° 0

For theinterval 0<t < 0.2:
X(t)=o, jot2.51'sina)n(t —-1)d7
= X(t) = 2.5t — 4.56sin0.548t mm 0<t<0.2
For theinterval 0.2<t < 0.6:
X(t) = o j0°'22.5rsin o (t-7)dr+o, j;z(o.75—1.251)sin o, (t-1)dt

=0.75-0.5c0s0.548(t — 0.2) —1.25t + 2.28sin 0.548(t — 0.2)
Combining this with the solution from the first interval yields.
X(t) =0.75+1.25t — 0.5c0s0.548(t — 0.2)
+6.48sin0.548(t — 0.2) — 4.565in0.548(t —0.2) mm 0.2<t<0.6
Finaly for theinterval t >0.6:
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x(t) =0, jo°'22_5tsin o (t-7)dr+o, jo(f:(o.75—1.25t)sin o, (t-7)dT+ o, J;(O)sin o (t-7)dr

=-0.5c050.548(t — 0.2) — 2.28sin0.548(t — 0.6) + 2.28sin0.548(t — 0.2)
Combining this with the total solution from the previous time interval yields:
X(t) =—0.5c050.548(t — 0.2) + 6.845sin0.548(t — 0.2) — 2.28sin 0.548(t — 0.6)

—4.56sin0.548t mmt>0.6
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3.22 Consider the step response described in Figure 3.7. Calculatet, by noting that it
occurs at the first peak, or critical point, of the curve.

Solution: Assumet,=0. Theresponseisgiven by Eq. (3.17):
F F
x(t) = 2 - ——2—e“" cos(w,t - ¢)
k ky1-¢2
To find t,, compute the derivative and let X (t) =0

()= fgz [~to,& 5 cos(w,t— ) + & (-0, Jsin(w,t - 9) | =0

:—Cwncos(wdt—q))—wdsin(wdt—q)):0

_Cwn

:>tan(a)dt—</))= .

d
_Ca)n

d

}(n can be added or subtracted without changing the

t= i[rz +to+ tan‘l(_gw” j]
wd wd

But,</):tan1[ 6 ]
1-¢?

0,

wdt—q)—zr:tan‘l[

tangent of an angle)
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3.23 Calculate the value of the overshoot (0.s.), for the system of Figure P3.7.

Solution:

The overshoot occurs at tp =7

Substitute into Eq. (3.17):

F
—Le
k
3.24 Itisdesredtodesign asystem so that its step response has a settling time of 3 s
and atimeto peak of 1 s. Calculate the appropriate natural frequency and

damping ratio to use in the design.

—Co, ]y

0S. =

Solution:

Givent =3s,t =1s

Settling time:
t = 35 =3s =fw_= 35 =1.1667 rad/s
* fo, "3

Peak time:

T
thw—:1s =0, =0 1-* = radls
d

2 2
1.1667 1.1667
o, 1—[ ) :n:wnzll—[ j}:nz
o, o,

{ L 13611

n 2

w

n

} =’ =0’ -1311=7" = »_=3.35rad/s



Next use the settling time relationship to get the damping ratio:
¢ = 1.1667 _ 1.1667 £ =0.3483
o, 3.35 e
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3.25 Plot the response of a spring-mass-damper system for thisinput of Figure 3.8 for

the case that the pulse width is the natural period of the system (i.e., t, = vw,).

Solution:

The values from Figure 3.7 will be used to plot the response.

F,=30N

k =1000 N/m
=01

o = 3.16 rad/s

From example 3.2.2 and Figure 3.7, with t = " wehavefort=0to t;,
0]

F want

X(t):_O_Foe—cos(a)dt—q)) Whel’e¢:tanl[ CC J
1- 2

X(t) = .03 - .03015e % cog(3.144t-.1002)  O<t<t,

Fort>t,,

-Gzl ol oo

X(t) = 0.0315e3% { 1.3691c0(3. 144t — 3.026) — cos(3.144t - .1002)} t > t,

The plot in Mathcad follows:

w 1= 3.144
x(t) = 0.03 — 0300 " #% % ons [w-t — 1002) + [ (0.0315) - e”#1% % (13691 -cos [w-t - 3.226)

0.4 q

0z T

/\/\/\M
VA

x[t]
- 1}
-0z /

— |03 |IUJ't -

.1

1
1
1
1
i
1
o
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

)2

i1
t— —
w




Problems and Solutions Section 3.3 (problems 3.26-3.32)

3.26  Derive equations (3.24). (3.25) and (3.26) and hence verify the equations for the Fourier
coefficient given by equations (3.21), (3.22) and (3.23).

Solution: For n # m, integration yields:

‘T[ Sinantsinm(thdt: Sin(n—m)wt Sln(n+m)th]
0

. 2 n—m) a)2(n+m)

ol e

~ sin[(n - m)(27r
2 m)

Since m and n are integers, the sine terms are 0, so this is equal to O.

Equation (3.24), for m = n:

T

:I—Lsin 2n Z—E T
) 2 8nrm T

Since n is an integer, the sine term is 0, so this is equal to T/2.

¢ 1
[ sin®notdt=| St-
) 2

sin(anTt)}

T T . T
= E—%sm[mn] =3

4nw,

0 m#n

.
So, J. sinantsinmthdt:
5 T/2 m=n

Equation (3.25), for m#n



T

b[ cosna)thosma)Ttdt—:Sizn((:_nr?));)T : 3'2”((7;': nT)) 10
:sin (n m)( ) } sm{ n+m( jT}
2(n m)w 2(”+m)
sm[(n m)(ZE)}_S'”[(nJ’m)( )} -0
2(n m)coT 2(n+m)

Since m and n are integers, the sine terms are 0, so this is equal to O.

Equation (3.25), for m = n becomes:

L sin(2ncoTt)}

T

:I+Lsin 2n Z—E T
. 2 8nrm T

T
2

4nw,

T 1
_[coszna)Ttdt =|=t+
5 2

T T .
=5+ %sm[mn] =

Since n is an integer, the sine term is 0, so this is equal to T/2.

.
0 m#n

So, J. cosantcosmthdt:
5 T/2 m=n

Equation (3.26), form#n:

Jcosnwtsmmw tdt = cos(n m)wt COS(”+m)th
0 (n m) (n+m) 0

Ay ety] L

2(n m) 2(n+m)a)T 2{m n) . 2(m+n)
_ cos[( )(Zn)} cos[(n + m)(Zn)} 1 s 1 o
2(n m) (n+m) o, 2(m—n)a)T 2(m+n)coT

Since n is an integer, the cosine term is 1, so this is equal to 0.



;
So, J. cos ne, tsinme, tdt =0

0
Equation (3.26) for n = m becomes:

2nw anrz

T
J cos antsin na)Ttdt = [
N

0

;
Thus J. cos antsin na)Ttdt =0
0

.
] T .
smzna)Tt} =—sin’2zn=0
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3.27 Calculate b, from Example 3.3.1 and show that b, = 0, n = 1,2,...,e0 for the triangular

force of Figure 3.12. Also verify the expression a, by completing the integration
indicated. (Hint: Change the variable of integration from t to x = 2rnt/T.)

.
Solution: From Equation (3.23),b, = %J' F(t)sin ne, tdt . Computing the integral yields:

0

2[™ (4. ). f af, 1.
b == J —t-1 smantdt+J 1-—| t—— [|sinnw,tdt
Tl \T 2 T 2
2 4 T/2 T/2 T 4 T
b == —j tsinne, tdt — J sin antdt+3J sin antdt——J tsin ncoTtdt}
T T 0 0 T/2 TT/Z

2zn
Substitute x = nw,t = %t

n 0 n

0 n n

b, :i[iT xsinxdx—iff1 sinxdx+32_Tn sinxdx—iZTn xsinxdx}

2 (.
- —(smx— XCOS X
mon

. n n 27n
= — —(smx—xcosx)‘ +cosx‘ — 3c0s X
tn| n 0 0

27m:|
1

2
=— —(—nncosnn)+cosnn—1—3+30057rn——( 27rn+7rncosnn
n| zn mn

:nln[ 2coszn+4cosan—4+4— Zcosnn]__[o]

From equation (3.22), a_ =

2 T
?‘!. F (t)cos e, tdt

2[7¢ (4 T4, T
a == J —t-1|cosnw, tdt + J 1-—|t—— ||cosnm,tdt

Tl \T 2 T 2

2 4 T/2 T/2 T 4 T
a == —_[ tcosnew, tdt — J cosantdt+3J cosna)Ttdt——J tcos neo, tdt
" T 0 0 T/2 TT/2

27n
Substitute x = nw,t = Lt



1 2 n n 2zn 2 2zn
a :—{—J xcosxdx—J cosxdx+3j cosxdx——j xcosxdx}
n 0

" n zn
2rn
n

0 n zn

1| 2 ) . )
=— —(cosx+xsmx)‘—smx‘ +3sinx
zn| zn 0

2zn 2 .
- —(COSX —SIn X)
zn nn

= %[%(cosnn —1) - %(1— cosnn)}

2
=— 2[cos;rn—l—lﬂ:osnn]
z°n

0 n even
= 4 [cosnn—l] =4 -8
’n? n odd

T
n°n?




3.28 Determine the Fourier series for the rectangular wave illustrated in Figure P3.28.
Ao
1
L 2w 3T
I
-1
Solution: The square wave of period T is described by
1 0<t<
F(t)= i
-1 n<t<L2rn
Determine the coefficients a ,a ,b from direct integration:
2 T
a, = ?j F(t)dt
2 T 2r
2] -] |
=[]
—t
ﬂ 0
1 1
=—|n-2n+nm|=—(0 =a =0
| 1=-(0) 2
27 _2m_2
—J F cos ne, tdt, where @, T
T T T on
2| 7 2 11 1 x
—D cos ntdt — j cosntdt} [ sinnt ‘ ——sm nt | }
2r| s, ! | n g
1
—1| sin sin{n2x ) +sin(nz
=—[sin(nz)sin(n2r) +sin(nz) | = 0
2 T 2 T 2
b = ?Z[ (t)sm(oTtdt = EL[ sinntdt — ;[ sin ntdt}
= l{—lcos nt ‘ - 1cos nt 2”}: i[—cos nr+1-1-cosnrz | = i[1— cosnr |
T n r n n
If niseven, cosnt = 1. If nisodd, cosnrt = -1
0 neven
So, b =
T n odd
zn

Thus the Fourier Series collapses to a sine series of the form



oo

F (t) = ibﬂ sinnt= ) isin nt
n=1

n=13,- n

The Vibration Toolbox can also be used:
t=0:pi/100:2*pi-pi/100;
f=-2*floor(t/pi)+1;

vtb3_3(f',t',100)

[a,b]=vth3_3(f',t',100)

Note that vtb3 3 always gives some error on the order of delta t (.01 in this case). Using a
smaller delta t reduced the error.
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3.29 Determine the Fourier series representation of the sawtooth curve illustrated in Figure

Solution: The sawtooth curve of period T is

F(t)=%t 0<t<2r

Determine coefficients a ,a ,b, :

2" 2% (1 1)1
aoz?l F(t)dt:EJ (ﬂtjdt:(z_yzzJEtz

= 4—71[2[47:2 -0]=1
a, = E‘T[ F(t)cos ne, tdt, where @, 275 27r
T T 27r

2r 2r
:i _[ it cos ntdt :i f tcos ntdt
2r|y \2m 2m?| 5

2r

0 = 2:[2 {%(1—1)%(0—0)} =0

i[icos nt+ = ! tsin nt}
2 n

b :E]. F(t)sin no. tdtzi ( ] |nntdt:| {J. tsmntdt}
n T g T 2

m|

:iz izsinnt—ltcosnt iz 0- 0 —-— 27r 0)
2zl n n ]

_ L (z2m)
272\ n n

Fourier Series
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3.30 Calculate and plot the response of the base excitation problem with base motion specified
by the velocity

y(t) = 3e™2d(t) m/s

where ®(t) is the unit step function and m = 10 kg, { = 0.01, and k = 1000 N/m. Assume
that the initial conditions are both zero.

Solution: Given:
y(t) = 3e‘“2u(t) m/s
m=10 kg, £ =0.01, k =1000 N/m

x(0)=x(0)=0

From Equation (2.61):
mx +c(x—y)+k(x—y)=0
mx +cX + kx = cy + ky
Integrate by parts to find y(t):
y(t)=] y(t)dt=3e""pt)dt
Let

When
t> 0,u(t) =1, so y(t) = 6(1— e’“z)

S0, mX +cX + kx = c(3e*“2) + 6k(1_ et/z)

Since ¢ =2¢{vkm =2 kg/s,
10% + 2X +1000x = 6000 —5994e "2

The solution is given by equation (3.13):



t

x(t)= mi%eﬁwnt J [F()errsino, (1-=)]ar

o, = \/E =10 rad/s

m
o, = ® 1-§? =10 rad/s
F (t) = 6000 — 59942

t

_i -0, _ ~712) f0.17 o _
x(t)—looe “! [(6000 5994e )e ) sm(1o(t r))}dr

x(t)=60e—o-n{i e sinf10(t—)Joe - | e—o-msin[m(t_f)}df}

0
After integrating and rearranging

x(t) = 6-5.979e"/2 — 0.0295c0510t — 0.2990sin10t m

10 T

- 46
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3.31 Calculate and plot the total response of the spring-mass-damper system of Figure 2.1 with
m =100 kg, £ = 0.1 and k = 1000 N/m to the signal of Figure 3.12, with maximum force
of 1 N. Assume that the initial conditions are zero and let T = 2w s.

Solution: Given:
m =100 kg, k =1000 N/m,{ =0.1,T =275, F . =1IN,

x(O) = X(O):O, o, :\/%:3.16 rad/s, @, =w\1-{* =3.15rad/s, o, :ZT—E =1 rad/s

From example 3.3.1 and Figure 3.10,
0 n even

F(t)nz:{ a cosnt, a = o

’n?

So, m>'<+c>'<+kx:iancosnt (n odd)
n=1

The total solution is

X(t)th(t)+§{ xm(t) (n odd)

From equation (3.33),

X, (t) = 3,/ m s cos(na)Tt—q)n)

[i:~{r ] +T220,00, T

200 nw. :
¢ = tanl[—C n_T j: tan’l(O 6325n)

o’ —n’*w? 10-n?
e 000811 Cos[m B tanl(o.eszsznﬂ
n*[ n*~19.6n” +100 | 10-n



So,

x(t) = A" sin(a)dt - 9) +n§jI . [n4 __1050602% 100}1/2 cos[nt - tanl(%ﬂ (n odd)

x(t) =—{w Ae “'sin (a)dt - 0)

+ o, Ag cos(a)dt - 9) + 2 0.00811 —sinnt—tan™ 0'6325;]

= n[n“ ~19.6n? +1oo] 10—-n

(n odd)

) = -0.00811 0.6325n
x{0)=0=—Asin6 + cos nt—tan‘l[ H n odd
) zi n?[n*~19.6n2 +100T'2 [ 10-n’ (n oca)

0=-Asinf6-0.00110
x(O) =0={w_Asing+w, Acos6

+i —0.000569 (n odd)

= | [n*-19.6n° +100]1/2[0.00493n2 +1]
0={w_Asin6 +w, Acosé —0.001186

So A =0.00117 mand 6 =-1.232 rad.

The total solution is:

x(t) = 0.00117€*%" sin(3.15t +1.23)

+) —0.00811 — co{nt—tan‘l(o'egzsznﬂ m (n odd)
n=1 | n? [n“ —19.6n° +100} 10-n
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3.32 Calculate the total response of the system of Example 3.3.2 for the case of a base motion
driving frequency of wy, = 3.162 rad/s.

Solution: Let m, = 3.162 rad/s. From Example 3.3.2,

F (t) =cYw, cosm,t +KYsinm,t = 1.581cos(3.162t) +50sin (3.162t)

Also,

k c
o =,—=3162rad/sand { = =0.158
\/; 2+ km
o, = o 1-§? =31.22 rad/s

The solution is

1/2

a)rf + (ZCCOb)Z
(02 - w2) +(2t0,0,)
x(t) = Ae™ sin(31.22t + 9) + 0-0505008(3.162t - ¢2)

200, @
¢, = tan‘{%} =0.0319 rad
wn - wb

x(t) = Ae"'sin (a)dt + 0) +oY cos(cobt —, - ¢2)

®
0, = tan‘l( " j:1.54 rad
20w,

So,
x(t) = Ae™sin(31.22t +6) +0.0505c0s(3.162t -~ 1.57)

x(t) = ~5Ae™ sin(31.22t + 6) + 31.22Ae”™ cos(31.22t + 8) - 0.16sin(3.162t — 1.57)
= x(0) = 0.01= Asin6 +0.0505(0)
= %(0) = 3-5Asin6 +31.22 Acos6 +0.16(1)

So, A=0.0932 mand 6 =0.107 rad

The total solution is

x(t) = 0.0932¢™ sin (31.22t +0.107) + 0.0505c0s(3.162t ~ 1.57) m
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Problems and Solutions for Section 3.4 (3.35 through 3.38)

3.35 Calculate the response of
mX +cX + kx = F O(t)
where ®(t) is the unit step function for the case with xo = vp = 0. Use the Laplace
transform method and assume that the system is underdamped.

Solution:

Given:
mX +cX + kx = F u(t)

F
X+ 20w X+ o2x =2 u(t) ()
m
Take Laplace Transform:

$?X(s) + 28w X (S) + w2 X (s) = %[%j

_ F/m [ F, w?
X(s)= 2 2\ 2 2 2
(s +2{w s+ ! )s mo, s(s +2{w s+ a)n)
Using inverse Laplace tables,

x(t) = % —~ kfﬁeg“’"t sin (a)nall— £+ cosl((,“))
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Using the Laplace transform method, calculate the response of the system of
Example 3.4.4 for the overdamped case (£ > 1). Plot the response for m = 1 kg, k
=100 N/m, and { = 1.5.

Solution:
From example 3.4.4,

mx + cx + kx = 6(t)

X+ 200 %+l = %5(0

¢>1

Take Laplace Transform:

$?X(s) + 28w sX(s) + w2 X (s) = 1
X (s) = 1/m 1/m

S +20w s+ w? - (s+a)(s+h)

Using inverse Laplace tables, a = —{w_+ wn\/CZ -1, b=-{o - wn,/gz -1

—fo,t

€ W AJC? -1t - szlt
x(t):—[e"g —e ™ }
2me /% -1

—-15t

Inserting the given values yields: x(t) = ——| e***® — g8 | m
gthe g y (t) 22_36[ ]

) = e lj‘t‘ JLst - 11184
2236

00N
_3 |

8x10™H
3 |
6107 '

|
0

2407
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3.37 Calculate the response of the underdamped system given by
mX +cx +kx = Fe™
using the Laplace transform method. Assume a > 0 and that the initial conditions
are all zero.
Solution:

Given:
mx + cX + kx = Foe‘at a >0, initial conditions=10

Rewrite:

at

F
X+20m X +w’x =—Le
m
Take Laplace Transform:

i , F( 1
$X(s) + 20w sX(s) + w; X(s) = ﬁ[m}

Folm

s’ +20w s+ a)rf)(s +a)

X(s):(

For an underdamped system, the inverse Laplace Transform is

- I:0 ot m : _ -t
X(t)_[m(zgwna—wj—az)]{e [ o, sm(wdt)+cos(wdt)} e }
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3.38  Solve the following system for the response x(t) using Laplace transforms:

100X (t) +2000x(t) =506(t)

where the units are in Newtons and the initial conditions are both zero.

Solution:

First divide by the mass to get
X +20x(t) =0.56(t)

Take the Laplace Transform to get
(s*+20)X(s)=0.5

So

0.5

X(s) =
(®) s +20

Taking the inverse Laplace Transform using entry 5 of Table 3.1 yields

05 o
\/5 s2 + @2

1 .
= X(t) = —=sin @t

NG

X(s) = where o = \/%




Problems and Solutions Section 3.5 (3.39 through 3.42)

3.39 Calculate the mean-square response of a system to an input force of constant PSD, S,

and frequency response function H (a)) = 10
i3 +2 ja)i

Solution:

Given: S, =S and H (w) = 3+1§j
®

The mean square of the response can be found from Eqs (3.66) and (3.68):
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3.40 Consider the base excitation problem of Section 2.4 as applied to an automobile model of
Example 2.4.1 and illustrated in Figure 2.16. In this problem let the road have a random
stationary cross section producing a PSD of Sp. Calculate the PSD of the response and
the mean-square value of the response.

Solution: Given: S =S,
From example 2.4.1: m =1007 kg, ¢ = 2000 kg/s, k = 40,000 N/m
2000

— C —
¢ 2Jkm  24/40000-1007

=0.157  (underdamped)

So,
— 1 = 1
H (a)) Kk—ma? + jcw  4x10* 10070 + 2000 jo
H(o) = e
(4><104—1007a)2) +(2000)" joo?

2 1
‘H ((0)‘ T 1.01x10°0* — 4.06 10" @ +1.6 x 10°

The PSD is found from equation (3.62):
5. (o) =M (o)'s, (o)
1

S =
b (a)) 1.01x10%w* —8.46 x10"w? +1.6 x10°

The mean square value is found from equation (3.68):

|2

dw

410" —1007w? + 2000 jo|
Using equation (3.70) yields

S

T2 — 0

- 8x10Y
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3.41 To obtain a feel for the correlation functions, compute autocorrelation Ry(t) for the
deterministic signal Asinmnt.

Solution: The autocorrelation is found from
T

2
R,(7) = lim % [ Asin(a,t) Asin(a, (t + 7))t

T

N .
= ‘!m ?:[sm(a)nt)sm(wnt)cos(wnr)dt
AT
+1im ?Jsin(wnt)cos(a)nt)sin(a)nr)dt
0

-0
Simplifying yields:

A*cos(w, 7)
2

R, (7) =
3.42 Verify that the average x — X is zero by using the definition given in equation (3.47).

Solution:

T

The definition is T = lim = j f(t)dt. Let
0

ToeT

T—ooo T—oo

- 17 17
f = lim = [x(t)dt - lim = [ xdt
T 0 T 0



Problems and Solutions Section 3.6 (3.43 through 3.44)
3.43 A power line pole with a transformer is modeled by
mX +kx = -y
where x and y are as indicated in Figure 3.23. Calculate the response of the relative

displacement (x —y) if the pole is subject to an earthquake base excitation of (assume the
initial conditions are zero)

Solution: Given: mX +kx = -y

Al1-L| o<t<at
y=1 U 4

(0)=x(0)=0

The response x(t) is given by Eq. (3.12) as
«()=] F()h(t—7)or
0

where h(t — r) = isin o, (t - 1') for an undamped system
me_

For OStSZtO,



x(t) = ;[A( —é][miunjsinwn (t-7)dz

A t 1 .
x(t)= 1-—+ SiInmw t—cosw t
mwz t ) n n

0 tOn

For t>2to,

x(t):zf A[i_%j(mio Jsmwn (1-7)ar

x(t) = mﬁ‘)z LO; (sin o t-sinm (t - 2t0)) —Cosm t—Ccosm, (t - 2t0)}

Find y(t) when0 <t <2t ,

o4

y(t)= At—zit2 +C,

0

Ao, A
y(t)==t*——t*+Ct+C
() 2 60 1 2

Using IC's yields C; = C, = 0. Find y(t) when t > wty:

y(t)=0
y(t)=c,
y(t)=ct+c,

Using IC's yields C3 = C4 =0. The relative displacement x(t) — y(t) is therefore:

For OstSZtO

x(t)— y(t) = mﬁ)z {1—%+ 2) sina)nt—coswnt}—gt2 +6—'i;t3

0 0""n

For t > 2t,

x(t)—y(t): 2{ 2) (sinwnt—sinwn(t—2to))—cosa)nt—coswn(t—2t0)}
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3.44  Calculate the response spectrum of an undamped system to the forcing function

Fosinﬂ—t OStStl
F(t)= t
0 t>t

1
assuming the initial conditions are zero.

Solution: Letw=m/t. The solution is the homogeneous solution x(t) and the
particular solution xp(t) orx(t):xh(t)+xp(t). Thus

) F )
x(t) = Acosw t+ Bsinw t + 0 > |sinwt
k — mw

where A and B are constants and ay, is the natural frequency of the system:
Using the initial conditions x(O) = x(O) =0 the constants A and B are

-Fo
A=0, B= 0
wnik—mwzi

so that x(t) :%{sinwt—wﬂsinwnt}, o<st<t
1-(o/o,

Which can be written as (where 6 = F / k the static deflection)
X(t
(): L ]z{sinﬂtfsinzm},oqql

o
[T
(Ztl

and wheret =27 / @ . After t; the solution is a free response

x(t) = A'cosw t+B'sino t, t>t
where the constants A' and B' can be found by using the values of x(t = t;) and
X(t = tl), t>t,. This gives

T . 2mt ' L
x(t :tl) = a{—gsm . 1} =A'coso t +B'sinw t,
1

T T 2t )
X(t:tl): {—t——t—cos 1}=—conA'SIna)nt1+oonB'coscont

T
where

These are solved to yield



ar .
A'=—sinw t,

ot i

ni

So that after t; the solution is

x(t) _ (T/tl)

o 2{1—(1/ 2t

B':—a—ﬂ[1+ cosot, |

] {smzﬂ(t

wntl

i_ -

T 7T

]

—sin2x—
T

t
],tztl



Problems and Solutions for Section 3.7 (3.45 through 3.52)
3.45 Using complex algebra, derive equation (3.89) from (3.86) with s = jw.

Solution: From equation (3.86):

1/2

_ L [ L J
m(jo ) +(cio)+k | \k=mo®—cjo

\H (iw)\ = L — which is Eq. (3.89)

l=mo] +(ca)

3.46  Using the plot in Figure 3.20, estimate the system’s parameters m, ¢, and k, as well as the

natural frequency.

Solution: From Fig. 3.20
1 2=k=05

k
/k
w=wn=0.25= —=m=8
m

1. 4.6 = ¢=0.087
cw



3.47
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Using the values determined in Problem 3.46 plot the inertance transfer function's
magnitude and phase for this system.

Solution: From Problem 3.46

l:2=>k:0.5,a>:co =0.25= h:>m:8,iz4.6:>c:0.087
k n m cw

The inertance transfer function is given by Eq. (3.88):

2

S
SH(s)=— >
ms- +cs + k

Substitute s = jw to get the frequency response function. The magnitude is given by:

o’ °

(i0) H(io) - J -

(k-me?) +(co) \/(0.5—80)2)2 +(0.0870)

The phase is given by

6= tan™ Imaginary part of frequency response function
Real part of frequency response function

Multiply the numerator and denominator of (jco)2 H (ja)) by (k - mwz) —Cjw to get

io) H{jo :—a)z(k—mw)+cja)3
( ) ( ) (k—ma)z)2+(cw)2

3
So, ¢ =tan™ w =tan™ O(jﬂ
-’ (k -~ mwz) 8w - 0.5

The magnitude and phase plots are shown on a semilog scale. The plots are given in the
following Mathcad session




d(3) = atah 0.0287-0)
8w —-05

2
w

2

J[0.52 - 8w )2 +(0087-0)°

L

o)

10

0 ‘d‘g 04 06 03
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3.48 Using the values determined in Problem 3.46 plot the mobility transfer function's
magnitude and phase for the system of Figure 3.20.

Solution: From Problem 3.46
1 k

—=2=k=05w=w =0.25= —:>m:8,iz4.6:>c:0.087
k n m cw

The mobility transfer function is given by equation (3.87):

_ S
SH(S)_ ms® +cs+k

Substitute s = jw to get the frequency response function. The magnitude is given by

(o) {io) = T—r—= g
| ‘J

(k- jo?) +(co) \/(0.5—8(02)2 +(0.0870)

The phase is given by

6= tan™ Imaginary part of frequency response function
Real part of frequency response function

Multiply the numerator and denominator of joH (ja)) by j and by —(k — mwz) j—cw to
get

ja)(k - ma)z) +cw’

(k —~ mcoz)2 + (coo)2

w(k —~ mcoz) 0.5— 8w?
So, p=tan™| ———— |=tan"| ———

(jo)H(jo)=

Cw 0.087w

The magnitude and phase plots are shown on a semilog scale.



P
w

2
(0.52 _so?) + (0.087-63)°

2..
2..
| I
H(w) “ 1. .
| 7 L 0% 04 06 03
||II -1 |
| '\ -
(= / — { -2
0.1 1 10
w

3.49 Calculate the compliance transfer function for a system described by

a +bx + cx + di +ex = f(t)
where f(t) is the input force and x(t) is a displacement.

Solution:
. - X(s)
The compliance transfer function is -
S

Taking the Laplace Transform yields
(as4 +Dbs® +cs® +ds + e) X (s) = F(s)

X (s) 1

So, =
F(s) as* +bs®+cs® +ds+e




3.50 Calculate the frequency response function for the compliance of Problem 3.49.

Solution: From problem 3.49,

1
His)=
( ) as* +bs®+cs’ +ds+e
Substitute s = jw to get the frequency response function:

H(jw): a(jw)4 +b(jw)3+c(jw)2 +d(jw)+e

an’ —cw® +e— j(—ba)3 + da))

0 o + oo

3.51 Plot the magnitude of the frequency response function for the system of Problem 3.49 for

a=1b=4,c=11d =16, ande =8.

Solution: From Problem 3.50
aw’ —cw’ +e— j(—ba)3 + da))

" (jw) i (aco4 —cw’ + e)2 + (—bco3 + da))2

The magnitude is

H(jo)|= =

\/(co4 —11w* +8)* + (4w’ +16w)°
This is plotted in the following Mathcad session:

1

H(r.ujl =
4 3 2 312
w o —=11wm +8] + 6w —4w
|
0.1~ —
Hwa])
nos — —
i |
0.1 1 in
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3.52  An experimental (compliance) magnitude plot is illustrated in Fig. P3.52. Determine
,{,c,m, and k. Assume that the units correspond to m/N along the vertical axis.

% » i .
SREDE 2 )

Solution: Referring to the plot, it starts at

H@i| =

Thus: 0.05= % =k =20 N/m
At the peak, m, = w = 3 rad/s. Thus the mass can be determined by

k
m=— =m=222kg
)

n

The damping is found from

i:0.11:>c:3.03 kgls = ¢= ¢ 3.03

cw oJkm 2420222

=0.227



Problems and Solutions Section 3.8 (3.53 through 3.56)
3.53 Show that a critically damped system is BIBO stable.
Solution:

For a critically damped system
1 ~0,(t-2)
h(t—7)==(t-7)e ™
(t-7)= 1 (t=7)

Let f(t) be bounded by the finite constant M. Using the inequality for integrals and
Equation (3.96) yields:

(0 <] f@n(t- ) de = j M Lt e)er e

0

The function h(t — t) decays exponentially and hence is bounded by some constant times
1/t, say My/t. This is just a statement the exponential decays faster then “one over t”
does. Thus the above expression becomes;

x| <M j.%dr = MM,
0

This is bounded, so a critically damped system is BIBO stable.



3.54  Show that an overdamped system is BIBO stable.

Solution: For an overdamped system,

eswn(w)[e(wn@)(w) (mﬂ)(m)}

1
hit—7)=——F——
( ) 2me \§? -1
Let f(t) be bounded by M,

From equation (3.96),

i

(1)< m

t)‘s M ‘h(t—f)‘df
1
t

2mo_J¢? -1

x(t) < M -1 —e(m"Jﬁ{m")t
‘ (t)‘_men\/Cz_ll(“’n\/Cz_l_C&)](l j

-1 (wn 52—1—cmn]t
[wnJe”—wa(le J]

[on §2—l—§wn t
Since @ /{*-1-{w, <0, then 1—e is bounded.

dr

!
!

e—cwn«-f){e(wn ) Ao 42—1)&—1))

[on §2 -1-%o, |t

Also, since - /(> —1-{w_ <0, then 1—e is bounded.

Therefore, an overdamped system is BIBO stable.
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3.55

Is the solution of 2X +18x = 4cos2t + cost Lagrange stable?

Solution: Given
2X +18x = 4cos2t + cost

The total solution will be

x(t) =X, (t) + X, (t) + X, (t)

From Eq. (1.3): X, (t) = Asin(a)nt +¢)
f
From Eq. (2.7): X oy (t) = ?EZZCOSZ'[
—_ foz
and Xp, (t) = wrf T cost

Adding the solutions yields

f f

01 01
772 COS2t + 7 7

cost|< M

‘x(t)‘ = Asin(3t + <p) +

Since3#2,3#1, and the homogeneous solution is marginally stable, this system is

Lagrange stable.
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3.56  Calculate the response of equation (3.99) for x, =0,v, =1 for the case thata =4 and b =

0. Is the response bounded?
Solution: Given:x, =0,v, =1La=4,b=0. From Eq. (3.99),

X+ X+4X =ax +hbx =4x

So, X+x=0

Let
x(t) = Ae™
x(t) = 1Ae™
x(t) = 22Ae™

Substituting,
A2 Ae™ + AAe™ =0
A+A=0

So, 4,,=0,-1

The solution is

()= A6 + A = A A

x(t)=-Ae™
x(0)=0=A+A
x(0)=1=-A,

So, A =landA =-1
Therefore,
x(t) =1-¢*

Since‘x(t)‘ = ‘1— e“‘l, the response is bounded.
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Problems and Solutions from Section 3.9 (3.57-3.64)

3.57*. Numerically integrate and plot the response of an underdamped system
determined by m= 100 kg, k = 1000 N/m, and ¢ = 20 kg/s, subject to the initial
conditions of x, = 0 and v, = 0, and the applied force F(t) = 30d(t -1). Then plot the

72

exact response as computed by equation (3.17). Compare the plot of the exact solution to

the numerical simulation.

Solution: First the solution is presented in Mathcad:

I (Eh =
k e
w0y o0 an= = BT =
m C
FO =30 wn = 3 162 S =1 ¢ o= 0032
2 afk-m
¢ Fi Fi
A = atan " ? = [0.03 — = 0.03002 E-wn = 0.1
- 2
1= a1 — &
k
a m=|—
wd = wi-al — & wd = 31607 A = 0.032 )
(T
[[FO FO
xalt) = el e m]-cns[md- (t—1m) — El] d (1 —10)
2
i kol — ¢
—_— D 1
X = 0 Xl
) Dit, ) = 2 Fi
-2 Cown X, —wn X+ —F (1 -1
Gan¥, ot —E(1-1)
Z = akfixed (3{,0,30,2000,0)
g e
ti=2 ¥ =xa(t)  xn =217
0.0s T
n.od +
i
x
I Y3
1] 3 10 1I5 20 23 S:EI
' =
e
A [l [

The Matlab code to provide similar plotsis given next:
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%Numerical Solutions
%Problem #57

clc

clear

close all

%Numerical Solution
x0=[0;0];

tspan=[0 15];

[t,x]=ode45("prob57a*,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #57%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution
m=100;

c=20;

k=1000;

F=30;

w=sqrt(k/m);
d=c/(2*w*m);
wd=w*sqrt(1-d"2);

to=1;
phi=atan(d/sqrt(1-d"2));

%For t<to
t=linspace(0,1,3);
x=0.*t;
plot(t,x,"*");

%for t>=to

t=linspace(1,15);

x=F/k-F/(k*sqrt(1-d"2)) .*exp(-d.*w.*(t-to)) .*cos(wd.*(t-to)-phi);
plot(t,x,"*");

legend("Numerical®, “Analytical”)

%M-File for Prob #50

function dx=prob(t,x);

[rows, cols]=size(X);dx=zeros(rows, cols);
m=100;

c=20;

k=1000;

F=30;

if t<1
dx==0;
else
dx(1)=x(2);
dx(2)=-c/m*x(2) - k/m*x(1) + F/m;
end
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3.58*. Numerically integrate and plot the response of an underdamped system
determined by m= 150 kg, and k = 4000 N/m subject to the initial conditions of x, = 0.01
m and v, = 0.1 m/s, and the applied force F(t) = F(t) = 15®(t -1), for various values of the
damping coefficient. Usethis“program” to determine a value of damping that causes the
transient term to die out with in 3 seconds. Try to find the smallest such value of
damping remembering that added damping is usually expensive.

Solution: First the solution is given in Mathcad followed by the equivalent Matlab code.

2= 150 | _ 4000w e F c=710 0= 001 0 =01
m c
wn = ¢ =
24fkem

FO =15 t0 =1

¢ =
8 = atan L 8= . 2 7 7
1o wd = wnyf 1-¢ s G0+ Conx0)"+ (x0-wd)
. wd?
wd = . x0-wd
e mn[vo n C-wn-XOJXh(t) = a8 i (ud 4 §)
FoO FO — & on(i—
ga(t) = || = - ———— e S twod (- t0) — 8] | [ @t - t0) + zh(p)
k 2
o 12
xa(t) = "@ __F0 gm0 o 10y — 8]:|:|~‘i>(t— £0) + h(t)
K 3
el 1-¢
X1
(vo] &% 22 on X - il Xg+ 12 Bt - 10)  FO
m E) = T
7 ‘= rkfixed(3,0,30,2000 D)
A — 0
t=2 %= xat) mn = AL 3:=F()
0.0
1|I 'II\
M g *.L
X | .
P o
L S - | ¢ =710
0\ 2 4 6
- 0.01-

A vaue of ¢ =710 kg/swill do the job.
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%Vibrations
%Numerical Solutions
%Problem #51

clc
clear
close all

%Numerical Solution

x0=[0.01;0];
tspan=[0 15];

[t,x]=oded45("prob5la”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #517%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution

m=150;

c=0;

k=4000;

F=15;

w=sqrt(k/m);
d=c/(2*w*m) ;
wd=w*sqrt(1-d"2);

to=1;
phi=atan(d/sqrt(1-d"2));

%for t<to
t=linspace(0,1,10);
x0=0.01;

v0=0;
A=sqrt(vON2+(x0*w)"2)/w;
theta=pi/2;
X=A.*sin(w.*t + theta);
plot(t,x,"*")

%for t>=to

t=linspace(1,15);

Xx2=F/k-F/ (k*sqrt(1-d™2)) .*exp(-d.*w.*(t-to)) .*cos(wd.*(t-to)-phi);
X1=A.*sin(w.*t + theta);

X=X1+x2;

plot(t,x,"*");
legend("Numerical®, “Analytical”)
%Clay

%Vibrations

%Solutions
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%M-File for Prob #51

function dx=prob(t,x);

[rows, cols]=size(X);dx=zeros(rows, cols);
m=150;

c=0;

k=4000;

F=15;

if t<l
dx(1)=x(2);
dx(2)=-c/m*x(2)- k/m*x(1);
else
dx(1)=x(2);
dx(2)=-c/m*x(2) - k/m*x(1)+ F/m;
end
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3.59*. Solve Example 3.3.2, Figure 3.9 by numerically integrating rather then using
analytical expressions, and plot the response.

Solution: Both Mathcad and Matlab solutions follow:
[l=—"—-—"———""—"——Prob 3.52

¥0 =001 %0:=3  whi=3 : ¢ =10

k = 1000

k
Wi = [— ¢o= wi = 31.623
i

T =005
2-afk-m
2 =
wd = i all —q wd = 31.22499 B =153
A = 0.09341 d=0.1074

xa ] 1= dee bt si.nl[mui-t + ¢]| + 0.05-cos |{3-t - EIII

Xi
Dit,X) = 2 c k _
—E-Q-mn-}{l — o Xy + —¥-wh-cog |[mh-t]| + —-‘Et'-smlimh-t]l
m m
Z 1= rhfived (3 ,0,6,2000 ,T)
+
.= Z{n} _ R
— m = Z
x = xalt)
01T
0.05 1
L3 dlf 1 3 3
=005
-1t

Funl v 1 o

« [

S

%Numerical Solutions
%Problem #53

clc

clear

close all

%Numerical Solution
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x0=[0;0];
tspan=[0 10];

[t,x]=o0ded45("prob53a”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #53%);
xlabel("Time, sec.");
ylabel ("Displacement, mm");
hold on

%Analytical Solution
t1=0.2;
t2=0.6;

%for t<to

t=linspace(0,tl);
x=2.5*t-4.56.*sin(0.548.*t);
plot(t,x,"*");

%for tl<t<t2

t=linspace(tl,t2);

x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-tl1))- 4.56.*sin(0.548.*t);
plot(t,x,"*");

%for t2<t

t=linspace(t2,10);
x=6.84_.*sin(0.548_*(t-t1))-2.28.*sin(0.548_*(t-1t2))-
4.56.*sin(0.548.*t);
plot(t,x,"*");
legend("Numerical®, “Analytical”)
%Clay

%Vibrations

%Solutions

%Clay

%Vibrations

%Solutions

%M-File for Prob #52

function dx=prob(t,x);

[rows, cols]=size(X);dx=zeros(rows, cols);
m=1;

c=10;

k=1000;

Y=0.05;

wb=3;

a=c*Y*wb;

b=k*Y;
alpha=atan(b/a);
AB=sqgrt(a”2+b”2)/m;

dx(1)=x(2);
dx(2)=-c/m*x(2)- k/m*x(1)+ a/m*cos(wb*t) + b/m*sin(wb*t);
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3.60*. Numerically simulate the response of the system of Problem 3.21 and plot the
response.

Solution: The solutionin Matlab is
%Clay

%Vibrations

%Numerical Solutions
%Problem #53

clc
clear
close all

%Numerical Solution

x0=[0;0];
tspan=[0 10];

[t,x]=ode45("prob53a”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #53%);
xlabel("Time, sec.");
ylabel ("Displacement, mm");
hold on

%Analytical Solution

t1=0.2;
t2=0.6;

%for t<to

t=linspace(0,tl);
x=2.5*t-4.56.*sin(0.548.*t);
plot(t,x,"*");

%for tl<t<t2

t=linspace(tl,t2);

x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-tl1))- 4.56.*sin(0.548.*t);
plot(t,x,"*");

%for t2<t

t=linspace(t2,10);
x=6.84_.*sin(0.548_*(t-t1))-2.28.*sin(0.548_*(t-1t2))-
4.56.*sin(0.548.*t);

plot(t,x,"*");

legend("Numerical®, “Analytical”)

%Clay
%Vibrations
%Solutions
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%M-File for Prob #53

function dx=prob(t,x);
[rows, cols]=size(Xx);dx=zeros(rows, cols);

m=5000;
k=1.5e3;
ymax=0.5;
F=k*ymax;
t1=0.2;
t2=0.6;

if t<tl

dx(1)=x(2);

dx(2)= - k/m*x(1)+ F/m*(t/tl);
elseif t<t2 & t>tl

dx(1)=x(2);

dx(2)= - k/m*x(1)+ F/*t1*m)*(t2-1t);
else

dx(1)=x(2);

dx(2)= - k/m*x(1);
end
[l =——————Figure No. 1
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3.61*. Numerically simulate the response of the system of Problem 3.18 and plot the
response.

Solution: The solutionin Matlabis
%Clay

%Vibrations

%Numerical Solutions

%Problem #54

clc
clear
close all

%Numerical Solution

x0=[0;0];
tspan=[0 10];

[t,x]=oded45("prob54a”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #54%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution
to=4;

%for t<to
t=linspace(0,to);
x=5*(t-sin(t));
plot(t,x,"*");

%for t>=to
t=linspace(to,10);
x=5*(sin(t-to)-sin(t))+20;

plot(t,x,"*");
legend("Numerical®, “Analytical”)
%Clay

%Vibrations

%Solutions

%M-File for Prob #54

function dx=prob(t,x);
[rows, cols]=size(X);dx=zeros(rows, cols);

mx 3
(UL

1
1
2

Ouit us
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to=4;

ifT t<to

dx(1)=x(2);

dx(2)= - k/m*x(1)+ F/m*(t/to);
else

dx(1)=x(2);

dx(2)= - k/m*x(1)+ F/m;
end
[|=——————Figure No. 1

82

2=

Problerm #54

30

Diiz plac ement, mm
—_— ra o
on = on
I 1 1

—_
=
T

] :,":. 1 1 1 1

1 2 3 4 ]
Tirme, sec,

i




3.62*. Numerically simulate the response of the system of Problem 3.19 for a2 meter
concrete wall with cross section 0.03 m? and mass modeled as lumped at the end of 1000
kg. Use F, =100 N, and plot the response for the case t,=0.25 s.

Solution The solution in Matlab is:

%Numerical Solutions
%Problem #3.62

clc
clear
close all

%Numerical Solution

x0=[0;0];
tspan=[0 0.5];

[t,x]=o0ded45("prob55a-”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #55%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution

o
[eNc N o)
w @D

o
“r ©ur

*

RMNOWER

TMX =2 M3
>
P S

o
o

w=sqrt(k/m);
to=0.25;

%for t<to

t=linspace(0,to);

x=F/k*(1-cos(w*t))+ F/(to*k)*(1/w*sin(w*t)-t);
plot(t,x,"*");

%for t>=to

t=linspace(to,0.5);

x=-F/k*cos(W*t)- F/(w*k*to)*(sin(w*(t-to))-sin(w*t));
plot(t,x,"*");

legend("Numerical®, “Analytical”)

%Clay

%Vibrations

%Solutions

%M-File for Prob #3.62



function dx=prob(t,x);
[rows, cols]=size(Xx);dx=zeros(rows, cols);

m=1000;
E=3.8e9;
A=0.03;

1=2;
k=E*A/1;
F=100;
w=sqrt(k/m);
to=0.25;

if t<to
dx(1)=x(2);
dx(2)= - k/m*x(1) + F/m*(1-t/to);
else
dx(1)=x(2);
dx(2)= - k/m*x(1);

end
[[——————r7——m—m——"vw Figure MNo. 1
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3.63*. Numerically simulate the response of the system of Problem 3.20 and plot the
response.

Solution The solution in Matlab is:

%Clay

%Vibrations

%Numerical Solutions
%Problem #56

clc
clear
close all

%Numerical Solution

x0=[0;0];
tspan=[0 2];

[t,x]=o0ded45("prob56a”,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #56%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution

t=linspace(0,2);
x=0.5*t-0.05*sin(10*t);
plot(t,x,"*");
legend("Numerical®, “Analytical”)

%Clay
%Vibrations
%Solutions

%M-File for Prob #56

function dx=prob(t,x);

[rows, cols]=size(Xx);dx=zeros(rows, cols);
m=1;

k=100;
F=50;

dx(1)=x(2);
dx(2)= - k/m*x(1) + F/m*(t);
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3.64*. Compute and plot the response of the system of following system using numerical
integration:
10X(t) + 20x%(t) +1500x(t) = 20sin 25t + 10sin15t + 20sin 2t

with initial conditions of X, = 0.01 m and v, = 1.0 m/s.

Solution The solution in Matlab is:
%Clay

%Vibrations

%Numerical Solutions
%Problem #57

clc
clear
close all

%Numerical Solution

x0=[0.01;1];
tspan=[0 5];

[t,x]=oded45("prob57a*,tspan,x0);

figure(l)

plot(t,x(:,1));
title("Problem #57%);
xlabel("Time, sec.");
ylabel ("Displacement, m");
hold on

%Analytical Solution

m=10;

c=20;

k=1500;
w=sqrt(k/m);
d=c/(2*w*m) ;
wd=w*sqrt(1-d"2);

Y1=0.00419;
ph1=3.04;
wb1=25;

Y2=0.01238;
ph2=2_.77;
wb2=15;

Y3=0.01369;
ph3=0.0268;
wb3=2;

A=0.1047;
phi=0.1465;
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x=A_*exp(-d*w.*t) . *sin(wd*t+phi)+ Yl.*sin(wbl*t-phl) + Y2*sin(wb2*t-
ph2) + Y3*sin(wb3*t-ph3);

plot(t,x,"*")

legend("Numerical®, “Analytical”)
%Clay

%Vibrations

%Solutions

%M-File for Prob #57

function dx=prob(t,x);
[rows, cols]=size(Xx);dx=zeros(rows, cols);

m=10;
c=20;
k=1500;

dx(1)=x(2);
dx(2)= -c/m*x(2) - k/m*x(1) + 20/m*sin(25*t) + 10/m*sin(15*t) +
20/m*sin(2*t) ;

Praoblem #57
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o
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Problems and Solutions Section 3.10 (3.65 through 3.71)

3.65*. Compute the response of the system in Figure 3.26 for the case that the damping
islinear viscous and the spring is a nonlinear soft spring of the form
k(x) = kx — kx*

and the system is subject to a excitation of the form (t; = 1.5and t, = 1.6)

F(t) =1500[@(t—t,) - D(t —t,)| N
and initial conditions of x, = 0.01 m and v, = 1.0 m/s. The system has amass of 100 kg, a
damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m. The value
of k, istaken to be 300 N/m®. Compute the solution and compare it to the linear solution
(k, = 0). Which system has the largest magnitude? Compare your solution to that of
Example 3.10.1.
Solution: The solution in Mathcad is

x0=001v0=1 m:=100 k:=2000 kl:=300  ¢:=30

FO = 1500 1= 15 ..
m Ry mof)o= o ¢ =003
=0 m =23
Xzz[ ]Y:X
v0

F(t) = f0-B(t - t1) — f0-B(t — t2)

X1
Di{t,2) =
~2.2.n-X] — wn’-Xg + [u-(xg)3 + f(t)]
T

Lit,¥) =
| (—2-2.0n-¥) - wnd ¥g) + £08)
7 = rfixed(X,0, 10,2000 D)

O (I S W = thfixed(Y,0,10,2000,1)

xL = W<1>
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0.67
AI
34} ||'K | Fﬂh‘ /\ﬁi N
: ./A II | f‘ / ‘51 J'\
X— / \\ !f A {11 ll|11 ! j 3{ 4;': ‘]s“ ~..” \65
" \ R v Y7 5
..... _ g.}.o \/ 2 \ \ 4 Y 7 . vy 8
E 1H ‘L‘J >
- 0.4t W/
- 0.6
t
t:=0,0001.55

E(1) = f0-B(t - t1) - F0-B(t—12)
157 '

10t
F(b

5..

Note that for this load the load, which is more like an impulse, the linear and nonlinear
responses are similar, whereas in Example 3.10.1 the applied load is a “wider” impulse

and the linear and nonlinear responses differ quite a bit.

3.66*. Compute the response of the system in Figure 3.26 for the case that the damping is
linear viscous and the spring is a nonlinear soft spring of the form
k(x) = kx — kx*
and the system is subject to a excitation of the form (t; = 1.5and t, = 1.6)
F(t) =1500[@(t—t,) - D(t —t,)| N

and initial conditions of x, = 0.01 mand v, = 1.0 m/s. The system hasamass of 100 kg, a
damping coefficient of 30 kg/s and alinear tiffness coefficient of 2000 N/m. Thevalue

of k, istaken to be 300 N/m*. Compute the solution and compare it to the linear solution
(k, = 0). How different arethe linear and nonlinear responses? Repeat thisfor t, = 2.

What can you say regarding the effect of the time length of the pulse?

Solution: The solution in Mathcad for the caset, = 1.6 is
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[=———-————"—Prob309="———— B
x0 :=0.01 ,_ . ||
S m =100 k1= 2000 S =
[k oL 1= 3 FO :=1300 11 =15 Z =16
wn = E=— FO
m - = — =
2 n‘fﬁ o = ” =003
x0
x =[ ] T =X
s
[ =%t —1) -0t —12)
%
Dit,¥) = 2 ; L
“Z{wn K, —wn X, + [-::e,- (%) + f(tj] [
Ty
Lt,¥) = 3
(—2-§-mn-'ﬁ:’1 — Wi -Ynjl + fit)
Z := rkfived (3 ,0,10,2000 D)
Y g o=zl W= rhfived (¥ ,0,10,2000,L)

%L = wWo1F

05 T

BT
<
<N_
Q:
<
<]

SEN

A [ [»

Note in this case the linear response is almost the same as the nonlinear response.
Next changing the time of the pulse input to t, = 2 yields the following:
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[l=————————Prob309=————————— M|
x0 1= 0.01 _ . -
v = 1 m = 100 k = z000 I E
o i k . o 1= 3 Fo = 1500 11 =15 =
S = FO
in q ' = — =
2 o 0 1= — & = 0.034
x0
= T =X
o

fit) =00t —t1) — 0% (1 - 12)

Ki
Dit,x) = 2
-2 GwnH, —wn - H, + |:I3-L.- (Kuf + fI:t:I]
?1
L{t,T) = 3

(—E-Q-mn-‘fl — -YD] + £(t)
Z i= rifixed (3,010, 2000 , D)
pimptlE oot W 1= rhfixed (¥ ,0,10,2000,L)

%L = W lF

rJI' e
r ! N 4 rllh P
= 1 1 i L t -'l;:
— Ly A
L 0 RN YN VA
- - B Lt " L
lI ~|' N
I'i

4 [ DE

Note that as the step input last for alonger time, the response of the linear and the
nonlinear becomes much different.
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3.67*. Compute the response of the system in Figure 3.26 for the case that the damping
islinear viscous and the spring stiffnessis of the form

k(X) = kx—kx?

and the system is subject to aexcitation of the form (t;, = 1.5and t, = 2.5)

F(t) =1500[@(t—t,) - D(t —t,)| N
initial conditions of x, = 0.01 mand v, = 1 m/s. The system has a mass of 100 kg, a
damping coefficient of 30 kg/s and alinear tiffness coefficient of 2000 N/m. Thevalue
of k, istaken to be 450 N/m?*. Which system has the largest magnitude?
Solution: The solution is computed in Mathcad as follows:
= ProbIbl=""——————"H]

¥ =0m

] v |

ol = 1 m =100 k = z000 .

_ £ . e =45 FO:=1500 11 :=15 2 =2c
wn = o ¢ = Fo

f0i=— =003
m

fit) =f0-F{t—t) —0-Ft—12)

15'57“1
Dit,®) = 2 .
-2 Goon ¥y —on X, + [n-:,- (KD) + f(tj]
Yl
Lit,¥) = 2
(—Z-Q-mn-‘fl — -“fn) + 1t}
Z 1= akfixed (3 ,0,10,2000 ,I)
Lk g o= EilE W= rkfixed (¥ ,0,10,2000,L)

xL = wol®

NVAVATAVAY
.} .«v\(/\/

t | the actual response

Note that the linear response under predicts
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3.68*. Compute the response of the system in Figure 3.26 for the case that the damping is
linear viscous and the spring stiffnessis of the form

K(x) = kx + k,x?

and the system is subject to a excitation of the form (t;, = 1.5and t, = 2.5)

F(t) =1500[@(t—t,) - D(t —t,)| N
initial conditions of x, = 0.01 mand v, = 1 m/s. The system has a mass of 100 kg, a
damping coefficient of 30 kg/s and alinear tiffness coefficient of 2000 N/m. Thevalue
of k, istaken to be 450 N/m?*. Which system has the largest magnitude?
Solution: The solution is calculated in Mathcad as follows:

x0 = 0.01 m = 100 k = 2000
I . . FO:=1500 t1:=15 .
o \F =1 a=45 £ =130
m
C —]
= = m ’
w0 m ¢ =0034
f(t) = 0.2t —-t1) - 0-B(t - t2)
X +
D(t,X) =
_2.2.n- X — wn’ Xg + [—u-(:x:g)2 + f(t)]
Ty
Z = rkfixed(2{,0,10,2000,D) Lit,T) =
(—2-¢.0n 7] - wn? Yg) + £
t= Z<D> X = ?_',<1>
- W W= rkfized(Y,0,10,2000,L)
In this case (compared to the
| hardening spring of the previous
. problem, the linear response over
| ;.&\ predicts the time history.
- / :
XL . g .-/ H\ {P ’\L /"\‘c ’ 1'?' N /_‘
VIV ERY Y

3.69*. Compute the response of the system in Figure 3.26 for the case that the damping is
linear viscous and the spring stiffnessis of the form
k(X) = kx—kx?



and the system is subject to aexcitation of the form (t, = 1.5and t, = 2.5)

F(t) =150[@(t—t,) - d(t —t,)| N
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initial conditions of x, = 0.01 mand v, = 1 m/s. The system has a mass of 100 kg, a
damping coefficient of 30 kg/s and alinear tiffness coefficient of 2000 N/m. The value
of k, istaken to be 5500 N/m?. Which system has the largest magnitude transient? Which
has the largest magnitude in steady state?

Solution: The solution in Mathcad is given below. Note that the linear system response

isless than that of the nonlinear system, and hence underestimates the actual response.

Ll Proh 3.62 HlE
x0 := 0.01 . . =
: S m = 100 k = 2000 .= a0 =

" "JE . v i=55 FO =150 =15 ...
= m ﬁ = i E _
o o 0=—  f=003
x0
¥ :[ ] Y= ¥
w0
i) =0 F0t—1t1) — 0 &1 —12)
Ki
Dit,5) = 2
-2 Goon K —wn X + [—m- (Knjz + fl:tj]
Y1
L{t,¥) = 2
(—Z-an-‘fi — wn 'Yn) + 1(1]
Z := rkfixed (¥ ,0,10,2000, D)
R S W 1= rkfived (¥ ,0,10,2000,L)
L = wWE LT
04 T
02 e i
M i
1 1
% I AT AP o
L T VR z\'_/U"U'Us
- A
-0z .
04
' |
-
A Tl vl
3.70*. Compare the forced response of a system with velocity squared damping as

defined in equation (2.129) using numerical simulation of the nonlinear equation to that
of the response of the linear system obtained using equivalent viscous damping as
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defined by equation (2.131). Use asinitia conditions, x, = 0.01 m and v, = 0.1 m/swith a

mass of 10 kg, stiffness of 25 N/m, applied force of theform (t, = 1.5 and t, = 2.5)
Ft)=19@(t-t)- d(t—t,)| N

and drag coefficient of o = 25.

Solution: The solution calculated in Mathcad is given in the follow:

80:=001 05 gqm= 11=Oo k=25  4.=25 Fo=15
k - 4
wn = |— f0 =
m
3o
=15 12=25 ceq = |2 g
3T
__ceq
0 CE £() = 0-B(t—t1) - 0. B(t—12)
¥ =
v0 ¥ S
D(t,X) =
—on? Xy - 2 (X)) = + £
m 1| ¢ = 0.564
T
DI, Y) = ( 2 )
Z = rkfized(3{,0,20,2000,D) —2:¢wn Ty —wn Yo/ +£(1)
p= 20 o A W= rkfixed(Y,0,20,2000,D1)
%L = W(D
;
[
!
xL | |
""" ||' k. /.\.
(:’._N ['1;'- = "{ \\‘ }//—-.\ N //‘_‘\:
0 'I.H's-f A0~ 15 7w
I|\>"'.||I
_o2
t

Note that the linear solution is very different from the nonlinear solution and dies out
more rapidly.
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3.71*. Compare the forced response of a system with structural damping (see table 2.2)
using numerical smulation of the nonlinear equation to that of the response of the linear
system obtained using equivalent viscous damping as defined in Table 2.2. Use the
initial conditions, X, = 0.01 m and v, = 0.1 m/s with amass of 10 kg, stiffness of 25 N/m,
applied force of theform (t, = 1.5 and t, = 2.5)

Ft)=19@(t-t)- d(t—t,)| N
and solid damping coefficient of b = 8. Does the equivalent viscous damping
linearization, over estimate the response or under estimate it?
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Solution: The solution is calculated in Mathcad as follows. Note that the linear solution

isan over estimate of the nonlinear response in this case.

=== PrbhiIiM=———— 0 H

¥ '=0.01 vl =01 m =10 k=25 b= Fil '= 15
k i ::E
wn = | — 1M
m Z2:h
ceq =
i1 '= 5 7 =25 1T I
ceq
£ = — —
i)=&t —1) —0Fi(t—12)
0 i 2 afkm
X = Vo= e
M 1
D{t,¥) = 2 h %y
0 ml I:'| |K1| I::I
?1
L{t,T) =

2
(—Z-Q-mn-?l — wn 'Ynjl + (1)
Z 1= rifixed (% ,0,20,2000, )

A [

ti=2<0* - W= rkfived (Y ,0,20,2000,L)
' 7L = Wl
1-- rFl\.
05 +
n Ji'
o 0 U \.__/ 15
-5+
+
. ||
-
[P




Problems and Solutions for Section 4.1 (4.1 through 4.16)

4.1  Consider the system of Figure P4.1. For ¢ =c, =c, =0, derive the equation of motion

and calculate the mass and stiffness matrices. Note that setting ks = 0 in your solution
should result in the stiffness matrix given by Eq. (4.9).
; k. k

TR R
=} i J | =
._..- -

Solution:
For mass 1:

mlxl = _lel + kz (Xz - X1)

= m +(k +k, )% —k,x, =0
For mass 2:

m,x, = _ksxz - kz (Xz - Xl)

So, MX+Kx =0

Thus:



Calculate the characteristic equation from problem 4.1 for the case
m=9kg m,=1kg k =24N/m k,=3N/m k,=3N/m

and solve for the system's natural frequencies.

Solution: Characteristic equation is found from Eq. (4.9):

det(—a)ZM + K) =0

_wzml +k t+k, -k, _ -9’ + 27 -3 ~0
-k, —o’m +k, +k, -3 —0° +6
9w’ —81lw* +153=0
Solving for w:
w, =1.642
rad/s
w, =2.511

Calculate the vectors u; and u, for problem 4.2.

Solution: Calculate uy:

oz = T

This yields
2.727u, —3u,, =0
—3u,, +3.303u,, =0  or, u, =0.909u,
1
u, =
[0.909}
Calculate u,:

Lol = T



4.4

—29.727u,, - 3u,, =0
~3u,=0.303u,,=0  or,u,=-0.101u,,

12
_ -0.101
U2 = 1

For initial conditions x(0) = [1 0]" and x (0) = [0 0]" calculate the free response of the
system of Problem 4.2. Plot the response x; and Xx,.

This yields

Solution: Given x(0) = [1 0], x(O) = [0 0]T , The solution is
x(t) = Alsin(a)lt +q)l)u1 + Azsin(wzt +</)2)u2

[xl(t)} ) [ Asin(@t+9,)-0.101A,sin(w,t +,)

X, (t) ) 0.909Alsin(a)lt + ¢1) +A sin(wzt + (/)2)

Using initial conditions,

1= Asing, —0.101A sing, [

0=0.909A sing, + A sing, [2

0=1.642A cos¢, —0.2536A, cosg, |
[

0=6.033A cos¢, +2.511A, coso, 4
From [3] and [4], o =0,=m/2
From [1] and [2], A =0.916, and A =-0.833
So,

x,(t) = 0.9165in(1.642t + 7 / 2) +0.0841sin(2.511t + 7/ 2)
x, () = 0.833sin(L.642t + 7 / 2) - 0.833sin(2.511t + 7 / 2)

x, () = 0.916cos1.642t +0.0841c0s 2,511t
X, (t) = 0.833(cos1.642t - cos 2.5111



x1 (1) 1= 0.916-coa (1.642-t) + 0.0841-cos (2.511-1)

X2 (1) 1= 0,833 (cos (1.642-1) — cos (2.511-1))

4.5
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Calculate the response of the system of Example 4.1.7 to the initial condition x(0) = 0, x
(0) =[1 0]", plot the response and compare the result to Figure 4.3.

Solution: Given: x(0) =0, x(O) = [1 0]T

From Eq. (4.27) and example 4.1.7,

[Xl(t)} _ %Alsin(\/5+¢1)—%Azsin(2t +¢2)
Alsin(\/2—t+¢l) + Azsin(Zt +¢2)

Using initial conditions:
0= Asing, — A sing,
0=Asing + A sing,
3:\/EAlcosq’)l—2AZ<:os<;>2

0= x/EAlcos¢>1 +2A, coso,
From [1] and [2]:

¢1:¢2 :0
From [3] and [4]:
Al :¥’ and Az e

The solution is



x,(t) = 0.25(\/5 sin/2t +sin Zt)
X, (t) = 0.75(\/Esin J2t —sin 2t)

As in Fig. 4.3, the second mass has a larger displacement than the first mass.

x1(1) 1= 0.25 {2 sinfaZ 1) +amiz ) x2(0) =075 (WZsinlaZ 1) — sz )

xl[t] . "ll !

. i, .’I/A;:\\~ /TL'"\.:
=2 [t) T NV




4.6 Repeat Problem 4.1 for the case thatk =k, =0.
Solution:
The equations of motion are

m1).(.1 + kle - kzxz =0

m,X, — kle + k2x2 =0

So, MX+Kx=0

4.7  Calculate and solve the characteristic equation for Problem 4.6 withm; =9, m, =1, k; =
10.

Solution:

The characteristic equation is found from Eq. (4.19):

det(—sz + K) =0

—9w? + —
0 +10 10 |46 10002 =0
-10 —w* +10
®;,=0,11.111
o =0

®, =3.333



4.8  Compute the natural frequencies of the following system:

6 2] [3 1] o
{2 4}x(t) [_1 1}x(t)— .

Solution:

2 4] |-1 1
,, =0.316, 1 rad/s

6 2] [3 -1
det(-w*M +K) = det(—af[ }—[ D = 200*-2200*+2=0, ®* = 0.1, 1

4.9  Calculate the solution to the problem of Example 4.1.7, to the initial conditions

x(O) =

%(0)=0

P Wl

Plot the response and compare it to that of Fig. 4.3.
Solution: Given: x(O) =[1/3 1]T, x(O) =0
From Eq. (4.27) and example 4.1.7,

[xl(t)}_ %Alsin(\/zt+¢1)—%Azsin(2t+¢2)
(1) Alsin(\/zt +¢1)+ Asin(2t+9,)
Using initial conditions:
1= Asing, — A ssing, [
1= Asing, + A sing, [2
0=+/2A cosg, — 2A cos, [
0=1/2A cosg, +2A,cosg, [

From [3] and [4]: ¢, =9, :g

From[1]and [2]: A =1, andA =0

The solution is



x,(t)= %COS\/E'[
x,(t) = cos/2t

In this problem, both masses oscillate at only one frequency.



4.10 Calculate the solution to Example 4.1.7 for the initial condition
x(0)= {_:_3] x(0)=0
Solution:

Given: x(0) =[-1/3 1]", x(0) =0
From Eq. (4.27) and example 4.1.7,

[Xl(t)} _ %Alsin(\/zt +¢1)—%A2(2t +¢2)
X, (t) Alsin(\/it +¢1) + Azsin(Zt +¢2)

Using initial conditions:

1]

2]
3]
]

4

1= Asing, — A sing,

1= Asing + A sing,

0= \/§A1c03¢>1 —2A, cosg,
0= x/EAlcos¢>1 +2A, coso,

[
[
[
[

From [3] and [4]

¢1:¢2:_

From [1] and [2]:

The solution is

X (t) = —%cosZt

X, (t) =Cos2t



In this problem, both masses oscillate at only one frequency (not the same frequency as in
Problem 4.9, though.)



4.11 Determine the equation of motion in matrix form, then calculate the natural frequencies
and mode shapes of the torsional system of Figure P4.11. Assume that the torsional

stiffness values provided by the shaft are equal (kl = k2) and that disk 1 has three times
the inertia as that of disk2(J, =3J,).

BN N N . i

o

Solution: Letk =k =k, and J, =3J,. The equations of motion are
J,6, +2k6,— k6, =0
J,0,-k0, +k6,=0

3 0], 2 -1
J, 0+k 0=0
0 1 -1 1
Calculate the natural frequencies:

) _|-3w?J, + 2k —k
—k —0°J, +k

So,

det(—wZJ +K

= 0.482\/E
J2
o, :1.198\/E
JZ

Calculate the mode shapes: mode shape 1:

[—3(0.2324)k +2K —k ][Un} “o

—k ~(0.2324)k +k || u,,
u, =0.7676u,

767
So, ulz[o 166}

mode shape 2:
~3(1.434)k + 2k —k w2,
—k ~(1.434)k +k {uzj )

Uy, = —O.434u22




So. Uy = [—0.;134}



4.12 Two subway cars of Fig. P4.12 have 2000 kg mass each and are connected by a coupler.

The coupler can be modeled as a spring of stiffness k = 280,000 N/m. Write the equation
of motion and calculate the natural frequencies and (normalized) mode shapes.

‘r]r]r] nwrtr‘:f: FJ‘ "
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Solution: Given: m =m, =m = 2000 kg

k = 280,000 N/m
The equations of motion are:

mX_ +kx —kx, =0

mX, —kx, +kx, =0
In matrix form this becomes:

m 0], k -k
X+ x=0
0 m -k k
2000 0 <+ 280,000 -280,000
0 2000 —280,000 280,000

Natural frequencies:

det(—sz + K) =0

—280,000 —2000w° + 280,000

—20000? + 280,000 —280,000 ‘
4x10%°w0* -1.12x10°w* =0

w”=0,280 = w, =0 rad/sec and ®, =16.73 rad/sec
Mode shapes:

Mode 1, w? =0

280,000 -280,000|fu, | |0
—280,000 280,000 || u, 0
su,=u,
|1
u = 1

Mode 2, w? =280



—-280,000 -280,000 || u, | |0
—280,000 -280,000 || u,, 0

Su, =,

+=l)

Normalizing the mode shapes yields

=l

1|-1]. . .
Note that u, = T[ . } is also acceptable because a mode shape times a constant (-1 in
2

this case) is still a mode shape.



4.13 Suppose that the subway cars of Problem 4.12 are given the initial position of x;o =
0, X0 = 0.1 m and initial velocities of vio = v = 0. Calculate the response of the cars.

Solution:

Given: x(0)=[0 0.1] ,x(0)=0

oy

o, =0 rad/s and o, =16.73 rad/s

From problem 12,

The solution is
x(t) = (cl + czt)ul + Asin(16.73t + q))u2
= x(O) =c,u, +16.73Acos(¢>)u2 and x(O) =cu, + Asin(d))u
Using initial the conditions four equations in four unknowns result:
0=c, +Asing [1]
0.1=c,— Asing [2]
0=c, +16.73Acos¢ [3]
0=c,-16.73Acos¢ [4]

2

From [3] and [4]:c, =0, and ¢ =% rad

From [1] and [2]:c, =0.05 mand A=-0.05m

The solution is

x,(t) = 0.05-0.05c0516.73t
X, (t) = 0.05+0.05¢0516.73t

. 1|-1]. . .

Note that if u, = T[ } is chosen as the second mode shape the answer will remain the
2

same. It might be worth presenting both solutions in class, as students are often skeptical

that the two choices will yield the same result.



4.14 A slightly more sophisticated model of a vehicle suspension system is given in Figure
P4.14. Write the equations of motion in matrix form. Calculate the natural frequencies
for k; =10° N/m, k, = 10* N/m, m, = 50 kg, and m; = 2000 kg.

KqLEl
55
é .
= F GpWina
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[

% Tae s _

lire: stifimess ™, .

. . . R
Solution: The equations of motion are
2000%, +1000x, —1000x, =0

50X, —1000x, +11,000x, =0
In matrix form this becomes:

2000 O 1000 -1000
X+ Xx=0
{ 0 50} {—1000 11, OOO}

u*ﬁ*ﬁ‘<|

i...

LR

Natural frequencies:
det(~0*M +K) =0

‘—20000)2 +1000 ~1000

=100,0000" — 2.205x 10" w* +10" =0
—-1000 ~50w° +11,000

w;, =0.454, 220.046 = o, =0.674rad/s and w, =14.8 rad/s



4.15

Examine the effect of the initial condition of the system of Figure 4.1(a) on the responses
X1 and X by repeating the solution of Example 4.1.7, first for xi0 = 0,x0 = 1 with

X, =X,, =0 and then for x, =x,, =%,=0 andx,, =1. Plot the time response in each

case and compare your results against Figure 4.3.
Solution: From Eq. (4.27) and example 4.1.7,
[xl(t)} _ %Alsin(\/gt +¢1)—%Azsin(2t +9,)
XZ(t) Alsin(x/zt+¢1)+ Azsin(2t+¢2)

(a)x(O) = [0 1]T , x(O) =0. Using the initial conditions:
0=Asing,—Asing,  [1]
1= Asing, + A sing, [2]
0=2A cosg, ~2A,cosg, [3]
0=12A cosg, +2A,cosg, [4]

From [3] and [4] ¢, =9, :g

From [1] and [2] A=A-=

N |~

The solution is
1 1
X [t :—COS\/EI——COSZt
1() 6 6

X, (t) = %cos\/gt +%c032t

This is similar to the response of Fig. 4.3



x1 (1) = é |{n:n:ns |{n.|"£ t]| — o3 [E-tﬂ X2 (1) 1= é (cns |{n.|'5 t]| + o3 [2-t]|]|

2 [t] o Lo LS s 1'5'.1“7_!‘15

- - Y

(b)x(O) =0, x(O) = [0 1]T . Using these initial conditions:
0= Asing, — A sing, [1]
0= Asing, + A sing, [2]
0=+/2A cosg, — 2A cos, (3]
1=+2A cosg, +2A,cosg, [4]
From [1] and [2] ¢, =¢, =0

2

From [3] and [4] A = 7 and A, :%

The solution is

V2

X, (t) = Esin Jat- ésin 2t
X, (t) = gsin Jat+ %sin 2t

This is also similar to the response of Fig. 4.3






4.16 Refer to the system of Figure 4.1(a). Using the initial conditions of Example 4.1.7,
resolve and plot x,(t) for the cases that k, takes on the values 0.3, 30, and 300. In each
case compare the plots of x; and x, to those obtained in Figure 4.3. What can you
conclude?

Solution: Let k; = 0.3, 30, 300 for the example(s) in Section 4.1. Given
x(0)=[1 0] mm,x(0)=[0 o]
m =9,m, =1k =24
Equation of motion becomes:
o et e

(@) k.= 0.3

=9w* - 27w*+7.2=0

de't(—co2 M + K) = ‘_9(02 +243 0.3 ‘

-0.3 -w°+0.3
w’ =0.2598,2.7042
o, =0.5439
w, =1.6444

Mode shapes:

Mode 1, @’ =0.2958

216374 -03 [u,] [o
[ 0.3 0.004159}{%}{0}
21.6374u,-0.3u, =0

u,, =0.01386u,,

[0.01386}
u =
! 1

—-0.03744 0.3 ||U, |_|0
-03 24042 |u, | [O

—0.3u,, = 2.4042u,,

u,, =-0.1248u,,

1
U2 =
[—0.1248}

The solution is x(t) = Alsin(a)lt + q)l)u1 + Azsin(a)zt + (;f)z)u2

Mode 2, w? =2.7042



Using initial conditions

1= A (0.01386)sing, + A,sing, [1]
0= Asing, + A, (~0.1248)sing, [2]
0= A (0.01386)(0.5439)cosg, + A, (1.6444)cosg, [3]
0= A (0.5439)cosg, + A, (1.6444)(~0.1248)cosg, [4]

From [3] and [4],
¢ =¢,=ml2

From [1] and [2],
A =0.1246

A, =0.9983
So,

,(t) = 0.001727 cos(0.5439t) + 0.9983cos(1.6444t) mm
X, (t) = 0.1246[ cos(0.5439t) - cos(1.6444t) | mm

x1 (1) = 0.001727- cos (0.5439-1) + 0.9983 coz (1.644-1)

X2 (1) = 0.1246- (cos (0.5439-1) — cos (1.644-1))

@1'\/\/\/\[}/\
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(b) k» = 30
90*+54  -30

det(_szJrK):‘ 30 -’ +30

‘:9w4—32w2+720:0

»* =2.3795,33.6205
o, =1.5426

®, =5.7983



Mode shapes:
Mode 1, w? = 2.3795

325845 30 |[u,] [0
[ 30 27.6205}{%}{0}
30u,, = 27.6205u,,

u, =0.9207u,

[0.9207}
U1 =
1

Mode 2, (022 =33.6205

—2485845 30 |lu, | [0
[ 30 —3.6205}{%2}{0}
30u,, =—3/6205U,,

u, =-0.1207u,,

[—0.1207}
U2 =
1

The solution is

x(t) = Alsin(a)lt + q)l)u1 + Azsin(a)zt + (;f)z)u2
Using initial conditions,

1= A (0.9207)sing, + A,(-0.1207sing, 1]
0= Asing, + A sing, [2]
0= A(0.9207)(1.5426)cos¢, + A, (~0.1207)(5.7983)cosg, [3]
0= A (L5426)cosg, + A, (5.7983)cosg, [4]

From [3] and [4]

0,=¢,=712

From [1] and [2]



A =0.9602
A, =-0.9602

So,

,(t) = 0.8841c0s(1.5426t) +0.1159 cos(5.7983t) mm
x, (t) = 0.9602[ cos(1.5426t) - cos(5.7983t) | mm

¥l (1) '= 0.8841 cos (1.5426-1) + 0.1152- cos (5.7983-1)

X2 (1) 1= 0.9602- (cos (1.5426-1) — cos (5.7953-1))
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(©) ko =300
— 2 f—
det(-0?M +K)= [0 T3 0 o g0i 300407 + 720020
300 —w°+300

»® =2.3981,333.6019
», =1.5486
», =18.2648

Mode shapes:

Mode 1, @’ = 2.3981



302.4174  -300 |(u, ]| [0
[ 300 297.6019}{%}_{0}
302.4174u,, =300u,,

u, =0.9920u,

[0.9920}
U1 =
1

Mode 2, coi =333.6019

—2678.4174  —300 |[u, | [0
[ ~300 —33.6019}{%2}_[0}
300u,, =33.6019u,,

u, =-0.1120u,,

[—0.1120}
U2 =
1

x(t) = Alsin(a)lt +q>l)u1 + Azsin(a)zt +(;b2)u2

The solution is

Using initial conditions

1= A (0.9920)sing, + A, (~0.1120)sing, [1]
0= Asing, + A sing, [2]
0= A (0.9920)(1.5486)cosg, + A, (~0.1120)(18.2648) [3]
0= A (1.5486)cosg, + A, (18.2648)cos, (4]

From [3] and [4] o =0,=m/2

From [1] and [2], A; =0.9058 and A, = -0.9058.

So,

x,(t) = 0.8986cos(1.5486t) + 0.1014c0s(18.2648t) mm
X, (t) = 0.9058[ cos(1.5486t) - cos(18.2648t) | mm



x1(t) '= 0.8986-coz (1.5486-1) + 0.1014-cos (18.2648- 1)
X2 (1) '= 0.9052- (cos (1.54586-1) — coz (15.2645-1) )
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As the value of k, increases the effect on mass 1 is small, but mass 2 oscillates similar to

mass 1 with a superimposed higher frequency oscillation.



4.17 Consider the system of Figure 4.1(a) described in matrix form by Egs. (4.11), (4.9), and
(4.6). Determine the natural frequencies in terms of the parameters m;, my, ki and k.

How do these compare to the two single-degree-of-freedom frequencies o, = \/k / m,
andw, =/k,/m, ?
Solution:

The equation of motion is

MX + Kx =0
m 0 - k +k, -k, L= 0
0 m, -k, k
The characteristic equation is found from Eq. (4.19):
det(~0*M + K) =0

—mo’® +k +k, —k

2

2
-k, -mw” +k,

mm,o* — (k1m2 +k, (m1 + mz))co2 +kk, =0

km, +k, (m1 + mz) + \/[klmz +K, (ml + mz)]2 —4mmk K,
2mm,

So,

km, +k, (ml + mz) + \/[klmz +k, (m1 + mz)]2 —4mm.k k,
2mm,

o, =

In two-degree-of-freedom systems, each natural frequency depends on all four
parameters (my, my, K1, ko), while a single-degree-of-freedom system's natural frequency
depends only on one mass and one stiffness.



4.18 Consider the problem of Example 4.1.7 and use a trig identity to show the x;(t)
experiences a beat. Plot the response to show the beat phenomena in the response.

Solution Applying the trig identity of Example 2.2.2 to x; yields

+
x,(t) = (COS\/—'[+COSZ'[) cos(\f 2 s(\/E2 2t):cosO.586tcos3.414t

Plotting x; and cos(0.586t) yields the clear beat:
X []:_] = cos [ SR l:_] |_|_|x[_ 414 - I:_:I
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Problems and Solutions for Section 4.2 (4.19 through 4.33)

4.19 Calculate the square root of the matrix
M = 13 -10
-10 8

. —b
{Hlnt: Let M*2 :{ ab }; calculate (M”Z)2 and compare to M}
-b ¢

Solution: Given:

M = 13 -10
-10 8

M Y2 :|: ab —b] then
— C
M - Ml/ZMl/Z — a _b a _b — a2 +b2 —ab—bC — 13 _10
-b c||-b c —ab—-bc b*+c? -10 8

This yields the 3 nonlinear algebraic equations:

a’+b?=13
ab+bc =10
b>+c*=8

There are several possible solutions but only one that makes M*? positive definite which
is a=3, b=c=2 as determined below in Mathcad. Choosing these values results in

|\/|l/2= 3 2
-2 2



SVEL a® + he=13

a-h + b-c=10

b+ pf=g

find (a,b,c) =



4.20 Normalize the vectors
1(]0({-01
-2[15/]] 0.1
first with respect to unity (i.e., x" x =1) and then again with respect to the matrix M

(i.e.,x" Mx =1), where
vo| 3 01
-01 2

Solution:

(a) Normalize the vectors

1
o = = —
' X" X \/E
Normalized:
(= 1104472
5| -2| |-0.8944
« = 0
2 |5
1 1
o, = - —g
X' X
Normalized:

1 1
o. = =
*Ux'x +0.02

Normalized:



01| _ 1|-1|_[-0.7071
X, =+/50 =— =
: [0.1} 2[1} [0.7071}

(b) Mass normalize the vectors

o

_ 1 1
IXTMx V114

Mass normalized:

11

* IxMx V50

& %m ) %m ) {0.7?)71}
<~ o1)

o = 1 _ 1
P UdXTMx +/0.052

(04

Mass normalized:

_ —0.4385}

1 -0.1
X = =
. J0.052 { 0.1 } { 0.4385



4.21  For the example illustrated in Figure P4.1 withc, =c, = ¢, =0, calculate the matrix K .

Solution:

From Figure 4.1,
m 0 - k +k, =k, N
0 m, -k, k, +k,

K - M—l/Z KM -1/2 = mJTllz 0 kl + k2 _k2 mJTllz 0
0 mY| -k, k+k| 0 m*

2
- ~1/2 -1
‘- mll(kl+k2) —m**m; %k,
_ml—1/2m2—1/2k2 ml_l(kz + k3)

Since K" = K, K is symmetric.

Using the numbers given in problem 4.2 yields

This is obviously symmetric.



4.22 Repeat Example 4.2.5 using eight decimal places. Does P'P =1, and does
PTKP = A = diag [a)f a)j] exactly?

Solution: From Example 4.2.5,

K =[12 _l}édet(lz—ll)=/12—151+35=0
1 3

= A, =2.89022777, and A, =12.10977223

Calculate eigenvectors and normalize them:

A, =2.89022777

— V
9.10977223 L |0 =9.10977223v,, =V,
-1 0.10977223 0

v = V2 +v2 = \/v + 910977223)
—v,, =0.10911677 and v,, =0.99402894

v, =[0.10911677 0.99402894]
A, =12.10977223

_, [-010077223 -1 v, | [o
-1 -9.10977223]|v,, | |0

= v,, =9.10977223v,,

v, | = V2 +v2 = \/ (~9.10077223) V2 +v2 =1
v,, =—9.10911677, and v,, =—-0.99402894

=[0.99402894 0.10911677 ]

0.10911677 —0.99402894
Now, P = [ 2] =
0.99402894 0.10911677
Check P'P=I
TP = 1.00000000 0
0 1.00000000

Check PTRP = A =diag(4,,4,)

} = | (to 8 decimal places)



A=PTRP = 2.89022778 0.00000002
0.00000002 12.10977227

2.89022777 0 }

diag(4,,4, ) =
g( . 2) [ 0 12.10977223

This is accurate to 7 decimal places.



4.23  Discuss the relationship or difference between a mode shape of equation (4.54) and an
eigenvector of K .

Solution:

The relationship between a mode shape, u, of MX+ Kx =0 and an eigenvector, v, of
K = M™Y2KM ™2 is given by
v.=M"u or u =M,

If v is normalized, then u is mass normalized.

This is shown by the relation

viv, =1=uMu,

4.24  Calculate the units of the elements of matrix K .
Solution:
K = M -1/2 KM -1/2
M ™ has units kg™?

K has units N/m = kg/s?

So, K has units (kg'l’z)(kg/sz)(kg’“z) =57



4.25 Calculate the spectral matrix A and the modal matrix P for the vehicle model of Problem
4.14, Figure P4.14.

Solution: From Problem 4.14:
Mg + Kx = 2000 O “+ 1000 -1000
0 50 —-1000 11,000

Calculate eigenvalues:
det( K — M) =0

g = M_l,zKM_l,zz[ 05 —3.162}

-3.162 220

~3.162 220- A
A,, =0.454,220.05

The spectral matrix is
0.454 0
A =diagl A, | =
o) "5 o)
Calculate eigenvectors and normalize them:

0.5- -3.162
‘ A ‘212—220.51+10020

A, =0.454
0.0455 -3.162 || V.
" 1=0=v, =69.426v,,
—3.162 219.55]|v,,

vl = V2 +v2, = \/(69.426)2 V2 +V2 = 69.434v,, =1

22

=V, =0.0144, and v,, =0.9999

0.9999
= V1 =
0.0144
A, =220.05

—219.55 -3.162 ||V, |_ 0
—-3.162 -0.0455 | v,,
v,, =0.0144v,,

HVZH = Vo Vv, = \/(—0.0144)2 Vo, +v2, =1.0001v,, =1

=V,, =0.9999, and v,, =-0.0144

Ly = -0.0144
21 0.9999

The modal matrix is



p=[v, v,]= 0.9999 —0.0144
1720 10,0144  0.9999



4.26  Calculate the spectral matrix A and the modal matrix P for the subway car system of
Problem 4.12, Figure P4.12.

Solution: From problem 4.12 and Figure P4.12,
2000 O “+ 280,000 —280,000
2000 —280,000 280,000

MX + Kx =

Calculate eigenvalues:
det( K — M) =0

R = M2 KM 2 :[ 140 —140}

-140 140

=21*-280A1=0
-140 140-A7

A, =0,280

0 0
A =diagl( A ) =
o) )
Calculate eigenvectors and normalize them:
A =0

140 140 v, |_o
~140 140 ||v, |
Vll = V12
Hle = \/vfl +v2, = \/vfz +v,, =1414v, =1

v,, =0.7071
v,, =0.7071

_[o.7071
V1 =
0.7071

‘140—), ~140 ‘

The spectral matrix is

A, =280
140 140 v,y | _ ooy =y
~140 140 | v, 20

Sv,| = VA +V2 = V2 2, =1414v, =15 v, =0.7071v,, = -0.7071
~0.7071]
0.7071 |

2




The modal matrix is P = I:Vl v2] _ {8;821 —00.77007711}



4.27 Calculate K for the torsional vibration example of Problem 4.11. What are the units
of K ?

Solution: From Problem 4.11,

Jo+Ko=1, 3 Ogak 2 Ho=o
01 -1 1

K = Jfl/Z KJ -1/2

J 1/2 J21/2
O 1

¢ = g-u2 05774 0 y 2 -1 J-u2 05774 0
2 0 1 |-1 1132 0 1

k [ 0.6667 —0.5774}

R=X
J,|-05774 1

-1/2 -1/2
kg - m? N-m )| kg -m? _ g
rad rad rad

A

The units of K are




4.28 Consider the system in the Figure P4.28 for the case where m; =1 kg, m, = 4 kg, k; = 240
N/m and k,=300 N/m. Write the equations of motion in vector form and compute each of the
following

a) the natural frequencies

b) the mode shapes

c) the eigenvalues

d) the eigenvectors

e) show that the mode shapes are not orthogonal

f) show that the eigenvectors are orthogonal

g) show that the mode shapes and eigenvectors are related by M 2

h) write the equations of motion in modal coordinates
Note the purpose of this problem is to help you see the difference between
these various quantities.

}_’ x,(1) }_’ X,(1)
W m _\/V\/L m,

k, k,

Figure P1.28 A two-degree of freedom system
Solution From a free body diagram, the equations of motion in vector form are

1 0| |[540 -300 0
X+ X =
0 4 -300 300 0
The natural frequencies can be calculated in two ways. The first is using the determinant

following example 4.1.5:
a) det(-o°M +K) = 0= o, = 5.5509,w, = 24.1700 rad/s

The second approach is to compute the eigenvalues of the matrix K = M KM ~ following
example 4.4.4, which yields the same answers. The mode shapes are calculate following the
procedures of example 4.1.6 or numerically using ei g( K, M in Matlab

0.5076 0.9893
b) u, = , Uy, =
0.8616 -0.1457

The eigenvectors are vectors that satisfy Kv = Av, where A are the eigenvalues. These can be

computed following example 4.2.2, or using [ V, Dv] =ei g( Kt ) in Matlab. The eigenvalues
and eigenvectors are
c) A, =30.8120, A, =584.1880,

0.2826 —0.9592
d) v, = , V, =
0.9592 0.2826



To show that the mode shapes are not orthogonal, show thatu,u, # 0

e) u; u, = (0.5076)(0.9893) + (0.8616)(—0.1457) = 0.3767 = O
To show that the eigenvectors are orthogonal, compute the inner product to show thatv;v, = 0:
f) v, Vv, =(0.2826)(-0.9592) + (0.9592)(0.2826) = 0

To solve the next part merely compute M 72v, and show that it is equal to u; (see the discussion
at the top of page 262.

9) M %y, =

0.9592 -0.9893
—0.1413 0.1457
Likewise, M 72v, = u, . Note that if you use Matlab you’ll automatically get normalized vectors.

But the product M 72v,, will not be normalized, so it must be normalized before comparing it to
Us.

}, normalize to get [

u,

h) We can write down the modal equations, just as soon as we know the eigenvalues (squares of
the frequencies). They are:

f;(t) + 30.812r,(t) = 0
f, () + 583.189r,(t) = 0

4.29  Consider the following system:

10 3 -1
X + x=0
o o 7]
where M is in kg and K is in N/m. (a) Calculate the eigenvalues of the system. (b)
Calculate the eigenvectors and normalize them.

Mx + Kx = 1 O>‘<+ 3 _lx:O
0 4 -1 1

Calculate eigenvalues:

Solution: Given:

det( K- M) =0
K — M—1/2 KM -2 _ 3 -0.5
-0.5 0.25

3-1 05
05 0.25-4
A,, =0.162,3.088

‘:/12—3.251+0.5:0



The spectral matrix is
. 0162 0
A =diag (/l) =
' 0 3.088
Calculate eigenvectors and normalize them:

A, =0.162
— V

2838 05V | _ 0=v, =1.762v,,

0.5 0.088]| v,
M ENFR \/(0.1762)2 V2 +V2 =1.015v, =1

0.1735
v,, =0.9848 and v, =0.1735=v, = [0 984318}
A, =3.088
— — V
0088 =05 Vi ooy =1762v,,
05 -2.838 v,

v, = V2 +v2 = \/(—5.676)2 V2 +V2, =5.764v, =1

22
—0.9848}

=V, = 0.1735 and vV, = —0.9848 = Vv, =
0.1735



4.30 The torsional vibration of the wing of an airplane is modeled in Figure P4.30. Write the
equation of motion in matrix form and calculate the natural frequencies in terms of the rotational

inertia and stiffness of the wing (See Figure 1.22).

Abrpluee wing wilh cogmes Wing sodeled as o shalis aed fwo

Solution: From Figure 1.22,

Equation of motion:

0y, [tk _k2:|920
0 J,| | -k Kk
i ~GJ
o GJDLLA] :
, 0 b+ L, L 1, 0=0
0 3, ~GJ, GJ
L . p
L |2 I2 _
Natural frequencies:
GJ [1 1) -GJ
_ Pl 4=
K= MY2KM Y2 = ! Il |2 I JJ,
-GJ GJ
p p
L Iz\/‘]l‘]z I, i
%(;g]_l ~0J,
i VEUER 1/J,J
det(R-at)=| =~ 2N
-GJ, GJ,
— =1
L Iz ‘]1‘]2 JZIZ ]

Solving for A yields

2
A _%[1£1+1)+i]+% Hzg} 1 ] 4
22 L)L 2 oL L)L 3L

The natural frequencies are




w, =, and cozz\/)T2



4.31 Calculate the value of the scalar asuch thatx; =[a -1 1]"andx,=[1 0 1]  are
orthogonal.

Solution: To be orthogonal, xIx2 =0

1
So,x;x,=[a -1 1] 0{=a+1=0. Therefore, a=-1.
1

4.32  Normalize the vectors of Problem 4.31. Are they still orthogonal?

Solution: From Problem 4.31, witha =-1,

-1 1
X, =|-1| and x,=|0
1 1
(ocxl)T (ocxl) =1
-1
Normalize Xi: a’[-1 -1 1]|-1]|=3"=1
1
o =05774
-1
So, X, =0.5774| -1
1
Normalize X;:
(ozxz)T (axz) =1
1
a’[1 0 1) 0|=2a"=1
1
a=0.7071
1
So, x, =0.7071 0
1
Check orthogonality:
1

xIx, =(0.5774)(0.7072)[-1 -1 1]/0|=0 Still orthogonal
1






4.33  Which of the following vectors are normal? Orthogonal?

0.1 0.3
1 X, = 0.2 X, = 04
0.3 0.3

<
I
&‘n—\ o %“H

Solution:

Check vectors to see if they are normal:

Hxluzx/1/2+0+1/2 :x/i:1 Normal
HXZH =12 +.22+.3 =14 =03742 Not normal
[x,| =3 +.4% +.3 =/34 =0.5831 Not normal

Check vectors to see if they are orthogonal:

i
xIxzz[llx/E 0 1/&} .2 |=.2828 Not orthogonal
3
3
x;x,=[.1 2 3].4|=02 Not orthogonal
3

172

x;x,=[.3 4 3]| 0 |=04243 Notorthogonal

1142

.. Only x; is normal, and none are orthogonal.



Problems and Solutions for Section 4.3 (4.34 through 4.43)

4.34  Solve Problem 4.11 by modal analysis for the case where the rods have equal stiffness
(i.e., k =k,), J, =3J,,and the initial conditions are x(0) = [0 l]T and x(O) =0.

Solution: From Problem 4.11 and Figure P4.11, with k =k =k, and J, =3J,:

o[22 -
3,12 gk 6=0
0 1 -1 1

Calculate eigenvalues and eigenvectors:

I
J—l/Z - J2—1/2 \/5
0 1]
(2 -1
- 3 5 2
R =3y =X E édet(K—Al)zlz—i +k_2:
A 31, 3J
V3
(S—Jﬁ)k (5+\/E)k
l:—i a):/l,and—zm):l
' 6J, LN 6J, .=\,
(5+Jﬁ)k )
(S—x/E)k 6J, 33,
)«1:—:) 11 =0
6J, _Kk (5+\/E)k 12
3J, 6J,
0.7992
=V, = 1.3205v12 =V, = [0.6011}



_(—l—\/ﬁ)k i
(5+\/E)k 6J, 3] {vz }

=i ’

’ 6J, _k (1—\/E)k

-0.6011
0.7992

=V, = —0.7522v22 =V, = {

Now. P:[Vl V2]: 0.7992 -0.6011
0.6011 0.7992
Calculate S and S
o jup L [04614 -03470
0.6011 0.7992

.

Sfl - PTJl/Z - \];L/2|:

1.3842 0.6011
-1.0411 0.7992

Modal initial conditions:

r(0)=5s"(0)= s-lm =} [gsgéﬂ

r(0)=5"6(0)=0
Modal solution:
n (t) = MSM[CG{[ +tan™ a)l_l’m:|

1 10

SHER

2,2 2
wr,. +r-. w.r,
r (t):usm ot +tan"t 21
wZ 20

r,(t) =0.60112 sin[a)lt + %} =0.6011J2%cos @t

r, (t) =0.7992322 sin[a)zt ¥ %} =0.6011J2 cos,t

r(t) | 0.6011J;*cosayt
0.7992J.% cosm,t



Convert to physical coordinates:

o(t) = srt) = o[ 04614 03470 0.60113%2 cosa,t
0.6011 0.7992 ]| 0.7992J; 12 cosat

O(t) _10.2774cosm,t —0.2774cos w,t
| 0.3613cos @t +0.6387 cos

where w, =0.4821 /Jﬁ and w, =1.1976 /JL
2 2



4.35 Consider the system of Example 4.3.1. Calculate a value of x(0) and X(O) such that both
masses of the system oscillate with a single frequency of 2 rad/s.

Solution:

From Example 4.3.1,

Ll 4

g 1 {1/3 1/3}

* s

From Equations (4.67) and (4.68),

2.2 2
i+l ofr
r, (t) = Msm[a)lt + tanll—lo}
wl 10
2,2 2
rZ+rl o,r
rz(t)zusm ot +tan"t 22
wZ 20

Choose x(0) and x (0) so that ry(t) = 0. This will cause the frequency \/E to drop out.
For ry(t) = 0, its coefficient must be zero.

2,2 2

O’k +r

=8 2=0 or @ri+ri=0
0]

1

Chooser,, =r, =0.

Let rp = 3/+/2 and r,, =0 as calculated in Example 4.3.1.
So, r(O) :[0 SI\ET and r(o) =0.

Solve for x(0) and X(O) ;



o)=st9= 5[0 7], 05 L%
x(0) = st(0) =

o



4.36  Consider the system of Figure P4.36 consisting of two pendulums coupled by a spring.
Determine the natural frequency and mode shapes. Plot the mode shapes as well as the
solution to an initial condition consisting of the first mode shape for k =20 N/m, | =0.5
m and m; = m, = 10 kg, a = 0.1 m along the pendulum.

|

i
i
|

hoook
1
| |
L
1

T
b
Solution: Given:
k=20 N/m m =m, =10 kg
a=01m =05m
For gravity use g =9.81 m/s®>. For a mass on a pendulum, the inertia is: 1 = ml?
Calculate mass and stiffness matrices (for small ). The equations of motion are:

1.6, = ka*(6, - 6,) - mgle, Lo O [ [mat ket —ka® 16| _[o
It92:—ka2(¢92—6?1)—ngle2 6, —ka®  mgl+ka’]|6,| |0

2..
Substitution of the given values yields:
2. .. . —0.
5 0 b+ 49.05 -0.2 0=0
0 25 -0.2 49.05
19.7 -0.08
-0.08 19.7

= A,=19.54 and A, =19.7 = o, =4.42 rad/s and w, = 4.438 rad/s
Eigenvectors:

Natural frequencies:

K = Mfl/ZKMfl/Z :|:

A, =19.54
{0.08 —0.08}{%} H 1 H
= = V1:_
~0.08 0.08 ||v,| [0 V2|1
A, =19.7

{—0.08 —o.oswn} m 1
= |= v,=—F
—0.08 -0.08]|v,, | [0 J2

Now, P =[v, Vz]:%[i —11}



U = M :[0.4472
! Y 10.4472
Mode shapes: 0.4475
u,=M*?, =~
—0.4472

u 1 u,
m, —» m, —
: | | :
-0.447 0.447 10447 0.447
> <« m,
n,

This shows the first mode vibrates in phase and in the second mode the masses vibrate
out of phase.

9(0) = paare 9(0) =0, S=M¥?p= 0.4472 0.4472
0.4472 0.4472 -0.4472

. 1.118 1.118 . 1]
ST =PTME :[1.118 —1.118} r(o): > 19(0):{0} r(o):o

From Eq. (4.67) and (4.68): 1, (t) = sin[4.42t + %) = cos4.45t, 1,(t)=0

. . A4472c0s4.42
Convert to physical coordinates: 9(t) = Sr(t) = [O c0s t}rad

0.4472co0s4.42t
Bt) = 0.4472-coz (4.429-1)

0.3 A

-5t

t
4.37 Resolve Example 4.3.2 with m, changed to 10 kg. Plot the response and compare the
plots to those of Figure 4.6.

Solution: From examples 4.3.2 and 4.2.5, with m, = 10 kg,



MX+Kx=[é O}H[lz _2}x=0

10 -2 12
Calculate eigenvalues and eigenvectors:

1 0
M -1/2 —

0 L

J10
R = M-Y2KM-Y2 = 12 —0.6325
—0.6325 1.2

det(K —A1)=21*-13.24+14=0
A, =1.163 ®,=1.078 rad/s
A,=12.04 o, =3.469 rad/s

P_[V y ]_ 0.0583 -0.9983
v 0.9983 0.0583

Calculate S and S

S = M2p = [0.0583 —0.9983}
0.9983 0.0583
1= pT Y2 :[ 0.0583 3.1569}
~0.9983 0.1842

Modal initial conditions:

0)=sx(0)=5 | ey

t(0)=57x(0) =0
Modal solution (from Egs. (4.67) and (4.68):
r(t)= 3.2152sin[1.078t + ﬂ = 3.2152¢0s1.078t

r, (t) = -0.8141c0s3.460t
Covert to physical coordinates:

0.0583 -0.9983|| 3.2152co0s1.078t
x(t):Sr(t):
0.3157 0.0184 || —0.8141c0s3.469t
x(t) _ 0.1873c0s1.078t +0.8127 cos 3.469t
1.015¢0s1.078t — 0.0150c0s 3.469t



B1 {1} ;= 0.1673 cos (1.078-1) + 0.5127 cos (3.469-1)

Bz (1) := 1.015 coz (1.078-t) — 0.0150- coz (3 469-1)

These figures are similar to those of Figure 4.6, except the responses are reversed (6,
looks like x; in Figure 4.6, and 6; looks like x; in Figure 4.6)



4.38 Use modal analysis to calculate the solution of Problem 4.29 for the initial conditions
x(O) =[0 1]T (mm) and x(O) = [0 O]T (mm/s)

Solution: From Problem 4.29,

¢

o, = /A, =0.4024 rad/s
, = [, =1.7573 rad/s

P_[V V]_ 0.1735 -0.9848
toe 0.9848 0.1735

Calculate S and S

S = M2p = [0.1735 —0.9848}

0.4924 0.0868
or 2 < | 01735 1.9697
~0.9848 0.3470

st=

Modal initial conditions:

0)=5(0)=51 = e

r(0)=57x(0)=0
Modal solution (from Egs. (4.67) and (4.68):

r,(t) =1.9697 cos0.4024t
r,(t) =—.3470cos1.7573t

Convert to physical coordinates:
0.1735 —-0.9848 || 1.9697 c0s0.4024t
x(t):Sr(t):
0.4924 0.0868 || 0.3470c0s1.7573t
0.3417c0s0.4024t — 0.3417 cos1.7573t
x(t): mm
0.9699¢0s0.4024t + 0.0301cos1.7573t



4.39

For the matrices
1

— 0 1 1

M2 =| o and P:i[ }
0

calculate M 2P, (M ‘1’2P)T , and P M ™2 and hence verify that the computations in
Eg. (4.70) make sense.

Solution:
Given
1
— 0 111 1
M2 = and P = —
o s
Now
05 05 |
M—l/ZP:
{—26 22
So

)T |05 22
(7p) _[0.5 —2V2 |
0.5 —zﬁ]
05 242

Thus, (M2P)" = P M2 [Equation (4.71)]

PT M—l/z :[



4.40 Consider the 2-degree-of-freedom system defined by:

M:90,andK:27 -3
0 1 -3 3

Calculate the response of the system to the initial condition

What is unique about your solution compared to the solution of Example 4.3.1.

Solution: Following the calculations made for this system in Example 4.3.1,
w, = \/Z =1414radls, w,= \//’TZ =2 rad/s

1 1
11 -z 1
P:i{ }:S:M‘“ZP:L3 3 |and S*=P'M"?= [3 }

1 -1 J2 L1
Next compute the modal initial conditions
1
r(0)=S"x(0)=| |, and r(0)=S"%(0)=0
(9)=5%(0)=| 3|, a0 ¢(o)=5x(o)
Modal solution (from Egs. (4.67) and (4.68)):

(1) = [cosl(.)414t}

Note that the second coordinate modal coordinate has zero initial conditions and is hence
not vibrating. Convert this solution back into physical coordinates:

-

1 1
X(t) = Sr(t) = % f 51 |:COSl(.)414ti|
x(t) = 0.236c0s1.414t
0.707 cos1.414t

The unique feature about the solution is that both masses are vibrating at only one
frequency. That is the frequency of the first mode shape. This is because the system is
excited with a position vector equal to the first mode of vibration.



4.41 Consider the 2-degree-of-freedom system defined by:

M:90,andK:27 -3
0 1 -3 3

Calculate the response of the system to the initial condition
1

x,=0, and >'<0:i 3

a5

What is unique about your solution compared to the solution of Example 4.3.1
and to Problem 4.40, if you also worked that?

Solution: From example 4.3.1,

111 1
wlz\/Z:lAl‘]- rad/s, wzz\/Z:Zfad/S, P:$|:1 _1:|

1 1
~S=M"P=—|3 3| adst=pPM¥= 1{3 1}

V20, ) 2|3 -1

Modal initial conditions:

s en 0550

| I—|

Modal solution (from Egs. (4.67) and (4.68)):
0

e B 0
r()— icosZt | 0.5c0s2t

(1)2
Convert to physical coordinates:
1 11 0 0.118cos 2t
x(t):Sr(t):— 3 3 =
J2 L _p|L05cos2t| | -0.354c0s2t

Compared to Example 4.3.1, only the second mode is excited, because the initial velocity
is proportional to the second mode shape, and the displacement is zero. Compared to the
previous problem, here it is the second mode rather then the first mode that is excited.



4.42 Consider the system of Problem 4.1. Let k; = 10,000 N/m, k; = 15,000 N/m, and k; =
10,000 N/m. Assume that both masses are 100 kg. Solve for the free response of this
system using modal analysis and the initial conditions

x(0)=[x o] x(o)=0

Solution: Given:
k, =10,000 N/m m =m, =100 kg

2
k, =15,000 N/m  x(0)=[1 0]
k,=10,000 N/m  %(0)=0
Equation of motion:

MX +Kx =0
100 O - 25,000 -15, 000
0 100 —-15,000 25,000

Calculate eigenvalues and eigenvectors:

T O
0 01

K - Mfl/Z KM -1/2 =|: 250 _150:|

~150 250
det(K A ) = 12 —5001 + 40,000 = 0

A, =100 @, =10 rad/s
A, =400 @, =20 rad/s

2, =100
150 -150][ vy, |_[0
~150 150 ||v, | [0

3



2, = 400

~150 -150 v, | _[o0
~150 -150]|v,, | |0

_ 11
2 \/E 1
1 1
Now, P:[vl vzjzi
211 -1
Calculate S and S
S = M—lfzp:i 01 01
J2101 -01
S—l_ PT Ml/Z :i 10 10
J2110 -10

Modal initial conditions:

Modal solutions:

.2
w’r _ o,r
s (t) :#sm{wlt +tan‘1ﬂ}

10

I

2,2 2
r,tr. ,r.
r (t) =122 % sm[a)zt +tan™ 22
20

So
r,(t) = 7.071sin (10t + 7 / 2) = 7.071cos10t

r, (t) = 7.071sin(20t + 7 / 2) = 7.071cos 20t

2

7.071cos10t
r(t)=
7.071cos 20t

Convert to physical coordinates:



_ 1101 0.1 7.071cos10t
(1) =sr(t)= ﬁ[o.l 0.1}[7.7071c0320t}
()_ 0.5(coslot+c0520t)
= 0.5(colet—cosZOt)



4.43 Consider the model of a vehicle given in Problem 4.14 and illustrated in Figure P4.14.
Suppose that the tire hits a bump which corresponds to an initial condition of

x(0) = {O%J %(0)=0

Use modal analysis to calculate the response of the car x;(t). Plot the response for three
cycles.

Solution: From Problem 4.14,
Mg + Kx = 2000 O “+ 1000 -1000 “ =
0 50 —1000 11,000
Calculate the eigenvalues and eigenvectors:
M Y2 = 0.0224 0 R = MY2KM-Y2 = 0.5 -3.1623
0 0.1414 | -3.1623 0.1414
A, =0.4545 @, =0.6741rad/s

:>det(K —M) =12 —220.051+100=0 =
lz =220.05 w,=14.834 rad/s

p=[v, v,]= 0.9999 —0.0144
1720 10,0144 0.9999

Calculate S and S

S=M"pP=
0.0020 0.1414 —0.6441 7.0703

Modal initial conditions:

) 4o 0.001018] o
r(0)=57x(0)=s 1[0.01} = [ 007070 } r(0)=57x(0)=0
0.0010180030.67411
0.07070c0s14.834t

0.0224 —0.003} S‘l—PTM”Z—{M'?lG? 0.1018}

Modal solution (from equations (4.67) and (4.68)): r(t) :[

Convert to physical coordinates:



0.0020 0.1414 || 0.07070c0s14.834t | | 2.074x107°c0s0.6741t +9.998 x 10~ cos14.834f
x1 (1) = 2.277- 1077 cos (0.674-1) — 2.277- 107" coa (14.834-1)

(t)= se(t)= [0.0224 —0.0003}{0.0010180050.6741t} _ [2.277 x107°c0s0.6741t — 2.277 x 10° c0s14.8341




Problems and Solutionsfor Section 4.4 (4.44 through 4.55)

4.44 A vibration model of the drive train of avehicleisillustrated as the three-degree-
of-freedom system of Figure P4.44. Calculate the undamped free response [i.e.
M(t) = F(t) =0, ¢, = ¢, = Q] for theinitial condition x(0) =0, x(0)=[0 0 1]
Assume that the hub stiffness is 10,000 N/m and that the axle/suspension is
20,000 N/m. Assume the rotational element J is modeled as a trand ational mass

of 75 kg.
Fotatios Tire demping
) A,
| Hal I l
! S Fd " ............

_I|'|.'_. : Totmue coavertor [ e 4 e [ e ) ". I|I :..|;;_"I I H
Chaich = '-'i imertia e i -. e ﬁ.‘"l,‘_.'-w - I I-I;: _,, ....... Wimd el
B | J= 75 ku- orf md P R — p ._" _;l-u-i.:r i roardd krad

L T . = o BTE i
e R 5%
Huab will s Aale amd v oo

Sraoalelsnsl

Solution: Let k; = hub stiffness and k, = axle and suspension stiffness.
The equation of motionis

75 0 0 1 -1 0
0 100 O ([x+10,000-1 3 -2|x=0
0 0 3000 0 -2 2

x(0)=0andx(0)=[0 0 1] mis
Cdlculate eigenvalues and eigenvectors:
0.1155 0 0
MY= 0 01 O
0 0 0.0183

133.33 -115.47 0
K=M7Y2KM™Y2=|-11547 300 -36.515
0 -36.515 6.6667



0.1537 -0.8803 0.4488
v, =|0.1775|, v, =|-0.4222], v, = —0.8890

1 2

0.9721 0.2163 0.0913

Use the mode summation method to find the solution.
Transform the initial conditions:

a(0)=Mx(0)=0, ¢(0)=Mm"*%(0)=[0 0 54.7723]
The solution is given by:

q(t) = (cl + c4t)vl +C, sin(wzt + ¢2)v2 + casin(cost + </)3)v3

where
;
) =tan™* w i=23
2 q(O)
T .
C = viq(O) 1=2,3
' ®,cos¢
Thus,
¢, =¢,=0,c,—1.3417, and c, = 0.2629
o,
q(O) =cVv, + ici sing.v,
i=2
CI(O) = C4\/1 + iwici COS¢iVi
i=2
Premultiply byv. ;
qu(O) =0=c
vIg(0)=53.2414 =,
o,

q(t) =53.2414tv, +1.34175in(8.8290t )v,, +0.2629sin (19.028t v,
Changeto q(t):
x(t)= M aqft)
1] [ -0.1364 0.01363
x(t) = 0.9449t| 1|+ ~0.05665 |sin8.8290t +| ~0.02337 |sin19.028t m
1| |0.005298 0.0004385



4.45 Cdculate the natural frequencies and normalized mode shapes of

4 0 0 4 -1 O
0 2 O[x+|-1 2 -1|x=0
0 01 0 -1 1

Solution: Given the indicated mass and stiffness matrix, calcul ate eigenvalues:

05 0 0 1 -03536 0
MY2=] 0 07071 0|=K=M"KM™*=/-03536 1  -0.7071
0o 0 1 0 -07071 1

det(K—/1|):/13—3;LZ+2.375/1—o.375:0
A, =02094, 2, =1, 2 =1.7906

The natural frequencies are:
o, =0.4576 rad/s

o, =1rad/s

o, =1.3381 rad/s
The corresponding eigenvectors are:

—0.3162 0.8944 0.3162
v, =-07071| v, = 0 v, =|-0.7071
—0.6325 —-0.4472 0.6325
The relationship between eigenvectors and mode shapesis
u=M*?y
The mode shapes are:
—0.1581 0.4472 0.1581]
u=| -05 |, u,= 0 |, u=| -05
—0.6325 —0.4472 0.6325

The normalized mode shapes are

0.192 0.707 0.192 |
u
0. =—2-=[0609|, G 0 |, G,=|-0.609].

1 3
T
ul

U | o077 ~0.707 0.77 |




4.46 The vibration is the vertical direction of an airplane and its wings can be
modeled as a three-degree-of-freedom system with one mass corresponding to the
right wing, one mass for the left wing, and one mass for the fuselage. The
stiffness connecting the three masses corresponds to that of thewing and isa
function of the modulus E of thewing. The equation of motion is

1 0 0 X - 3 =3 0 (X 0
mo0 4 0 X, |+ — -3 6 -3 X, | = 0
0 0 1 %, 0 -3 3 X, 0

The model is given in Figure P4.46. Calculate the natural frequencies and mode
shapes. Plot the mode shapes and interpret them according to the airplane's
deflection.

Solution: Given the equation of motion indicated above, the mass-normalized
stiffness matrix is calculated to be

. 1 0 0 o 3 -15 0
M%:T 0 05 0| K= l\/r%Klvr%:7 15 15 -15
Mo o 1 M0 15 3

Computing the matrix eigenvalue by factoring out the constant % yields
m

- El El
det(K—/ll)=O:>ll=0, 2,2=3w, 13=45W
and eigenvectors:
0.4082 -0.7071 0.5774

v, =| 0.8165 Vv, = 0 v, =|-0.5774

1 2 3

0.4082 0.7071 0.5774



The natural frequenciesare ,= 0, m, = 1.7321, /E—Ia rad/s, and m, =

m/¢
2.1213, /E—Ia rad/s.
m/¢

The relationship between the mode shapes and eigenvectors u isjust u = M2y,
The fist mode shape is the rigid body mode. The second mode shape corresponds
to one wing up and one down the third mode shape corresponds to the wings
moving up and down together with the body moving opposite. Normalizing the
mode shapes yields (calculations in Mathcad):

1 o0 i =3 1
Mh=(3 2 0 K o=-3 & -3
ool 0 -3 3 15 3
ha = cigenvals [Kh) |:.:|__-7.] Kb = l_l"‘ 13 _I"‘]
1 -15 3
i

Kh =Mh"" -K-Mh™

. ) 2 1= rigenveo [Kh, ks 07
vl 1= cigenvec (Kh .f...,]l (halks N Rt |{K J ]| =707
o= =]

&G
0404 3707
1577
v3 1= eigenvec (Kh "'“'I.-J 1= | 21577
b57

ul [(L5377 ] —1.707
uln j= —— - 4 B T
ul] uln 0377 a2 g=Mh™ w2 w2 =11

0,577 ] 42 -.707
. -1 4 . , an = - —
ud ;= MhET 43 w3 = | H289 I [42 | uln = | 0
.577 0.707
u 0667
Hainm = = S
|l| | uin = | L35
h 66T
These are plotted:
u | u, ll;
”I — ”I —> ¢
.'Nl
m, m, B i, o}
my —» > —
”3 .'”3
| | | | |

0557 0577 0907 0707 0907 0707



4.47  Solve for the free response of the system of Problem 4.46. Where E = 6.9 x 10°
N/m? 1 =2 m, m = 3000 kg, and | = 5.2 x 10°m*. Let the initial displacement

correspond to a gust of wind that causes an initial condition of X(O) =0, x(0) =
[0.2 0 0]" m. Discuss your solution.

Solution: From problem 4.43 and the given data

3000 0 0 1.346 -1.346 0
0 12,000 0 |x+[-1346 2691 -1.346|x10'x=0
0 0 3,000 0 -1.346 1.346

x(0)=[02 0 0] m
%(0)=0

Convertto q:

4485 -2242 0
I§+|-2.242 2242 -2.242|q=0
0  —2242 4.485

Calculate eigenvalues and eigenvectors:

det(K - A1)=0=
A, =0 o, =0 rad/s
A, =4.485 w,=2.118 rad/s
A,=6.727 w, =2.594 rad/s

0.4082 —0.7071 0.5774
v, = 0.8165 Vv, = 0 v, = —0.5774
0.4082 0.7071 0.5774

The solution is given by
q(t) = (cl + c4t)vl +C, sin(wzt + ¢2)v2 + casin(cost + </)3)v3

where



0. = tanl(m] i=2,3

viTq(O)

wal0) _pg
sing, ’

C =

Thus, ¢, =, = g,cz = —7.7459, and c, =6.3251
So,

q(O) =cVv, + ici sing.v,
i=2

q(O) =cV, + icoici Coso.V,
Premultiply by v : h
vIq(0)=4.4716=c,
vig(0)=0=c,
So, q(t) = 4.4716v, - 7.7459cos(2.118t v, +6.3251cos(2.594t v,
Convert to physical coordinates:

x(t) = M‘l’zq(t) =

0.0333] [ 0.1 0.0667
x(t): 0.0333|+| 0 [c0s2.118t+|—0.0333 |cos2.594t m
0.0333| |-0.1 0.0667

The first term is a rigid body mode, which represents (in this case) a fixed
displacement around which the three masses oscillate. Mode two has the highest
amplitude (0.1 m).



4.48 Consider the two-mass system of Figure P4.48. This system is free to move in the
X, — X, plane. Hence each mass has two degrees of freedom. Derive the linear

equations of motion, write them in matrix form, and calculate the eigenvalues and
eigenvectors for m = 10 kg and k = 100 N/m.
- >

1N 5- : 1 $ F

{ »

e
Rantey

_ _ T
Solution: Given: m=10kg,k =100 N/m

Mass 1
x, —direction: mX =-4kx + k(x3 - xl) = —5kx, +kx,
X, —direction: mX, = —3kx, — kx, = —4kx,
Mass 2
X, —direction: mX, = —4kx, — k(x3 - xl) = —kx, —5Kkx,
X, —direction: mX, =—4kx, —2kx, = —6kx,
In matrix form with the values given:

10 0 0 O 500 0 -100 O
0 10 0 O 0 400 0 0
X+ Xx=0
0 0 10 O -100 O 500 0
0O 0 0 10 0 0 0 600

50 0 -10 O
0O 40 0 O
-10 0 50 O
0O 0 0 60
det(K — A1) = A* -~ 2004° +14,8004% — 480,000 +5,760,000 = 0
= A, =40, A,=40, 1,=60, 4, =60
The corresponding eigenvectors are found from solving (K —A)v. =0 for each
value of the index and normalizing:

K - M—l/ZKM—1/2 -

0 0.7071 0.7071 0
3 0 _| 0 _|0
o] * |o7o71| ® |-0.7071| ¢ |O
0 0 0 1

These are not unique.



4.49 Consider again the system discussed in Problem 4.48. Use modal analysis to
calculate the solution if the mass on the left is raised along the x, direction exactly 0.01 m
and let go.

Solution: From Problem 4.48:

10 0 0 O 500 0 -100 O
0 10 0 O 0 400 O 0
X + Xx=0
0 0 10 O -100 0 500 O
0 0 0 10 0 0 0 600
1000
0100
M™% =0.3162
0010
000 1

50 0 -10 O

K = Mfl/ZKM71/2 = O 40 O O
-10 0 50 O
0O 0 0 60

A =40 o, =6.3246 rad/s
A, =40 w, =6.3246 rad/s
A, =60 ,=7.7460 rad/s
A, =60 w,=7.7460 rad/s

0 0.7071 0.7071 0

1 0 0 0
Vl - V2 = V3 = V4 =

0 0.7071 —-0.7071 0

0 0 0 1

Also, x(0)=[0 0.01 0 0]" mand %(0)=0

Use the mode summation method to find the solution.
Transform the initial conditions:



a(0)=Mm¥*x(0)=[0 0003162 0 0]
g(0)= M¥*%(0)=0

The solution is given by Eq. (4.103),

() Ed sm(a)t+¢)

where

¢ =tan” [ '\T/ ] 1=12,34 (Eq.(4.97))

_ Sm¢ i=12,34 (Eq. (498))
u =My

Substituting known values yields

¢ =0,=0,=9¢,= rad

d, =0.003162
d,=d,=d, =0
0 0.2236 0.2236 0
0.3162 0 0 0
ul - u2 = u3 = u4 =
0 0.2236 —-0.2236 0
0 0 0 0.3162
The solution is
0
0.001co0s6.3246t
x(t)=
0

0



4,50 The vibration of a floor in a building containing heavy machine parts is modeled
in Figure P4.50. Each mass is assumed to be evenly spaced and significantly
larger than the mass of the floor. The equation of motion then becomes

(mlsz:mS:m).

9 1 13]
64 6 192y
1
EI| 1 1 1
mx+—1_ — -  — |IX =0
I°| 6 3 6
13 1 9 %
1192 6 64 |

Calculate the natural frequencies and mode shapes. Assume that in placing box
m, on the floor (slowly) the resulting vibration is calculated by assuming that the
initial displacement at m, is 0.05 m. If 1 =2 m, m = 200 kg, E = 0.6 x 10° N/m?, |
=4.17 x 10°m*. Calculate the response and plot your results.

g Ha b} (|
i

ot

) P v ———_

! i ! !

Solution:
The equations of motion can be written as

9 1 13

1 0 0% 646192)(1
m010X2+E—:l11x2:0

0 0 1|y I636X

3 13 1 9 2

192 6 64 |

or mIXx + Kx =0 where | isthe 3x3 identity matrix.

The natural frequencies of the system are obtained using the characteristic equation
‘ K-w’M ‘ =0

Using the given mass and stiffness matrices yields the following characteristic equation



.. B9EIM 41(EI)2m i 7(EI)3
me’ —————"+ 0 — 5
961 768l 6912l

Substituting for E, I, m, and | yields the following answers for the natural frequency

=+\/(13—\/13_7)5 :+\/E =+\/(13+\/13—7)EI

! ml® 2 "NoemI® " 48ml°

The plus minus sign shown above will cause the exponential terms to change to
trigonometric terms using Euler’s formula. Hence, the natura frequencies of the system
are 0.65 rad/sec, 1.068 rad/sec and 2.837 rad/sec.

L et the mode shapes of the system be u,, u, and u,. The mode shapes should satisfy the
following equation

=0,i=12,3

Notice that the system above does not have a unique solution for u, since [K - a)f M }

had to be singular in order to solve for the natural frequencyw. Solving the above
equation yields the following relations

u, 196me’1°-7El
== 3 =123
u, 3 13mw’l”+El

and u, =u,,i=13 but for the second mode shape thisis different u,, = u,

3

Substituting the values given yields

u, 196mw?l® - 7El

2 = o =_1.088
u, 3 13mw;l” + El

u, 196mw?l’-7El

U, 3 13mw;I°+El

u 96mw?l® — 7El

U _ 135Ma, =1.838

u, 3 13me’l®+El



If weletu,, =1,i=1,2,3, then

1 -1 1
u, =4-1.088¢,u, =40 p,u, =41.838
1 1 1

These mode shapes can be normalized to yield

0.5604 ~0.7071 0.4312
u =1-0.6098},u,={ 0 |u, =10.7926
0.5604 0.7071 0.4312

This solution isthe same if obtained ussing MATLAB

~0.5604 -0.7071 0.4312
u =1 0.6098 |, u, =1 0.0000 },u,=10.7926
~0.5604 0.7071 0.4312

The second box, m,, is placed lowly on the floor; hence, the initial velocity can be safely
assumed zero. Theinitial displacement at m, is given to be 0.05 m.

Hence, the initial conditionsin vector form are given as

x(0)= —o:os and %(0) =

o O O

The equations of motion given by MX (t) + Kx (t) =0 can be transformed into the modal
coordinates by applying the following transformation

1
x(t) = Sr(t) =M 75Pr(t) where P is the basis formed by the mode shapes of the system,
given by

P= [ul u, u3]

Hence, the transformation Sis given by



-0.04 -0.05 0.03
S=10.043 0 0.056
-0.04 0.05 0.03

Theinitial conditions will be also transformed

-0.431
r(0)=s7x(0)=1 0

—0.56
Hence, the modal equations are

with the above initial conditions.

The solution will then be

0.431cos(0.65t)
r(t)= 0
0.56 cos(2.837t)

The solution can then be determined by

0.0172cos(0.65t) — 0.0168 cos(2.837t)
x(t) = {-0.0185cos(0.65t ) — 0.0313cos(2.837t)
0.0172cos(0.65t) — 0.0168 cos(2.837t)

The equations of motion can be also be solved using MATLAB to yield the following
response.
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Figure 1 Numerical response due to initial deflection at m,
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Figure 2 Numerical vs. Analytical Response (shown for x; and x, only)

The MATLARB code is attached below

% Set the values of the physical parameters
%

R R R e e R b b e e b e R R R o e R R R R ok R R R Rk e e

*

% Declare global variablesto be used in the differential equation file
globa M K




% Define the mass of the each box
m=200;

% Define the distance |
1=2;

% Define the area moment of inertia
[=4.17* 10"-5;

% Define the modulus of elasticity
E=0.6*10"9;

% Define the flexural rigidity
ElI=E*;

% Define the system matrices
%

R R R R R b ke e R R R ok e R R o R R Rk ke e R R

*

% Define the mass matrix
M=m*eye(3,3);

% Define the stiffness matrix
K=EI/I"3*[9/64 1/6 13/192;1/6 1/3 1/6;13/192 1/6 9/64];

% Solve the eigen value problem
[u,lambda]=eig(M\K);

% Simulate the response of the system to the given initial conditions
% The states are arranges as: [x1;x2;x3;x1_dot;x2_dot;x3_dot]
[t,xn]=0ded5('sys4p47',[0 10],[0; -0.05;0;0; 0;0)]);

% Plot the results
plot(t,xn(:,1),t,xn(:,2),--",t,xn(:,3),-.");
set(gcf,'Color','White');

xlabel (‘'Time(sec)');

ylabel ('Displacement(m)”);
legend('x_1','’x_2','x_39;

% Analytical solution
for i=1:length(t)

xa(;,i)=[0.0172* cos(0.65*1(i))-0.0168* cos(2.837*(i)):
-0.0185* cos(0.65*1(i))-0.0313* cos(2.837*1(i)) ;




0.0172* cos(0.65*1(i))-0.0168* cos(2.837*1(i))];
end;

% Camparison

figure;

plot(t,xn(:,1),t,xa(1,:),--"t,xn(:,2),t,xa(2,:),"--";

set(gcf,'Color','White');

xlabel (‘'Time(sec)');

ylabel ('Displacement(m)”);

legend('’x_1 Numerical',’x_1 Analytical',’x_2 Numerical',’x_2 Analytica");

451 Recalculate the solution to Problem 4.50 for the case that m; is increased in mass
to 2000 kg. Compare your results to those of Problem 4.50. Do you think it
makes a difference where the heavy mass is placed?

Solution: Given the dataindicated the equation of motion becomes:

200 O 0 9/64 1/6 13/192
0 2000 O |[%+3.197x10*| 1/6 1/3 1/6 |x=0
0 0 200 13/192 1/6 9/64

x(0)=[0 0.05 0]",x(0)=0
Calculate eigenvalues and eigenvectors:

0.07071 0 0
MY2 = 0 0.02246 0
0 0 0.07071

2.2482 0.8246 1.0825
K=M7Y2KM™2={0.8246 0.5329 0.8246 |x10~’
1.0825 0.8246 2.2482

det(K — A1) =A%~ 9.8255x 107 A* +1.3645x 101 - 41382 x 10 = 0
A, =43142%10° , =2.0771x10°° rad/s
A, =1.1657x107 @, =3.4143x10™* rad/s
A, =8.2283x107 @, =9.0710x10™* rad/s




0.2443 0.7071 0.6636
v,=|-09384| v,=| 0 | v,=|0.3455

2 3

0.2443 -0.7071 0.6636

Use the mode summation method to find the solution. Transform the initial
conditions:

a(0)=mM¥*x(0)=[0 22361 0]
g(0)= M¥*%(0)=0

The solution is given by Eq. (4.103),
4

x(t) = Zdisin(witw&i)ui
i=1

where

b, = tan wi\T/TQ(O)} =123 (Eg. (4.97))

v;q(0 .
d = Sing)i) i=12,3 (Eq. (4.98))
u =M%

Substituting known values yields

0,=9,=9,= 7 rad

d, =-2.0984
d, =0
d,=0.7726
0.0178 0.05 0.04692
u, =|-0.02098| u,=| 0 | u,=|0.007728
0.01728 ~0.05 0.04692

The solution is



-0.03625 0.03625
x(t)=| 0.04403 cos(9.7044><10‘5t)+ 0.005969 cos(6.1395><10‘4t) m
-0.03625 0.0325

The results are very similar to Problem 50. The responses of mass 1 and 3 are the
same for both problems, except the amplitudes and frequencies are changed due
to the increase in mass 2. There would have been a greater change if the heavy
mass was placed at mass 1 or 3.



4,52 Repeat Problem 4.46 for the case that the airplane body is 10 m instead of 4 m as
indicated in the figure. What effect does this have on the response, and which
design (4m or 10 m) do you think is better as to vibration?

Solution: Given:

1 0 O - 3 3 -
m{0 10 05(+|—3 -3 6 -3|x=0
0 0 1 0 -3 3

Calculate eigenvalues and eigenvectors:

1 0 0
MY2=m™"?0 03612 0
0 0 1
—0.9487 0
K=M7Y2KMY? = E—'3 -0.9487 06  —0.9487
o oasr 3
Again choose the parameters so that the coefficient is 1 and compute the
eigenvalues:
det(K - A1) = 2° - 6.6A% +10.81=0
A =0
A, =3
A,=3.6
—0.2887 0.7071 0.6455
v,=1-09129 | v, = 0 v, =|-0.4082
—0.2887 -0.7071 0.6455
The natural frequencies are
o, =0 rad/s

w, =1.7321 rad/s
o, =1.8974 rad/s
The relationship between eigenvectors and mode shapes is
u=M"?
—0.2887 0.7071 0.6455
u =mVv?-02887| u, =m0 u, =|-0.1291

1 2 3

—0.2887 —0.7071 0.6455



It appears that the mode shapes contain less "amplitude™ for the wing masses.
This seems to be a better design from a vibration standpoint.



4.53

Often in the design of a car, certain parts cannot be reduced in mass. For
example, consider the drive train model illustrated in Figure P4.44. The mass of
the torque converter and transmission are relatively the same from car to car.
However, the mass of the car could change as much as 1000 kg (e.g., a two-seater
sports car versus a family sedan). With this in mind, resolve Problem 4.44 for the
case that the vehicle inertia is reduced to 2000 kg. Which case has the smallest
amplitude of vibration?

Solution: Let k; = hub stiffness and k, = axle and suspension stiffness. From
Problem 4.44, the equation of motion becomes

75 0 0 1 -1 0
0 100 0 |[x+10,000-1 3 -2|x=0
0 0 2000 0 -2 2

x(0)=0andx(0)=[0 0 1] mss.
Calculate eigenvalues and eigenvectors.

0.1155 0 0
MY2=| 0 0.1 0
0 0 0.0224

133.33 -115.47 0
K=M"Y’KMY2=|-115.47 300 -44.721
0 —44.721 10

K — A1) = 2% - 443.332% + 29,0001 = 0
A =0 o, =0 rad/s
,=70.765 @, =8.9311 rad/s
A, =363.57 ®,=19.067 rad/s

-0.1857 0.8758 0.4455
v,=|-02144 | v,=| 04063 | v,=|-0.8882
-0.9589 ~0.2065 0.1123

Use the mode summation method to find the solution. Transform the initial
conditions:

a(0)= m¥*(0) =0
a(0)=Mm"2x(0)=[0 0 44.7214]



The solution is given by

q(t) = (cl + c4t)vl +C, sin(wzt + ¢2)v2 + c3sin(co3t + </)3)v3

¢ =tan™ —in‘Tq(O) i=2,3
i vig) )’ ’

_ v{a(0)
. cosg,’
Thus ¢, = ¢;=0, ¢, =-1.3042 and ¢, = 0.2635. Next apply theinitial conditions:

where

1=2,3

3 3
q(0) =cv, + Y.c;singv, and ¢(0)=c,v,+ Y. c singv,
i=2 i=2
Pre multiply each of these by v, to get:
c,=0=v/q(0) and c, =-42.8845=v;¢(0)
So
q(t) = —42.8845tv, —1.3042sin(8.9311t)v, +0.2635sin(19.067t)v,

Next convert back to the physical coordinates by
x(t)= M 2q(0)

1 —0.1319 0.01355
=0.9195t| 1|+ | —0.05299 |sin8.9311t +| —0.02340 |sin19.067t m
1| |0.007596 0.0006620

Comparing this solution to problem 4.44, the car will vibrate at a dightly higher
amplitude when the mass is reduced to 2000 kg.

454 Use mode summation method to compute the analytical solution for the response
of the 2-degree-of-freedom system of Figure P4.28 with the valueswherem, = 1
kg, m, =4 kg, k; = 240 N/m and k,=300 N/m, totheinitial conditions of

o {021}’ o :m

Solution: Following the development of equations (4.97) through (4.103) for the mode
summation for the free response and using the values of computed in problem 1, compute
theinitial conditionsfor the “q” coordinate system:

M1’2=L1) Z}iQ(O):B 2}:021}:[0.%2}”(0):[; E}BHS}

From equation (4.97):
4 X L X
¢, = tan 1(6 = ¢, = tan 1(—) =

From equation (4.98):



viq(0) _ - _ v;q(0)

d = =v,q(0),d, = =v,q(0
W q(0) ;(ﬁ_/z) q(0)

Next compute q(t)from (4.92) and multiply by MY? to get x(t) or use (4.103) directly
to get
q(t) = d, cos(m;t)v, +d, cos(w,t)v, = cos(w,t)v] q(0)v, + cos(w,t)v] q(0)v,

0.0054 —0.0054
= cos(5.55]1)[ } + cos(24.170t){ }
0.0184 0.0016

Note that as a check, substitute t =0 in this last line to recover the correct initia
condition q(O). Next transform the solution back to the physical coordinates

0.0054 ~0.0054
x(t)=M"?q(t) = cos(5.5511)[ }+ cos(24.170t)[ } m
0.0092 0.0008

455 For azero vaue of an eigenvalue and hence frequency, what is the corresponding
time response? Or asked another way, the form of the modal solution for a non-
zero frequency is Asin(m,t + ¢), what is the form of the modal solution that

corresponds to a zero frequency? Evaluate the constants of integration if the
modal initial conditionsare: r;(0) =0.1,and ry(0) =0.01.

Solution: A zero eigenvalue corresponds to the modal equation:
i1(t)=0=n(t)=a+bt
Applying the giveninitia conditions:
rn(0)=a+b(0)=01=a=0.1
r1(0) =b=0.01
= r(t) =0.1+0.01t



Problems and Solutions for Section 4.5 (4.56 through 4.66)

456 Consider the example of the automobile drive train system discussed in Problem 4.44.
Add 10% modal damping to each coordinate, calculate and plot the system response.

Solution: Let k; = hub stiffness and k, = axle and suspension stiffness. From Problem
4.44, the equation of motion with damping is

75 0 0 1 -1 0
0 100 O ([x+10,000|-1 3 -2|x=0
0 0 3000 0 -2 2

x(0)=0andx(0)=[0 0 1] mis
Other calculations from Problem 4.44 yield:

A =0 o, =0 rad/s

A, =77.951 w,=8.8290 rad/s

A, =362.05 w,=19.028 rad/s

0.1537 —0.8803 0.4488
v,=(01775| v,=|-04222| v,=|-0.8890
0.9721 0.2163 0.0913

Use the summation method to find the solution. Transform the initial conditions:
a(0)=M¥%x(0)=0
a(0)=Mm¥x(0)=[0 0 54.7723]
Also, { =¢,=¢,=0.1.
m,, =8.7848 rad/s

,, =18.932 rad/s
The solution is given by

a(t)=(c, +ct)v, + idie’g“’it sin(w,t +9,)v,
2

a)diviTq(O) _
where¢, = tan™| — - i=2,3 Eq. (4.114)
v, q(O) +{ Vv, q(O)
vl L,
', cosp. —Cw sing, ’

Thus,
¢,=9,=0
d, =1.3485

d, =0.2642



Now,

3
q (0) =cv, +Y.dsingv,
i=2

q(O) =c,v, + i[—{ia)idi sing, +w,d, cosg, v,
i=2
Pre-multiply by v :
qu(O) =0=c,
vIg(0)=53.2414 =,
So,
q(t) =53.2414v, —1.3485e " sin (8.7848t ) v, +0.2648te ™" sin (18.932t) v,

The solution is given by
x(t) = M™%t

1] [ -0.1371 0.01369
x(t):0.9449t 1|-|-0.05693 |02 sin(8.7848t)+ —0.002349 |g 10zt sin(18.932t) m
1| |0.005325 0.0004407

The following Mathcad session illustrates the solution without the rigid body mode
(except for x; which shows both with and without the rigid mode)

x1(t) = 0.9449-t + 0.1371-e” %29t in (8.7848 1) + 0.01369 -~ 19%%t 5in (18.932 1)
x12 (1) := (0.1371-67¥%2% 5in (8.7848 1) + 0.01369 ¢~ 19028t gin (18.932 1) )

2 (1) := 0.05693 & *%2%t 5in (8.7848 1) — 0.002349 e~ 19928 gin (18,932 1)
33 (1) = -0.005325-¢ *%2% 5in (8.7848 1) + 0.000447 e 9928 g (18,932 1)

02 1)

at) e
wef) |
}Q[t] 1

: . ——
x3 () [ 3 4 5 B

The read solid line is the first mode with the rigid body mode included.



4.57  Consider the model of an airplane discussed in problem 4.47, Figure P4.46. (a) Resolve
the problem assuming that the damping provided by the wing rotation is {; = 0.01 in each
mode and recalculate the response. (b) If the aircraft is in flight, the damping forces may
increase dramatically to {; = 0.1. Recalculate the response and compare it to the more
lightly damped case of part (a).

Solution:

From Problem 4.47, with damping

300 0 0 13455 13455 O
0 12,000 0 |[x+Cx+|-13455 26910 ~—13,455x=0
0 0 3000 0  -13455 13455
x(0)=[0.02 0 0] m
%(0)=0
A =0 o, =0 rad/s
2, =4.485 o,=2.118 radls
2, =6.727 w,=2594 radls
~0.4082 0.7071 05774
v, = —0.8165] v,=| 0 | v,=|-05774
~0.4082 07071 05774

The solution is given by

a(t)=(c, +ct)v, + idie’g“’it sin(w,t +9,)v,
i=2

where
9, =tanl[ T wdiViTq(O)T ) 1=23
V. q(O) +l oV q(O) (Eq. (4.114))
4 = ViT_q(O) i=23
' osing,
Now,

3
q(O) =cv,+Y.dsingv,
i=2

q(O) =c,v, + i[—gwidi sing, +w,d, cosg, v,

i=2

Premultiply by v :



viq(0)=44721=c,
vig(0)=0=c,
(@ §,=¢,=¢,=0.01
w,, =2.1177 radls, ,, =2.593 rad/s
¢, =-1.5808 rad, ¢, =1.5608 rad

d, =7.7464, d, =6.3249
Mode shapes:
ui = I\/|—1/2Vi
—0.007454 0.01291 0.01054
u, =|-0.007454 | u, = 0 u, =| -0.005270
—0.007454 -0.01291 0.01054

The solution is given by
x(t)=(c, +ct)u, + idie’g“’it sin(w,t +9,)u,
i=2

17 [0.100
x({t)=0.0333{1|+| 0 [e7*%sin(2.1178t—1.5808)
1] ]0.100

0.0667
+| —0.0333 |e 72925 5in (2.5937t +1.5608)
0.0677

b) ;=0,=§;=01
Same thing as part (a), but now the following values are obtained

w,, =2.1072rad/sec  w,, = 2.5807 rad/sec
¢, =-1.6710rad ¢, =1.4706rad
d, =7.7850 d, = 6.3564

Notice that the rigid mode is not effected by changing the damping ratio, and hence
c=4.4721

Consequently, the solution becomes



1
x(t)=0.0333/ 1 |+
1

0
0.1005

—0.1005

e 0218t gjpy (2.1072t - 1.6710)

0.0670
+| -0.0335 e-°-259“sin(2.5807t+1.4706)
0.0670

Below is the plot of the displacement of the left wing

02
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— m
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4.58 Repeat the floor vibration problem of Problem 4.50 using modal damping ratios of
¢,=001 ¢, =01 ¢, =02
Solution: The equation of motion will be of the form:

9/64 1/6 13/192
200% +Cx +3.197x10™*| 1/6 1/3 1/6 |[x=0
13/192 1/6 9/64

x(0)=[0 005 0] mandx(0)=o0.
M™% =0.7071

2.2482 2.6645 1.0825
K=M"Y’KM™2=|26645 5.3291 2.6645 |x10~
1.0825 2.6645 2.2482

det(K — 21) = 1°~9.8255x 107 A* +1.3645x 10 * /1~ 4.1382 x 10 % =0
A, =43142x10° o, =2.0771x10™ rad/s

A, =1.1657x107 o, =3.34143x107* rad/s

A, =8.2283x107 @, =9.0710x10™* rad/s

0.5604 -0.7071 0.4312
v,=|-06098| v,=| 0 v,=|0.7926
0.5604 0.7071 0.4312

Use the mode summation method to find the solution. First transform the initial

conditions:
a(0) = M**x(0)
4(0)= M**x(0)
The solution is given by Eq. (4.115):

x(t) = IZ; de ' sin(w,t+,)u,
w4V ,q( )

where ¢ :tan{vIT ( )+C.60.V.Q( )] i=12,3

[0 07071 o]
0




vig'(0
d = 'q() i=123 u=M"
sing.

=001 ¢,=01 (=02

Substituting
o,, =2.0770x107 radfs, o, =3.3972x 107 rad/s w, =8.8877 x10™* rad/s

¢, =1.5808 rad, ¢, =1.6710rad, ¢,=1.3694 rad
d, =0.4312, d,=0, d, =0.5720
The mode shapes are

0.03963 ~0.05 0.03049
u, =|-0.04312| u,=| 0 | u, =|0.05604
0.03963 0.05 0.03049
The solution is
0.01709
x(t) =| ~0.01859 [e"*""* “*sin(2.0770 x 10t - 1.5808)
0.01709
0.01744

+| 0.03206 |e 207719 t iy (8.8877 %107t + 1.3694) m
0.01744



4.59 Repeat Problem 4.58 with constant modal damping of £, £, ¢, = 0.1 and compare this
with the solution of Problem 4.58.

Solution: Use the equations of motion and initial conditions from Problem 4.58. The
mode shapes, natural frequencies and transformed initial conditions remain the same.
However the constants of integration are effected by the damping ratio so the solution

x(t) = Zstdiegi“’it sin(w,t +9,)u,

- S ogvia(o) |
has new constants determined by ¢, = tan™| — = =123
V. q(O) +{o.V. q(O)

vig'(0

d = 'q( ) i=12,3
sing.

u =M"v
£, =¢,=¢=01

Substituting yields

w,, =2.0667 x10™ radls, w,, =3.3972x10 rad/s, w, =9.0255x107" rad/s

¢, =-1.6710 rad, ¢, =-1.6710 rad, ¢, =1.4706 rad
d, =04334, d,=00, d,=0.5633

Mode shapes:

0.03963 0.05 0.03049
u =|-004312| u,=| 0 | u,=|0.05604
0.03963 0.05 0.03049
The solution is
0.01717 |
x(t) =| ~0.01869 [e2710 "t sin (2.0667 %107t - 1.6710)
0.01717
[0.01717
+| 0.03157 e-9-°“°xl°’“sin(9.0255><104‘t+1.4706)m
0.01717

The primary difference between problems 4.58 and 4.59 is the settling time; the
responses in Problem 4.59 decay faster than those of Problem 4.58.



4.60 Consider the damped system of Figure P4.1. Determine the damping matrix and use the
formula of Eq. (4.119) to determine values of the damping coefficient ¢, for which this
system would be proportionally damped.

Solution:

From Fig. 4.29,

m O o+ c,+c, —C, o+ kl+k2 —k2 <=0
0 m, —-C, C,+C, —k2 k2 + k3
From Eq. (4.119)

C=aM+pK

c,+c, —c, | [am+B(k +k,) Bk,
-C, C,+cC, B -k, aml+ﬁ(k2+k3)

2

To be proportionally damped,

C2 = ﬁkZ

¢, = om, + Bk,

c, =om, + Bk,
Alternately, compute KM '€ symbolically and show that the condition for symmetry
kKl + k2 - ml 0 cl +c2 -c2 i
[ ] 1 [ -c2 c:+c3]:

“(m2-klel +m2-kle2 +m2-K2cl +m2-k2c2 +k-c2-ml) -(m2-kl-c2 + m2-kK2-¢c2 +k2-c2-ml + L_ ml-c3)
{ml-m2) (ml-m2)

-(m2-k2-cl +m2-k2-c2 + K-c2-ml + c2-ml-k3) (m2-k2-c2 + K-c2-ml + kK2 -ml|c3 + c2-ml- }o + ml-k3-¢c3)
{ml-m2) {ml-m2

Requmng the off diagonal elements to be equal enforces symmetry. This reqmres
mlkz 3 m2k2C1 + (mz M 3)02



4.61 Letks=0inProblem 4.60. Alsolet m =1,m, =4,k =2,k, =1 and calculate c;, c; and
cs such that {; =0.01 and {, = 0.1.

Solution:
From Figure P4.1 the equation of motion is,
c,tc, —cC —
10X+12 2>'<+3 1x:O
0 4 —-C, C,+C, -1 1
Calculate natural frequencies:
-0.5 0.25
det(K — A1) =12 -3.251+0.5=0

A, =0.1619 w, =0.4024 rad/s
A,=3.0881 w,=1.7573 rad/s

K — M—1/2 KM -1/2 :|: 3 _0-5}

From Eq. (4.124)

o, B(0.4024
2(0.4024) 2
o B(1.7573)
N
2(1.7573) 2

Solving for oo and B yields

So, 0.01=

and 0.1=

o =-0.01096

B=0.1174
From Eq. (4.119),

C +cC —C _
c=|4"% > =M + K = 0.3411 0.1174
—C c, +C, -0.1174 0.07354

2

¢, =0.2238
Thus, c,=0.1174

c, =—0.04382
Since negative damping is not usually possible, this design would not work.



4.62 Calculate the constants o and 3 for the two-degree-of-freedom system of Problem 4.29
such that the system has modal damping of £ ={, =0.3.

Solution:

From Problem 4.29 with proportional damping added,

[; Z}X+(QM +ﬁK))’(+|:_31 _11:|x:0

Calculate natural frequencies:

K - M—1/2 KM -1/2 :|: 3 _0-5}

05 0.25
det(K —M) = 2?-3.251+05=0

A, =0.1619 w, =0.4024 rad/s

A, =3.0881 w,=1.7573 rad/s
From Eq. (4.124)

o o
=+t
C' 2coi 2
0.4024
So, 03=—% 4+ B( )
2(0.4024) 2
1.7573
and 0.3= o + ﬁ( )
2(1,7573) 2
Solving for oo and B yields
o =0.1966

B=0.2778



4.63 Equation (4.124) represents n equations in only two unknowns and hence cannot be used
to specify all the modal damping ratios for a system with n > 2. If the floor vibration

system of Problem 4.51 has measured damping of {; = 0.01 and £, = 0.05, determine .
Solution:

From Problem 4.51

det( K-l ) = 2°—9.8255x107 A% +1.3645x 101 — 4.1382x 102 = 0

A, =4.3142x10° o, =2.0771x10°° rad/s
A, =1.1657x107 @, =3.4143x10™ rad/s
A,=8.2283x10"  ®,=9.0710x107 rad/s

Eq. (4.124)

Since the problem contains three modes only, and since the first and second modal
damping ratios are give as £, =0.01 and {, =0.05 then the following linear system can

be set up
o , B(2.0771x10°) oot
2(2.0771><10-5) 2
o ) B(3.4143x10) 005
2(3.4143><10—4) 2

which can be solve to yield o =2.9x 107 and 8 = 290.397 . Hence, the modal damping
of the third mode can be obtained using 4.124

=0.132

o Po
C3__+ 23

- 2a)3



4.64 Does the following system decouple? If so, calculate the mode shapes and write the
equation in decoupled form.

10 5 3| 5 -1
X+ X+ x=0
0 1 -3 3 -1 1

The system will decouple if

Solution:

C=aM + K
5 3| |a+58 B
-3 3 -8 a+pf
Clearly the off-diagonal terms require
B=3
Therefore, the diagonal terms require

5=a+15
3=a+3

These yield different values of o, so the system does not decouple. An easier approach is
to compute CM™K to see if it is symmetric:

O P I M

Since this is not symmetric, the system cannot be decoupled.



4.65 Calculate the damping matrix for the system of Problem 4.63. What are the units of the
elements of the damping matrix?

Solution:

From Problem 4.58,

o =-8.8925x1077
B =3.0052 x10°

From Problem 4.48

200 O 0
M= 0 2000 O
0 0 200

9/64 1/6 13/192
K=3197x10"| 1/6 1/3 1/6
13/192 1/6 9/64

So,
C=aM +BK

0.01334 0.01602 0.006506
C =| 0.01602 0.03025 0.01602
0.006506 0.01602 0.01334

The units are kg/s

4.66  Show that if the damping matrix satisfies C = aM + BK , then the matrix CM 'K is
symmetric and hence that CM 'K = KM™'C..

Solution: Compute the product CM K where C has the form: C = oM + BK .
CM?*=(aM +BK)M?* =al + BKM™ = CM K = aK + SKM 'K
KM™C = KM (oM + BK) = K + BKM 'K

= KM™C =CM ™K



Problems and Solutions for Section 4.6 (4.67 through 4.76)

4.67 Calculate the response of the system of Figure 4.16 discussed in Example 4.6.1 if
F1(t) = 8(t) and the initial conditions are set to zero. This might correspond to a
two-degree-of-freedom model of a car hitting a bump.

Solution: From example 4.6.1, with F;(t) = 5(t), the modal equations are
i +0.2r, +2r, =0.70716(t)
F, +0.41, + 4r, = 0.70715(t)
Also from the example,
o, =2 radls ¢ =0.07071 , =1.4106 rad/s
o, =2 radls £,=01 o, =1.9899 rad/s
The solution to an impulse is given by equations (3.7) and (3.8):

r(t) = P gt w,t
iwdi
This yields
0.5012e " sin1.4106t
0.3553e*'sin1.9899t
The solution in physical coordinates is
2357 —.2357}{ 0.167e %" sin1.4106t }

7071 7071 || -0.118e **sin1.9899t

0.0394e*"sin1.4106t + 0.0279¢ ' 5in1.9899t
0.118e *"sin1.4106t — 0.0834e %% sin1.9899t

x(t) = M2Pr(t) :[

xa):{



4.68

For an undamped two-degree-of-freedom system, show that resonance occurs at
one or both of the system’s natural frequencies.

Solution:
Undamped two-degree-of-freedom system:

Mx + Kx = F(t)

Let F(t) = [Flét)}

Note: placing F; on mass 1 is one way to do this. A second force could be placed
on mass 2 with or without F;.

Proceeding through modal analysis,
It + Ar = PTMY?F(t)
Or,

r;L + wfrl = blFl(t)
i, +wir, = b,F (t)

where b, and b, are constants from the matrix PTM ™2,

If F1(t) = a cos wt and o = m; then the solution for ry is (from Section 2.1),

— 10 E
r(t)=—=sinot+r cosoot+2 tsinawt

1 wl

The solution for r» is

Za H
> tSIna)lt

» ~ 0

20 bza
r(t)- sino,t+| r,, ————— |cosm,t +

w, W, — o,

If the initial conditions are zero,



ba .
r(t) = ——tsinwt
1

b,a
r(t) = ﬁ(coswlt —cos wzt)

2 1

Converting to physical coordinates X(t) = M™*?Pr(t) yields

X, (t) =cr(t) +c,r,(t)
X,(t) =c,r,(t) +c,r,(t)

where c; is a constant from M™*p.
So, if the driving force contains just one natural frequency, both masses will be

excited at resonance. The driving force could contain the other natural frequency
(o = wy2), which would cause r; and r; to be

ba
r(t) = ﬁ(cos w,t — cos a)lt)

1 2

b a
r.(t) = —2—tsinw.t
(1) 0 )

2

and

X, (t) =cr(t) +c,r,(t)
X,(t) =c,r,(t) +c,r,(t)

so both masses still oscillate at resonance.

Also, if F1(t) = a; cos mt + a, cos m,t where m; = my; and w, = wyy, then both ry
and r, would be at resonance, so xi(t) and x»(t) would also be at resonance.



4.69 Use modal analysis to calculate the response of the drive train system of Problem
4.44 to a unit impulse on the car body (i.e., and location gz). Use the modal
damping of Problem 4.56. Calculate the solution in terms of physical coordinates,
and after subtracting the rigid-body modes, compare the responses of each part.
Solution:

Let k; = hub stiffness and k, = axle and suspension stiffness.

From Problems 41 and 51,

75 0 0 1 -1 0
0 100 0 |[§+10,0000-1 3 -2|q=0
0 0 3000 0 -2 2
1155 0 O
MY= 0 1 0
0 0 .0183

1537 —-.8803  .4488
P=|.1775 -4222 -.88910
9721 .2163  .0913

A =0 o =0 rad/s
2, =717.951 _, =8.8290 rad/s
A, =362.05 o, =19.028 rad/s

The initial conditions are 0.

Also

6 =¢=¢=1
m,, =8.7848 rad/s
o,, =18.932 rad/s

From equation (4.129):
I +diag(2.w ) + Ar = PTM?F(t)

Modal force vector:



01775
P M 2F(t) =| .003949 |5(t)
.001668

The modal equations are

= .017755(t)
f, +1.7658¢, +77.951r, = .0039495(t)
F, +3.8055¢, +362.05r, =.0016685(t)

The solution for rq is
r,(t) =.01775t

The solutions for r, and r3 are given by equations 3.7 and (3.8)

A

Foo ot
r(t) = ——e “*'sina,t
miwdi

This yields

r(t) = 4.4949 x 10 &% s5in8.7848t
r,(t) = 8.8083x 10°¢ %% 5in18.932t

The solution in physical coordinates is

q(t) = M~*Pr(t)
1| |-4.5691x10°

q(t) =3.1496 x107*t| 1 |+| —1.8978 x 10~ |e~***'sin8.7848t
1 1.7749%x10°°

45647 x107°
+|-7.8301x10°° |e™9**sin18.932t m
1.4689 x 10

The magnitude of the components is much smaller than that in problem 51, but
they do oscillate at the same frequencies.



4.70  Consider the machine tool of Figure 4.28. Resolve Ex. 4.8.3 if the floor mass m =
1000 kg, is subject to a force of 10 sint (in Newtons). Calculate the response.
How much does this floor vibration affect the machine’s toolhead?
Solution:

From example 4.8.3, with F5(t) = 10 sint N and m3 = 1000 kg.

40 0 30 -30 0 0
(103) 0 2 0 x+(104) _30 38 -8|x=| 0
00 1 0 -8 88 10sint

Calculating the eigenvalues and eigenvectors yields

A, =29.980 o, =5.4761 rad/s
A, =868.2743 o, = 29.4665 rad/s
A, =921.7378 o, =30.3601 rad/s

And

—4215 4989  .7573
P=]-9048 -.1759 -.3877
—-.0602 —-.8486 .5255

Modal force vector:

—.01904
P"M ™ 2F(t)=| —.2684 [sint
1662

Undamped modal equations:

I, +29.9880r, = —.01904sint
F, +868.2743r, = —.2684sint
, +921.7378r, = .1662sint

Inserting the damping terms,



(=1 2w =1.0952

(=01  2{o,=5893

{,=.05  2{m,=3.0360

f, +1.0952¢, +29.9880r, = —.01904sint
F, +.5893t, +868.2734r, = —.2684sint
F, +3.0360¢, +921.7378r, =.1662sint

The damped natural frequencies are

o, = +/1-{? =5.4487 radls

@,, =0 ,\1- > =29.4650 rad/s
o, =0 _\J1- 2 =30.3222 rad/s

The general solution is

r(t) = Ae ' sin(w,t - 6,) + A, sin(wt - ¢,)

where
f. 200 @
A, = 0 and ¢ = tan‘l[—i' ni ]
2 2\? 2 - —
\/(wni - ) + (Zgiwniw) "
Inserting values,
A, =-6.5643x107 m ¢, =3.7764x107 rad
A, =-3.0943x107* m ¢, =6.7952x10™ rad
A, =1.8049%107 m ¢, =3.2974x107° rad

So,

r,(t) = Ae " sin(5.4487t — 6,) — 6.543x 10 sin(t — 3.7764 x 10°%)
r,(t) = Ae~*""sin(29.4650t — 0,) — 3.0943x 10~ sin(t — 6.7952 x 10~*)
r,(t) = Ae™°*"sin(30.3222t — 6,) +1.8049 x 10~ sin(t — 3.2974 x 10°)

With zero initial conditions:



=1.2047 x10™* m 6. =.2072 rad
1
=1.0502x10° m 6. =.02002 rad
2
A, =-5.9524x10° m 6, =.1002 rad

Now,

r,(t) =1.2047 x10™e~*""* sin(5.4487t — .2027) — 6.543 x 10 ~* sin(t — 3.7764 x 10°%)
r,(t) =1.0502 x 10~°e~***"* sin(29.4650t —.02002) — 3.0943x 10 sin(t — 6.7952 x 10~*)
r,(t) =—5.9524 x 10 °e™****" 5in(30.3222t —.1002) +1.8049 x 10 ~*sin(t — 3.2974 x 10°°)

Convert to physical coordinates:

~.02108  .02494  .03786
x(t) = MY2Pr(t) =| —.02023 -.003993 —.008670 |r(t)
~.001904 —.02684  .01662

Therefore

x,(t) = —.02108r, +.02494r, +.03786r,
X, (t) = —.02023r, —.003933r, —.008670r,
X,(t) = —.001904r, —.02684r, +.01662r,



4.71 Consider the airplane of Figure P4.46 with damping as described in Problem 4.57
with {; = 0.1. Suppose that the airplane hits a gust of wind, which applies an
impulse of 305(t) at the end of the left wing and 6(t) at the end of the right wing.
Calculate the resulting vibration of the cabin [X(t)].

Solution: From Problems 4.46 and 4.57

01826 0 0
M™*= 0 009129 0
0 0 .01826
0.4082 -0.7071 0.5774
P=]0.8165 0 -0.5774
0.4082 0.7071 0.5774
A =0 o =0 rad/s
A, =4.485 o, =2.118 rad/s
A, =6.727 o, =2.594 rad/s
Also:
=6 =6=01
3
F(t)=]0|o(t)
1

w,, =0rad/s, w,, =2.1072 rad/s, w,, = 2.5807 rad/s
From equation (4.129):
I +diag(2.w )F + Ar = PTM?F(t)
Modal force vector:
—0.0298
PTM2F(t)=| 0.0258 |5(t)
0.0422
The modal equations are
i, =-0.029815(t)
i, +0.424r, + 4.485r, = 0.02585(t)
i, +0.519¢, +6.727r, = 0.04225(t)

The solution for ry is
r,(t) =-0.02981t
The solutions for r, and rs are given by equations (3.7) and (3.8)



A

Foo ot
r(t) = e sina,t

rnia)di

This yields
r,(t) =1.2253x10%e ***sin 2.107t

r,(t) =1.6338x10?e *** sin 2.581t
The solution in physical coordinates is

X(t) = M7?Pr(t)

For x,:
X,(t) = 2.221x 107t +8.06 x 10 ***' sin 2.581t



4.72  Consider again the airplane of Figure P4.46 with the modal damping model of
Problem 4.57 ({; = 0.1). Suppose that this is a propeller-driven airplane with an
internal combustion engine mounted in the nose. At a cruising speed the engine
mounts transmit an applied force to the cabin mass (4m at x,) which is harmonic
of the form 50 sin 10t. Calculate the effect of this harmonic disturbance at the
nose and on the wind tips after subtracting out the translational or rigid motion.

Solution: From Problems 4.47 and 4.57

01826 0 0 -4082 .7071 5774
M™¥2=| 0 .009129 0 | P=|-8165 0 -5774
0 0 .01826 -4082 -7071 .5774
A =0 o =0 rad/s
A, =17.94 o, =4.2356 rad/s
A, =26.91 o , =5.1875 rad/s
Also,
(,=¢,=0,=01=>w,=0rads, o,=42143radls, w,, =5.1615 rad/s
0
F(t) =| 50sin10t
0

The initial conditions are 0. From equation (4.129):
P +diag(2{,w )F + Ar = PTM™?F(t)
Modal force vector:

-.3727
P"TM™F@t)=| 0 [sinl0t
—.2635

The modal equations are

i = —.3727sin10t
r, +.8471r, +17.94r, =0
i, +1.0375r, + 26.91r, = —.2635sin10t

The solutions are



r,(t) =.003727sin10
r,(t)=0
r,(t) = —.006915e~°*" sin(5.1615t +.0726) +.003569sin(10t +.141)

The solutions in physical coordinates is
x(t) = M72Pr(t)
The wing tips are x; and xs, SO

X, (t) = X, (t) = 2.7780 x 10" sin10t — 7.2891x 10° ™% sin(5.1615t +.0726)
+3.7621x 10° sin(10t +.141)



4.73  Consider the automobile model of Problem 4.14 illustrated in Figure P4.14. Add
modal damping to this model of {; = 0.01 and {; = 0.2 and calculate the response
of the body [x2(t)] to a harmonic input at the second mass of 10 sin3t N.

Solution: From problem 4.14

M = 2000 0 « = 1000 —1000 . 9999 —.1044
0 50| ~1000 11000 |’ 1044 9999
A, =04545 @, =0.6741 rad/s,and A,=220.05 w,=14.834 rad/s

Also,
¢,=.01 ¢, =02, w,=06741radls, w,, =14.534 rad/s

|0
RO = {10sin3t}

The initial conditions are all 0. From equation (4.129):
I +diag(2{.w )F + Ar = PTM?F(t)
Modal force vector:
PTM™Y2F(t) = [0'02036}sin3t
1.4141
The modal equations are
i, +0.01348r, +0.454r, = 0.02036sin 3t
r, +5.9336r, +220.046r, =1.4141sin3t
The solutions are
r,(t) = —0.1088e °*®"™sin(0.6741t +1.0914 x 10™*) +.002445sin(3t — .004857)
r,(t) = —0.07500e *****" sin(14.534t +1.3087) +.075865in(3t +1.26947)
The solutions in physical coordinates is
X(t) = M7?Pr(t)
The response of the body is
X, (t) = —.002433e %" sin(.6471t — 1.0914 x 10~*)
+5.4665x 107 sin(3t —.004857)
+2.4153x10°e > sin(14.534t —1.3087)

— 2.4430 x 10°sin(3t +1.2694)



4.74  Determine the modal equations for the following system and comment on
whether or not the system will experience resonance.

o[22 -11 17,
X+ [_1 L }x = [O}sn(o.618t)

Solution: Here M =1 so that the eigenvectors and mode shapes are the same.
Computing the natural frequencies from det(-w’l + K) =0 yields:

o; = 0.618 rad/s and w, =1.681 rad/s
Next solve for the mode shapes and normalize them to get

0.526 -0.851 11 0.526
P= , Sothat P =
0.851 0.526 0 -0.851
The modal equations then become:
i, +(0.618)°r, = f;, + 0.3819r, = 0.526sin(0.618t)

i, +(1.618)°r, = i, + 2.6179r, = —0.851sin(0.618t)

The driving frequency is equal to the natural frequency of mode one so the system
exhibits resonance.

4.75 Consider the following system and compute the solution using the mode
summation method.

usfy 3 <o 3} o-fo) 0[]

Solution: From Example 4.2.4

. |30 1 |A 0 111 1 —
. 1 3 1 0
Appropriate IC are q,=M Zxoz[o} 4,=M zvoz[o}

6 =t @V A0 _ a0 a0) m _
v; 4(0) 0 0,

NS NS

4210 4. A
i . ' d2
sno X%

{gftﬂ ) %Si”(\/?t + g)%m +¥sin[2t + g)%[_ﬂ



x(t) = gcos(\/it)[l/l 3} . gcos(Zt)F/ 3}

1

Y

[ql(t)} _ gcos( ﬁt)H+ L;’cos(m){ 1

|
)

+ l:(:os(Zt)

|

/s
0 1

il

1
-1

|



Problems and Solutions for Section 4.7 (4.76 through 4.79)

4.76  Use Lagrange's equation to derive the equations of motion of the lathe of Fig. 4.21 for the
undamped case.

Solution: Let the generalized coordinates be6,,6, and 6, .

The Kinetic energy is
1.0 1... 1..
T :EJlef +EJ2022 +EJ39§
The potential energy is

1

u :gkl(%—@z)z +%k2(63—02)2

There is a nonconservative moment M(t) on inertia 3. The Lagrangian is

1., 1., 1. . 1 2 1 2
L=T-U 2531912+5329§+5339§—§k1(92—91) —Ekz(eg—ez)
Calculate the derivatives from Eq. (4.136):
oL . df dL N
—=J6, —|—1|=J06
0, 't dt aelj t
oL . df dL
—=J06, —|—1|=J0
90, 2?7 dt aezj 2
a—'.‘=J39 af oL = 3.0,
00, dt{ 06,
oL
% = _klel + klez
1
oL
87:_k191_(k1+k2)02+k293
2
oL
a_ez_kzez_kzes

3
Using Eq. (4.136) yields
JO, +k6, -k0,=0

3.6, -k, + (k1 + k2)92 ~k,6,=0

16, - k6, +k0,= M(t)

In matrix form this yields



J 0 0 k -k 0 0

1 1 1
0 J, 0]6+|-k k+k, -k, [6=| 0
0 0 J 0 -k K M (t)

3 2 2



4.77 Use Lagrange's equations to rederive the equations of motion for the automobile of
Example 4.8.2 illustrated in Figure 4.25 for the casec, =c, =0.

Solution: Let the generalized coordinates be x and 6.
The Kinetic energy is
T= %mx2 +Lag
The potential energy is (ignoring gravity)
1 2 1 2
u :Ekl(x— 16) +§k2(x+ 1,6)
The Lagrangian is
1 ., 1. ., 1 2 1 2
L=T-U=_mid+_ 06" —Ekl(x— 16) —Ekz(x +1,0)
Calculate the derivatives from Eq. (4.136):

dL . dfdL .
—=mx —|—|=mX
oX dt ox

oL _ .. ddL "
—=J0 —|—=|=J6
00 dt\ 06

oL _

o= (K, + K, )x+ (Kl = k1,)6

g—';) = (k1 —k,L,)x—(k12)e

Using Eq. (4.136) yields
mx +(k, +k, )x+ (K, —k,1,)6 =0
36+ (k1 — k) x = (k)? +k,12)o =0
In matrix form this yields

m o], [ Ktk kL=kL X
0 J|[6] |KL -kl KIZ+kI?| 6



4.78 Use Lagrange's equations to rederive the equations of motion for the building model
presented in Fig. 4.9 of Ex. 4.4.3 for the undamped case.

Solution:

Let the generalized coordinates be X1, X2, X3 and 4.
The Kinetic energy is

1 1 1
T:%mﬁ+§%@+§%ﬁ+§mﬁ

The potential energy is (ignoring gravity)
1 1 2 1 2 1 2
U= Ekle +Ek2(x2 —~ xl) +Ek3(x3— x2) +Ek4(x4 - x3)
The Lagrangian is
L=T-U :%mxf +%m>‘<22 +%m>‘<32 +%mx§
1

_%klxlz _Ekz (Xz - Xl)Z%kz(Xs - Xz)z _%k4 (X4 - X3)2

Calculate the derivatives from Eq. (4.136):

LSS} TS
ox, b dt{ox t
LIS Y (T
ox 27 dt{ox 2
A g, Sy
ox, P dt{ox 33
NI I
ox, % dt{ ox o



Using Eq. (4.136) yields

In matrix form this yields

m 0
0 m,
0 0
0 0

g%=-(h+kgﬁ+kg2
gi_@&—@fmgg+g&
gé_@@—@g«J&—hn
aaTL =k, X, — KX,

rnl).(.l + (kl + kZ)Xl - kzxz =
mzxz - kle +(k2 + k3 X, 373
m,%, — kx, + (k, +k, )%, = k.,

m,X, — k4x3 + k4x4 =0

0 0] [k+k, -k, 0
0 0 |k Ktk K
m 0 —k,  k,+k,
0 m| | O 0 K,




4.79 Consider again the model of the vibration of an automobile of Fig. 4.25. In this case
include the tire dynamics as indicated in Fig. P4.79. Derive the equations of motion
using Lagrange formulation for the undamped case. Let m3 denote the mass of the car

acting at c.g.
i '
¥y -_--Iﬁ:\-\
:;;I
._ﬁ iu .
Solution: '

Let the generalized coordinates be X, X,, X, and 6. The kinetic energy is

T :Emle +%m2>‘<22 +%m3>'<32 +%Jt92

The potential energy is (ignoring gravity)
1 2 1 1 1
U= Ekl(x3 10— xl) +Ek2(x3 —0,0-X,)° +§k3X12 +Ek4x§
The Lagrangian is thus:

1 1 1 1..0 1
L=T-U :§m1X12 +Em2)'(22+§m3).(§ +EJ92——k1(X3—I19—X1)2

1 2 1 1
—Ekz(x3 + I20—x2) —Ekaxl2 —§k4x22

Calculate the derivatives indicated in Eq. (4.146):

oL daL] }
—.:mX ——_=m1X1

ox, ' dt| ox

a_L—m)‘( ia_L =m.X
ox, 2% dt{ox, W
LY R
ox, °° dt| ox, e
oL : d(dL .
—=J0 —|==|=J6
36 dt ae]



aL
a__
(—?_)I(_Z = _(kz + k4)X2 + k2X3 - k2|29
oL
ox,
oL
26

(k1 + k3)X1 + k1X3 - I(1|19

Using EQ. (4.146) yields

%, +(k; + k)% — ko + k9 =0

m,X, +(k4 + kz)Xz - KX, —Kkl,06=0

M;X; — kX — KX, +(k1 + kz)Xg —(k1|1— k2|2)9 =0
36 + kil — kol x, — (k1|1 - k2|2)X3 + (|(1|12 + k2|22) =0

in matrix form

= k1X1 + kzxz - (k1 + kz)xs + (k1|1 + k2|2)9

= _k1|1X1 - kzlzxz + (k1|1 + kzlz)xe _(k1|12 + k2|22)9

m 0 0 0]%)] [(k+k) 0O -k kol
0 m 0 0|fx| | © (ketk) -k kyl,
0 0 m oflx K, -k, (ke+k)  =(kl, + ki)
o 0 0o J(8) | kKl kol (Kl k) (K2 +Kk12)

AN S

D X



Problems and Solutions for Section 4.9 (4.80 through 4.90)

4.80 Consider the mass matrix

M = 10 -1
-1 1
and calculate M, M, and the Cholesky factor of M. Show that
LL" =M
M -1/2 M -1/2 = I
Ml/Z Ml/Z — M

Solution: Given

The matrix, P, of eigenvectors is
. [—0.1091 —0.9940}
—0.9940 0.1091

The eigenvalues of M are

A, =0.8902

A, =10.1098
From Equation

— Pdiag{i,i}PT, V- {0.1111 0.1111}

A A, 0.1111 1.1111

From Equation

M Y2 = Vdiag [11—1/2’12—1/2JVT

Vi [0.3234 0.0808}

0.0808 1.0510
The following Mathcad session computes the Cholesky decomposition.

n -1
= 0.11111 0011111
M ' |:_1 i :| I"'I_1= +
011111 1.11111

L = cholesky (M)

B [3.16228 0 ]
T | -0.31623  0.943638 S O I Uy -1



4.81 Consider the matrix and vector

A= 1 -¢ b= 10
—-£ € 10
use a code to solve Ax = b for £=0.1, 0.01, 0.001, 10°, and 1.

Solution:

The equation is
1 -¢ 10

X =
[—e s} [10}

The following Mathcad session illustrates the effect of € on the solution, a
entire integer difference. Note that no solution exists for the case € = 1.

10
boi= [ - ] gl F
10 EYE I:_E_ B ] nfEy)i=AEY b

So the solution to this problem is very sensitive, and ill conditioned, because
of the inverse.



4.82 Calculate the natural frequencies and mode shapes of the system of
Example 4.8.3. Use the undamped equation and the form given by equation
(4.161).

Solution:

The following MATLAB program will calculate the natural frequencies and
mode shapes for Example 4.8.3 using Equation (4.161).

m=[0.4 0 0;0 2 0;0 0 8]*1le3;

k=[30 -30 0;-30 38 -8;0 —8 88] 1le4;
[u, d]=eig(k, m;

w=sqrt (d);

The matrix d contains the square of the natural frequencies, and the matrix u
contains the corresponding mode shapes.



4.83 Compute the natural frequencies and mode shapes of the undamped
version of the system of Example 4.8.3 using the formulation of equation
(4.164) and (4.168). Compare your answers.

Solution:

The following MATLAB program will calculate the natural frequencies and
mode shapes for Example 4.8.3 using Equation (4.161).

m=[0.4 0 0;0 2 0;0 0 8]*1le3;
k=[ 30 —-30 0;-30 38 —-8;0 -8 88] 1e4;
m =i nv(m;
kt =m *k;
[u, d]=eig(k, m;
w=sqrt (d);

The number of floating point operations needed is 439.
The matrix d contains the square of the natural frequencies, and the matrix u
contains the corresponding mode shapes.

The following MATLAB program will calculate the natural frequencies and
mode shapes for Example 4.8.3 using Equation (4.168).

m=[0.4 0 0;0 2 0;0 0 8]*1le3;
k=[ 30 —-30 0;-30 38 —-8;0 -8 88] 1e4;
nsi =i nv(sqrt(m);
kt =nmsi *k* nsi ;
[p, d]=eig(kt);
w=sqrt (d);
u=nsi *p;

The number of floating point operations needed is 461.
The matrix d contains the square of the natural frequencies, and the matrix u
contains the corresponding mode shapes.

The method of Equation (4.161) is faster.



4.84 Use a code to solve for the modal information of Example 4.1.5.

Solution: See Toolbox or use the following Mathcad code:

w =1

Crisren

)

Find [w] = 1.414

ismen

'~ (5] + om0

Find [m] = 2



4.85 Write a program to perform the normalization of Example 4.4.2 (i.e.,
calculate o such that the vector owvy is normal).

Solution:

The following MATLAB program will perform the normalization of
Example 4.4.2.

x=[. 4450 .8019 1];
mag=sqrt (sumx."2));
xnor mex/ mag;

The variable mag is the same as o, and xnor mis the normalized vector.
The original vector x can be any length.



4.86 Use a code to calculate the natural frequencies and mode shapes obtained
for the system of Example 4.2.5 and Figure 4.4.

Solution: See Toolbox or use the following Mathcad code:

1 0 12 -z 1 0
M= E = .=
0 4 -~z 12 0 2
Kd = M-
- 12 -1
Ki =
-1 3
A = eigensrals (Fd) 12 11
) [2.59 }

wml = ||l1 we = ||’]‘|:| ml =17 we = 3.43

w1l = eigenvec |[I{|:1 , :“1) ¥Z = Bigenvec |{I{d , :“ujl

0.109 0,994 T
= v2 = 71T vz =0
0.994 0.109
717 vl = 1 vl vz =1

P = avgment(vl,v2) 289 0 T
F'E4P = PoP=
RS X ¥

1
0

1]
1

|



4.87 Following the modal analysis solution of Window 4.4, write a program to
compute the time response of the system of Example 4.3.2.

Solution: The following MATLAB program will compute and plot the time
response of the system of Example 4.3.2.

t=(0:.1:10)";

ms[1 0;0 4];
k=[12 -2;-2 12],
n=max(size(m);

x0=[1 1]’ ;
xd0=[ 0 0] ;

nsi =i nv(sqrtmm);
kt =nsi *k* nsi ;

[P, W =eig(kt);
for i=1. n-1
for j=1. n-1I
Pfow(j,j)>wj +1,j +1)
dummy=w(j,j);
Wi, )=w(j +1,j +1);
wW(j +1, j +1) =dumy;
durmy=p(:.j);
p(:.j)=p(:,]+1);
p(:, ] +1) =dumy;
end
end
end
pt=p’;
S=msl *p;
si=pt*sqrtm(n;

r 0=si *x0

r do=si *xdO;

r=[1;

for i=1. n,
W =sqrt(w(i,i));
rcol =(swrt((w *r0(i))”2+rd0o(i)"2/w)*...

sin(w *t+atan2(w *r0(i),rdo(i)));

r(:,i)=rcol

end

X=S*r;

pl ot (t, x);

end



4.88 Use a code to solve the damped vibration problem of Example 4.6.1 by
calculating the natural frequencies, damping ratios, and mode shapes.

Solution: See Toolbox or use the following Mathcad code (all will do this)

9 0 27 -3 30 27 -3
M = K = Mr 1= ¢ =
[D 1] [—3 3 ] [D 1] [—.3 0.3]

Kd = Mr LK Ml 5 cd = Ml {oome )
1 T
0.1 0.3
= [z
2
wl :=Jl_1 W = JPTD wl = 1.414 ws = 2

w1l 1= eigensec |{Kd . ’]‘1) w2 1= eigenyec |[K|:1 ,luj

A = eigensals (Fd)

0.707 0707 T
1 = vZ = w11 vz =0
0.707 0.707
715wl = 1 w2 vz = 1
P = angment (vl ,v2) T 0 T i 0
T KdP = f.p=
0 4 o1
[n.?n? —n.?n?]
= I
0.707  0.707 Cz =P -Cd-P 0z 0
=0 o4
| 1= .0 1 = 0.071 C2) 9 |
£l = o o £1 =10 tz = ! 2 =101

2

2
= . - &
wal 1= wlafl =1 e = w1 — g2

wdl = 1.411 wdz = 1.99



4.89 Consider the vibration of the airplane of Problems 4.46 and 4.47 as given
in Figure P4.46. The mass and stiffness matrices are given as

00 - 3 3 0
M=m 0 K=I—3 -3 6 -3
0 -3 3

where m = 3000 kg, | =2 m, | =5.2 x 10° m*, E = 6.9 x 10° N/m?, and the
damping matrix C is taken to be C = (0.002)K. Calculate the natural
frequencies, normalized mode shapes, and damping ratios.

Solution: Use the Toolbox or use a code directly such as the following
Mathcad session:

E =69 10° I:=5210" . '= 3000 L:=2
100 g [ 730
M:=m|0 4 0 Ki=——|-3 6 -3 ¢ = 0.002 K
0o 1 L g -3 3
3100 0 0 1.346-107 —1.396-10 0o
M=|q 1za0® o E = |_134-10" zeo1-10° -1 .346-107
0 0 3-10° 0 -1 346107 1.346-107
=012 gy
IMr. = (M

4485 2242 0
Eh:=MrlEMr!l Eh=|-zzd4z 2247 —2.242

ch o= Ml (oot
0 224z 4485

6. 77
eigenwals (Kh) = [ 4.485 A =0 w, 1= ||’-“1
1]



A, =d4.485 w, = (A w, = 2.115
2 2T " 2 0.403
¥y = eigenvec (Kh,llj vy = | 0.616
;]-.3 = 6727 I'.I.'I3 = ll'lg LI.'I3 = 2.594 0408
=1.707 0.57%7
v, 1= elgenvec (Kh,lz] v, = |0 ¥y 1= elgensec (Kh,la] vy = | 0577
0.7a7 0.27%7

Pl .= augment(vl,vz) P = augment(Pl ,v3:| Az = PY ChP

0o 0
— Ar
Ac=|0 ge7r-10 0 (2= —21 g2 o z1ge1070
0o 0.013 E-mz
Ar
2,2
£3 1= - ;
2w, £3 = 2.594-10°
The normalized mode shapes are
0.577
-1 ul
ul = Mr vy uln = uln = | 0.577
|ul]
0.577
[—0.707 ]
-1 u
W = Mr Wy wn = —— wn=|0
2]
0.707
Fe rem 7
V.o
WS = M v, wn = —— wn = [-0.333
|u3| -
| 0667 |




4.90 Consider the proportionally damped, dynamically coupled system given

by
=l @ 1 ocold 2 2|49 2
-1 1 -1 1 2 2

and calculate the mode shapes, natural frequencies, and damping ratios.

Solution: Use the Toolbox or any of the codes. A Mathcad solution is
shown:

9 -1 49 -2 3 -1
M = K = =
-1 1 -2 2 -1 1
L := cholesky (M)

-1 5444 1.218
Kho=LtE (7] Kn- [ ]

1218 2431 Ch = L'l-['if- (LT ]_1]

a |:III.333 —D.ESE]

: 2873
—0.235 0.917 eigenvalz (Kh) = 5

A =2 w, = ||5‘~1 w = 1414 A, 1=5875 w, = ||,12 w, = 2.424

¥, 1= elgenvec (Kh,llJ v, = ~H.343 . _ | 0.843
0.943 | ¥, 1= eigenvec (Kh,lz] ¥y = 0,333
Pi=angment(v,,7;) 4o = o7 .chop Lo
AT = { ]
ﬁcn ; 0 025
£1 = - Aty
2-my bl =0384 &2 = —— +

20 ¢z = 0.052



Computing the mode shapes from the eigenvectors yields:

(9 _lj
-1 1/ R = cholesky(M)
~1 {033 0
R =
0.118 1.061

-1 {-0333 -0.111 -1{0934 0311
ul=R ul = w=R ul =
0.943 0961 0.333 0.443



Problems and Solutions Section 4.10 (4.91 through 4.98)

4.91* Solve the system of Example 1.7.3 for the vertical suspension system of a car with
m = 1361 kg, k = 2.668 x 10° N/m, and ¢ = 3.81 x 10" kg/s subject to the initial
conditions of x(0) = 0 and v(0) = 0.01 m/s”.

Solution: Use a Runge Kutta routine such as the one given in Mathcad here or
use the toolbox:

m = 1361 k = 2.668 10° ¢ = 3.81 107
o1
0
o— |: ] A= -k -&
0.01 Py D(1,X) = & X
2 := rhfixed (3 ,0,20,3000 , I}
1.= E{D} R
x1 =2
2107
a=1p7 4
© 1107 -
1] I:IIE I:II.-'-1 I:IIE| I:IIE I1
—

_1 L] 1|:| =



4.92* Solve for the time response of Example 4.4.3 (i.e., the four-story building of
Figure 4.9). Compare the solutions obtained with using a modal analyss
approach to a solution obtained by numerical integration.

Solution: The following code provides the numerical solution.

1 000 Oooan
T L S L M = 40001
oo 1o “loo oo ' (0,025 ]
o001 0000 0.0z
10000 -5000 0 0 0.01
0.001
_|-5000 10000 -S000 0 o= 0 oo
| o -sooo toooo -S000 .
0 0 -5000 5000 .
0
- I:I -
& = avgment (stack (0, -M LK) staek (1, -1171 )
Dit,X) = AX Z := rkfived {3 ,0, 200, 3000, D) +
v = 0=
ti=2 x1 =zl 2 1= 2IEF 3o pi8F x4 1=z
o.0d -
©l 002 m ﬁ; i ; i ﬁ
3 ﬂrﬂﬁﬂﬁfﬁﬂ‘{'ﬁ_ﬂ’fm v
- i 5 B _I\H__ | ! ‘E‘ I A _I&J
x I 1’-4 T U‘?HD;M : '.'J 1]
o Al
™ .0z - i v UI ' Jit
.04t

k
which compares very well with the plots given in Figure 4.11 obtained by plotting
the modal equations. One could also plot the modal response and numerical
response on the same graph to see a more rigorous comparison.



4.93* Reproduce the plots of Figure 4.13 for the two-degree of freedom system of
Example 4.5.1 using a code.

Solution: Use any of the codes. Thetrick hereisto construct the damping matrix
from the given modal information by first creating it in moda form and then
transforming it back to physical coordinates as indicated in the following Mathcad

session:
9 0 111 27 -3 00 10
e P P:z?'l R =0y
- 1 - B}
30
Mr = [D 1} wl = a2 wZi=2 £1:=005 £2:=01
z¢lwl 0
he = C = MrF-Ac FF M
o0 ztzwz = M ar r 1
& 1= avgment[awck [0, -1 LK) swck (1,171 )] |0
Dit,¥) = &X d
0
+
Z 1= rkfixed (% ,0 80,4000, D) .
v ===
1=z xl i=2%1F xp = ziET




4.94*. Consider example 4.8.3 and @) using the damping ratios given, compute a

damping matrix in physical coordinates, b) use numerical integration to compute
the response and plot it, and ¢) use the numerical code to design the system so that
all 3 physical coordinates die out within 5 seconds (i.e., change the damping
matrix until the desired response results).

Solution: A Mathcad solution is presented. The damping matrix isfound, asin
the previous problem, by keeping track of the various transformations. Using the
notation of the text, the damping matrix is constructed from:

2w 0 0 1.062x10°  —679.3 187.0
C= M%P 0 2{20)2 0 |PT M% =| -679.3 2.785x10° 617.8
0 0 2530)3 187.0 617.8 2.041x10°
as computed using the code that follows. With this form of the matrix the
damping ratios are adjusted until the desired criteria are met:
1 00 oo 0.4 0 0 wl = 53872
_ _ _ 3
I:=|0 1 @ O:=|0 0 0 M:=|0o 2 a0 T
ool ooan 0 8
w3 = 30.1166
a0 -3 0 Al0.4-10° 0 0 1 i=0.2
_ 4 i
0 -8 &9
0 0 afE10° £3 1= 0.05
-0.4116 -0.1021  0.9056 2-wl- gl 0 0
P = |-0.6348 -0.1935 -0.4239 At = i 2 w22 0
-0.2185 0.9758  0.0106 0 0 2w t3

¢ = M P AcPY - Mr

& = augment[stack [0, -M LK) stack (1, -1171 )

In changing the damping ratiosit is best to start with the rubber component which
isthe first mode-damping ratio. Doubling it nails the first two coordinates but
does not affect the third coordinate enough. Hence the second mode-damping
ratio must be changed (doubled here) to attack thismode. This could be
accomplished by adding a viscoelastic strip as described in Chapter 5 to the metal.
Thus the ratios given in the code above do the trick as the following plots show.

Note aso how much the damping matrix changes.



o
1
oo oo oo

1= g70F

1000

1
=

Dit,¥) =& H +

¥l =25 LF

1*10

w1 510
e
3

1.138-10° 313286 206.132
f:=1 LB .
C=|-m13.286 4536107 605984
208132 &05.984  8.958-10°
o
0
0
(e — 21— 0.00
f, [ (200 -2 1)
fl
£, fied (3,0, 15, 4000, D)
xz 1= 2TEF x3 1= Z5F%
1 "I!,_ J"__‘AEF.P‘%____—__'.._ R
0 LL 3 4 5 B



4.95*. Compute and plot the time response of the system (Newtons):

Y P ] S s S

subject to the initial conditions:
0 1
X, = m, v,=| | m/s
o™ 7o)

Solution: The following Mathcad session illustrates the numerical solution of
this problem using a Runge Kutta solver.

10 00 50 3 -1 -
I = 0= M = K =
0 1 00 01 -1 1 01

3 -05
G = 0
[-0.5 05 ]

T
— W|— O O
L

A = angment (stack (0, -M~ 1K), stack (1, -M~1 ]
Dit, X) =AX+
Z := rkfixed (X, 0, 100, 3000, D}
— <>
b= xl ;=21 X =2%”
4 +
. x
x1 ;J l"
—_— 2 4+ : - _er T, N e e e em———- -
?_2_ 1 ,/"—'\\ T
1 \,\ o
‘/V Sy, _'___r"_’_— . T
/ : : : : :




4.96* Consider the following system excited by a pulse of duration 0.1 s (in Newtons):
2 0 % 3 -005][x | 1 x
. 0.3 0.05 || X N 3 |- 0 [(t — 1) — (t - 3)]
0 1]|%, —0.05 005 J|x,| [-1 1]Xx, 1
and subject to the initial conditions:

0 | 0
x0={ 01 m, V0=|:O} m/s

Compute and plot the response of the system. Here @ indicates the Heaviside
Step Function introduced in Section 3.2.

Solution: The following Mathcad solution (see example4.10.3 for the other

codes) gives the solution:
2 0 3 -1
M = K = 0
o1 -1 1 -0.1

SRS

. 033 -0.05 - 0 0
" |-0.05 0.05 R =M LE

& = angment [stack [0, -M L g ) stack (1, -1171 )

0
0
Dit,X) =aX+ |, |[[#(t-1) - 2(t-3)]
a
fl
% = rkfived (3,0, 1203000, D)
e
ti=2 xl:=z51% gz = gtE +
xl




It is also interesting to examine the first 20 seconds more closely to see the effect
of the impact:
2 —_

¥
[
w
-
"~
-
-
L) B
—
-
.
-
-
-

Note that the impact has much more of an effect on the response than does the
initial condition.



4.97.* Compute and plot the time response of the system (Newtons):
X — X =11 x
5 0| X N 3 0.5 X N 30 -1 X _ 1sin(4t)
0 1]X -05 05 || x, -1 1 ]x 1
subject to the initial conditions:

X, = {OOJ m, v, = Lﬂ m/s

Solution: Following the codes of Example 4.10.2 yields the solution directly.

10 oo 5 0 a0 -1 q
I:= Q= M = K =
01 oo o1 -1 1 o1
X =
o[ 3 -0S . .
" |-05 05 1 fi=M 1B
& = avgment (stack (0, -M LK) stack (1, -1171 ) 0
0
Dit,®) == &X + | [sinfd1)
0
% = rkfixed (¥ ,0,20,3000,D) ;
1
— 0= R
1= 2 ¥l = z-;::]_::- X2 = A 4+




4.98.* Compute and plot the time response of the system (Newtons):

40 0 Ofl*%| |4 -1 0 OfX| |50 -10 0 0 ||%] |0
O300>'<2+—12—10>'<2+—1OO 200 -100 O (| X, | _|0
0 0 25 0 X 0 -1 2 -1x 0 -100 200 -100 || x, 0
0 0 0 6% 0 0 -1 1]x, 0 0 -100 100 || x, 1
subject to the initial conditions:
0 1
0 0
X, = m, v,=| | m/s
0 0
0.01 0
Solution: Again follow Example 4.10.2 for the various codes. Mathcad is given.
1 000 00 oo 4 0 0 0
o100 00 oo b3 00
I:= 0= M =
o010 00 oo b0 250 -
0001 0000 00 0 6 0
0
00 -100 0 0 4 -1 0 0 0
- -100 200 -100 0 s -1 2 -1 10 0.0
0 -100 200 -100 o -1 2z -1 ®= i
0 0 -100 100 o o -1 1 0
0 0
0 | 0
Bi=| fi=MLE
1 & = agment (zwack (0, M LK) svek (1, -1t ¢))
"0 ]
0
0
0
Dit,X) =&+ |1 [sn(d
£, 2 = ghfived (3, 0,200 ,3000 D)
fE 2= 5= 4=
=2 o= E ¥ =2
% | 1=z°0F

xl =251

sin(4t)
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Problems and Solutions Section 5.1 (5.1 through 5.5)

5.1

5.2

5.3

5.4

Using the nomograph of Figure 5.1, determine the frequency range of vibration for which
a machine oscillation remains at a satisfactory level under rms acceleration of 1g.

Solution:
An rms acceleration of 1 g is about 9.81 m/s>. From Figure 5.1, a satisfactory level

would occur at frequencies above 650 Hz.

Using the nomograph of Figure 5.1, determine the frequency range of vibration for which
a structure's rms acceleration will not cause wall damage if vibrating with an rms
displacement of 1 mm or less.

Solution:

From Figure 5.1, an rms displacement of 1 mm (1000 pm) would not cause wall damage
at frequencies below 3.2 Hz.

What natural frequency must a hand drill have if its vibration must be limited to a
minimum rms displacement of 10 pm and rms acceleration of 0.1 m/s?*? What rms
velocity will the drill have?

Solution:
From Figure 5.1, the natural frequency would be about 15.8 Hz or 99.6 rad/s. The rms

velocity would be 1 mm/s.

A machine of mass 500 kg is mounted on a support of stiffness 197,392,000 N/m. Is the
vibration of this machine acceptable (Figure 5.1) for an rms amplitude of 10 um? If not,
suggest a way to make it acceptable.

Solution:

The frequency is o, = \/% = 628.3 rad/s = 100 Hz.

For an rms displacement of 10 um the vibration is unsatisfactory. To make the vibration
satisfactory, the frequency should be reduced to 31.6 Hz. This can be accomplished by
reducing the stiffness and/or increasing the mass of the machine.



5.5

5- 2

Using the expression for the amplitude of the displacement, velocity and acceleration of
an undamped single-degree-of-freedom system, calculate the velocity and acceleration
amplitude of a system with a maximum displacement of 10 cm and a natural frequency of
10 Hz. If this corresponds to the vibration of the wall of a building under a wind load, is
it an acceptable level?

Solution:

The velocity amplitude is

v(t)] = Aw, =(01 m)(ﬂj =0.159 m /s
2r

The acceleration amplitude is

10\’
()= Aw =(01 m)(_j —0253m /s’
2r
. . A 01 .
The rms displacement is — = — =0.0707 m = 70,700 pum (from equation (1.21)). At

V2 2

10 Hz and 70,700 um , this could be destructive to a building.



Problems and Solutions Section 5.1 (5.6 through 5.26)

5.6 A 100-kg machine is supported on an isolator of stiffness 700 x 10° N/m. The machine
causes a vertical disturbance force of 350 N at a revolution of 3000 rpm. The damping
ratio of the isolator is { = 0.2. Calculate (a) the amplitude of motion caused by the
unbalanced force, (b) the transmissibility ratio, and (c) the magnitude of the force
transmitted to ground through the isolator.

Solution:
(a) From Window 5.2, the amplitude at steady-state is
F/m

[(a)ﬁ - w2)2 + (ZCa)nw)zT/Z

X =

Since o, = \/% =83.67rad/sand w = 3000[2—’5} = 314.2 rad/s,

(b) From equation (5.7), the transmissibility ratio is

F 1+(2¢r)

Fo (1— r2)2 + (ZCr)2

Since r = @ - 3.755, this becomes
0]
F
— =0.1368
I:O

(c) The magnitude is

F = (E—;j F, = (0.1368)(350)

(47.9)



5.7  Plot the T.R. of Problem 5.6 for the cases { = 0.001, { = 0.025, and { = 1.1.

Solution:

1+(2§’r)2
(1-r7) o+ (22

A plot of this is given for { = 0.001, { = 0.025, and = 1.1. The plot is given here from

T.R.=

Mathcad:
2
TR(r,t) = ! +2|12";'I]| 2
(1 -2)" + [2.01)
100 I I
10 _
Er, a0t

TE [r, .025] 1 —

TR [r, 1.1]

01 —

0.01 ' ' |
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5.8 A simplified model of a washing machine is illustrated in Figure P5.8. A bundle of wet
clothes forms a mass of 10 kg (my) in the machine and causes a rotating unbalance. The
rotating mass is 20 kg (including my) and the diameter of the washer basket (2e) is 50
cm. Assume that the spin cycle rotates at 300 rpm. Let k be 1000 N/m and { = 0.01.
Calculate the force transmitted to the sides of the washing machine. Discuss the
assumptions made in your analysis in view of what you might know about washing
machines.

Top view

k2 § |

@ |/ .\9 m, ()
S:) E\ m ’ / (D
ki2 /2

Frictionless
support

Solution: The transmitted force is given by F. =/k* +c’w’ where

\\._

c=2w, o, = \/% =7.071 radls, o, = 3002—7(;:31.42 rad/s,

and X is given by equation (2.84) as
— mOe r

om \/(1— r2)2+(2§r)2

Sincer = 2 = 4.443 . then X = 0.1317 m and
(0]

n

2

F. =(0.1317)4/(1000)? +[2(0.01)(20)(7.071)]*(31.42)> =132.2 N

Two important assumptions have been made:

) The out-of-balance mass is concentrated at a point and

i) The mass is constant and distributed evenly (keep in mind that water enters and
leaves) so that the mass actually changes.



5.9
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Referring to Problem 5.8, let the spring constant and damping rate become variable. The
quantities m, m,, e and w are all fixed by the previous design of the washing machine.
Design the isolation system (i.e., decide on which value of k and ¢ to use) so that the
force transmitted to the side of the washing machine (considered as ground) is less than
100N.
Solution:
The force produced by the unbalance is F, = mpa where a is given by the magnitude of
equation (2.81):
2 2
F=mx | =emao? = (0.25)(10){300(6—@} = 2467.4 N

Since F+ < 100 N,

If the damping ratio is kept at 0.01, this becomes

1+[2(002)r |

(L-r2) +[2(0.01)r ]

T.R.=0.0405=

Solving for r yields r = 5.079.

. 0)
Since r = L

Jkim’

2
mo;

ot (20)[300(2’5”2

. 2 =765 N/m
r 5.079

and
¢ = 20+km = 2(0.01),/(765)(20) = 2.47 K/



5.10

o- 7

A harmonic force of maximum value of 25 N and frequency of 180 cycles/min acts on a
machine of 25 kg mass. Design a support system for the machine (i.e., choose c, k) so
that only 10% of the force applied to the machine is transmitted to the base supporting the
machine.

Solution: From equation (5.7),

1+ (ZCr)2
(1) (2er)
If we choose { = 0.1, then solving the equation (1) numerically yields r = 3.656. Since r

[0)
= then:

k/m

T.R.=0.1=

1)

.

o (25)[180(275]}2

k=—= = =665 N/m
r 3.656

and
¢ = 20+km = 2(0.1),/(665)(25) = 25.8 kgs
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5.11 Consider a machine of mass 70 kg mounted to ground through an isolation system of
total stiffness 30,000 N/m, with a measured damping ratio of 0.2. The machine produces
a harmonic force of 450 N at 13 rad/s during steady-state operating conditions.
Determine (a) the amplitude of motion of the machine, (b) the phase shift of the motion
(with respect to a zero phase exciting force), (c) the transmissibility ratio, (d) the
maximum dynamic force transmitted to the floor, and (e) the maximum velocity of the
machine.

Solution:

(a) The amplitude of motion can be found from Window 5.2:

X = F/m

[(a)ﬁ - w2)2 + (ZCa)nw)zT/Z

where @, = \/% =20.7 rad/s. So,

X =0.0229 m

(b) The phase can also be found from Window 5.2:

2l o
% =225 =0.393 rad
o —o

n

¢ =tan™

(c) From Eq. 5.7, with r = ﬂz0.628
[0

1+(2§r)2
[1-r7) o+ (2t

(d) The magnitude of the force transmitted to the ground is

TR.= =157

F. =(T.R)F, =(450)(1.57) =707.6 N
(e) The maximum velocity would be

oA, =(13)(0.0229) = 0.298 m/s



5-9

5.12 A small compressor weighs about 70 Ib and runs at 900 rpm. The compressor is mounted
on four supports made of metal with negligible damping.
(a) Design the stiffness of these supports so that only 15% of the harmonic force
produced by the compressor is transmitted to the foundation.
(b) Design a metal spring that provides the appropriate stiffness using Section 1.5 (refer
to Table 1.2 for material properties).

Solution:

(a) From Figure 5.9, the lines of 85% reduction and 900 rpm meet at a static deflection
of 0.35in. The spring stiffness is then

mg _ 701b

= — =200 Ib/in
o, 035in

The stiffness of each support should be k/4 = 50 Ib/in.
(b) Try a helical spring given by equation (1.67):

Gd*

k =50 Ib/in =8756 N/m =
64nR*

Using R=0.1 m, n =10, and G = 8.0 x 10'° N/m? (for steel) yields

1/4

3
64(8756)(10)(0'1) =0.0163m = 1.63cm
8.0 x10"
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5.13 Typically, in designing an isolation system, one cannot choose any continuous value of k
and c but rather, works from a parts catalog wherein manufacturers list isolators available
and their properties (and costs, details of which are ignored here). Table 5.3 lists several
made up examples of available parts. Using this table, design an isolator for a 500-kg
compressor running in steady state at 1500 rev/min. Keep in mind that as a rule of thumb
compressors usually require a frequency ratio of r =3.

Solution:
Since r = @ , then
Jvk/m
2 2
[500[1500(6’5)} J
2
k=" = =1371x10° N/m
r 3?

Choose isolator R-3 from Table 5.3. So, k = 1000 x 10°> N/m and ¢ = 1500 N-s/m.

Check the value of r:

1500(2”]
60
=351

r=
J1000 x 10° /500

This is reasonably close to r = 3.
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5.14 An electric motor of mass 10 kg is mounted on four identical springs as indicated in
Figure P5.14. The motor operates at a steady-state speed of 1750 rpm. The radius of
gyration (see Example 1.4.6 for a definition) is 100 mm. Assume that the springs are
undamped and choose a design (i.e., pick k) such that the transmissibility ratio in the
vertical direction is 0.0194. With this value of k, determine the transmissibility ratio for
the torsional vibration (i.e., using 6 rather than x as the displacement coordinates).

Solution:

TABLE 5.3 Catalog values of stiffness and damping properties of various off-the-shelf
isolators

PartNo® R-1 R2 R3 R4 R5 M1 M2 M3 M4 M-5

k(10°N/m) 250 500 1000 1800 2500 75 150 250 500 750
C(N-s/m) 2000 1800 1500 1000 500 110 115 140 160 200

®The "R" in the part number designates that the isolator is made of rubber, and the "M"
designates metal. In general, metal isolators are more expensive than rubber isolators.

With no damping, the transmissibility ratio is

TR. = 21
r--1
where
1750( 2%
o 60 ) 5795
Jakim  Jak/10 o Jak
0.0194 = _
(579.5)
~1
4k
4k = 6391 N/m

For each spring, k = 1598 N/m.

For torsional vibration, the equation of motion is



512
1§ =—[m+2kr9}r—[2kr9—m}r
2 2

0.250 m
where r =

= 0.125 m and from the definition of the radius of gyration and the

center of percussion (see Example 1.4.6):
| = mk? = (10)(0.1)° = 0.1kgm?

So,
0.16 + 4(1598)(0.125) 6 =0

6 +998.60 =0

The frequency ratio, r, is now

1750(6;’]
— >/ -5gp
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5.15 A large industrial exhaust fan is mounted on a steel frame in a factory. The plant
manager has decided to mount a storage bin on the same platform. Adding mass to a
system can change its dynamics substantially and the plant manager wants to know if this
is a safe change to make. The original design of the fan support system is not available.
Hence measurements of the floor amplitude (horizontal motion) are made at several
different motor speeds in an attempt to measure the system dynamics. No resonance is
observed in running the fan from zero to 500 rpm. Deflection measurements are made
and it is found that the amplitude is 10 mm at 500 rpm and 4.5 mm at 400 rpm. The mass
of the fan is 50 kg and the plant manager would like to store up to 50 kg on the same
platform. The best operating speed for the exhaust fan is between 400 and 500 rpm
depending on environmental conditions in the plant.

Solution:

A steel frame would be very lightly damped, so

X_ 1
Y 1-r°
Since no resonance is observed between 0 and 500 rpm, r < 1.

When o = SOO(E—gJ =52.36 rad/s, X =10 mm, so

Y
52.36 )
1_[ ' ]
a)n
27

Also, at w = 400(%J =41.89 rad/s, X =4.5 mm, so

10=

Y

2
1_(41.89]
wn

45=

Solving for m, and Y yields

o, = 59.57 rad/s

Y =2.275mm

The stiffness is k = men? = (50)(59.57)? = 177,453 N/m. If an additional 50 kg is added
so that m = 100 kg, the natural frequency becomes

o = ,/177’453 =42.13rad/s = 402.3 rpm
" 100




o-14

This would not be advisable because the normal operating range is 400 rpm to
500 rpm, and resonance would occur at 402.3 rpm.
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5.16 A 350-kg rotating machine operates at 800 cycles/min. It is desired to reduce the
transmissibility ratio by one-fourth of its current value by adding a rubber vibration
isolation pad. How much static deflection must the pad be able to withstand?

Solution:
From equation (5.12), with R = 0.25:

2-0.25 800(275]
r=, |22 — 508 =@ =

1-0.25 Jkrm k17350

k =1.053x10° N/m

The static deflection is

5 M9 _ (350)(9.81)

=3.26 mm
s k 1.053x10°

A 68-kg electric motor is mounted on an isolator of mass 1200 kg. The natural frequency
of the entire system is 160 cycles/min and has a measured damping ratio of { = 1.
Determine the amplitude of vibration and the force transmitted to the floor if the out-of-
balance force produced by the motor is F(t) = 100 sin (31.4t) in newtons.

Solution:

The amplitude of vibration is given in Window 5.2 as

F/m

e [(a)j —w2)20+ (ZCa)na))lez

where Fo =100 N, m = 1268 kg, w = 31.4 rad/s, and w_= 160(2—3) =16.76 rad/s. So,

X =6.226x107° m

The transmitted force is given by Eq. (5.6), with r = % =1.874
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5.18 The force exerted by an eccentric (e = 0.22 mm) flywheel of 1000 kg, is 600 cos(52.4t) in
newtons. Design a mounting to reduce the amplitude of the force exerted on the floor to
1% of the force generated. Use this choice of damping to ensure that the maximum force
transmitted is never greater than twice the generated force.

Solution:

Two conditions are given. The first is that T.R. = 2 at resonance (r = 1), and the second
is that T.R. = 0.01 at the driving frequency. Use the first condition to solve for {. From

equation (5.7),
2 1/2
TR=2=|1t4
4L°

¢ =0.2887

524

———,50
vk /1000

At the frequency, r =

1+[2(0.2887)r |
(1-r?) +[2(0.2887)r

52.4

vk /1000

T.R.=0.01=

r=57.78=

k =822.6 N/m

Also,

¢ =2{Vkm =523.6 kg/s
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5.19 A rotating machine weighing 4000 Ib has an operating speed of 2000 rpm. It is desired to
reduce the amplitude of the transmitted force by 80% using isolation pads. Calculate the
stiffness required of the isolation pads to accomplish this design goal.

Solution:

Using Figure 5.9, the lines of 2000 rpm and 80% reduction meet at 6, =0.053 in. The
spring stiffness should be

k=9 - 40000b _ on s bin
6S 0.053in
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5.20 The mass of a system may be changed to improve the vibration isolation characteristics.
Such isolation systems often occur when mounting heavy compressors on factory floors.
This is illustrated in Figure P5.20. In this case the soil provides the stiffness of the
isolation system (damping is neglected) and the design problem becomes that of choosing
the value of the mass of the concrete block/compressor system. Assume that the stiffness
of the soil is about k = 2.0 x 10’ N/m and design the size of the concrete block (i.e.,
choose m) such that the isolation system reduces the transmitted force by 75%. Assume
that the density of concrete is p = 23,000 N/m®. The surface area of the cement block is 4
m?. The steady-state operating speed of the compressor is 1800 rpm.

MEEH]

Solution:

Using Figure 5.9, the lines of 75% reduction and 1800 rpm cross at ds = 0.053 in =
0.1346 cm. Thus the weight of the block should be

W, =(m+M)g=ks, =20x10"(0.1346x10*) = 26,924 N

The compressor weights mg = (2000 1b)(4.448222 N/Ib) = 8896.4 N. The concrete block
should weight W = Wt —8896.4 = 18,028 N. The volume of the block needs to be

vV :V_V:M:ojg:gg m?
p 23,000

Assume the surface area is part exposed to the surface. Let the top be a meters on each
side (square) and b meters deep. The volume and surface area equations are

V =0.7838 m® = a’b
Solving for a and b yields

a=2m

b=0.196 m
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The instrument board of an aircraft is mounted on an isolation pad to protect the panel
from vibration of the aircraft frame. The dominant vibration in the aircraft is measured to
be at 2000 rpm. Because of size limitation in the aircraft's cabin, the isolators are only
allowed to deflect 1/8 in. Find the percent of motion transmitted to the instrument pane if
it weights 50 Ib.

Solution:
From equation (2.71), with negligible damping,
1

7

This is the same as the equation that yields Figure 5.9. The lines of 2000 rpm and o =

0.125 in meet at 93%. So only 7% of the plane's motion is transmitted to the instrument
panel.

X_
Y

Design a base isolation system for an electronic module of mass 5 kg so that only 10% of
the displacement of the base is transmitted into displacement of the module at 50 Hz.
What will the transmissibility be if the frequency of the base motion changes to 100 Hz?
What if it reduces to 25 Hz?

Solution: Using Figure 5.9, the lines of 90% reduction and ® = (50 Hz)(60) = 3000 rpm
meet at s = 0.042 in = 0.1067 cm. The spring stiffness is then

k="9 =M = 45,979 N/m
5. 0.001067

The natural frequency is @ =k / m = 95.89 rad/s.

100(2x) o
Atw=100Hz, r = 9580 = 6.552, so the transmissibility ratio is

100(2x) o
Atw=25Hz, r = 95.89 = 1.638, so the transmissibility ratio is
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Redesign the system of Problem 5.22 such that the smallest transmissibility ratio possible

is obtained over the range 50 to 75 Hz.

5.24

Solution:

If the deflection is limited, say 0.1 in, then the smallest transmissibility ratio in the
frequency range of 50 to 75 Hz (3000 to 4500 rpm) would be 0.04 (96% reduction). The
stiffness would be

_ma_ B8 o
5, (0.1)(2554)(0.01)

A 2-kg printed circuit board for a computer is to be isolated from external vibration of
frequency 3 rad/s at a maximum amplitude of 1 mm, as illustrated in Figure P5.24.
Design an undamped isolator such that the transmitted displacement is 10% of the base
motion. Also calculate the range of transmitted force.

_L”

L
[_Dﬁ C_}._.éi

1508

Solution:

Using Figure 5.9, the lines of 90% reduction and o = 3(27w)(60)=1131 rpm meet at &s =
0.3in=0.762 cm. The stiffness is

mg _ (2)(9.81)

=—2= = 2574.8 N/m
5, 0.00762

From Window 5.1, the transmitted force would be

1
F = ker[l_ rzj

SinceY=0.00lmandr = # =0.08361

\2574.8/2

F. =0.0181N
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5.25 Change the design of the isolator of Problem 5.24 by using a damping material with
damping value ¢ chosen such that the maximum T.R. at resonance is 2.

Solution:

Atresonance, r=1and T.R. =2, so

. |:l+ 4C2 :|1/2
4z?

Solving for {yields {=0.2887. Also T.R. =0.01 at w= 3 rad/s, so

1+0.3333r2
(1— r2)2 +0.3333r
r=6.134

0.01=

Solving for k,

2

2
- mr“: - (621&)2 = 0478 N/m

The damping constant is

¢ =2{Vkm =0.565 kg/s
5.26 Calculate the damping ratio required to limit the displacement transmissibility to 4 at
resonance for any damped isolation system.
Solution:

At resonancer =1, so

1+4é’2 1/2
TR =4=

[ a’ }
£=0.129



Problems and Solutions Section 5.3 (5.27 through 5.36)

5.27

A motor is mounted on a platform that is observed to vibrate excessively at an operating
speed of 6000 rpm producing a 250-N force. Design a vibration absorber (undamped) to
add to the platform. Note that in this case the absorber mass will only be allowed to
move 2 mm because of geometric and size constraints.

Solution:

The amplitude of the absorber mass can be found from equation (5.22) and used to solve
for ka:

F, 250

X =0.002m=—=
a ka

a

k, =125,000 N/m

From equation (5.21),

k
o' ==
ma
k
m, = 2= 122000 4317

a a)Z
6000 2%
60
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5.28 Consider an undamped vibration absorber with B = 1 and p = 0.2. Determine the

operating range of frequencies for which | Xk / F,| <0.5.

Solution:

0]
From equation (5.24), with B = —2=1(i.e., o, = a)p) and u=0.2,
[0

p

Xk

de

For X?k = 0.5, this yields

0
4 2
0.5[3j —0.1(2] _05=0
wa wa

Solving for the physical solution gives

[3] =1.051
wa

Solving for (2] gives
wa

[3] =0.955, 1.813
[0)]

a



Comparing this to the sketch in Figure 5.15, the values for which

0.955w, <w <1.051w, and o > 1.813m,

0

<5are
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Consider an internal combustion engine that is modeled as a lumped inertia attached to
ground through a spring. Assuming that the system has a measured resonance of 100
rao;/s, design an absorber so that the amplitude is 0.01 m for a (measured) force input of
10°N.

Solution:

The amplitude of the absorber mass can be found from equation (5.22) and used to solve
for ka:

F
X_=0.01m =0 =190
: ka ka

k, =10,000 N/m
Choose o = 2w, = 200 rad/s. From equation (5.21),

k, 10,000

w200

=0.25 kg

A small rotating machine weighing 50 Ib runs at a constant speed of 6000 rpm. The
machine was installed in a building and it was discovered that the system was operating
at resonance. Design a retrofit undamped absorber such that the nearest resonance is at
least 20% away from the driving frequency.

Solution:

By observing Figure 5.15, the values of p = 0.25 and B = 1 result in the combined
system's natural frequencies being 28.1% above the driving frequency and 21.8% below

the driving frequency (since 8 = Do - 1 and o = wp). So the absorber should weigh
)
P

m, = um=(0.25)(50 Ib) =125 Ib

and have stiffness
2
k, =m,o = mo’ = (125 Ib) (4448222 N/lb)(gim](moo)z( 2_75 ]

k, = 2.24x10° N/m =12,800 Ib/in
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A 3000-kg machine tool exhibits a large resonance at 120 Hz. The plant manager
attaches an absorber to the machine of 600 kg tuned to 120 Hz. Calculate the range of
frequencies at which the amplitude of the machine vibration is less with the absorber
fitted than without the absorber.

Solution:

Xk . .
For = =1, equation (5.24) yields

AT )

600
3000

_ m,
Since pu=—2
m ®

a

= 0.2, this becomes [3] =0, 1.0954.

Xk . .
For = = -1, equation (5.24) yields

0

H
+
=
TN
SRS
s
/Iﬁx
Lle
s
lTl
/l_\
2e

4 2
(EJ —3.2[ﬂj +2=0
a)a a)a

(EJ = 0.9229.1.5324
[0

a

>1is

The range of frequencies at which

0

0<w<0.922%w, and 1.0954m, <w <1.5324m,



Since w, = y,

0 <m<695.8rad/s and 825.9 < w < 1155.4 rad/s
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A motor-generator set is designed with steady-state operating speed between 2000 and
4000 rpm. Unfortunately, due to an imbalance in the machine, a large violent vibration
occurs at around 3000 rpm. An initial absorber design is implemented with a mass of 2
kg tuned to 3000 rpm. This, however, causes the combined system natural frequencies
that occur at 2500 and 3000 rpm. Redesign the absorber so that m; <2000 rpm and w; >
4000 rpm, rendering the system safe for operation.

Solution: The mass of the primary system can be computed from equation (5.25). Since

2 2
B=2 =1and | 2| =[ 22| 206944, then
© , ) | 3000

p

(1) (0.6944)" - [1 (1) (1+ u)}(o.6944) +1=0

(=0.1344
m
Mo 2 14876 kg
u 0.1344

By increasing p to 0.55 and decreasing B to 0.89, the design goal can be achieved. The
mass and stiffness of the absorber should be

m, = um=(0.55)(14.876) = 8.18 kg

2
k, =mw’=mpe’ = (8.18)(0.89)2{3000(2—75]} = 639,600 N/m

A rotating machine is mounted on the floor of a building. Together, the mass of the
machines and the floor is 2000 Ib. The machine operates in steady state at 600 rpm and
causes the floor of the building to shake. The floor-machine system can be modeled as a
spring-mass system similar to the optical table of Figure 5.14. Design an undamped
absorber system to correct this problem. Make sure you consider the bandwidth.

Solution: To minimize the transmitted force, let ®, = @ = 600 rpm. Also, since the floor
shakes at 600 rpm, it is assumed that m, = 600 rpm so that B = 1. Using equation (5.26)
with g = 0.1 yields

0]
—1 =0.8543, 1.1705
(0]

a

So the natural frequencies of the combined system are w; = 512.6 rpm and w; = 702.3
rpm. These are sufficiently enough away from 600 rpm to avoid problems. Therefore
the mass and stiffness of the absorber are



m, = um=(0.1)(2000 Ibm) = 200 Ibm

a

2
k, = m,? = (200 Ibm) _ S9N eoo[ ZF || = 25,541 it
2~ e 32.1174 Ibm 60
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5.34 A pipe carrying steam through a section of a factory vibrates violently when the driving
pump hits a speed of 300 rpm (see Figure P5.34). In an attempt to design an absorber, a
trial 9-kg absorber tuned to 300 rpm was attached. By changing the pump speed it was
found that the pipe-absorber system has a resonance at 207 rpm. Redesign the absorber
so that the natural frequencies are 40% away from the driving frequency.

B _.-" .-" _.-" _.-" _.-" r _.-" _‘-" Ea
: e
.:'.:'.: .::l i 1
H -
- -, " o ",

Solution:

The driving frequency is 300 rpm. 40% above and below this frequency is 180 rpm and
420 rpm. This is the design goal.

The mass of the primary system can be computed from equation (5.25). Since

2 2
B=La=1and| | = 2971~ 0.4761 then
® o 300

p a

(1) (0.4761)" - [1 (1) (1+ u)}(0.4761) +1=0

{1 =0.5765
m
Mo 9 _i5611kg
y 0.5765

By increasing p to 0.9 and decreasing B to 0.85, the design goal can be achieved. The
mass and stiffness of the absorber should be

m, = um=(0.9)(15.611) =14.05 kg

2
k, =mo? =m o’ = (14.05)(0.85)2[300(2—75]} =10,020 N/m

Note that p is very large, which means a poor design.



5- 32

5.35 A machine sorts bolts according to their size by moving a screen back and forth using a
primary system of 2500 kg with a natural frequency of 400 cycle/min. Design a vibration
absorber so that the machine-absorber system has natural frequencies below 160
cycles/min and above 320 rpm. The machine is illustrated in Figure P5.35.

AU O
TCERT W e ST oL s alinly
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- ) |
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7 . Fa

r‘—' w1 ]

Solution:

Using Equation (5.26), and choose (by trial and error) f = 0.4 and p = 0.01, the design
goal of w; < 160 rpm and m, > 320 rpm can be achieved. The actual values are o, =
159.8 rpm and m; = 400.4 rpm. The mass and stiffness of the absorber should be

m, = um = (0.01)(2500) = 25 kg

2
k, =mw? =m fw’ = (25)(0.2)2{400[2—;‘]} =1754.6 N/m
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5.36 A dynamic absorber is designed with i = 1/4 and w, = wp. Calculate the frequency range
for which the ratio‘ Xk / FO‘ <1.

Solution:

From Equation (5.24), with B = Lo - land p=0.25,
[0

p
a)
(D

Xk

= m T

Forx—k =1, this yields
FO

For X?k =1, this yields

0

4 2
_(ﬂj + 3.25[2] _2=0
O)a a)a

[3 = 0.9081, 1.557]
wa

Comparing this to the sketch in Figure 5.15, the values for which XK <1 are




0.908lw, <w <1.118w, and o > 1557w,



Problems and Solutions Section 5.4 (5.37 through 5.52)

5.37 A machine, largely made of aluminum, is modeled as a simple mass (of 100 kg) attached
to ground through a spring of 2000 N/m. The machine is subjected to a 100-N harmonic
force at 20 rad/s. Design an undamped tuned absorber system (i.e., calculate m, and k)
so that the machine is stationary at steady state. Aluminum, of course, is not completely
undamped and has internal damping that gives rise to a damping ratio of about { = 0.001.
Similarly, the steel spring for the absorber gives rise to internal damping of about {, =
0.0015. Calculate how much this spoils the absorber design by determining the
magnitude X using equation (5.32).

Solution:

From equation (5.21), the steady-state vibration will be zero when

m
a

Choosing p = 0.2 yields

m, = um=(0.2)(100) = 20 kg

a

k, =m,o? =(20)(20)" =8000 N/m
With damping of { = 0.001 and {, = 0.0015, the values of ¢ and c, are

¢ = 2¢+/km =2(0.001),/(2000)(100) = 0.894 kg/s
¢, = 2¢,Jk,m, =2(0.0015),/(8000)(20) =1.2 ky/s

From equation (5.32),

k, — maa)z) F, +c,oF ]

Ll
det(K—a)ZM +cojC)

Since

M = 100 0 C= 2.0944 -1.2 K = 10,000 -8000
0 20 -12 12 —8000 8000

the denominator is —6.4x10"-1.104x10°%j, so the value of X is



5.38

_ (k‘,ﬂmaa)z)(F0 +caa)F0j)
B det(K—a)zM +a)jC)

Using Window 5.4, the magnitude is
|X|=38.75%10"° m

This is a very small displacement, so the addition of internal damping will not affect the
design very much.

Plot the magnitude of the primary system calculated in Problem 5.37 with and without
the internal damping. Discuss how the damping affects the bandwidth and performance
of the absorber designed without knowledge of internal damping.

Solution: From Problem 5.37, the values are

m =100 kg m, =20 kg
c=0.8944 kg/s c, =1.2 kg/s
k=2000 N/m  k =8000 N/m
F, =100 N @ =20 rad/s

Using Equation (5.32), the magnitude of X is plotted versus w with and without the
internal damping (c). Note that X is reduced when X < F¢/k = 0.05 m and magnified
when X > 0.05 m. The plots of the two values of X show that there is no observable
difference when internal damping is added. In this case, knowledge of internal damping
IS not necessary.



m = 100 ma = 20 cai=1.2 k= 2000 i

ka = 8000 Fo =100 !

1

|

2 2 |

. (kﬂ. — AW J-FIZI2 + [ca- |IU.'I-F|:|]|:| |

xle.0) = : -

2 2 2 2
J[(k—m-m ) (kﬂ— - b ) — (ma-ka + ca-c)-m ] + [kﬂ-c + kca — [ca (m + ma +c-mﬂ]-mﬂ -

1

x0,0)

0.0
H[.2044, 1)

0.1

EeT
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5.39 Derive Equation (5.35) for the damped absorber from Egs. (5.34) and (5.32) along with
Window 5.4. Also derive the nondimensional form of Equation (5.37) from Equation
(5.35). Note the definition of { given in Equation (5.36) is not the same as the { values
used in Problems 5.37 and 5.38.

Solution:

Substituting Equation (5.34) into the denominator of Equation (5.32) yields

1_ (ka—maw2)+caa)j

0 [(—mw2 + k)(—maco2 + ka)} +[(k — (m + ma)a)z)cacon

T

Referring to Window 5.4, the value of can be found by noting that

0

Al = ka - maw
Bl:caco

A = (—mco2 + k)(—maa)2 + ka)— m ko’
B :(k—(m+ma)w2)caw

2

Since
X|_ A + B’
F, A? + B?
then
X2 (ka - maw2)2 +clo’

F_02 [(—ma)2 + k)(—maco2 + ka)— makacoz]2 + [k —(m + ma)ooz]2 Cw2
which is Equation (5.35)

To derive Equation (5.37), substitute c, = ZCmaa)p,ka = maa)j, and m_ = um, then
multiply by k? to get



X%k k? (wi —w2)2 +4{ 0] 0] k?

R [(k - ma)z)(a)i —~ wz) —~ umja)ZT + [k —~ (1— /J) Mo’ ]2 (4)§2a)§a)2

Substituting k = me?,w =rw , and , = o _ yields

2 .4 2 .2 2,..2 2..21,2
X2K2 m wp([)’ ;- wp)+4§ .0, K

R [(a)i - rzwi)(ﬂzwi -~ rzwi) m— ump°rie; T + [mwf} —~ (1— ,u)mrzcof]}2 (4)§2r2w§

Canceling m” and ©° yields

X _ (B =) +(2cr)

R [(l— rz)(ﬂ2 - rz)— urzlﬂ2 +(2¢r) (1— (2 urZ)2

Rearranging and taking the square root gives the form of Equation (5.37):

X J (2] +(r - B

F (2§r)2(r2—1+ urz)2 +[ur2ﬁ2—(r2—l)(r2—[32)}2

0
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5.40 (Project) If you have a three-dimensional graphics routine available, plot Equation (5.37)
[i.e., plot (X/A) versus both rand { for0<{<land0<r< 3, and a fixed p and f3.]
Discuss the nature of your results. Does this plot indicate any obvious design choices?
How does it compare to the information obtained by the series of plots given in Figures
5.19 to 5.21? (Three-dimensional plots such as these are becoming commonplace and
have not yet been taken advantage of fully in vibration absorber design.)

Solution: To compare to Figure 5.18, the values p = 0.25 and B = 0.8 in Equation (5.37)
yield

X (2gr) +(r* —0.64)2

A \(2r) (r2sr? -1 +[ 0607 (1 ~1)(r* ~0.64)

This is plotted for 0.5 <r<2and 0.5 <{ < 1. A Mathcad plot is given.

Ni=30 i:=0.N-8 j:=0.N1 r =05+i0.05 (=05 +1001s
2let) = (2o + (2 - 06d)
(2re)f (tes2 - 12 +[0ae2 - (2 - 1) (2 - 06d) |




This supplies much more information than two-dimensional plots.



5.41 Repeat Problem 5.40 by plotting |X /A| versus r and [ for a fixed { and p.

Solution: Using Equation (5.37) with u=0.25and £ 0.1 yields

X 0.04r+(r? - p2)'

oo s ) [oasei (A )]

This is plotted for 0.5<r<1.25and 0 < B < 3.
Hi=30 i:=0..H-.8 j:=0..H1 =05+ 1003

|3]. =0 +4-01

0.04-2 + (12 - ﬁzjlz

X(r.p) =

042 (1252 - 12)° 4 [D.ES-rz-ﬁz ~ & 1) (rz - ﬁz)]

=+

M, 5) = % (5. B)
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5.42 (Project) The full damped vibration absorber equations (5.32) and (5.33) have not
historically been used in absorber design because of the complicated nature of the
complex arithmetic involved. However, if you have a symbolic manipulation code
available to you, calculate an expression for the magnitude X by using the code to
calculate the magnitude and phase of Equation (5.32). Apply your results to the absorber
design indicated in Problem 5.37 by using m,, ka and {, as design variables (i.e., design
the absorber).

Solution:

Equation (5.32):

« = (ka - maa)z) F, +coF,
det(K—a)ZM +cojC)

where M, C and K are defined above Equation (5.32).

Using Equation (5.34) for the denominator, then calculating the magnitude yields

2 2 2, .22
(ka—maa) )F0 +C.o°F;

2

[(k - mwz)(ka - maa)z)— (maka + Cac)sz + [kac +ke, — (ca(m + ma) + cma)a)z} o’

]
¢ =tan (Rej

where the imaginary part, denoted Im, is
Im = —ck?l +(2k,m, — 2k km, — k’m, )’
and the real part, denoted Re, is
Re = k’k + (cj —k?m— 2k km, — kjma)co2

The phase is

+ ((k + ka) mZ + 2k mm, —c? (m + ma))oo4 —mm’e°
From Problem 5.37 and its solution, the values are

m =100 kg m, = 20 kg

¢ =0.8944 kg/s Ca = 1.2 kg/s

k =2000 N/m ka = 8000 N/m
Fo=100 N =20 rad/s

Substituting these values into the magnitude equation yields
|X|=8.75%10"° m

This is the same result as given in Problem 5.37.



5.43 A machine of mass 200 kg is driven harmonically by a 100-N force at 10 rad/s. The
stiffness of the machine is 20,000 N/m. Design a broadband vibration absorber [i.e.,
Equation (5.37)] to limit the machine's motion as much as possible over the frequency
range 8 to 12 rad/s. Note that other physical constraints limit the added absorber mass to
be at most 50 kg.

Solution:
. k
Since o = \/% = 10 rad/s, then r ranges from

8 12
—<r<=—
10 10

08<r<1.2

By observing Figure 5.21, the values of p = 0.25, B = 0.8, and { = 0.27 yield a reasonable
solution for the required range of r. So the values of m,, c,, and k, are

m, = pm = (0.25)(200) = 50 kg
Ca = 2{mama = 2(0.27)(50)(10) = 270 kg/s
k, = mo,B’w? = (50)(10)(0.8)?(10)* = 32000 N/m

Note that an extensive optimization could have been used to solve for y, B, and £, but this
IS not covered until section 5.5.
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5.44  Often absorber designs are afterthoughts such as indicated in example 5.3.1. Add a
damper to the absorber design of Figure 5.17 to increase the useful bandwidth of
operation of the absorber system in the event the driving frequency drifts beyond the
range indicated in Example 5.3.2.

Solution:

From Examples 5.3.1 and 5.3.2,

m=73.16 kg m =18.29 kg
k'=2600 N/m  k_=6500 N/m

7.4059 < @ < 21.0821 rad/s

The values pand 3 are

Jk 1
B = LM 31623
@, +k/m

Choosing £ = 0.2 (by trial and error) will allow o to go beyond 21.0821 rad/s without

X ) o Xk .
?k going above 1. However, it will not prevent 3 from going above 1 when o <
0 0

7.4089 rad/s. The value of c, is

2600
c.=2(m =2(0.2)(18.29),|—— =43.61 kg/s
= 2mw, =2(0.2)1829) > g
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5.45 Again consider the absorber design of Example 5.3.1. If the absorber spring is made of
aluminum and introduces a damping ratio of { = 0.001, calculate the effect of this on the
deflection of the saw (primary system) with the design given in Example 5.3.1.

Solution:
From Examples 5.3.1 and 5.3.2,

k, — maa)z) F, +c,oF ]

Ll
det(K—a)"'M +cojC)

where c, = 2,/k m, =2(0.001),/(6500)(18.29) = 0.6896 kg/s
Since

M = 7316 O C= 0.6896 —0.6896 K = 9100 -6500
0 18.29 —0.6896 0.6896 —-6500 6500

The denominator is -1.4131x10-12,363j when ® = 7.4089 rad/s,
|X,| =0.00499 m

and when m = 21.0821 rad/s,
|X,|=0.00512 m

The nondimensional values become

X k

—1=0.999
I:0

X,k
2-1=1.023
I:0

There is very little effect on the saw deflection since the values of are still

0
approximately 1 at the endpoints of the driving frequency range.
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5.46 Consider the undamped primary system with a viscous absorber as modeled in Figure

5.47

5.22 and the rotational counterpart of Figure 5.23. Calculate the magnification factor
‘Xk/ MO‘ for a 400 kg compressor having a natural frequency of 16.2 Hz if driven at

resonance, for an absorber system defined by p =0.133 and { = 0.025.
Solution:
From Egs. (5.39), with p=0.133, { =0.025, and r = 1:

Xk 457 +r° _
M, ) \/4@2(r2 + pr? —1)2 +(r2 —1)2 -0

The design with £ = 0.1 produces the smallest displacement.

Recalculate the magnification factor ‘Xk/ MO‘ for the compressor of Problem 5.46 if the

damping factor is changed to { = 0.1. Which absorber design produces the smallest
displacement of the primary system { = 0.025 or { = 0.1?

Solution:
From Equation (5.39), with p=0.133, { =0.1, and r = 1:

Xk 4% +r? _
MO - \/452('_2 N /.ll’z _1)2 +(I’2 _1)2 =38.34

The design with £ = 0.1 produces the smallest displacement.
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5.48 Consider a one-degree-of-freedom model of the nose of an aircraft (A-10) as illustrated in
Figure P5.48. The nose cracked under fatigue during battle conditions. This problem has
been fixed by adding a viscoelastic material to the inside of the skin to act as a damped
vibration absorber as illustrated in Figure P5.48. This fixed the problem and the vibration
fatigue cracking disappeared in the A-10's after they were retrofitted with viscoelastic
damping treatments. While the actual values remain classified, use the following data to
calculate the required damping ratio given M = 100 kg, f, = 3 Hz, and k = 3.533 x 10°
N/m, such that the maximum response is less than 0.25 mm. Note that since mass always
needs to be limited in an aircraft, use 4 = 0.1 in your design.

Timnpizg kiver I =T

1y " = 1 "
VIS RO BT G L VEDIMERE Mocs WeiR
A 1N e s bl te el yupiieg alts 2 CHIENFRRE Qe EFCilEachE

Solution:

30(27)

vk/m

From Equation (5.39), with p=0.1,and r =

=1.885, and My replaced by Fo,

X 48 +(1.885)

By a [(1.1) (1.885) - 1}2 [(1.885)2 - 1}2 (1.885)
~ \/ 4L? +3.553
~\33.834¢ +23.159

With no dampingX?k =0.392. This value must be reduced. Choose a "high" damping

0
ratio of £ = 0.7 so that

—=0.372

The value of c; is

c =2 m\/E =2(0.7)(0 1)(100)\/E = 1400 kg/s
2 = HM AN 100 J
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5.49 Plot an amplification curve such as Figure 5.24 by using Equation (5.39) for { = 0.02
after several values of p (1 = 0.1, 0.25, 0.5, and 1). Can you form any conclusions about
the effect of the mass ratio on the response of the primary system? Note that as p gets

large ‘Xk/ Mo‘ gets very small. What is wrong with using very large p in absorber
design?

Solution:

From Equation (5.39), with { = 0.1:

Xk _ 0.0016 +r”
Mo \0.0016(r? + pur? ~1) +(r? ~1) r*

0

The following plot shows amplitude curves for p = 0.1, 0.25, 0.5, and 1.

. 0.0016 + £

}i};lir,pjl = ; ;

Jn.l:u:um- o+ —1) + (F 1)

B0 T
Helr,01] 45 1
3k [r,0.25]
Mk (r,0.5)
¥k (r, 1] an +

Py
ol 4 r II‘.\I\I\."".
0.3 0.3 1 1.1 1.2

Note that as the mass ratio, |, increases, the response of the primary system decreases,
particularly in the region near resonance. A higher mass ratio, however, indicates a poor
design (and can be quite expensive).
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5.50 A Houdaille damper is to be designed for an automobile engine. Choose a value for {
and L if the magnification |Xk / M| is to be limited to 4 at resonance. (One solution is

nu=1,£=0.129.)
Solution:

From Equation (5.39), with r = 1:

X _ i1
M, 4CZI~12

For X—k =4,
M
64717 =487 +1

If W is limited to 0.3, then the value of { is
64¢2(0.3) =4 +1

£ =0.754

5.51 Determine the amplitude of vibration for the various dampers of Problem 5.46 if { = 0.1,
and Fo = 100 N.

Solution:

From Problem 5.46,
k =ma? =(400)[ (16.2)(27)] =4.144x10°N/m

Also, p=0.1, r=1, and F; = 100 N. So, from Equation (5.39), with My replaced by Fo,

_F 4 _
. ?OJ PR N
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(Project) Use your knowledge of absorbers and isolation to design a device that will
protect a mass from both shock inputs and harmonic inputs. It may help to have a
particular device in mind such as the module discussed in Figure 5.6.

Solution:

One way to approach this problem would be to design an isolator to protect the mass
from shock inputs, and an absorber to protect the mass from harmonic disturbances. An
absorber would be particularly useful if the frequency of the harmonic disturbance(s) is
well known.

This is a very general approach to such a problem, and solutions will vary greatly
depending on the particular parameters involved in an actual system.



Problems and Solutions Section 5.5 (5.53 through 5.66)

5.53  Design a Houdaille damper for an engine modeled as having an inertia of 1.5 kgm? and a
natural frequency of 33 Hz. Choose a design such that the maximum dynamic
magnification is less than 6:

Xk

<6

0
The design consists of choosing J; and c,, the required optimal damping.
Solution:

From Equation (5.50),

K <6, then

Since
0

6>1+g
u

u>0.4
Choose p = 0.4. From Equation (5.49), the optimal damping is

1
£ = =0.3858

)

The values of J, and c, are

J,=pd, = (0.4)(1.5 kg-m?/ rad) =0.6 kg-m?/ rad
¢, =2¢, 3,0, =2(0.3858)(0.6)(33)(27) =95.98N-m-s/rad

p-27"p
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5.54  Consider the damped vibration absorber of equation (5.37) with 3 fixed at B = 1/2 and p
fixed at p = 0.25. Calculate the value of ¢ that minimizes|X / A|. Plot this function for

several values of 0 < { < 1 to check your design. If you cannot solve this analytically,
consider using a three-dimensional plot of |x /A| versus r and ¢ to determine your

design.
Solution:

From equation (5.37), with f = 0.5 and p = 0.25, let

X 4L%r? +(r2—0.25)2
A\ agrt (1250 -1) +[0.085r7 - (r* ~1)(r* ~0.25)]

f(re)

1/2

From equataions (5.44) and (5.45), with f =——

Bl/2 !
g
ol
becomes
BdA- AdB
Since B=4¢%r? (1.25r —1)2 + [0.0625r2 — (r2 —1)(r2 — 0.25)}2 and
A=4g? +(r? ~0.25) , then
dA= g—? =8¢r?
dB = 3—? =8¢r?(1.25r2 - 1)

[4§2r2(1.25r2 ~1) +[0.0625r* - (42 -1)(r* - 0.25)}2} (8¢r?)

= [4C2r2 +(r? —0.25)2] (8¢r?)(L.25r7 -1

[0.0625r2 ~(r*-1)(r* —0.25)1 =(r*-0.25) (1.25r2 - 1)



Taking the square root yields
0.625r% (r2 —1)(r2 —0.25) = i(rz —0.25)(1.25r2 —1)

Solving for r yields

r =0.4896, 0.9628
Now take the derivative

of _
ar

becomes

BdA = AdB

since B =47 (L.25r? - 1) +[0.0625r7 - (v ~1)(r* - 0.25) ] and

A=4gr? +(r? ~0.25) , then

dA= 3_2 =8.%r +2(r* - 0.25) (2r)

dB = 3—'2 =8¢7r (1.25r2 - 1) +8¢7r?(1.25r" - (2r))(2.5r)

+2[ 0.0625r* - (42 —1)(r2 - 0.25)}[0.125r - (2r)(r2 - 0.25) - (r2 —1)(2r)}
Solving B dA = A dB for { yields

r=0.4896 — {=0.1145— 51 =1.4279

st

r=0.9628 - £ =0.3197 — 51 =6.3029

st
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To determine the optimal damping ratio, make a plot of|X / A| versus r for { = 0.01,

0.1145, 0.3197, and 0.7.



2

ilr,c) ;:J (e-5) + (2 —02s)’
|[2.r.§]|3_ (1_25_12 - 12]|2 + [D_DE-ES'IE _ (rz _ 1:|_ (12 B D.ES]I]

15 T

E[r, 0.01]

0 +
£lr,0.7]

Er, 0.3197]

.'h',_
! 1
r g
T R A
£[r,0.1145) J‘/// N
0.5 1

’ 1.5

r

The value of { = 0.3197 yields the best overall response (i.e., the lowest maximum).
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For a Houdaille damper with mass ratio p = 0.25, calculate the optimum damping ratio
and the frequency at which the damper is most effective at reducing the amplitude of
vibration of the primary system.

Solution:

From equation (5.49), with p = 0.25,

1
£ = =0.422

- \/2(,U+l)([,l+2)

r= fL:O.943
2+ U

The damper would be most effective atw =rw_ =0.943w , i.e., where the amplitude is
greatest:

From equation (5.48),
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Consider again the system of Problem 5.53. If the damping ratio is changed to { = 0.1,
what happens to‘Xk/ MO‘?

Solution:

If Cop = 0.1, the value of p becomes

1

\/2(;1 +1)(;1 + 2)
0.02u* +0.06 1 =0.96 =0
u=-8.589, 5.589

0.1=

Clearly p = 5.589 is the physical solution. The maximum value of would be

0

[X—kj :1+g:1.358
0/ max H

which is less than 6 (the requirement of Problem 5.53). Note that the value of u is
extremely large.
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Derive Equation (5.42) from Equation (5.35) and derive Equation (5.49) for the optimal
damping ratio.

Solution:
Equation (5.37) is derived from Equation (5.35) in Problem 5.39.

Start with Equation (5.37):

Xk (2] +(r -] |
Fo (2§r)2(r2—1+ urz)2 +[ur2[32—(r2—1)(r2—[32)}

To derive Equation (5.42), which is the same as Equation (5.39), note that
c=k, =wm, =0, which also means 3 = 0. Since this is a moment equation, Fo is replaced

by Mo. Therefore,

Xk _ (2gr) +r* _ 4
R (Zgr)z(r2—1+ /,lrz)2 +(r2—1)2r4 4§2(r2 +[.1I‘2—l)2 +(r2—1)2r2

which is Equation (5.42) after canceling r°.

1/2

To derive Equation (5.49), first let Equation (5.42) be f(r,{). Since f = g7 where

A=4%+r? and B :4§2(r2 + ur? —1)2 +(r2 —1)2r2, then

a_f - 0
a¢
becomes
BdA = AdB
where
oA
dA=—=8
g ¢
_ oB _ 2 2 2
dB=£—8§(r + ur —1)

So,



(e ol )+l

(r2 —1)2 = (r2 + ur? —1)2

(r2 —1) = i(r2 + pr? —1)

Taking the minus sign (the plus sign yields r = 0).

(2+u)r*-2=0

2
2+ U

r=

Now take the other partial derivative% =0, which becomes

BdA = AdB

dA=—=2r
or

dB Eg—? :16§2r(1+ u)(r2 + ur? —1)+4r3(r2 —1)+2r(r2 —1)2

| [ r’ +pur? — 1 1)2 2}(2r)

: [lGCr 1+u re+pur’— )+4r3(r2—1)+2r(r2—1)2}

Substituting r = 2 yields, after rearranging
\f ( 2+ 1) ’
[2+u 2+ } [2+/,1 }(2+uj

:{4CZ+2+J[8§2(1u)(zfu+2i’"u1]+2[2fu](zfu1j+[

Expanding and canceling terms yields

- 60

y



2
4041+ p)(2+ p) + 28—

¢4 (1+ ) (2+ 1) + 2870 T
The physical solution for C is

1

ez H

C:

which is Equation (5.49).

=0
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Consider the design suggested in Example 5.5.1. Calculate the percent change in the
maximum deflection if the damping constant changes 10% from an optimal value. If the
optimal damping is fixed but the mass of the absorber changes by 10%, what percent

change in | Xk / M | results? Is the optimal absorber design more sensitive to changes
in c; or m,?

Solution:

From Problems 5.51 and 5.46, Fo = 100 N, k = 4.144 x 10° N/m, and p = 0.133. The
optimal damping is

1
£ = = 0.4549

A

The deflection is given by Equation (5.42), and My replaced by Fo,

« :5 4% + 12
k 4{2(r2+ur2—1)2+(r2—1)2r2

Also, the maximum displacement will occur at r = 2 = 0.9683. If the damping
i2 + ui

. . c
constant changes by 10%,  will also change by 10% since{ = > 2. The value of X
Mo

for0.9 ¢ ., and 1.1 is

(=09, — X=3870x10"m
(=g, - X=3870x10"m
§=11¢, — X=3870x10"m

There is no change in X with a 10% change in Cop.

0

m
If m, changes by 10%, p will also change by 10% since u = ﬁ The value of [X?kj

for 0.9, Y, and 1.1 is



09u — r=09714 - Xk

=17.708(+10.4%)
FO max

u — r=09683 — >|ik =16.038
0

max

11y — r=09318 — |2 =14.671(-8.5%)

max

The displacement is more sensitive to changes in m, than ca.
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Consider the elastic isolation problem described in Figure 5.26. Derive equations (5.57)
and (5.58) from equation (5.53).

Solution:

Rewrite equation (5.53) in matrix form as

k, — mo’ + jcw —jcw X, | _|F
— jow ~(k, + jew) | X, | | 0
The inverse of the matrix on the left is

1 [—(k2 +jew)  jeo ]

K, (k - me?)- jeo(k +kma®)|  jew  kmo®+ jew

Solving for X; and X; yields

(k, + jeco) F,
k, (K, —me?) + jeo (k, +k, ~ma? )
X = co, F j
"k (k- mo?)+ jeo(k +k, - mo? )

X =

1

which are equations (5.54) and (5.55).
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5.60 Use the derivative calculation for finding maximum and minimum to derive equations
(5.57) and (5.58) for the elastic damper system.

Solution:

From equation (5.56)

\/1+ 4(1+y) ¢or?
=) w4t (1o y - vy

Equation (5.45) is applicable here, so that

T.R.=

BdA = AdB
2 2 R .. .
where A= 1+4(1+y) £’r? and B:(l—rz) +4Czr2(1+y—r2y) differentiating with
respect to C yields

dA= g—? =8(1+y) ¢r?

dB = 3—? =80r?(1+y - r7y)

[(1— rz)2 +4%r° (1+ y — rzy)z] (8)(1+ y)zgr2
= [1+ 4(1+ y)z §2r2} (8§r2)(1+ y— rzy)2

(l r2) l+y =(1+}/—r23/)2
(1 rz) 1+y : (1+y—r2y)

The minus sign yields the physical result

r2(2y+1) = 2(1+y)

2(1+y)
1+2y

which is equation (5.57)



Differentiating with respect to r yields

Q
>

dA="=g(1+y) ¢r

1]
|Q) QJ|
UJ -~

dB = 2(1— rz)(—Zr) + 8§2r(1+ Y- rzy)2 +8(%r? (1+ Y- rzy)(—Zr}/)

Q)
=

[(1— r2)2 +4¢%r? (1+ Y- rzy)z] (8§2r)(1+ }/)2

= [1+ a(1+y) gzrz} [—4r(1— r2)+8¢%r (L+y —ry) — 167 (L+y - rzy)]

Substituting for r and manipulating yields

[647(1+y) (1 12 ﬂgus[ (L) +(1+y) (1+2y)-2(2+y) }gz (1+27)=0

Solving for C yields the physical result

which is Equation (5.58).
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5.61 A 1000-kg mass is suspended from ground by a 40,000-N/m spring. A viscoelastic
damper is added, as indicated in Figure 5.26. Design the isolator (choose k, and ¢) such
that when a 70-N sinusoidal force is applied to the mass, no more than 100 N is
transmitted to ground.

Solution:

From equation (5.59),

(TR) =1+2y

F

5100 aog=142y
F 70

y =0.2143

The isolator stiffness should be

k, = vk, =(0.2143)(40,000) = 8571N/m

2

From equation (5.58),

¢ = 2(1+2y)/7/ 07518

The isolator damping should be

k |
c=2¢, = =2(0.7518) | 22 — g 51kgs
*\'m 1000
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5.62 Consider the isolation design of Example 5.5.2. If the value of the damping coefficient
changes 10% from the optimal value (of 188.56 kg/s), what percent change occurs in
(T.-R)max? If c remains at its optimal value and k, changes by 10%, what percent change
occurs in (T.R.)max? Is the design of this type of isolation more sensitive to changes in
damping or stiffness?

Solution:

From Example 5.5.2, ¢ = 188.56 kg/s and k, = 200 N/m. If the value of c changes by
10%, the value of T.R. becomes (with r =5 and y = 0.5),

09c — { =04243 — T.R.=0.1228(-1.78%)
¢ - (,=04714 — T.R.=0.1250
1lc — { =0518 — T.R=0.1267(+139%)

If the value of k, changes by 10%, the value of T.R. becomes (with r =5 and { = 0.4714),

0.9k, — y=045 — T.R.=0.1327(+6.17%)
k, — y=05 - T.R.=0.1250

2

1k, — y=055 — T.R.=0.1183(-531%)

This design is more sensitive to changes in stiffness.
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5.63 A 3000-kg machine is mounted on an isolator with an elastically coupled viscous damper
such as indicated in Figure 5.26. The machine stiffness (ky) is 2.943 x 10° N/m, y = 0.5,
and ¢ = 56.4 x 10° N-s/m. The machine, a large compressor, develops a harmonic force
of 1000 N at 7 Hz. Determine the amplitude of vibration of the machine.

Solution:
The amplitude of vibration is given by Equation (5.54) as

‘- (k, + jco) F,
ok, (k- ma?) + oo (K, +k, - ma? )

Since Fg = 1000 N, o = 7(2r) = 43.98 rad/s, m = 3000 kg, ¢ = 56.4 x 10° N-s/m, k; =
2.943 x 10° N/m, and k, = yky = 1.4715x 10° N/m, then

X, =-4.982x10*-1.816 107 ]
The magnitude is

|X,|=5.303x10™ m
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5.64 Again consider the compressor isolation design given in Problem 5.63. If the isolation
material is changed so that the damping in the isolator is changed to { = 0.15, what is the
force transmitted? Next determine the optimal value for the damping ratio and calculate
the resulting transmitted force.

Solution:
7(27:)

Jk/m  1/2.943x10° / 3000
1.404. Since { = 0.15, the transmitted force is [from Equation (5.56)],

From Problem 5.63, y = 0.5, Fp = 1000 N, and r =

1+4(1+7y) ¢%r?
(1— r2)2 +4L%r? (1+ y - rzy)

F =F

T

- =1188 N

The optimal value for the damping ratio is found from equation (5.58):

2(1+2y)ly
CO = ( ) =0.4714
P a(1+7)
The transmitted force is then

F, =1874 N
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5.65 Consider the optimal vibration isolation design of Problem 5.64. Calculate the optimal
design if the compressor's steady-state driving frequency changes to 24.7 Hz. If the
wrong optimal point is used (i.e., if the optimal damping for the 7-Hz driving frequency
is used), what happens to the transmissibility ratio?

Solution:

From Problems 5.63 and 5.64, y = 0.5, Fo = 1000 N, k; = 2.943 x 10° N, and m = 3000
kg.

The optimal damping is

_ 2(1+2y)/7/

£, = = 04714
® 4(1+y

The value of ¢ and k> would be

c= Zg“opw/klm =88.589 kg/s
k, = vk, =1.472x10° N/m

The isolation design is independent of the driving frequency in this problem, so the
transmissibility ratio would not change.
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Recall the optimal vibration absorber of Problem 5.53. This design is based on a steady-
state response. Calculate the response of the primary system to an impulse of magnitude
My applied to the primary inertia J;. How does the maximum amplitude of the transient
compare to that in steady state?

Solution:

The response of the system given in Problem 5.53 cannot be solved by the means of
modal analysis given in Chapter 4 because the system is not proportionally damped.
However, the steady-state response of a damped system to an impulse is simply zero.
Therefore, the maximum amplitude of the transient will be of interest. For a sinusoidal
input, a numerical simulation might be necessary to determine the effects of the transient
response.



Problems and Solutions Section 5.6 (5.67 through 5.73)

5.67 Compare the resonant amplitude at steady state (assume a driving frequency of 100 Hz)
of a piece of nitrite rubber at 50°F versus the value at 75°F. Use the values for n from
Table 5.2.

Solution:

From equation (5.63),

X = i
k(1+ nj) — mw?
k
At resonance o = \/% )
X — I:O — I:0

The magnitude is

mi[i)
n{ k

At50°, n=0.5and at 75°, 1 =0.28, so
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5.68 Using Equation (5.67), calculate the new modulus of a 0.05 x 0.01 x 1, piece of pinned-
pinned aluminum covered with a 1-cm-thick piece of nitrite rubber at 75°F driven at 100
Hz.

Solution:

From Table 1.2, E; = 7.1 x 10° N/m? for aluminum. From Table 5.2,
E, = 2.758 x 10" N/m?for nitrate rubber, Also,

=1, = %(0.05)(1)3 =0.01667 m*

E ) !
= = M =3.885%107*

g =—2
> E,  7.1x10"

:i—%—l
Hl

2

001

From Equation (5.67),

E, I e,h
E=—21+eh +3(1+h,) —22|=7.136x10° N/m?
I l1+e,],

5.69 Calculate Problem 5.68 again at 50°F. What percent effect does this change in
temperature have on the modulus of the layered material?

Solution:

From Problem 5.68, with E, =4.137 x10" N/m’,

| =1,=0.01667 m*
E, 4 7
=2 A137x10 137}(13 =5.827 %10
E, 7.1x10
_H, _001_,
2" H, 001

From Equation (5.67),



E, I e,h
E=—21+eh +3(1+h,) —22— |=7.154x10° N/m?
I 1+e,h,

This is an increase of 0.25% of the layered material's modulus.



5.70  Repeat the design of Example 5.6.1 by
(a) changing the operating frequency to 1000 Hz, and
(b) changing the operating temperature to 50°F.
Discuss which of these designs yields the most favorable system.

Solution:
From Ex. 5.6.1, E, =7.1x10"N/m? and h, = 1.

(a) 75°, 1000 Hz

n, =0.55

E, =4.826 10" N/m?
E

e,=—2=6.797x10™
E1

From Equation (5.68),

,h, (3+6h, + 4h + 26,0’ +e?h!
(1+ ezhz)(1+ 4e,h, +6e,h? +4e.h’ +e2h’

)n2 =0.00481

(b) 50°, 1000 Hz

n,=0.5
E, =4.137x10" N/m?
E : !
o, =2 = 2300 5 gr7 10+
E, 7.1x10
From Equation (5.68),
1 =0.00375

Increasing the driving frequency results in a higher loss factor compared to the effects of
lowering the temperature.
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5.71 Reconsider Example 5.6.2. Make a plot of thickness of the damping treatment versus
loss factor.

Solution:

From Ex. 5.6.2, n, = 0.261, e, = 0.01, and H; = 1 cm. So, from Equation (5.69),

_qae P2 ) :
N =14e, 27, = 0.03654H; (H, incm)

1

n(H2) = 0.03654 Hz*

013 T
n.1 +

003 1+

A plot of n versus H; in centimeters
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5.72  Calculate the maximum transmissibility coefficient of the center of the shelf of Example
5.6.1. Make a plot of the maximum transmissibility ratio for this system frequency, using
Table 5.2 for each temperature.

Solution: If the system is modeled as shown in Figure 5.18, then the maximum
transmissibility occurs at (from Equation (5.50)),

FO max H

where [ is found from Equation (5.49) as the solution to

£= =

(2

The value of { is > at resonance. So, at 75° and 100 Hz,

n_ 000151 _ 4 500755 = L

2 (i)

= =935

(=

Xk = 1+i =1.002
F 935

0

For 50° and 100 Hz, n = 0.00375 (from Problem 5.70), so

2000875 _ 0o e7s - 1

2 (i)

Xk =1+ 2 =1.005
F 375.6

0




!

1.003

1.004

1.003

1.00z

1.001

x, 1= 1.002 %, 1= 1.005

This gives some idea of the
relationship, but not a very
good one as it includes only
two points

a0
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The damping ratio associated with steel is about { = 0.001. Does it make any difference
whether the shelf in Example 5.6.1 is made out of aluminum or steel? What percent
improvement in damping ratio at resonance does the rubber layer provide the steel shelf?

Solution:

If the shelf in Ex. 5.6.1 is made out of steel, E; = 2.0 x 10** N/m?. Therefore,

E . 7
e, = 2= 218X10 _ 4 5001379
E. 20x10

Also, n2 =0.55and h, = 1. From Equation (5.68),

. ,h, (3+6h, + 4h + 26,0’ + e?H)
(1+ ezhz)(1+ 4e,h, +6e,h’ +4e,h’ + e h’

)n2 =0.0005

At resonance, C:g:0.000ZS.The rubber actually reduced the damping of the steel
shelf by 75%.



Problems and Solution Section 5.7 (5.74 through 5.80)

5.74

5.75

A 100-kg compressor rotor has a shaft stiffness of 1.4 x 10’ N/m. The compressor is

designed to operate at a speed of 6000 rpm. The internal damping of the rotor shaft

system is measured to be { = 0.01.

(a) If the rotor has an eccentric radius of 1 cm, what is the rotor system's critical speed?

(b) Calculate the whirl amplitude at critical speed. Compare your results to those of
Example 5.7.1.

Solution:
(a) The critical speed is the rotor's natural frequency, so

7
0] :,/h :,/1'4X1O =374.2 rad/s = 3573 rpm
¢ m 100

(b) At critical speed, r = 1, so from Equation (5.81),

o 0.01

X=—== =0.5m
2f Zi0.0li

So a system with higher eccentricity and lower damping has a greater whirl amplitude
(see Example 5.7.1).

Redesign the rotor system of Problem 5.74 such that the whirl amplitude at critical speed
is less than 1 cm by changing the mass of the rotor.

Solution: From Problem 5.74, k = 1.4 x 10" N/m, m = 100 kg, { = 0.01, and o = 0.01m.
Since the whirl amplitude at critical speed must be less than 0.01 m, the value of { that
would satisfy this is, from equation (5.81),

x=2

2§

o 0.01

== =05
6 2X 2io.01i

The original damping ratio was 0.01, so the value of c is

¢ = 2¢ma = 2(0.01)(100), /1'412 307 = 784.33 kg/s

So, the new mass should be, with £ = 0.5,




748.33=2(0.5) m\/% = Jkm =/1.4x10"m

= m=0.04 kg
This is not practical.
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5.76 Determine the effect of the rotor system's damping ratio on the design of the whirl
amplitude at critical speed for the system of Example 5.7.1 by plotting X at r = 1 for {

between 0 < { < 1.
Solution:

From Example 5.7.1, with r = 1 and oo = 0.001 m,

X = 0.001 _ 0.0005

2L ¢
0.0005
x(g) =
¢
ool +
III:.E III:.-fI IZI:.Eu III:.E :1



5- 83

5.77 The flywheel of an automobile engine has a mass of about 50 kg and an eccentricity of
about 1 cm. The operating speed ranges from 1200 rpm (idle) to 5000 rpm (red line).
Choose the remaining parameters so that whirling amplitude is never more than 1 mm.
Solution:

From Equation (5.81),

2
X =0.001 = ——000
\/ 1- r 25 r)’
Choosing = 0.1, the physical solution is
r =0.3018

By observing Figure 5.34, r = 0.3018 is the maximum value of r. So at (wr) =500

max

rpm, the stiffness must be

k =1.505x10° N/m
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5.78 Consider the design of the compressor rotor system of Example 5.7.1. The amplitude of
the whirling motion depends on the parameters o, {, m, k and the driving frequency.
Which parameter has the greatest effect on the amplitude? Discuss your results.

Solution:
From Example 5.7.1, o. = 0.001 m, { = 0.05, m = 55 kg, o = 6000 rpm, and k = 1.4 x 10’
N/m. To find out what effect each parameter has on this system, each value will be

varied by 10%.

The original system has r = 1.2454 and X = 0.002746 m.

0.9a = 0.009m — r=12454 — X =0.002471m (-10.0%)
1.1a=0.0011 m — r=12454 — X =0.003020 m (+10.0%)
1.9 =0.045 — r=12454 — X =0.002759 m (+0.465%)
1.1¢ = 0.055 — r=12454 — X =0.002732 m (-0.507%)
0.9m=49.5kg — r=11815 — X =0.003379 m (+23.1%)
1.1m = 60.5 kg — r=13062 — X =0.002376 m (-13.5%)
0.9k =126x10" N/m — r=13127 — X =0.002344 m (-14.6%)
11k =154x10" N/m — r=11874 — X =0.003304 m (+20.3%)

The mass and stiffness values have the greatest effect on the amplitude, while the
damping ratio has the smallest effect.
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5.79 At critical speed the amplitude is determined entirely by the damping ratio and the
eccentricity. If a rotor has an eccentricity of 1 cm, what value of damping ratio is
required to limit the deflection to 1 cm?

Solution:
Since X =0.01 m, a =0.01 m, and at critical speed r = 1, then from Equation (5.81),

_a _001

X=001m =—=-—"-
2 2§

£=05

5.80 A rotor system has damping limited by { < 0.05. What is the maximum value of

eccentricity allowable in the rotor design if the maximum amplitude at critical speed must
be less than 1 cm?

Solution:

Since X =0.01 m, { < 0.05, and at critical speed r = 1, then from Equation (5.81),

a a
X=00Im=—=
2¢ 2i0.05i

a=0.001lm = 1mm



Problems and Solutions Section 5.8 (5.81 through 5.85)

5.81

5.82

Recall the definitions of settling time, time to peak, and overshoot given in Example 3.2.1
and illustrated in Figure 3.6. Consider a single-degree-of-freedom system with mass m =
2 kg, damping coefficient ¢ = 0.8 N-s/m, and stiffness 8 N/m. Design a PD controller
such that the settling time of the closed-loop system is less than 10 s.

Solution: The settling time is

(=
S Cw
Since t; = 10 s,
{w=0.3

The equation of motion with a PD controller is

m>’<+(c+gz)>'<+(k+gl)x:0

So,
a):\/k-i-g1 :\/8+gl
m 2
C:c+gz :0,8+92
2me 2(2)co
Therefore,

0.8+
o= [ . ](o =0.3
4o
g, =04 N-s/m

The gain g; can take on any value (including 0).

Redesign the control system given in Example 5.8.1 if the available internal damping is
reduced to 50 N-s/m.

Solution: If the value of c is limited to 50 N-s/m, then g, becomes

g, =180-c=180-50=130 N -s/m
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Consider the compressor rotor-shaft system discussed in Problem 5.74. Modern
designers have considered using electromagnetic bearings in such rotor systems to
improve their design. Use a derivative feedback control law on the design of this
compressor to increase the effective damping ratio to { = 0.5. Calculate the required
gain. How does this affect the answer to parts (a) and (b) of Problem 5.74?

Solution: From Problem 5.74, m = 100 kg, k = 1.4 x 10" N/m, a = 0.01, {oiq = 0.01. The
value of c is
¢ =2¢,,,vkm =2(0.01) /(1.4 x107)(100) = 748.3 kgys

With derivative feedback, the coefficient of X in the equation of motion is ¢ + g,. For {
= 0.5,

c+g,=7483+g, =2(0.5)/(L4x107)(100) = 37,4166

g, = 36,668.2 kg/s

(a) The rotor's critical speed remains the same because it is only dependent upon the
mass stiffness.
(b) The whirl amplitude becomes

a 0.01

X=—== =0.01m
2f ZiO.Si

It is reduced by 80% because of the increased damping.

Calculate the magnitude of the force required of the actuator used in the feedback control
system of Example 5.8.1. See if you can find a device that provides this much force.

Solution: The magnitude of the actuator force would be
F= gz‘x‘ =g,0 X

where X is, from Equation (2.26), at steady-state,

F/m

\/(a)rf — coz)2 +(2§a)nw )2

A large value of X would occur at resonance, for example, where o = wgr = 10 rad/s, so

X =

F =(80)(10) > (0.9Fj) (1;3 M) = 0.444F,
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In some cases the force actuator used in a control system also introduces dynamics. In
this case a system of the form given in Equation (5.27) may result where m,, ¢, and k, are
values associated with the actuator (rather than an absorber). In this case the absorber
system indicated in Figure 5.18 can be considered as the control system and the motion of
the mass m is the object of the control system. Let m = 10 kg, k = 100 N/m, and ¢ = 0.
Choose the feedback control law to be

u=-g,x—0g,X

and assume that ¢, = 20 N-s/m, ky = 100 N/m and m, = 1 kg. Calculate g; and g so that x
is as small as possible for a driving frequency of 5 rad/s. [Hint: Replace k with k + g,
and c with ¢ + g in Equation (5.27)]

Solution:

Let the control law be called position feedback, applied to the mass m. The equation of
motion then becomes Equation (5.27) with k replaced by k + g;. Then the amplitude X
can be expressed as Equation (5.35) with k replaced by k + g; and given values of m, m,,
ka and c,. This yields

X2 (100 25)" +(25)(400)

R {[100+ g, - (10)(25) (100 25] - 2500} "+ 100 (11)(25) ' (25)(400)

X? 2.78

F? g’ -366.7g, +88,055.6

Clearly X is a minimum if gf -366.791 + 88,055.6 is @ minimum. Thus consider the

derivatives of the quadratic form with respect to g; to find the max value per the
discussion on the top of page 265.

%(gl —366.70, +88,055.6) = 2g, — 366.7 =0
1

so that g, =183.35

Note that d* / dgf =2>0 so that this is a maximum and X is a minimum for this gain.
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Problems Section 5.9 (5.86 through 5.88)

5.86

Reconsider Example 5.2.1, which describes the design of a vibration isolator to
protect an electronic module. Recalculate the solution to this example using
equation (5.92).

Solution: If data sheets are not available use G’ , =G’'/2. One of many possible
designsis given. From the example we have T.R. = 0.5, m=3 kg and o = 35 rad/s
=5.57 Hz. From equation (5.92):
2
T.R=—— V1 =05

2
[-oeT

From Table 5.2 for 75°F and frequency of 10 Hz (the closest value listed), the
value of Eand n are:
E =2.068 x 10" N/m? and mn=021
Thus G’ = E/3 = 6.89 x 10° N/m? using the approximation suggested after
eguation (5.86). They dynamic shear modulus is estimated from plots such as
Figure 5.38to be G’ , =G’/2. Thus equation 5.92 becomes
0.5 = 1+(0.21)2

G’ i
1-r’= +(021)2
[ %)

Thisis solved numerically in the following Mathcad session:

1+EL2

TR(a,b,r) =

(1 2] 4 a2

TM (1) i= .5

TR[.21,2,r]

ol
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From the plot, any value of r greater then about 2.5 will do thetrick. Choosing r
- 25yidds @, =2 =2 ‘/K =10 = k =100(3) =300 N/m
35 35 m
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A machine part is driven at 40 Hz at room temperature. The machine has a mass
of 100 kg. Use Figure 5.42 to determine an appropriate isolator so that the
transmissibility islessthan 1.

Solution: Givenf =40 Hz, m= 100 kg or about 220 Ibs. and T.R. <1. The
maximum static load per mount is 3 Ibs. Therefore the system would require a
minimum of 73 mounts. Assume then that 75 mounts are used. Thus

220#
75

For theisolator, f, <0.5f = 0.5(40) = 20 Hz. Therefore thef, of the isolator must

= 2.9# per mount

be lessthen 20 Hz. Referring to the performance characteristics of the tablein
Figure 5.42 yields 4 possible isolator choices:
AM 001-2,3,17,18

Make a comparison between the transmissibility ratio of Window 5.1 and that of
equation (5.92).

Solution: Comparing equation (5.92) with Window 5.1 yields:

. 1+(24)°
Window 5.1: T.R=
Ja-r?)7+ ()’
. vi+tn’
Equation (5.92): T.R=

2
-]

Comparing the two equations yields

’

G
=2r and —=1
n =20 G



Chapter 6

Problems and Solutions Section 6.2 (6.1 through 6.7)

6.1

Prove the orthogonality condition of equation (6.28).
Solution:

Calculate the integrals directly. For n=n, let u = nzx/I so that du = (n=/l)dx and
the integral becomes

nr

| (nz | 1 (1 1.
— smzudu:—(—u——sm2u
nﬂLZ 4 J

Nz 70
=L(Enn—lsin4nﬂ\ —0=l
n;zLZ 4 J 2

where the first step used a table of integrals. For n = m let u = ntx/l so that du =
(w/1)dx and

nzX . maX I, .
j sm—sm—dx ——josm mu sin nudu

which upon consulting a table of integrals is

1 Jsin(m-—n)z sin(n+m)z |
7| 2(m-n) 2(n+m) |



6.2

Calculate the orthogonality of the modes in Example 6.2.3.

Solution:
One needs to show that '[:Xn(x)Xm(x)dx =0 form=n, where X (t)=a sinc Xx.
But each mode Xn(x) must satisfy equation (6.14), i.e.

Xr:’ = —oan (1)
Likewise
X" = oqum 2

Multiply (1) by X, and integrate from 0 to I. Then multiply (2) by X,(x) and
integrate from O to I. This yields

[ XX dx=-02[ X X, dx

| |
[ Xux dx=-c2[ X X dx
0 0
Subtracting these two equations yields
: " " _ 2 2 !
[ (X, = xox Yax = (02 = o2 ) X, (90X, (x)dx
Integrate by parts on the left side to get

j'x'x'dx—j'x'x'dx+ XX |b= X X!
0 n m 0 m n n mo m n
= X_(DkX_(1)= X_()kX_(1)=0

|
0

from the boundary condition given by eq. (6.50). Thus

(Gi - Gé)jol X X _dx=0.

But from fig. 6.4, o # o for m = nso that
| |
jo X X dx=a’ josin o xsino, xdx =0

and the modes are orthogonal.



6.3.

Plot the first four modes of Example 6.2.3, for the case | = 1 m, k = 800 N/m and
T =800 N/m.

Solution:

The mode shapes are given as sine,x where o, satisfies eq. (6.51). To solve this
numerically values of I, k and T must be given. For example chose |=1m, k =
800 N/m, and t = 800 N/m the equation (6.51) becomes

tanc =-c
Solving using MATLAB for the first 4 values yields
o1 =2.029, 6, =4.913, 63 = 7.979, o4 = 11.0855

So that the mode shapes are sin(2.029)x, sin(4.913)x, sin(7.979)x and
sin(11.0855)x. These are plotted below using Mathcad.



6.4

Consider a cable that has one end fixed and one end free. The free end cannot
support a transverse force, so that wy(l,t) = 0. Calculate the natural frequencies
and mode shapes.
Solution:
The cable equation results in (6.17). The boundary conditions are
w(x,t) = X(x)T(t) =0at x =0 (fixed end)
so that X(0) =0 and
w (x,t) = X'(X)T(t) = 0at x =1 (free end)
so that X(l) = 0. Applying these to equation (6.17) yields
0= a sin(0) + a, cos(0) so that a, = 0

0= a;ocoso(l)

n
so that cos ol = 0 or ol = n for odd n and the natural frequency o = 2—7: n=1,3,

2n-1 . N
5..o0rc = n2| " 'n=1,23...Since a, = 0, and & is arbitrary the mode
shapes are
((2n—1)rx)
ansink%} n=123..

the natural frequencies are from (6.15) and (6.24):

=y 2n—1 - I
o = orfcz:can:( n2I )7zc=(2n2I1)7z ol p




6.5

Calculate the coefficients ¢, and d, of equation (6.27) for the system of a
clamped-clamped string to the initial displacement given in Figure P6.5 and an
initial velocity of w(x,0) = 0.

Solution:

For the clamped-clamped string the solution is given by eq. (6.27) as

w(x,t) =Y (c,sinc xsino ct+d, sinc, xcoso ct)
i=1

Series wi(x,0) = 0, equation (6.33) yields that c, = 0 for all n. The coefficients d,
are given by eq. (6.31) as

2 ¢! . MxX
dn=T'[0w0(x)5|anx m=12,..

<x<l/2 o
From fig. 6.16 o (X) = 2x11 0<x<l/ cm. Calculation yields
2(1-x)/1  1/12<x<lI

2| 122X . NmX 12 . NzX
dn :T{.[O TSlanX-i-.[”zT(l—X)SlanX}

= 8 sinn—zﬂ n=135...

ﬂ_ZnZ

and d, is zero for even values of n.



6.6

Plot the response of the string in Problem 6.5 for the piano string of Example
6.2.2(1=1.4m, m=110g, t=11.1x10* N) at x = I/4 and x = 1/2, using 3, 5, and
10 terms in the solution.

Solution:

For the piano string of example 6.22, | = 1.4m and ¢ = 11.89. From problem 6.5
the solution has the form

8 - 1 . mz . mrX mzC
wix,t)=—1 >, —Zsm—ﬂsmicos—ﬂt
T mvodd=1m 2 I I

For 3terms at x = I/4 = 3.5, this series becomes

W, (3.5,t) = 0.81{0.24COS 26.68t 4+ 0.07858c0s80.04t — 0.02828003133.40t}>

for 5 terms this becomes
W, (3.5,t) = w, +0.01442cos182t + 0.00873cos 240.13t

The next terms have coefficients 0.00584, 0.00418, 0.00314, 0.00244 and 0.00195
respectively. Any of the codes can be used to easily plot these. Plot of w; and ws
at 1/4 are given below in Mathcad:



6.7

Consider the clamped string of Problem 6.5. Calculate the response of the string
to the initial condition

w(x,0) = sin37|T—X W, (x,0)=0

Plot the response at x = 1/2 and x = I/4, for the parameters of Example 6.2.2.
Solution:

Since w; = 0 each if the coefficients c, is zero in equation (6.33). Thus the
solution is of the form

nzc
w(x,t) = Zd smTcosTﬂt

as given in problem 6.5. Equation (6.31) for the initial position yields
=—J sm%sm—dx m=12,..

Because of the orthogonality all the d, = 0 except d3 and from the above integral
ds = 1. Hence the solution collapses to the single term

w(x,t) =sin 3%sm ?t

At x = 1/2 this becomes
W l,t =sin3—ﬂcos@t=— 3rc —t
2 2 | |
Atx=1/4

w(l,t\ = sins—ﬂcos%t = 0.707cos%t
VR .

Using the values for the piano string (I = 1.4, ¢ = 1188 m/s) w(l/4,t) is simply a
cosine of frequency 8000 rad/s and amplitude 0.707.



Problems and Solutions Section 6.3 (6.8 through 6.29)

6.8

Calculate the natural frequencies and mode shapes for a free-free bar. Calculate
the temporal solution of the first mode.

Solution:

Following example 6.31 (with different B.C.’s), the spatial response of the bar
will be

X(x) =asinox + b cosox

The boundary conditions are X '(0) = X'(1) =0. The expression for
X'"is X'(X) = oa cosox —obsin ox so at 0:

O=ca=a=0
at |
0=-obsinal, b= 0

so that ol = nmt or o = nm/l where n starts a zero. Hence the mode shapes are of the
form

X (X)=h cos@ forn=1,2,3,...and forn =0,

X,(X)=h, cos{oT” x} = b, a constant.
The temporal solution is given by eq. (6.15) to be

.0
c2T,(t)

so that the temporal solution of the first mode:
B(t) +0c°T (1) =0="&t) T (t)=b+ct



6.9

6.10

Calculate the natural frequencies and mode shapes of a clamped-clamped bar.

Solution: The calculation of the natural frequencies and mode shapes of a
clamped-clamped bar is identical to that of the fixed-fixed string since the
equations of motion are mathematically the same. The solution of this problem is
thus given at the beginning of section 6.2, but is repeated here: Applying
separation of variable to eq. (6.56) yields that the spatial variable must satisfy eq.
(6.59) of example 6.3.1, i.e., X(x) =asin ox+bcosox where a and b are
constants to be determined. The clamped boundary conditions require that X(0) =
X()= or

0=Db or X =asinox

0 = asincl or o =nmu/l
Hence the mode shapes will be of the form

Xn = anSinonX
Where o, = nm/l. The frequencies are determined from the temporal solution and
become

n E
0 =0 c=—]= n=123..
I'Yp

It is desired to design a 4.5 m, clamped-free bar such that the first natural
frequency is 1878 Hz. Of what material should it be made?

Solution: First change the frequency into radians:
1878 Hz =1878x2n rad/s=11800 rad/s
The first natural frequency is given computed in Example 6.3.1, Equation (6.63)
as
2r |[E E 41? 41°
n w2 T = (11800)*
T

=
T

= E 71310
Yo
in Nm/kg. Examining the ratios from Table 2.1 for the values given yields that

for Steel:
E B 2 % 1011
p 28x10°

Thus a steel bar with a length 4.5 meters will have a first natural frequency of
1878 Hz. This is something like a truck chassis.

=7.143%x 10" Nm/kg
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6.12
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Compare the natural frequencies of a clamped-free 1-m aluminum bar to that of a
1-m bar made of steel, a carbon composite, and a piece of wood.

Solution:

For a clamped-free bar the natural frequencies are given by eq. (6.6.3) as

@en-1z [E
0 =—/|—
" 2l P

Referring to values of r and E from table 1.2 yields (for w;):

Steel
2.0x 10"
(2;[( 5 7?; 1%3 — 7,954 rad/s (1266Hz)
.0 X

Aluminum

[7.1x10°
(2;[( ok 7X 1003 — 8,055 rad/s (1282 Hz)
A X
9
(2;[( 1)«/2'?122 — 4,712 rad/s (750 Hz)
U X

Carbon composite (student must hunt for E/p and guess a little) from Vinson and
Sierakowski’s book on composites /E/ p = 3118 and

Wood

%(3118) = 4897 rad/s (780 Hz)

Derive the boundary conditions for a clamped-free bar with a solid lumped mass,
of mass M attached to free end.

Solution: At the clamped end, x = 0, the boundary condition is w(0,t) = 0 or X(x)
=0. Atthe end x = | the tensile force in the bar must be equal to the inertia force
of the attached mass. For an attached mass of value M, this becomes

2
EAaw(x,t) :_Ma W(Zx,t)
OX  |yey ot

x=1
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Calculate the mode shapes and natural frequencies of the bar of Problem 6.12.
State how the lumped mass affects the natural frequencies and the mode shapes.

Solution: Via separation of variables [i.e., w(x,t) = X(x)T(t)], the spatial equation
becomes (following example 6.3.1 for instance)

X(X) = asinox+bcoscx
Applying the boundary condition at x = 0 yields

X(0)=0=asin(0) +bcos(0) =b=00=Db
so the spatial solution reduces to X(x) = asinox. Now the second boundary
condition (see 6.12) involves time deviates so that w(x,t) = X(x)T(t) substituted
into the boundary condition EAW, = -Mw(l,t) becomes:

EAX'(1) Tt
EAX'(DT (t) = — MX (1) Tt =—
T () &t) = VXD - T
From equation (6.15) T T = —o%c?, so this boundary condition becomes
EA X'() 2.
=, - 1
M ox@  °°¢ @)

Substitution of X(x) = asinox and X'(x) = ac cosox into (1) yields
EA accosol 202

V asinol
or
oc’M
cotol =
EA

which describes multiple values of 6 = 6, N =1, 2, 3,... The frequency of
oscillation is related to o, by @, = o4, where ¢ =y E/ p. Let pAl =m be the

mass of the beam and rewrite cot(cl) as
| E/p)M wllc I M
cotalzcot[a)—”jza( p) :( n )-M—a)”—.
c m
This can be rewritten as

EA Apl c

acota=f

where B = m/M and a = myl/c. As the mass ratio 3 increases (tip mass increases)
the frequency increases. The mode shapes are proportional to sin o, where oy IS
calculated numerically from cot (cl) = (M/m)cl, similar to the calculation
showing in Figure 6.4. This is illustrated in the following Mathcad session.






6.14

Calculate and plot the first three mode shapes of a clamed-free bar.

Solution: The second entry of Table 6.1 yields the solution
. (2n-1)
X, (X) =sin—— nx
2/

which is calculated following the procedures out lined in Example 6.3.1. The plot
is given in Mathcad for the case ¢ = 1m.
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6.16

Calculate and plot the first three mode shapes of a clamed-clamped bar and
compare them to the plots of Problem 6.14.

Solution: As in problem 6.14 the solution is given in table 6.1. The important
item here is to notice the difference between mode shapes from the plots of

. (2n-1 . . . .
smu x and sin (nzx/1). In particular notice the difference at the free end.

Calculate and compare the eigenvalues of the free-free, clamped-free, and the
clamped-clamed bar. Are the related? What does this state about the system’s
natural frequencies?

Solution:

Students can calculate these or just use the results listed in table 6.1. Note for | =
1

free-free 0, nc, 2xC...
nc 3ac 5ac
clamped-free —,—,—...
2 2 2

clamped-clamped rc, 2xrc, 3xncC...

so that the free-free and clamped-clamped values are a = shift from one another
with the clamped-free values falling in between: as the number of constraints
increases, the frequency increases.
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6.17 Consider the nonuniform bar of Figure P6.17, which changes cross-sectional area
as indicated in the figure. In the figure A1, E1, p1, and I, are the cross-sectional
area, modulus, density and length of the first segment, respectively, and A, E», p»,
and I, are the corresponding physical parameters of the second segment.
Determine the characteristic equation.

Solution: Let the subscript 1 denote the first part of the beam and 2 the second
part of the beam. The bar equation must be satisfied in each part so that equation
of motion is in two parts:
£ é’2W1(2><,t) ) é’zwl(zx,t) 0<x<,

X a

Aw,(xt)  Fw,(xt)
P =P Py

The boundary conditions are the two from the clamped-free configuration then
there are two more conditions expressing force and displacement continuity at the
point where the two beams join (x = /1). Follow the procedure of separation of
variables but this time keep the constant c in the spatial equation so that we may
write: wi(X,t) = Xa(X)T(t) and wa(x,t) = X2(x)T(t) where the function of time is
common to both beams. Then denoting o as the separation constant and
substituting the separated forms into the equation of motion yields:

cX(x) )

E
= =-0" O<x<l andc =,[— (1)
X (x)  T() Py

cXy(x) )

E
= =-o” |, <x<l andc,= [ (2
X,(x)  T(t) P,
In this way the temporal equation for both parts is the same (c does not depend on
which part of the beam and will show up in the characteristic equation). Solving
the two spatial equations yields:

EZ

b<X<l+l,=1(

. O (o)
(1)= X, =asin—x+a,cos—x 0<x</,
C1 C1

2)=>X,= assincE x+a4cos£x l<x<t
2 2

There are now 4 boundary conditions (one at each end and two in the middle)
which will yield 4 equations in the 4 coefficients a;. This set of equations must be
singular yielding the characteristic equation for o.
From the clamped end:

X,(0)= 0= a,sin(0) +a, cos(0) =0 3)
From the free end:

—£a4sini£ =0 4)

2 C2 C2
From the middle and enforcing displacement continuity at x = /;:

{4
X;(0)=0 :>C£ascosi
2

. O o) . O (o}
a,sin—/, +a,cos—/, = a,sin— ¢, +a,Ccos—/, (5)
C1 C1 CZ CZ



From the middle and enforcing force, equation (6.54) continuity at x = /4:
EA X)) = E,AX (1)
ol,

ol, 14

= ElA1C (a,cos— C1 L a,sin 1) E A2 (a3 cos&——a4s n—)
1 2 2

Equations (3) through (6) are 4 equatlons in the 4 unknowns a;. Writlng these in

matrix form as a homogeneous algebraic equation yields:

(6)

0 1 0 0
ol . ol -
0 0 Cos— —sin— a 0
CZ CZ
a, 0
sinZ| cos 2| —sinZ| —cos 2| B 0
c, c, ' c, c, %
a 0
E ol E . ol E ol E .ol |L 4
1Al cos 1 _ 1A1 sin 1 _ ZAZ cos 1 ZAZ sin 1
Cl Cl Cl Cl CZ CZ CZ CZ _

In order for the vector a to be nonzero, the determinant of the matrix coefficient
must be zero (recall chapter 4). This yields the characteristic equation (computed
using Mathcad):

.ol . ol ol, ol, ol
E,A,c,sin—*| sin—cos—=* —sin—+cos—
Cl CZ CZ CZ CZ
ol,| . o, . ol ol ol
=E,AC, cos—{sm —Lsin— + cos—*tcos— (7)
Cl 2 CZ CZ CZ
=
c ol ol ol . ol
EAG tan 2L {sm cos—* — cos—sin—1
1A1C2 Cl CZ CZ CZ CZ (8)
.ol . ol ol ol,
= sin—sin— + cos—cos—*
CZ CZ CZ CZ
Further simplifying yields
E AC ol, . o -1 o(l -1
dad Ltan—2sin a=1) =—C08u
ElAlCZ Cl CZ CZ
E,Ac [ -1
= 2A21tan Ltan ol =1,) =-1
ElAlCZ Cl CZ

Given the parameter values, equation (9) must be solved numerically for o,
yielding the natural frequencies.



6.18 Show that the solution obtained to Problem 6.17 is consistent with that of a
uniform bar.

Solution:

If the bar is the same, then E; = E; = E, p1 = p2 = p etc. and the characteristic
equation from (1) in the solution to Problem 6.17 becomes (I = 1;)

sanNS|n—cos f—sm—cosaﬂzcosdrsm £sin 2t +cos < cosiﬂ
cl ¢ ¢ c ¢/ cl ¢ ¢ c ]
. of ] .
:>smi(0)=cosirsm — +c0s’— o]
cl c ]
2 —1
=0= cos—(l) ot n2 V4
@2n-Yrn

so that o = @ = J7 which according to table 6.1 entry 2 is the

2l o)
frequency of a clamped-free bar of length | .

6.19 Calculate the first three natural frequencies for the cable and spring system of
Example 6.2.3 for I = 1, k = 100, T = 100 (SI units).

Solution:

For1=1, k=100 and t = 100 the frequency equation (6.51) becomes
tanc =-c

Using MATLAB the first 3 solutions are

o1 =0, 5, =2.029, 55 = 4.913. But zero is not allowed because of the
boundary conditions.
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6.20 Calculate the first three natural frequencies of a clamped-free cable with a mass of
value m attached to the free end. Compare these to the frequencies obtained in
Problem 6.17.

Solution:
Recall example 6.1.1. The force balance at the boundary x = I yields

w, (x, 1), = —mw, (I,t)

The boundary condition at x = 3 remains w(0,t) = 0. The equation of motion is
(6.8) or

C*W,, (X, 1) = Wy (X, 1)
Again, separation of variable w(x,t) = X(x)T(t) yields eq. (6.12) or

x')_ My _

X(x)  c’T(t)

The spatial equation is

X"+ 0" X(x)=0
which has solution X(x) = a; sin ox +a; cos ox. Applying the boundary
conditions yields X(0) = 0 or a, = 0. Substitution of X(x) = a; sin o»x into the
boundary condition at x = | yields

[a,7o cosot]T (t) = —-mT(t)a, sin of
But T{t)/ T(t) = o’c? so this becomes

to cosol = mo’c’

or that

n
tanol = — > (or cotal =—6)
moc Jo;

is the characteristic equation (see also table 6.1) with mode shape sin o,x. A plot
2

. . : mc
of their characteristic equation cos(ol) = i

frequencies relative to those of problem 6.16.

ol = I—rg(ol) yields the value of the
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Calculate the boundary conditions of a bar fixed at x = 0 and connected to ground
through a mass and a spring as illustrated in Figure P6.21.

Solution:

A free body diagram of the boundary is shown in Figure 1.

F(1L1)

ke w(l,f)
F(1L1)

Figure 1

Consider first the end of the rod, the force is related to the axial extension of the
rod though

ow(x,t)

F(l,t)=cA| =EA
( ) o-|x=l 8X

x=I

On the other hand, applying Newton’s second law to the mass yields

_ F(I,t)— kW(X,tjhl _ m%ﬁi)

x=I
Hence, this yields the following boundary condition

ow(x,t)
OX

. ow(x,t)
ot

- —EA

x=I

—kw(xt) _,

x=I

Calculate the natural frequency equation for the system of Problem 6.21.
Solution:

The boundary condition at x = 0 is just w(x,t)|x=0 = 0. Again from separation of
variables

™t)/ T(t) = —c’c?, X(x) = asin ox + b cosox
Applying the boundary condition at 0 yields X(0) = 0 = b, so the spatial solution

will be of the form X(x) = a sin ox. Substitution of the separated form w(x,t) =
X(X)T(t) into the boundary condition at | yields (from problem 6.21)



mX (1)) = —kX ()T (t) — EAX' (DT (t)
Dividing by T(t), and substitution of ™/ T = —%c* and X = a sin ol yields

EAc

-EAccosol = (-mo’c’ +k)sinol or tanol =-————— isthe
kK —mo“c

frequency or characteristic equation. Note that this reduces to the values given in
Table 6.1 for the special case m = 0 and for the case k = 0.
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Estimate the natural frequencies of an automobile frame for vibration in its
longitudinal direction (i.e., along the length of the car) by modeling the frame as a
(one-dimensional) steel bar.

Solution:

Note: The fundamental frequency of an automobile is of primary importance in
assuming the quality of an automobile. While an automobile certainly has
numerous modes, its fundamental frequency apparently has a large correlation
with the occupants perception of quality. The fundamental frequency of a
Mercedes 300 series is 25 Hz. Infinity and Lexus have frequencies in the low
twenties. This problem has no straightforward answer. Students should think
about their own cars or that of their family. For steel p = 7.8 x 10% kg/m? E = 2.0
x 10 N/m. For a Ford Taurus | = 4.5 m and assume the width to be 1 meter.
The frequency equation in Hertz of a free-free beam is (excluding the rigid body
mode)

o2 E 562 Hy, 1125Hz..
2z 1 Y p

where n = 1,2,... The frequency measured by auto engineers is froma 3
dimensional finite element model and modal test data. The frequency most felt is
probably a transverse frequency.
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Consider the first natural frequency of the bar of Problem 6.21 with k = 0 and
Table 6.2, which is fixed at one end and has a lumped-mass, M, attached at the
free end. Compare this to the natural frequency of the same system modeled as a
single-degree-of-freedom spring-mass system given in Figure 1.21. What
happens to the comparison as M becomes small and goes to zero?

Solution:

From figure 1.21, k = EA/I is the stiffness of a cantilevered bar. Hence the
frequency is

o =Nk/m= %

for the bar with tip mass m modeled as a single degree of freedom system. Now
consider the first natural frequency of the distributed mass model of the same
structure given in the last entry of table 6.1.

LA 4 [E
Lo I\ p

- m . : :
where A, satisfies cot A, = [mjﬂi This last expression can be written as

A, tan Al(%d) since A1 = mil/c,
C c m

Now for small, or negligible beam mass, ¢ becomes very large 6: =E/ p) and

w1l/c becomes small so that tan 6 can be approximated as 0. Then this last
expression becomes

N2 pAl EA
(&) LA o = /_
C m Im

in agreement with the single degree of freedom values of figure 1.21. As the tip
mass goes to zero, the equation for figure 1.21 does not appear to make sense.
The equation for m; however reduces to that of a cantilevered beam, i.e., o, =
nc/21 since the frequency equation returns to wy(l/c) = 0.
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Following the line of thought suggested in Problem 6.24, model the system of
Problem 6.21 as a lumped-mass single-degree-of-freedom system and compare
this frequency to the first natural frequency obtained in Problem 6.22.

Solution: Note that the system of figure P6.21 is a mass connected to two springs
in parallel if the bar is modeled as spring. The stiffness of a bar is given in

Chapter 1 to be
EA

Koy =—
ar /g
The equivalent stiffness is just the sum, so that the equation of motion is
my¥+ (E + k)x =0
l

Thus the natural frequency of the bar and spring of figure P6.21 modeled
as a single degree of freedom system is just
EA k
n= A -, +—
mé m
The first natural frequency of the system treated as a distributed mass systems is
given by the characteristic equation given in the solution to problem 6.22. To
make a comparison, chose some specific values. For a 4 m aluminum beam
connected to 1000 kg mass through a 100,000 N/m spring the value is given in the
following Mathcad session:

Note for the
parameter
values chose
the frequency
of the lumped
mass model is a
little less then
the actual value.
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6.26  Calculate the response of a clamped-free bar to an initial displacement 1 cm at the
free end and a zero initial velocity. Assume that p = 7.8 x 10° kg/m®, A = 0.001
m?, E=10" N/m? and | = 0.5 m. Plot the response at x = | and x = /2 using the
first three modes.

Solution:

The initial conditions are w(x,t) = 0.015(x-1) and wi(x,0) = 0 and the boundary
conditions are w(0,t) = 0 and wx(l,t) = 0. From example 6.3.1 the mode shapes are

(2n—1

sink o )nx and the natural frequencies are

o, = (Zn _1)‘/E _ (2n-1)(1132.38)
P

2|

The solution is given in example 6.3.2 as

w(x,t) = Z (c,sinw,t +d. cosw,t)sin (2 n2I— 1) -

so that the velocity is

< . . (2n-1
wt(x,t)zZ(a)ncncoswnt—dna)nsma)nt)sm( o )nx
n=1

Using wy(x,0) = 0 then yieldsc, =0 forn=1, 2, ..., so that

2n-1
2l

0.015(x — 1) = Y_d, cose,tsin 7

2m-1

Multiplying by sin nx and integrating from O to | yields

)nxdx = cmj':)sin Z(Zm — 1)nxdx

I _(2m
0.01'[05(x—l)3|nk i

using the orthogonality of sin o,x..

0.01sin 2"

r=c,—, m=123..
2

so that ¢, = (.02)(-1)™" /1 = (.004)(-1)™* and the solution is



w(x,t) = Z”‘,(.004)(—1)"*1 sin[(2n —1)(1132.28)t]sin(2n — 1)z

n=1

Forn=3and x=0.5,

w(0.5,t) = (.004)[sin 1132.28t — 0 —sin 33968t]

Forn=3and x=1/2=0.25

w(25,t) = (.004)[.707sin 1132.28 — sin 2264.56t + .707sin 3396841]

These are plotted below using Mathcad:
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Repeat the plots of Problem 6.26 for 5 modes, 10 modes, 15 modes, and so on, to
answer the question of how many modes are needed in the summation of equation
(6.27) in order to yield an accurate plot of the response for this system.

Solution: The following plots in Mathcad illustrate that it takes 10 modes to
capture the behavior of this series, by plotting the formula of 6.26.
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6.28 A moving bar is traveling along the x axis with constant velocity and is suddenly
stopped at the end at x = 0, so that the initial conditions are (x,0) = 0 and w(x,0) =
v. Calculate the vibration response.
Solution:

Model the bar as a free-free bar. Then from Table 6.2 the natural frequencies are
nzc/l and the mode shapes are cos(nzx/l). Thus the solution is of the form

w(x,t) = Y (A,sinw,t+ B, cosm,t)cos(nax/l)

n=1
Using the initial condition w(x,t) = 0 yields that B,=0forn=1, 2, 3,..., i.e.
w(x,0)= 0= Y B, cos(nzx/1)

which is multiplied by cos(nzx/l) and integrated over (0,1) using orthogonality to
get B, = 0. Next differentiate

w(x,t) =D A sinw tcosnax/l
to get wy(x,t), then set t = 0 to use the second initial condition.
w, (x,0) = X A w, cos(0) cos(nzx /1)

Modeling the initial velocity as vd(x), multiplying by cos mzx/l and integrating
yields

LIJS(X)vcos(nnx/I)dx=a)ng)An, or A, = N

lo,

so that

w(x,t) = % i&) sin(nT”Ct) sin(@)

Note that Thomson uses a form of this problem as example 3 of section 5.3, but
he models the moving beam as having a clamped free rather than free-free
boundary. What do you think?
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Calculate the response of the clamped-clamped string of Section 6.2 to a zero
initial velocity and an initial displacement of wy(x) = sin(2nx/l). Plot the response
atx=1/2.

Solution:

The clamped-clamped string has eigenfunction sin nzx/l and solution given by
equation (6.27) where the unknown coefficients c, and d, are given by equation
(6.31) and (6.33) respectively. Since w, =0, equation 6.33 yieldsc, =0, n =
1,2,3.. with wp = sin(2zx/1),

d =—f [[sin(27x/ sin(nax /1)dx

which is zero for each n except n =2, in which case d, = 1. Hence
w(X,t) =sin(2zct /1) sin(2zx /1)

Forx=1/2
w(l /2,t) =sin(2zct /1)

which has a well known plot given in the following Mathcad session using the
values for a piano wire.



Problems and Solutions Section 6.4 (6.30 through 6.39)

6.30

Calculate the first three natural frequencies of torsional vibration of a shaft of
Figure 6.7 clamped at x = 0, if a disk of inertia Jo = 10 kg m%/rad is attached to the
end of the shaft at x=1. Assumethat1=0.5m,J=5m* G=25x10°Pa, p =
2700 kg/m°.

Solution:The equation of motion |S§‘— 0" . Assume separation of variables:
Yo
p& ¢

0 =¢(X)q(t)to get p&= %qﬁ”q or EH = ? = —o” so that

&Eazqzo and ¢" + o’ =0
ol

where »® = Eaz. The clamped-inertia boundary condition is 8(0,t) = 0, and
Jol

-GJo'(l,t) = Joﬂl,t). This yields that ¢(0) =0 and

GJg'(Da(t) = Jp(l)dkt) = Jo¢(|)%GZQ(t)

o 3¢(1)=3,Zg()
o)

The solution of the spatial equation is of the form

#(x) = Asinox + Bcosox

but the clamped boundary condition yields B = 0. The inertia boundary condition
2

JAccosol = J, Z_ psinol
Yo

Jpol 1 ( 5m*
J ol ol LlOkg m?
So the frequency equation is

yields

tanol = J (2700kg/m*)(0.5m)

tanol = 575
ol
Using the MATLAB function fsolve; this has the solutions
ol =1.5685 o, =3.1369
o,l=4.7054; or 1o,=9.4108
o,l =7.8424 o, =15.6847
Thus o = 3018.5rad/s = f; = 480.4 Hz

o =9055.6 rad/s = f, =1441.2 Hz
w3z = 15092.6 rad/s = f3 =2402.1 Hz



6.31 Compare the frequencies calculated in the previous problem to the frequencies of
the lumped-mass single-degree-of-freedom approximation of the same system.

Solution:

First calculate the equivalent torsional stiffness of the rod.

k_gi_(zsxlem
o 0.5
J &= ko

J & ko=0
1084 25x10°90=0 or &+ 2.5x10°0=0

=25x10%

so that o = 2.5 x 10°, @=5 x 10° rad/s or about 80,000 Hz, far from the 482 Hz
of problem 6.30.



6.32 Calculate the natural frequencies and mode shapes of a shaft in torsion of shear
modulus G, length I, polar inertia J, and density p that is free at x = 0 and
connected to a disk of inertia Jo at x = I.

Solution:

Assume zero initial conditions, i.e. 6(x,0) = §(x,0): 0. From equation 6.66

(1) _ (G)*0(x.1)

1
ot? L pJ OX? @)
The boundary conditionat x =landatx=01s
2
GJ o0(l,t) 3, o°0(l,t) 00(0,t) 0
OX ot? OX
Using separation of variable in (1) of form 6(x,t) = ®(x)T(t) yields:
0"(x) _i@__az (2)

O(x) c’T()

G . . .
where ¢* = — and o is a separation constant. (2) can now be rewritten as 2
Jol

equations

O"(X)+c°0(x)=0
M®t)+ o T()=0o>w=0=0 &
P

from the boundary condition at x = |

GJIO'(NT(t) = -J,0(1) &)
sen Ry

J, o) T@)
PN Ko
@(I)—GJPGG)— i (1)

The boundary condition at x = 0 yields simply ®'(0) =0. The general solution is

of the form



@(x): a,sinox +a,cosox so that © (x): a,0C0SoX —a,osinoX

The boundary conditions applied to these solutions yield:

: J,o°
@’(I)z aocosol—aosinol = 36

[a;sincl +a,cosol]

2

J o . . J o
cosol — —2—sinol |=a, | sincl + —2—cosol

Ch 2

Jp Jp
®'(0)=a0=0->a=0

J
a{sinau OO-COSO'q:O

Jp

For the non-trivial solution of this last expression, the coefficients of a, must
vanish, which yields

J
tanocl=——"0o
Jp

This must be solved numerically for ¢ (except for the rigid body case of ¢ = 0)
and the frequency is calculated fromw = 0'\/§ . The mode shapes are ©(X) = a,
Yo

cos ox. Note the solution for o is illustrated in figure 6.4 page 479 of the text.
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Consider the lumped-mass model of Figure 4.21 and the corresponding three-
degree-of-freedom model of Example 4.8.1. Let J; = k; = 0 in this model and
collapse it to a two-degree-of-freedom model. Comparing this to Example 6.4.1,
it is seen that they are a lumped-mass model and a distributed mass model of the
same physical device. Referring to Chapter 1 for the effects of lumped stiffness
on a rod in torsion (kz), compare the frequencies of the lumped-mass two-degree-
of-freedom model with those of Example 6.4.1.

Solution: From Mathcad:
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The modulus and density of a 1-m aluminum rod are E = 7.1 x 10'° N/m?, G = 2.7
x 10" N/m?, and p = 2.7 x 10° kg/m®. Compare the torsional natural frequencies
with the longitudinal natural frequencies for a free-clamped rod.

Solution:

The appropriate boundary conditions are: 6'(0,t) =0 and 6(1,t) = Ofor the rod and
w’(0,t) = 0= w(l,t) for the bar. The separated equations are

(G, (G,
Be( )0 and ol )0
@J{%} c’q=0and ¢" +c’¢=0

Solutions are

q,=Asino t+B coso t and ¢ =C sino x+D_cosc X

where o’ = Eaﬁ. But ¢'(0) =0 so that C, = 0. The other boundary condition
Jol

yields ¢n(l) = Dncos onl = 0 so that

6J=Qm§9£, n=12,..

Thus the torsional frequencies are

E
a)n= _o-n
P
where
@2n-)x
o =——F——
n 2l

From the values given \/E = 3162 m/s and \/E: 5128 m/s. Thus the natural
P P

frequencies of the longitudinal vibration are 1.6 times larger than the torsional
vibrations.



6.35

Consider the aluminum shaft of Problem 6.32. Add a disk of inertia Jo to the free
end of the shaft. Plot the torsional natural frequencies versus increasing the tip
inertia Jo of a single-degree-of-freedom model and for the first natural frequency
of the distributed-parameter model in the same plot. Are there any values of Jo
for which the single-degree—of-freedom model gives the same frequency as the
full distributed model?

Solution:

Refer to problem 6.32 of the rod clamped at x = 0 with inertia Jo at x = I. The sdof
model of the frequency is given in example 1.5.1 as

/GJ
0= |—
1J,
where G = torsional rigidity, J = polar moment of inertia of the rod of length | and

Jo is the disc inertia. The first natural frequency according to distributed
parameter theory is given in problem 6.30 as the solution of

tan0/2=—i, a)zaE
oJ, o)

which will have a solution for a given value of Jo equivalent to that of the sdof
system.



6.36  Calculate the mode shapes and natural frequencies of a bar with circular cross
section in torsional vibration with free-free boundary conditions. Express your
answer in terms of G, |, and p.

Solution:

The separated equations are @&+ {E az} g=0and ¢" +c°¢=0
Jol

where o = \/Ean. Thus
Jo,

q,=Asino t+B coso t and ¢ =C sino x+ D _cosc X
The boundary conditions are

¢,(0)=0
¢, (1)=0

But ¢/ =C o cosc x—D o sinc x sothat ¢'(0)=0=C_ =0 and the
frequency equation becomes ¢’ (1) =0=-D, o sino 0. This has the solution

Nz
o l=nz or an:T. Hence

n n7Tx
o = ETH and ¢n(x):cos%.
Yo



6.37 Calculate the mode shapes and natural frequencies of a bar with circular cross
section in torsional vibration with fixed boundary conditions. Express you answer
in terms of G, |, and p,

Solution: From equation 6.66
’0(xt) (G)a’ox.t)
ot \p) ox
Assume a solution of the form 6(x,t) = ®(x)T(t) so that

o(x)t) = %@"(x)T (t)

Separate where o” is the separation constant and ¢ = —
Yo

o) 1Ry __ .
O(x) c*T()

or @"(x)+c20(x)=0 and T&t)+ o’c’T(t)=0 where @ = \/Ea. The
o)

boundary conditions for a fixed-fixed rod are ®(0) = 0 and &(l) = 0 from the
solution of the spatial equations

©(0)=a,=0
@(I) a sinol =

For the non-trivial solution

sincl=0

natural frequency

o= BT 10

p |

mode shape

@(x)= alsinnl—ﬂx, n=0,12,..



6.38 Calculate the eigenfunctions of Example 6.4.1.
Solution:

From example 6.4.1 the eigenfunctions are
. ( ol, .
O (x)=asinc x+a,coso x or® (x)= A L——Jsm o X +C0S anxJ
Yo

where o, are determined by equation 6.8.4.

6.39  Show that the eigenfunctions of Problem 6.38 are orthogonal.

Solution:

Orthogonality requires j;en(x)em(x)dx =0, m=n. Fromdirect calculation

.[I{—p—\]sma X + COS o XA—ﬂsma X+coso X |dx
{GJ\ J'smo xsino_xdx

od, ¢! i od, . .
——j Sino XSino xdx——J' sino_xsino xdx
p\] 0 n m p\] 0 m n

|
+ j COS G, XCOS o XdX
0 m

where each integral vanishes. Also one can use the same calculation as problem
6.3 since the natural frequencies have distinct values.



Problems and Solutions Section 6.5 (6.40 through 6.47)

6.40

Calculate the natural frequencies and mode shapes of a clamped-free beam.
Express your solution in terms of E, I, p, and I. This is called the cantilevered
beam problem.

Solution:

Clamped-free boundary conditions are
w(0,t)=w (0,t)=0 and w_(I,t)=w__ (I,t)=0
assume E, I, p, | constant. The equation of motion is

o*w [ El)o*w
—_— | — | — =
o\ pA) ox*

assume separation of variables w(Xx,t) = ¢(x)q(t) to get

The spatial equation becomes

2

define B* = % so that ¢ — B'¢ =0 which has the solution:

¢ = C_ sin Bx + C, cos x + C_sinh Bx + C, cosh X

Applying the boundary conditions
w(O,t)=w (0,t)=0 and w_(I,t)=w_(I,t)=0=
¢(0)=¢'(0)=0 and ¢"(I)=¢"(1)=0
Substitution of the expression for ¢ into these yields:
C,+Cs=0
Ci+C3=0
—C,sin gl - C,cos Bl + C,sinh gl + C, cosh gl =0
—C,cos Bl + C,sin Bl + C, cosh Bl + C, sinh gl =0
Writing these four equations in four unknowns in matrix form yields:



1
o

0 1 0 1 1

1 0 1 0 C, | _ 0
—sinBl  —cosBl sinh Bl coshpl || c,
—cospl singl coshpl sinhpl | c,

For a nonzero solution, the determinant must be zero to that (after expansion)

—sin Bl —sinh gl —cos Bl —cosh |
—cospl—coshp sinBl—sinhp |
(=sin gl —sinh gl)(sin gl —sinh gl) —
(—cos gl — cosh pl)(—cos gl —cosh gl) =0

1

Thus the frequency equation is cos Sl cosh Bl = -1 or cos B | = - and
cosh |
. BEI
frequencies arew = ”A . The mode shapes are
P

¢ =C, sing x+C, cospB x+C_ sinhp x+C, coshp x
Using the boundary condition information that C, =-C, and C, =-C, yields

—C,sin gl - C, cos Bl — C_ sinh gl — C, cosh gl
—C,(sin gl +sinh gl) = C, (cos gl + cosh l)

so that

_ ¢ (cos Bl + cosh Al )

C =
! ZL sin Bl + sinh gl

and the mode shapes can be expressed as:

(cosB1+coshpl)
- = a +C_OS b, sin B8 X +cos B.x
sm,b’nl+5|nh,BnIJ " "

9,=-C,,

N (cosf | +cosh |
sing l+sinh g | J

sinh B x —cosh 3 X



6.41

Plot the first three mode shapes calculated in Problem 6.40. Next calculate the
strain mode shape [i.e., X'(x) ], and plot these next to the displacement mode

shapes X(x). Where is the strain the largest?

Solution: The following Mathcad session yields the plots using the values of 3
taken from Table 6.4.

The strain is largest at the free end.



6.42

Derive the general solution to a fourth-order ordinary differential equation with
constant coefficients of equation (6.100) given by equation (6.102).

Solution:

From equation (6.100) with 8* = pAw® / El , the problem is to solve

X" — B*X =0. Following the procedure for the second order equations
suggested in example 6.2.1 let X(x) = Ae* which yields

(A*- B Jre™ =0 or 2°=p*
This characteristic equation in A has 4 roots

A=—p,p,—=pJ, and §]

each of which corresponds to a solution, namely A;e™, Ae”™, Ase™ and A,
The most general solution is the sum of each of these or

X(x)=Ae ™+ Ae™ + Ae "+ Al (a)

Now recall equation (A.19), i.e., e’ = cos Bx + jsin Bx, and add equations (A.21)

to yield e”* =sinh Bx + cosh Bx. Substitution of these two expressions into (a)
yields

X(x) = Asin x + Bcos x + Csinh gx + D cosh x

where A, B, C, and D are combinations of the constants A;, A,, Az and A4 and may
be complex valued.



6.43 Derive the natural frequencies and mode shapes of a pinned-pinned beam in
transverse vibration. Calculate the solution for wy(x) = sin 2zx/l min and

\§; (X) = 0.

Solution: Use w(x,t) = ¢(x)q(t) in equation (6.29) with (x,0) = 0 or &0) = 0.
Then the temporal solution g = A sin ot + B cos ot with &0) = 0 yields A = 0.
The spatial solution is ¢ = C; sin fx + C; cos px + Cs sinh px + C4 cosh fx where
2
B = % The boundary conditions become
$(0)=¢"(0)=¢(l) =¢"(I)=0
Applied to ¢(x) these yield the matrix equation

0 1 0 1 |G

0 -1 0 1 C,| 0
singl  cospl sinhpl coshpl | C,
—sinpl —cospl sinh gl cosh gl C,

But C,+C,=0and-C,+C, =0s0C, =C, =0and this reduces to

singl sinhg || C | 0
—sinf sinhg || C, -
or sin Sl sinh gl + sin gl sinh gl =0,
_Clsin,BI

C,= sinh Bl and —C sin Bl - C sin gl =0 so that the frequency equation
i

becomes sin gl = 0 and thus S\l = nz, n=1,2,3,... and S, :nTﬂ, n=1223,...50

2
that C; = 0 and the frequencies are @ = {nTﬂ} E—L with mode shapes ¢n(x) =
Yo

Cin Sin SBux. The total solution is the series w(x,t) = ZL {,Bn coswntsinﬁnx}.

Applying the second initial condition yields w(x,0) = sin@ = z;ﬁnsing

and therefore
0 n=1

B, = n=34,..
1 n=2



so that

. 271X
w(x,t) = coswztsm%



6.44  Derive the natural frequencies and mode shapes of a fixed-fixed beam in

transverse vibration.

Solution: Follow example 6.5.1 to get the solution in the 5™ entry of table 6.4.
The spatial equation for the transverse vibration of a beam has solution of the
form (6.102)

X(x) = a sin Bx + a, cos Bx + a,sinh Bx + a, cosh Bx
where 8* = pAw® / EI. The clamped boundary conditions are given by equation
(6.94) as X(0)= X"(0)= X(I)= X"(1)=0. Applying these boundary conditions
to the solution yields

X(0)=0=4a/(0)+a,(1)+a,(0)+a,(1) (1)
X'(0) = 0= pa(1) - pa,(0) + Ba,(1) + pa,(0) )
X(1)=0=asinpl +a,cos Bl + a,sinh gl + a, cosh Al (3)
X'(I)=0= Ba, cos Bl — pa, sin Bl + pa,cosh Bl + Ba, sinh Sl
(4)
dividing (2) and (3) by g = 0 and writing in matrix form yields
0 1 0 1 Jla] fo
1 0 1 0 a, 0

singl cospl sinhpl coshpl || a 0
cospl —sinpl coshpl sinhpl || a 0

The coefficient matrix must have zero determinant for a nonzero solution for the
an. Taking the determinant yields (expanding by minors across the top row).

sinh? Bl — cosh?® Bl —sin Bl sinh Sl + cos Bl cosh Bl +
cos Bl cosh Bl sin Bl sinh Bl —sin® Bl —cos® Bl =0

which reduces to
—1+2cosplcoshpl —1=0 or cosplcoshpl =1

since sinh? Al — cosh? Al = -1 and sin® x + cos® x = 1. The solutions of this
characteristic equation are given in table 6.4. Next from equation (1) a, = -a4 and
from equation (2) a; = -a3 so equation (3) can be written as

—a,sin Bl —a, cos Bl + a,sinh Bl + a, cosh gl = 4
Solving this for as yields
(cos Bl —cosh Al )
4L sinh Bl —sin gl
Recall also that a; = -as. Substitution into the solution X(x) and factoring out a4
yields

(‘cos Bl —cosh Bl ) /. .
sin i —sinn 1 ) G = sinfx)

in agreement with table 6.4. Note that a, is arbitrary as it should be.

X(x) = a, cosh x — cosh x —




6.45 Show that the eigenfunctions or mode shapes of Example 6.5.1 are
orthogonal. Make them normal.

Solution:
The easiest way to show the orthogonality is to use the fact that the eigenvalues

are not repeated and follow the solution to problem 6.2. The eigenfunctions are
(table 6.4 or example 6.5).

X (x)=a {cosh,an —Co0sB Xx-o, (sinh,an - sinﬁnx)}

Note that the constant a, is arbitrary (a constant times a mode shape is still a mode
shape) and normalizing involves choosing the constant a, so that j X X dx=1.
Calculating this integral yields:

a’ jol {:osh2 B x—2cos B xcosh B x +cos’ B x
- 20, (sinh BXx— sin,anXcosh B.x— cos,an)
+o? (sinh2 B x— 2sin B xsinh B x + sin’ ,an)}dx

SO

1:a2|:i(sinh2,8nl+sin2,8nl\ iy I}
n ﬁn 4 n

- —(smh,BIsm,BI+cos,BIcosh,BI)— cos? 3| +cosh 24 |

+smh,8|(sm,8I+cos,8|)—cosh,8|(cos,6 —sinB 1)
+$|:smh Bl-sin2p |
B,

2 —1-sing Isinh B | +cosh B lcos B, |

So denoting the term in [ ] as  and solving for a, = 1/\/Z yields the
normalization constant.



6.46

6.47

Derive equation (6.109) from equations (6.107) and (6.108).
Solution:

Using subscript notation for the partial derivatives, equation (6.108) with f =0
yields an expression for ¢_, i.e.

@, =(kAGW_— pAw,)/k>AG €)]

Equation (6.107) can be differentiated once with respect to x to yield a middle
term identical to the first term of equation (6.108). Substitution yields

Elp,_+pAw, =plo (b)

Equation (a) can be differentiated twice with respect to time to get an expression
for ple  interms of w(x,t) which when substituted into (b) yields

Elp, +pAwW, = plw _ — (pzl /KZG)/\/tttt

The first term Elg _ can be eliminated by differentiating (a) twice with respect
to x to yield

El (*AGW,,, — pAW,, J pAW, = K*AGW, , — pAEIW,,
when substituted into (c). This is an expression in w(x,t) only. Rearranging terms
and dividing by x’AG yields equation (6.109).

Show that if shear deformation and rotary inertia are neglected, the Timoshenko
equation reduces to the Euler-Bernoulli equation and the boundary conditions for
each model become the same.

Solution:

This is a bit of a discussion problem. Since pl is the inertia of the beam in
rotation about ¢ the term plwy represents rotary inertia. The term
(pIE/K*G)Wyy is the shear distortion and the term (p’1/K*G)Wyyy is @ combination
of shear distortion and rotary inertia. Removing these terms from equation
(6.109) results in equation (6.92).



Problems and Solutions Section 6.6 (6.48 through 6.52)

6.48

Calculate the natural frequencies of the membrane of Example 6.6.1 for the case
that one edge x = 1 is free.

Solution:

The equation for a square membrane is

)

Wﬁ-l-Wyy ZngnJ

with boundary condition given by w(0,y) = 0, wx(l,y) = 0, w(x,0) = 0, w(x,l) = 0.
Assume separation of variables w = X(x)Y(y)q(t) which yields

X_+Y_=ii&:—a)2 where c=+/p/1
X Y c%q

Then
&Czwzqzo

is the temporal equation and

RS S S
X Y

yields
X"+a’X =0
Y"+y% =0

as the spatial equation where ¥ = o — o and &’ = o + *. The separated
boundary conditions are X(0) =0, X'(l)=0and Y(0) = Y(I) = 0. These yield

X = Asinax + Bcosax
B=0
Acosal =0
ol (2n-x

" 2

2n-Dx

o =——

" 2l



Next Y = C sin yy + D cos py with boundary conditions which yield D = 0 and C
sind=0. Thus

y, = mnl

and for I =1 we get a, = ﬂ,for;/m:mn nm=1,23,...

(2n-1)
2

2 2
a)nm_an+7/m_ 4 4

o o] @ v,

,_@n-0'at o {(2n—1)2 +4m2}[2

So that

o =y(2n-17 +am* Z

are the natural frequencies.



6.49
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Repeat Example 6.6.1 for a rectangular membrane of size a by b. What is the
effect of a and b on the natural frequencies?

Solution:

The solution of the rectangular membrane of size a x b is the same as given in
example 6.6.1 for a unit membrane until equation 6.13.1. The boundary condition
along x = a becomes

Asinaasinyy + A sinaacosyy =0
or
sinaa(A —sinyy+ A,cosyy)=0

Thus sin @a =0 and @a = nzror a=nzala, n =1, 2,... Similarly, the boundary
conditions along y = b yields that

nrx
=123
"=

Thus the natural frequency becomes
o, =mvyan’+b’'m’ nm=123,..

Note that anm are no longer repeated, i.e., o,, # @,,, etc.



6.50 Plot the first three mode shapes of Example 6.6.1.

Solution: A three mesh routine from any of the programs can be used. Mathcad
results follow for the 11, 12, 21 and 31 modes:






6.51 The lateral vibrations of a circular membrane are given by
Fo(r,¢,t) +15a)(r,¢,t) +i&2a)(r,¢,t) _ p Fo(r.g.1)
or? r or r’  apor A, &
where r is the distance form the center point of the membrane along a radius and

¢ is the angle around the center. Calculate the natural frequencies if the
membrane is clamped around its boundary at r = R.

Solution:

This is a tough problem. Assign it only if you want to introduce Bessel functions.
The differential equation of a circular membrane is:

FW(rg)  1W(rg) 1 W)
or? r or r’ oy

(
Fele

+pW(r,¢)=0

2 (4]

)’ T
<) T

Assume:
W (r,¢) = F(r)G(¢)
The differential equation separates into:

d’G

d¢2+m2G=0

dF, [ 2
dF+1 ,B—m—F 0
dr? rdr rJ

Since the solution in ¢ must be continuous, m must be an integer. Therefore
G, (¢)= B, sinmg+B, cosmg

The equation in r is a Bessel equation and has the solution
F.(r)=B,,J.(Br)+B,Y, (Br)

Where Jn(8r) + Ym(Br) are the m™ order Bessel functions of the first and second
kind, respectively. Writing the general solution F(r)G(¢) as

W (r,¢)=A_J_(Br)sinmg+ A _J_(Br)cosme
+A, Y (Br)sinmg+ A Y _(Br)cosme



6.52

Enforcing the boundary condition
W (R,¢)=0 m=0,12,..

Since every interior point must be finite and Y(fr) tends to infinity asr — 0, Asn
=Am=0. Atr=R

W (R,¢)=A_J (BR)sinmp+ A J (BR)cosmg =0
This can only be satisfied if
J (BR)=0 m=12,..

For each m, Jn(BR) = 0 has an infinite number of solutions. Denote Sm, as the nth
root of the mth order Bessel function of the first kind, normalized by R. Then the
natural frequencies are:

Discuss the orthogonality condition for Example 6.6.1.
Solution:

The eigenfuncitons of example 6.6.1 are given as
X (X)Y (y)=A _sinmzxsinnzy
Orthogonality in this case is generalized to two dimensions and becomes
j:j: A qu sinmzxsinnzysin prysingzydxdy =0 mn= pg
Integrating yields

A A j:sin nzzxsin pnxdxj':sin mzgsin gydy

nm- pq

_a A | Sin(n-p)zx sin(n+ p)nx}{sin(m—l)nx _sin(m+ p)zx
"ML 2(n-p) 2(m+ p) 2(m-q) 2(m+ p)
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Evaluating at x = 0 and x = 1 this expression is zero. The expression is also zero
provided n = p and n # q illustrating that the modes are in fact orthogonal.



Problems and Solutions Section 6.7 (6.53 through 6.63)

6.53 Calculate the response of Example 6.7.1 for |=1m, E = 2.6 x 10" N/m® and p =
8.5 x 10° kg/m®. Plot the response using the first three modes at x = 1/2, 1/4, and
31/4. How many modes are needed to represent accurately the response at the
point x = 1/2?

Solution:

= (10.02 A
w(x,t) = ZL ?20 - (—1)”*1J e "' cosw, tsino X
n=1 o,

Where

@2n-x
o =—
" 21

/E
o =0 |—
Jol

o, =0.99990,
Forl=1m

E =2.6x10" N/m?
p=85x10% kg/m®

L I 1 3l
Response using first three modes at x = 12 plotted below.
I
Three modes accurately represents the response at x = > The error between a

three and higher mode approximation is less than 0.2%.






6.54 Repeat Example 6.7.1 for a modal damping ratio of £, = 0.01.

Solution: Using £, = 0.01 and the frequency given in the example

—o 1-2 =09%0 , © = 2n- 1( \f

The time response is then T (t) = A e’““’”tsm(a) t+¢ ) and the total solution is:

(2n-1) -
21

w(x,t) = iA e "' sin(w, t+ ¢ )sin
The initial conditions are: )
w(x,0)=0.01|i m and w,(x,0)=0
Therefore:
0.01|i = A sing sinc X

Multiply by sinomx and integrate over the length of the bar to get

( )m+1

0.01—— I _Amsinqula m=12.3,..

m

From the velocity initial condition
w,(x,0) =0 = i A[ 01w sing +, cosg, |sino,x
Again, multiply by sinonx ar:(:j1 integrate over the length of the bar to get
A (-0.1o sing +o cos¢n)|5 =0

Since An is not zero this yields:

sin 1-¢°
tang = i = S =90.9499 = ¢ =1.4706 rad =84.3°
" cosg 0.1 "
Substitution into the equation from the displacement initial condition yields:
0.01 1 0.0201
A — _1 m+1 — _1 m+1

The solution is then

(2n-1) X

w(x,t) = 2001( ™ te ™ sin(w, t+ 4, )sin o

IZZ
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6.55 Repeat Problem 6.53 for the case of Problem 6.54. Does it take more or fewer
modes to accurately represent the response at 1/2?

Solution: Use the result given in 6.54 and
I=1m
E =2.6 x10" N/m?
p=8.5x10°% kg/m®

The response is plotted below atx = . An accurate representation of the

Al®

(I
4 ) 2 )
response is obtained with three modes. The error between a three mode and a
higher mode representation is always less than 0.2%. The results here are from
Mathcad:
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6.56 Calculate the form of modal damping ratios for the clamped string of equation
(6.151) and the clamped membrane of equation (6.152).

Solution:

(a) For the string:
pW, +ywW —tw =0
P&t yp&e— 74" =0

P& & 9"
7q Tq ¢

& )e (<)oo

¢" + o*¢ = 0which has the solution ¢ = Asinox + Bcosox. The boundary

conditions ¢(0) = ¢(1) = Oyield o =”I—”, N=123,...

|¥

2§a)—

\/7(n7z\
n 2p

(ot (nr)
2pr|

(b) For the membrane

Bw +Zw =W, +W,_
T T

{JXY&FU/J XY&= X'Yq + XY'q
p\& 7/\(& X" Y”

LJq Lqu X Y =F

& Lje(2)ramo



XH YH .
e = v B =—a’ .The boundary conditions are X(0) = X(I) = 0 and Y(0) =
Y(I) = 0. The two spatial solutions become
X"+a’*=0 Y"+y%Y =0
X = Asinax + Bcosax Y =Csinyx+ Dcosyx
B=0 D=0
n n
an+T” n=123.. y =— m=123,..

Thus
Bay = (n2 + mziz\z
mn I J
o’ = l(nz + mziz\z
mn p I J

2¢ N N =L

A 4 1 I
LT T r—
POy 2P g(anrmz)”

P

fn =——L
" 2\/pr(n2+m2)

6.57 Calculate the units ony and 3 in equation (6.153).

Solution: The units are found from




6.58

Assume that E, I, and p are constant in equations (6.153) and (6.154) and
calculate the form of the modal damping ratio ¢,.

Solution:
IfE, I, and p are constant in equation 6.153 and 6.154. Then separation of
variables works and the mode shapes become those given in table 6.4, which can

be normalized so that jol X X _dx=¢ . Substitution of w(x,t) = an(t)Xn(X) into

equation (6.153) multiplying by Xn(x) and integrating over x yield the mth modal
equation:

(@?) »’
PA&(t) + 7y &(t) + B Lc_zJ &)+ El—a,(0)=0

where equation (6.93) has been used to evaluate X"’ andc® = El / pA. Dividing
by pA yields

&(t) + {ﬁ + éa)ﬁ] &) +ola (t)=0

which is the sdof form of windows 6.4. Thus the coefficients of must be
and hence

20 o, = L+£a)§
A E

P
and
o= B\
PA
(g,
2pAw, E

where f3, are given in table 6.4.
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Calculate the form of the solution w(x,t) for the system of Problem 6.58.
Solution:

The form of the solution of the m time equation is just

Ae " sin(w,t+4,)

where ¢, and ax are as given in problem 6.58, o, =, 1—§§ , and A, and ¢, are
constants determined by initial conditions. The total solution is of the form

w(x,t) = i A sin(w,t+ 4, X, (%)
n=1

where X,(t) are the eigenfunctions given in table 6.4.
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For a given cantilevered composite beam, the following values have been
measured for bending vibration:

E = 2.71x10" N/m? p = 1710 kg/m®
A =0.597x10° m? I=1m
| = 1.64x10° m* y=1.75 N s/m’

B = 20,500 Ns/m?

Calculate the solution for the beam to an initial displacement of wi(x,0) = 0 and
w(x,0) = 3sin zx.

Solution:

Using the values given and the formulas for a,(t) from problem 6.58 the temporal
equation becomes

&+ (1.714 x 00000075G 0? )& + w’a, =0
from problem 6.59,

w (xb)|_ =0=2"A| (¢, Fing, +o,cosg, [X ()
and

w(x,0) = 3sinzx = Y_ A sing, X (x)

Multiplying by X,(x) and integrating yields that

@
H d
.o sing =w, cos¢ or tang =—"

n-n

and SJOI sinzxX (x)dx = A sing_so that

|
3| sinzxX (x)dx
A= J"’ _ 3 2J’olsinnxxn(x)dx

" sing, h—‘én

where X,(x) Is given in table 6.4.
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Plot the solution of Example 6.7.2 for the case w(x,0) =0, w(x,0)=sin(nx/4), y=10
Ns/m?, © =10 N, ¢ =1 mand p =0.01 kg/m°.

Solution: From equation (6.156) and the values given, £; =0.159/n or o, = 500

andw, =+1=0.159%, so that:

w(x,t) =Y A e sin(w,t +¢,)sinnzx
n=1
Applying the initial conditions yields
| 0 |
Jsin nzxsin mzxdx = z A sin(¢n)Jsin mz X sin Nz xdx
0 n=1 0

So that Ansing, =0 for all n except n =1, and Assing; = 1. So either ¢, =0 or A,=0

- ll_és

————) so that
4

n

A, = 0 for n not zero. Thus the system is only excited in the first mode. Then

w(x,t) = Ae ' sin(w 1 £t + ¢ )sinzx
= —1.001e*"" sin(3137.7t — 1.50) sin x
This is plotted in Mathcad below:

for n not zero. The other initial condition yields that ¢ = tan™(
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Calculate the orthogonality condition for the system of Example 6.7.2. Then
calculate the form of the temporal solution.

Solution: Problem is to fill in the details of example 6.7.2 by checking the
coefficients. Equation (6.155) by performing the integration.

Calculate the form of modal damping for the longitudinal vibration of the beam of
Figure 6.14 with boundary conditions specified by equation (6.157).

Solution: This is a discussion problem. The boundary condition given in

equation (6.157)
AEw (0,t) = kw(0,t) + c%

AEW (1,t) = —kw(l,t)-c ow(l, )

Do not conform readily to separation of variables and lead to time dependent
boundary conditions. However one approach is to treat the damper as applied
forces of the bar cw(0,t) and —cw(l,t). Following this approach the boundary
conditions become

AEX'(0) = kX (0) and AEX'(1) = —kX(I)
The general solution of the spatial equation of a bar has the form

X(x)=asin(ox + b)
Where o is the usual separation constant and a and b are constants. The first
boundary condition yields that ¢ = tan"*(AE / k). The second boundary condition
yields the characteristic equation

—(AE/k)o, =tan(c | +¢)
Which can be solved for o, numerically. Note that oy, are distinct so that from
problem 6.39 the eigenfunctions are orthogonal, i.e. an can be calculated such that

X (X)=a_ sin(c X +¢)
Are orthonormal. Following the procedure of example 6.8.11, the temporal
solution for the forced response is

Bt) + 0? = jo'[cwt(o,t)—cw(l,t)]xr(x)dx

_ {;[cxn(O) — X, (D] X, (x)dx }%(t)
Bring the 'F% term to the left side and comparing its coefficient to 2 w_yields

20 0 = {O'c[xn(l)— X, (0)]X, (%) }sx
The form of the modal damping ratio is thus
ca’
¢ - 20,0, [cos(anl + ¢)— cos¢]




Where a? is the normalization factor, oy are the eigenvalues o’ = c’c?
and tan'(AE / k).



Problems and Solutions Section 6.8 (6.64 through 6.68)

6.64 Calculate the response of the damped string of Example 6.8.1 to a disturbance
force of f(x,t) = (sin zx/l) sin10t.

Solution:

f(x,t) = sin{”TX] sin10t. Assume a solution of the form:
w (x,t)=T ()X (x)

where
X, (X)= sin@

Substitute into (6.158)

{p@% ”%‘TMLJ }T }S'”M‘S'”L_J it

Multiply by sin@ and integrate over the length of the string:

{pﬂﬁ;fﬁ%rknﬂ} } _{ 0_ forn =1

sinl0t forn>1

Only the particular solution is of interest since we are looking for the response to
the disturbance force. Therefore, dropping the subscripts:

oy By {f} T =sin10t

(7,\ (cr)’ sinlOt T
&FL J'&LL J . wherec_ﬁ

Solution is

T = Asin(20t — ¢)



where
A 1 _ §
; (¢ 00) 1007 \/pz(czﬂ2—100|2)2+100;/2|4
L 2 J P’
y
10-
10712
p=tan?| o—F— |-t — 2_7/ 2
cr pcr®—100pl

—-100

IZ
w(x,t) = Asin(10t — q))sinﬂTX

where A and ¢ are given above.
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Consider the clamped-free bar of Example 6.3.2. The bar can be used to model a
truck bed frame. If the truck hits an object (at the free end) causing an impulsive
force of 100 N, calculate the resulting vibration of the frame. Note here that the
truck cab is so massive compared to the bed frame that the end with the cab is
modeled as clamped. This is illustrated in Figure P6.65.

Solution: Assume constant area and constant material properties. Equation of
motion:

pAW, — EAW = f(x,t)=-1005(x —1)5(t)
Mode shapes (eigenvalues) of a fixed-free bar are (Table 6.1)
(2n -1 xx
2l
Assume a solution of the form: w (x,t) = X_(x)T (t). Substitute into the equation
of motion:

((@n-1z)" |, | . (2n-D)zx 100
{@{LTJ }c Tn}sm o _—pA5(x—I)5(t)dx

X, (X)=sin

{&er 2T, Jsin en-Hrx _ 1995 1ystt)
n n-n 2| pA

(2n—=1)zc (2n—-1)zx
21

E
wherec’=— and o_ =
Yo
over the length of the rod:

Illoo ((2n- 1)7zx} 50— 1)5(0)

. Multiply by sin and integrate

ZT - _=

_ Sin((zn—l)n\ 5(0)
pAl L 2 J
which has the solution:
200 ((2 - ) \Smwt
pAlo_ J

The total solution is:

L 400 ((2n-Dr)
W (x,t) = _Z‘{—pA(Zn —1)7zc}mk—2 J

sin{(zn ;Il)nct} sin{(zn —1)7[X}}

T (t)=-

2l
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A rotating machine sits on the second floor of a building just above a support
column as indicated in Figure P6.66. Calculate the response of the column in
terms of E, A, and p of the column modeled as a bar.

Solution: Referring to equation (6.55) for the equation of a bar and summing
forces to get the effect of the applied force yields

pAW, — EAW = 5(x-I1)F, sinwt
subject to the boundary conditions w(0,t) = w (0,t) =0. Following the method of

example 6.8.1, use separation of variables where the spatial function is the
clamped-free mode shapes used in example 6.3.1:

2n-1
2l

w(x,t)= X (X)T (t)=(a sinc x)T (t), o, = T

Substitution into the equation of motion yields
(oAT(t) + EAGZT, (1) Jp, sin o, x = 5(x - 1) F, sinot

(the minus sign in front of EA goes away because of the second derivative of sine
being negative). Next, let a, = 1 (recalling that eigenvectors have arbitrary
magnitude) and multiply by sin o.x and integrate over the length of the beam to
get:

|
(pAﬂ;f(t) + EAG?T. (t)}; = F,sinot [ 8(x - )sin o, xdx
0

The integral on the right is a bit tricky as the delta function acts at the end of the
interval. The details are below, however integrating yields

(pA@(t) + EAGT (t))— ZF sinot
Dividing by the appropriate constants this S|mpI|f|es to

E n— 1
B(t)+—o’T (1) = D B ot
p PA

sin O'

= (-)"* °sma)t

This has particular solution
ot FE) E(2n-1
T (t)= () L — 2Jsma)t where o= E@n-Dr
P PA \o - p 2l
Combined with the homogenous solution, the total temporal solution is
FE

— i 0 i
T (t)=C_sino t+C, cosw t +L PA - a)ZJ sinot

So the total solution is

o i F )
W(x,t):Z{Cmsina)nHCchoswnH(/BA\ L — zjsma)t}smk

1 o, -0

(2n— 1)7rx\




The following it the evaluation of the Dirac integral used about (courtesy of Jamil
Renno)
Start with the integral at hand

.:[5(x - I)sin(omx)dx = Imﬂ[ d (x - I)sin(omx)dx

1
— l—r<x<l+ .

where dT(x—I): 27 ¢ ¢ is the pulse over the
0 X<l-zorx>l+7

interval[l -7, + r] .

Hence, the integral can be subdivided over two intervals
[ (x=1sin(ox ¥ - Ifiirg{l.[fdr(x— pin(o )+ | d (k- I)sin(amx)dx}
0 0 I-7
= |I_I’B _I.([TOSin(omx)dx + I.Ifrz—lrsin(amx)dx} = Im{ .I[ isin(amx)dx}
=Iim_ii[—cos(amx)]:l=lfi£rg cos[ (I )] cos o, I

—0 To-m

L'Hopital's Rule 7%03 (l )} COS o, | }

:Im

T ey
— lim J(Sm[ L )D:Si”(am')

0
T—> Zo-m

m
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6.67 Recall Example 6.8.2, which models the vibration of a building due to a
rotating machine imbalance on the second floor. Suppose that the floor is
constructed so that the beam is clamped at one end and pinned at the other, and
recalculate the response (recall Example 6.5.1). Compare your solution and that
of Example 6.8.2, and discuss the difference.

Solution:

Clamped-pinned beam conditions yield mode shapes (eigenfunctions) of the form:
X,(x)=a,[coshB,x—cos B x - o, (sinh B,x —sin B, x) |
where tan g | = tanh 3 | and

1.0008 forn=1
O =
"1 forn>1

Normalize the mode shape as follows:
I 2
jo X dx=1=

|
a’ [ [cosh B x - cos B x - o, (sinh B,x —sin B, x)]’dx =1
0

From Mathematica

a’ =48 1 {41 +20, cos(28,1)- 20, cosh (2,1 )~ 4cosh (B, fin(B,1)
—40? cosh(ﬁnl)sin(ﬁnl)Jr sin(Z,BnI)— oﬁsin(Z,Bnl)
—4cos(,6nl)sinh(,6nl)+ 4o? cos(ﬁnl)sinh(ﬁnl)
+80, sin (8,1 Jinh (8,1 )+ sinh (28,1 o2 sinh (28,1}

The equation of motion for the system is: (constant properties)
A B
pAW, +Elw = f(x,t)= 1003|n3t5Lx - EJ

Assume a solution of the form: w_(x,t) = X ()T (t)

X+ ETnx;"'z 100, 3t5{x - l}
PA PA 2



Using the mode shapes given above:

er_ﬁ4x _w_§X

n~ Fn'tn T Cz n
where

’84:P_Aa)z CZZE

TR PA

The equation of motion reduces to:
{ﬁ% w }X = _Sln3t5LX__J
Multiply by X, and integrate over the length of the beam:

et 0T :@sinmrx (x)5(x—D dx
n nn pA 0 n L ZJ

100 (1]
PA 2
100 | | ( |
=—a”sin3t cosh’B—”—cos’B—”—a sinh’B—”—
PpA 2 ”L 2
or:
(1)
100X | —
'\ 2)

Tn(t) = m sin3t

The solution is then:

W(X,t) = i {an [cosh BXx—cosB x-o, (sinh BXx— sinﬁnx)}

{ 109 }Xn{ }sm3t
pAa)—9




where a,, an, and [, are given above. The free time response is stiffer for the
clamped case as the frequencies are higher (See Table 6.4).

The comparison of the solution between the two models (one with a pinned end
and one with a fixed or clamped end) had two purposes: design and modeling.
From the design point of view it is important to know how to construct the floor
for a minimum value of response. From the modeling point of view it is
important to know how much the solution is effected by the choice of boundary
conditions as part of the modeling.

Here the comparison can be made by calculating the response and then evaluating
it and plotting it using a truncated solution (say 3 modes, as given in Equation
6.181) at a given point of interest (i.e. for a particular value of x). This gives an
accurate comparison.

Next you can compare the differences in the details. For instance the clamped-
pinned natural frequencies are lower then the clamped-clamped frequencies (just
look at Table 6.4) because the clamped-clamped system is stiffer. Next, one of
these sets of frequencies is going to have a natural frequency that is closer to the
driving frequency, and hence produce a larger response. To make such
comparisons, pick a value for the physical parameters (let omega = beta squared
for instance) and check. In this case the clamped-pinned frequency is about 3.9
rad/s, which is much closer to the driving frequency of 3 rad/s then the clamped-
clamped first natural frequency of 4.7 rad/s. Thus the first term in the series
solution for the example will be larger then the corresponding term in the series
solution for the clamped-clamped case.
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6.68 Use the modal analysis procedure suggested at the end of Section 6.8 to calculate
the response of a clamped free beam with a sinusoidal loading Fesinat at its free
end.

Solution:

The equation of motion is:

pAW, +Elw = f(x,t)=Fd(x-1)sinwt
Assume a solution of the form w_(x,t) = X_(x)T_(t)
X —T X" H —25(x,1)sinwt
pA " PA

The mode shapes are given in Table 6.4 for a fixed-free beam:

X, (X)=a, [coshﬁnx —COsB X—o, (sinh,an - sin,an)]

Where
sinhB | —sing |
o =
" coshpl+cosp |
4 pA
b= El n
And

cosp lcoshpB | =-1

From the unforced vibration problem:

X +—T X"=0
pA "
-&;L ( EI\ XHH 2

A X, T

Therefore



pA 2 4
X"” X — X
EI n ﬁn n

Substitute into the equation of motion and rearrange:

{&ﬁ oI, X, = h 5(x Dsinot
Normalize the mode shapes as follows:

[ x2dx =1

a’ .[OI [cosh BX—COSB X0, (sinh B X sin,an)]2 dx =1

a’=4p | {4,8nl +20, cos(z,BnI)— 20 cosh (Zﬁnl)— 4cosh (,Bnl )sin(,BnI)
—40? cosh(ﬁnI)Jr sin(Z,BnI)— oﬁsin(Z,Bnl)
—4cos(,3nl)sinh(,6nl)+ 4o? cos(ﬁnl)sinh(ﬁnl)

+80, sin (8, Jinh (8,1 )+ sinh (28,1 o2 sinh (28,1}
Multiply the equation of motion Xn(x) and integrate over the length of the beam:
F
Bt 02T =2 [ X (x)5(x - )dxsinwt
pA°L

F .
=—X (Dsinwt
A NQ)

Solving:
(N X (1))
T (t)= _ALa) a)Jsma)t

The total solution is:

w(x,t) = i {an [cosh Bx—cosBx—o, (sinh B.x— sinﬁnx)}

BEO.
pA)| 0F - &

Where on, W, are given above and cos fnl cosh Syl = -1




Problems and Solutions Section 7.2 (7.1-7.5)

7.1

A low-frequency signal is to be measured by using an accelerometer. The signal
is physically a displacement of the form 5 sin (0.2t). The noise floor of the
accelerometer (i.e. the smallest magnitude signal it can detect) is 0.4 volt/g. The
accelerometer is calibrated at 1 volt/g. Can the accelerometer measure this
signal?

Solution:
From the problem statement:

x(t) = 0.5sin(0.2t) m

% () = 0.1cos(0.2) M/

. - - m

% (t) = -0.02sin(0.2t) /52
The peak acceleration is:

I 1

+0.2 %2 P;—Q%J = 10.0204g

Accelerometer calibration is 1% , therefore the peak output of the accelerometer

is:

i0.0204g[%} =10.0204V

Since the noise floor on the accelerometer is 0.4 V, then this acceleration cannot
be measured.



7.2

Referring to Chapter 2, calculate the response of a single-degree-of-freedom
system to a unit impulse and then to a unit triangle input lasting T second.
Compare the two responses. The differences correspond to the differences
between a "perfect” hammer hit and a more realistic hammer hit, as indicated in
Figure 7.2. Use ¢ =0.01and @ =4 rad/s for your model.

Solution:
System: Wi 200 X+’ x = f(t) (Letting m = 1)

(1 f(t) =0o(t), aunit impulse
X(t) =& " sin(w,t) 0, =0 1-C

. t 2 1

(i) f(t) =7 u(t)—?(t—T)u(t -T +?(t—2T)u(t—2T)
u(t-a) = unit stepat t = a.

x(t) =% {rt)—2rt-T) +r(t-2T)}

From table of Laplace transforms:

r(t) = iz {t 2% +i e "'sin(w,t + 0)}u(t) cosd =27 -1
a)n a)n a)d
~ 1 —Cont o 1
X(t) ~ T {wnt—zg—e sin(ogt i) }

~2fo, (t-T)- 2 e sin(w, (t - T)) it - T)
Heon (t - 2T) = 22 — e sin(e, (t - 2T)) it - 2T)
since w, = w, and 0 = 72



7.3

Compare the Laplace transform of d(t) with the Laplace transform of the triangle
input of Figure 7.2 and Problem 7.2.

Solution:

() f(t) = &(t), unit impulse
F(s)=1

(i) ftt) = %u(t)—%(t—T)u(t—T)+%(t—2T)u(t—2T), unit triangle with
period T.

F(s) = = { [tedt -2 (t —T)e “dt + [ (t - 2T)e5tdt}
T 0 T 2T

F(s) = Tisz flre e}



7.4

Plot the error in measuring the natural frequency of a single-degree-of-freedom
system of mass 10 kg and stiffness 350 N/m if the mass of the excitation device
(shaker) is included and varies from 0.5 to 5 kg.

Solution:
m =10 kg

k =350 N/m
0.5<m, <5.0kg

/ k k
Error = —.—
m-+m, m




7.5

Calculate the Fourier transform of f(t) = 3 sin 2t — 2 sin t — cos t and plot the
spectral coefficients.

Solution:

F(t) = 3 sin(2t) - 2sin(t) - cos(t)

o, = 1 rad/sec

a =-1 b,=-2 b,=3
a,=0,n=2,3,.... b,=0,n=34,5, ...



Problems and Solutions Section 7.3 (7.6-7.9)

7.6 Represent 5 sin 3t as a digital signal by sampling the signal at =/3, /6 and /12
seconds. Compare these three digital representations.

Solution: Four plots are shown. The one at the top far right is the exact wave
form. The one on the top left is sampled at 7t/3 seconds.

The next plot is sampled at /6 seconds.



The next plot is sampled at 7/12 seconds.

None of the plots give the shape of a sine wave. However if the s3 is
connected by lines, the wave shape is close.



7.7 Compute the Fourier coefficient of the signal |1120 sin (120 rt)|.
Solution:
f(t) =1120sin(120xt)| (absolute value of the sine wave)
To calculate the Fourier series:
T=1/120 sec w, = 240 n rad/sec

%20
a, =240 [120sin(120t)dt
0

a, =480/

}/120
a, =240 [120sin(120at)cos(2407mt)dt
0

480
a,=———
7(1—4n?%)
%20
b, = 240 [120sin(1207t )sin( 2407znt)dt
0

=0

240 - 2
ft)=—11 24 t
t) - { +n§,1_4n2 cos( Onn)}



7.8

Consider the periodic function

h = -5 0< t< &
X(1) = 5 n< t< 2rx

and x(t) = (t + 2x). Calculate the Fourier coefficients. Next plot x(t): x(t)
represented by the first term in the Fourier series, x(t) represented by the first two
terms of the series, and x(t) represented by the first three terms of the series.
Discuss your results.

Solution: For the Fourier Series: T=2n w; =1
a, =0

2 3 2
a, = Z{ .([ —5cos(nt)dt + ;[ SCos(nt)dt}
=a,=0

V4 2
b, = 2—2” { { —5sin(nt)dt j 5sin( nt)dt} -

b, = _%5 [L-2cos(nz)+ cos(2nx)]

x(t) = —%i% (1-2cos(nx) + cos(2nr)sin(nt)



7.9  Consider a signal x(t) with maximum frequency of 500 Hz. Discuss the choice of
record length and sampling interval.

Solution:

For a signal with maximum frequency of 500 Hz, the sampling rate, f_, should be
f. >2(500) = 1000 Hz
Due to Shannon’s sampling theorem. A better choice would be
f. =2.5(500) = 1250 Hz
Thus, the minimum sampling rate is 0.001 sec. and the suggested rate is 0.0008
sec.

Lower sampling rates will produce aliasing.

The record length N is usually a power of 2, such as 512, 1024, 2048, etc.
Windowing is performed to reduce leakage.



Problems and Solutions for Section 7.4 (7.10-7.19)

7.10  Consider the magnitude plot of Figure P7.10. How many natural frequencies does
this system have, and what are their approximate values?

Solution:

The system looks to have 8 modes with approximate natural frequencies of 2, 4,
10, 15, 22, 29, 36, and 47 Hz.



7.11 Consider the experimental transfer function plot of Figure P7.11. Use the
methods of Example 7.4.1 to determine ¢; and o, .

Solution:

For each mode:

Si

_ Dy — Dy

20,

where w,; and o, are the frequencies where the magnitude is }/ 7 of the

resonant magnitude. All values given in the following table are approximate.

Mode o; (Hz) |H(a)i)| |H(a)i)| 0y (Hz) oy (H2) <
J2
1 4.80 0.089 0.063 4.56 5.04 0.049
2 15.20 1.050 0.742 14.76 15.48 0.024
3 30.95 1.800 1.270 30.47 31.19 0.012
4 52.62 2.000 1.414 52.14 52.85 0.007
5 80.00 2.100 1.480 79.05 80.48 0.009




7.12  Consider a two-degree-of-freedom system with frequencies o, = 10 rad/s, @, =

111 -1
15 rad/s, and damping ratios ¢;= ¢, = 0.01. With modal s = EL 1]

calculate the transfer function of this system for an input at x, and a response
measurement at X, .

Solution:

Since the natural frequencies, damping ratios and mode shapes are given, the
system can be expressed in modal coordinates as

ool [200010 0 1. [10° 0] 41[1 1]
o 1™ o 2(.01)15JN+L0 J:_A J{ }f(t)=T{ }f(t)

=50 1, |- f

This is the representation of the system in modal coordinates, if proportional
damping is assumed. The transfer function is:

Y(s) = % {1 1}R(s)

where
1
R(s) = \/_ s + Ogi +100 LE(s)
s?+0.3s+225
Combining the previous two expressions yields
Y(s) (0.1)(s +1250)

F(s) (s°+0.25+100)(s? +0.3s + 225)



7.13  Plot the magnitude and phase of the transfer function of Problem 7.12 and see if
you can reconstruct the modal data (w,, ®,, &, and ¢£,) from your plot.
Solution:
For each mode:
_ Dui — Dy
==
where o,; and o, are the frequencies where the magnitude is }/ 7 of the
resonant magnitude. All values in the following table are approximate.
Mode o, (rad/s) H(o,)| H (o)) o, (radls) | o, (radls) ¢
J2
1 10 0.50 0.354 9.89 10.07 0.009
2 15 0.22 0.156 14.83 15.16 0.011







7.15

7.14  Consider equation (7.14) for determining the damping ratio of a single
mode. If the measurement in frequency varies by 1%, how much will the value of
¢ change?

Solution:

é':a)b_a)a

20,

If o, =0w,1%0.01) where w,, is the measured natural frequency, then the
damping ratio is

:wb—wa{ 1 }: { 1 }
d 20, 1+£0.01 % 1+0.01

If 0, 1s0.99w,,,then {=1.01 £,
If 0, i1s1.01w,,,then £=0.99 £,

Thus, 1 percent changes in the measured natural frequency produce similar
changes in the measured damping ratio.

Discuss the problems of using equation (7.14) if the natural frequencies of the
structure are very close together.

Solution:

Equation (7.14) assumes that the response at resonance is due to a single degree
of freedom system. If the natural frequencies are very close together, this
assumption is not valid. This will introduce error into the damping ratio
calculation since the peak response at each resonant frequency will be due to a
combination of responses from each of the closely spaced modes.



7.16

7.17

Discuss the limitation of using equation (7.15) if C is very small. What happens if
¢ is very large?

Solution: When C is very small (<0.01), it is difficult to determine where R(a) is
the largest since equation (7.15) is changing very rapidly in the vicinity of
resonance. When ¢ is very large (>0.707), the frequency response near resonance
is very flat, again making it difficult to determine the damped natural frequency.
In either case, experimentally determined damping ratios will contain error since

they depend on an accurate determination of the resonant frequency. Problem
7.18 contains plots that illustrate these ideas.

Consider the two-degree-of-freedom system described by

'L OT¥] [0 0¥ [2 —ATx] [fsinat]
lo ] o cl) -1 20x )7L o ]

and calculate the transfer function |X/F| as a function of the damping parameter c.
Solution:

The equations of motion for the system are:

[1 0], [0 O], [2 -1 [f,
o Flo ol 2ol

Taking the Laplace transform yields

2 _ f
RS LR L

S24+Cs+2

Inverting the matrix on the left hand side leads to an expression for X(s):

X(s) = 1 [s?+cs+2 1 W{fO}F
(S)_(32+2)(32+cs+2)—1L 1 s2+2]| 0 (%)

Performing the multiplication leads to

Xi(s) s +Cs+2
f F(s) s*+cs®+4s®>+2cs+3
Xp(s) _ 1

f F(s) s*+cs®+4s2+2c5+3



7.18

Plot the transfer function of Problem 7.17 for the four cases: ¢=0.01,¢c=0.2,c=
1, and ¢ = 10. Discuss the difficulty in using these plots to measure ¢, and o, for

each value of c.
Solution:

For ¢ = 0.01, the resonant peaks are very sharp, making an accurate determination
of &, difficult. In the case c = 0.2, £, and w, could be determined fairly easily
using the techniques of section 7.4. Increasing ¢ to 1.0 makes the frequency
response very flat, which again makes finding &, and e, difficult. Finally, when

¢ = 10, it almost looks as if there is one resonant peak, which would lead to a
completely erroneous result.



7.19  Use a numerical procedure to calculate the natural frequencies and damping ratios
of the system of Problem 7.18. Label these on your plots from Problem 7.18 and
discuss the possibility of measuring these values using the methods of Section 7.4

Solution:

For the case where ¢ = 0.01

Mode o, (rad/s) H (o)) H(w,)| o, (radls) | w, (rad/s) 4
J2
1 1.0 59 41.72 0.99 1.02 0.015
2 1.7 48 33.94 1.71 1.69 0.006
Actual values: o, =1.00 ¢, =0.003
w, =1.73 ¢, =0.001
The actual values are calculated directly from the equations.
For the case where ¢ = 0.2
Mode o, (rad/s) H (o)) H(w,)| o, (radls) | w, (rad/s) 4
J2
1 1.0 51 3.61 0.93 1.06 0.064
2 1.7 2.9 2.05 1.69 1.79 0.030
Actual values: o, =1.00 ¢, =0.050
®, =1.73 ¢, =0.029

For the case ¢ = 0.01, there is more error in the measured parameters than for the
case ¢ = 0.2 due to the sharpness of the resonant peak.






Problems and Solutions Section 7.5 (7.20-7.24)

7.20  Using the definition of the mobility transfer function of Window 7.4, calculate the
Re and Im parts of the frequency response function and hence verify equations
(7.15) and (7.16).

Solution:
From Window 7.4:
sX(s) _ S
F(s) ms®+cs+k
a(w) = Jo

(k—mw?)+ joc
jo[(k-mo®) - joc]
(k —ma®)? +(ax)
oc® + jo(k—mo?)
(k—me?)?* + (oc)®

a(w) =

a(w) =

The previous expression can be separated into real and imaginary parts:

ok —w»’m)
(k —0’m)* + (wc)®

w’c

(k_a)zm)2+(a)c)2 |m[a(a))]=

Re[a(w)]=



7.21 Using equations (7.15) and (7.16), verify that the Nyquist plot of the mobility
frequency response function does in fact form a circle.

Solution:

Define A= o’c 1 —Re(oz)—i
"~ (k—o’m)’ +(wc)® 2¢ 2¢c
 ok-o'm) ()

"~ (k—w’m)’ + (wc)’

Show that

A* +B’= (—1) 2
\2¢

which is a circle of radius Zic with center at Re(a) = Zic Im(a) = 0.

A2+BZ=r gozc2 2__17 J w(?—?zm) 27
| (k—omi(ac)  2c] | (K—a’m)?+ (w0
. (w?c)? ®? (k—w’m)? 0% (1
AZ 4 B = _ 1
TP Tk oty £ (@0)] [k—o'm) + (o) ] (k—wzm)2+(wc)2+\20)
A? LB = : a)z : [ (k —a)zm)z +(a)c)21_ : a)z : +(i)2
(K—a?m)2 + (@c)’ | (k —m)? +(ac) |~ (K —om) + (@c)?  \2¢
2 e (1Y
A°+B :KZ—C)

Which is the equation of a circle.



7.22  Consider a single-degree-of-freedom system of mass 10 kg, stiffness 1000
N/m, and damping ratio of 0.01. Pick five values of ® between 0 and 20 rad/s and
plot five points of the Nyquist circle using equations (7.15) and (7.16). Do these
forma circle?

Solution:
SDOF oscillator:
mX+cX+kx =0
m =10 kg k=1000 N/m £=0.01

First, calculate the damping constant c.

! - X _100

m
¢ =24w,m =2(0.01)(10)(10) =2 Ny

Re[a]= 20
~ (1000-100°)* + (2w)?
_ 2
Im[e] ®(1000-10w*)

~ (1000-1000°) + (20)°

0] Re(a) Im(a)
9.90 0.2487 0.2500
9.95 0.3996 0.2003
10.00 0.5000 0.0000
10.05 0.4004 -0.1997
10.10 0.2512 0.2500

The following plot displays the 5 points listed in the table, as well as the same
plot with a fine discretization of the driving frequency .









7.23  Derive equation (7.20) for the damping ratio from equations (7.18) and
(7.19). Then verify that equation (7.20) reduces to equation (7.21) at the half-
power points.

Solution: Begin with equations (7.218) and (7.19)
() 1
tan(/z)— 28,0
0%
(%,) -
tan(/z)— 2§3a)/

2

Multiplying the right hand side of each expression by a)—i yields

tan(#})=2

24/36‘) ws
tan(/)_ 20,0 bws

After a suitable multiplication, these expressions are:

(2§3a)aw3)tan(%): 0! - o
(24,0 ,0;) tan (%): 0. - o

Adding the previous two equations results in:

28 (0, + ) tan(%)= o - o,
Which can be manipulated to yield equation (7.20)

ol —wl

g3 = 2a)3[a) tan( /2)+ o, tan(/z)]

At the half-power points, oo = 90° and tan(%): 1, so (7.20) reduces to:

é' _a)a_a)b
3= ————

20,



7.24  Consider the experimental curve fit Nyquist circle of Figure P7.24. Determine the
modal damping ratio for this mode

Solution:
From Figure 7.18,

a = 45°
w, =9Hz

o, =10Hz
o, =8Hz
Using (7.20)
10° - &

B 2(9) IEStan (4572)+ 10tan (45% )]

£, =0.27

S



Chapter 8

Problems and Solutions Section 8.1 (8.1 through 8.7)

8.1

8.2

Consider the one-element model of a bar discussed in Section 8.1. Calculate the
finite element of the bar for the case that it is free at both ends rather than clamped.

Solution: The finite element for a rod is derived in section 8.1. Since u; is not
restrained equations (8.7) and (8.11) are the finite element matrices.

Calculate the natural frequencies of the free-free bar of Problem 8.1. To what
does the first natural frequency correspond? How do these values compare with
the exact values obtained from methods of Chapter 6?

Solution:

CEAL Al palf2 1]
"l 1] “6 [1 2]
L. BE[1 -]
SN

Mo = 0,% and the corresponding eigenvectors are
Yo
x,=[1 1] /J2and x, =[1 -1] /42

12E
Therefore, 0, =0, w, = e
P

The first natural frequency corresponds to the rigid body mode, or pure
translation.

From the solution to problem 6.8,

’E
a)l = 0, a)z = ?
The first natural frequency is predicted exactly while the second is 10.2% high. A
point of interest is that, due to symmetry, the first mode of a clamped-free rod of
length 1/2 has the same natural frequency as the second mode of a free-free rod of
length I.



8.3

Consider the system of Figure P8.3, consisting of a spring connected to a clamped-
free bar. Calculate the finite element model and discuss the accuracy of the
frequency prediction of this model by comparing it with the method of Chapter 6.

Solution:

The finite element for the clamped-free rod is given by (8.14) as
| ¢ EA
L0 + Ry 0 =0

The spring has the effect of adding stiffness K at u,. Thus,

%'a"g(t) +($ +K)u2(t) =0

From (1.16)

oo 3(KI+EA)

B PpAl
Next consider the first natural frequency as predicted from the distributed
parameter approach of chapter 6. In particular Table 6.1 gives the frequency

equation for this system as A.coth, = -(KI/EA) where A, = anl/c, ¢ = Elp.
Approximating cotx = 1/x - x/3 the frequency equation of Table 6.1 becomes

Ao (UAn-Aof3) = -(KI/EA) or for n=1 «?1*/c*=3(1+kI/EA)

which upon solving for w is identical to the one element FEM frequency derived
above.



8.4

Consider a clamped-free bar with a force f(t) applied in the axial direction at the
free end as illustrated in Figure P8.4. Calculate the equations of motion using a
single-element finite element model.

Solution:

The finite element equation of motion for an unforced clamped-free bar is given by
equation (8.14). Using (8.13) it can be seen that the forced equation is

L0 +Pu 0= 10



Compare the solution of a cantilevered bar modeled as a single finite element with
that of the distributed-parameter method summarized in Figure 8.1 truncated at
three modes by calculating (a) u(x,t) and (b) u(l/2,t) for a 1-m aluminum beam at t
=0.1, 1, and 10s using both methods. Use the initial condition u(x,0) = 0.1x m
and ut (x,0) = 0.

Solution: (8.5, 8.6)

For the finite element of the bar

p = 2700 kg/m®, E =7 x 10" N/m°

The unforced equation of motion is then

Y (t)+ 7.78 x10"u,(t) = 0

From window 8.2

U(t)=.1c0s(8.819x10°)

Using the shape functions for the bar

u(x,t) = uy(t)x=.1xcos(8.819x10%)

For the continuous model truncated at 3 modes, (see example6.3.1)

12,3 = 8000 rad/s, 24000 rad/s, 40000 rad/s and the mode shapes are

X,(X) =sin(§TX) , X, (%) :sin(%TX)
X,(X) :sin(?’?ﬂ% , X;(X) =sin (9—27[—):)
X;(x)= sin(%—)l()

The solution is given by (6.27) as

u(x,t)= i(cn sin w,t + d, cosm,t) X, (X)
n=1

Since we are given &(x,t)=0, ¢, =0

u(x,t)= ian cos(w,t)X,(x)
n=1



8.5

Considering the initial condition u(x,0) = .1x

(@n-Yrx
1

@2m-1)x x
2

1 and integrating fromx=0to x =,

u(x,0) = Za sin~———= = 1x

Multiplying by sin

(2Cm-Drx X)
2

I 1x smk I dx = ISIn(—(Zn > Uz X) sin(—(2m _1)7[5) dx

| 2 |
((2m—-1)7 X 12
IlXSInK_Z I)d = (E]
2! . ((2n-1)7 x
=|—2({ 1x SIHKT—I)dX

a,=.08106, a,=-.009006, a;=.003242, a,=0.001654, as=.001001

from (6.63)

(2” D ‘/7 ‘/7 7998rad/s, w, = 3” _ 23994radls,
0, == |E _39090radis, w, == |E —s5987radls

2 \p 2 \p

o
ws =—_|— = 71982rad/s

2\p

Substitution into 6.27 yields
o(X,t) =.08106 cos(7998t)sin (——) —.00901c0s(23994t)sin (3——)
(57 X (77 X
+ 00324005(39990t)smk—— .00165cos(55987t)smk7T

" 001001cos(71982t)sm(9—2”5)

Note that for problem 8.5 the last two terms are neglected.



u(x,t)l,_, = —021205sin (”X) -~ .006433in(3ﬂx) - .00314(5_’2”)

2 2
. (3 5
u(x,bl, = .071333|n(%) _ .00077sin (7”’() - .00255(7”’()
B . (ﬂx) B . (37[X) B (57[X)
u(x )., = 01900sin{ 2} -.00587sin{ ¥ ) - 003 =

U(X g o5 = 01732
U(X, s .5 = 05169
u(X’t)It=10,x=.5 =.01546



8.6

Repeat Problem 8.5 using a five-mode model. Can you draw any conclusions?
Solution:

u(x, t)|t L= 02123m(£x) —.00643sin(%) __00314(57@()

—.00153si n(Y—) .00069sin (ﬂ)

_ [ 7x - (3mx (57X
u(x.t), , = .071333|nk?) ~ 0077sin K?) - '00255k7)

+ .001293in(77”’() - .00026sin(9—”x)
u(x,b)l,_yo =.01900sin (—) T 005873|n(%) - 00300(5—”’()
_ 00146sm(7”x) + 000853m(9ﬂx)

u(X’t)It=.1,x=.5 =-.01672
u(x,t),_, ,_s = -05060
U(X,t); 10 o5 = -01709

For the finite element solution from (8.17)
u(x,t)=.1x cos(8819.2t)

u(x,t),_ , =—.06445x u(X, Dl g = —03222
u(x,t)_, = —.07515x U(X, ),y 5 = —03758
u(x,t)),_,, =.06047x U(X, ), 10 45 =-03024

Conclusion: Not nearly enough elements were used to accurately determine the 1%
natural frequency. Since the 1% mode dominates the response (this can be seen by
comparing the coefficients, a,), it must be determined well in order to predict the
rod’s response.



Repeat Problem 8.5 using only the first mode in the series solution and the initial
condition u(x,0) = 0.1sin(ntx/2l), ut(x,0) = 0. For this initial condition, the first
mode is exact. Why?

Solution:

Using the same procedure as in problem 8.5, the solution is
[ 7x
u(x,t)z.lslnk? cos(7998t)

u(x,t),_, = —.02616sin(%) u(X,t),_1,_s = —01850

u(x,t)|_, =.08800sin (”?X) WD)y g = 06223
u(, b,y = .02344sin(%) U(X )],y ,_ 5 = 01657

The finite element solution is unchanged. Again there is horrible agreement
between the finite element model and the distributed parameter model.

The fist mode is exact because the initial condition is in the first mode. All
coefficients, a,, for modes other than the first mode are zero.



Problems and Solutions Section 8.2 (8.8 through 8.20)

8.8

Consider the bar of Figure P8.3 and model the bar with two elements. Calculate
the frequencies and compare them with the solution obtained in Problem 8.3.
Assume material properties of aluminum, a cross-sectional area of 1 m, and a
spring stiffness of 1 x 10° N/m.

Solution: The finite element model for the two-element bar is
MO(t) + Ku(t) =0

where u®)=[u, u, T

_pAIf4 11 2EAl2 1]
“1201 2] YT a1 1]

As in problem 8.3, the spring adds a stiffness K to degree of freedom 2. The
equation of motion is then

pAIl4 1 2eal 2 -1 ]

12 |1 2JM)+TL—1 1+ﬁju(t)=0

The natural frequencies can be found by eigenanalysis. Using the material
properties of aluminum

p =2700kg/m’ , E = 7 x 10'%Pa
o, = 129.0 rad/s
o, = 368.4 rad/s

The solution obtained in problem 8.4 is o, = 149.1 rad/s.



8.9

Repeat Problem 8.8 with a three-element model. Calculate the frequencies and
compare them with those of Problem 8.8.

Solution:

The finite element model of the 3 element rod for equal length elements is (from
equation (8.25))

[4 1 0] (2 -1 0]
éﬁ;ll 4 1|ﬁ4§%5|—1 2 1lu=0
o 1 2] o -1 1]

With the spring stiffness included, the global stiffness becomes

3EA|F2 10 }
K=>21.1 2 =
|| Kl |

LO -1 1+ﬁj

Solving for the natural frequencies gives o, = 125.85 rad/s, »,=333.1 rad/s, and ws;
=591.7 rad/s

The natural frequencies predicted in 8.9 should be better than those predicted in
8.8. You can compare them to the results of 2 element model by using VTB8_2
and loading the file p8_3_10.con.



8.10

8.11

Consider Example 8.2.2. Repeat this example with node 2 moved to ¢/2 so that
the mesh is uniform. Calculate the natural frequencies and compare them to those
obtained in the example. What happens to the mass matrix?

Solution: (8.10, 8.11)
The equation of motion can be shown to be

pAll4 1] 2EA[ 2 -1
== o —— u=0
21 27 - 1]
o, = 1'16114JE = 8204.8 rad/s
l Jo
56293 [E

w,=——_|— = 28663 rad/s
l p

The first natural frequency is slightly improved (closer to the distributed parameter
‘true’ value) while the second natural frequency has become worse.

Truth

Example 8.22

Problem 8.10

Example 8.2.1

o 1.571—1‘/E
Y p

1.6431F
1Y p

1.611—1‘/E
'Y p

1.5791F
'Y p

®2 4.712-1‘/E
Y p

5.1961‘/E
Y p

5.6291‘/E
1Y p

5.1671F
1Y p

The natural frequencies found using the 3 element model are much better than the

2 element model.

Compare the frequencies obtained in Problem 8.10 with those obtained in Section

8.2 using three elements.

Solution:

See the solution for problem 8.10.




8.12 As mentioned in the text, the usefulness of the finite element method rests in
problems that cannot readily be solved in closed form. To this end, consider a
section of an air frame sketched in Figure P8.13 and calculate a two-element finite
model of this structure (i.e., find M and K) for a bar with

Solution:

zl s (hz—hl)z ) (hz—hl) ]

A(X)_4Lh1+K I X +2h1k I XJ

Two methods exist for creating a finite element model for this wing. The first is to
assume each element has a constant cross section. The second is to derive
elements based on the variable cross section. If enough elements are used,
constant cross section elements can yield acceptable results. However, since in
this example only two elements are used, it is better to use a variable cross section
element. Both solutions are given.

A: Variable cross section elements

Following the procedure of section 8.1, the shape function of the first element is
given by

u(x,t)= (1— ZTX) u, (t) +% U, (t)

The strain energy for element 1 is given by

_"e [Ay(x.)T
V,(t) = ({ EA(x)L g de

E
= 4—;[(7hl2 + 4hgh, + h Ul (t) — (1407 +8hyh, + 202 )uy (t)u, (t)
+ (7h +4hh, +h])us ()]
However, since uy(t) =0,

Vi(t) = f—;(mz +4hh, +h2)E (1)

For element 2, the shape function is

Uy (x,t) = 2(1— —T) U, (1) + (% —1) u(t)

The strain energy for element 2 is then given by



_ [ AT o,
V() = I/IzEA() &xj

2 2
-2l (h +4hh, +7h Xu2 (t) + 2u, (t)uy (t) + U2 (t))
The total strain energy is then
Ex
V() =5 (O + R0~ 26u,0u0 + Hu )
where f, = 7h/ + 4hh, +h and f, =h + 4hh, +7h]
In matrix form this is

VO =3[0 uOKLO wo]

where
_Exlfixf, —f]
“oa| -t f, ]

The kinetic energy of element 1 is given by

T.(t)= '}2 A(X)p [dj&(: t)} dx

= % (16h2 +18h,h, +6h2)0 (t)

(since W/(t) =0, terms including W(t) have been dropped)

Similarly, the kinetic energy of element 2 is

2
T, = [ AX)p [djgﬂ X =

1/2

lzp
6h +18h,h, +16h
T )%

+(3h/ +8h,h, +31h7)M + (h> + 8hh, +31h)¥]

The total kinetic energy can be written



T(t)—l'é;p [(22h? + 36hh, +22hZ )0 + (3hZ +14h;h, +23h2 )60

(1 -+ 8, -+ 3L05)02] = [O50Y MO |
where

lzp [ 440% +72hh, + 4402 3h? +14hh, +23h2 |
1920| 3n?+14hh, +23h2  2h2 +16hh, +62h2 |

B: Constant cross section elements

The average cross section area of element 1 is
T 2 2
A =—(7h] + 4hh, + 1))
48
and the average cross section area of element 2 is
T .2 2
A, =4—8(h1 +4hh, +7h))

Finding the potential energy again yields the same global stiffness matrix as for the
variable cross section model.

The kinetic energy can then be found by

12, T J a0t
TO=5 An=5 Jd“z.,f/ﬂ x| *
- kM |
where
_ﬂfZ(AﬁAz) A2—|
12| A 2A, |

which is not identical to the mass matrix derived using variable cross section
elements.



8.13  Let the bar in Figure P8.13 be made of aluminum 1 m in length with h1 = 20 cm
and h2 = 10 cm. Calculate the natural frequencies using the finite element model
of Problem 8.12.

Solution:

E =7 x 10'°Pa, p = 2700 kg/m®
h,=.2m, h, =.1m, | =1m

Using the variable cross section elements

_['2566x10° -8.705x10° ]
| -8.705x10°  8.705x10° |
and

K

[16.081 2.783]
~| 2.783  4.506]

The natural frequencies are then @, = 7414 rad/s and w, = 20368 rad/s
The constant cross sectional area mass matrix is

[16.493 2.798]
M =
| 2.798  5.596]

which give @, = 7092 rad/s, o, = 18636 rad/s



8.14

Repeat Problems 8.12 and 8.13 using a three-element four-node finite element
model.

Solution:

The shape functions for 3 evenly spaced elements are

w(xt) = (1—3X)u )+ =X u(t)
u,(x,t) = 2(1— ) u,(t) + (SI —1)u ®)

Us(X,t) = {1 _T Uy(t) + Z(E —1) u, (t)

Integrating to find the strain energy, the strain energies in matrix notation are

T

Vi(t) = % [ul U, ]Kl[ul uz]
Vz (t) = % [uz U ]Kz [uz us]
Vs(t) = % [us U, ]Ks [us u, ]T
where

_E7 o ey L
= 3o GO+ TR R |

_Ex o oy b1
Ko =) (7h} +13hh, + 7h; )L—l : |

_Ex,. ol 1 1]
K= (0 + 70, +10h7) T

Writing the total strain energy in matrix form, the global stiffness matrix is

[f+f, -, 0]
K—ﬁ| f, f+f —fl
L 0 _fs f3J
where
f,=19n + 7hh, +hi, f,=7h? +13hh, + 7h? and f, =h’ + 7hh, +19h’

The kinetic energy of each element in matrix form is



TO=5% ¥M &]. T0=3[% GM ]

TO=5[ M ¥]

where
[ 1 o N
I | 76h7 +13hh, + h? —(63h1 +24hh, +3h )|
3 2 2
L2(63h +24hh, +307) 51 +33hh, +6h; J
- |F 31h? +43hh, +16h? E(ZShf +44hh, +23h§)7|
" 324 L% (2307 +44nh, +230) 16 + 430, +310¢ |

- | 6h? +33nh, + 51K %(Shf +24hh, + 63N )7|

T L(3h2+24hh +63h2) hf+13hlh2+76h22J

Evaluating and assembling the mass and stiffness matrices gives:

[ 9285 -3.726 0
K=|-3729 50987 —2.2602|x10°

| 0 22602 2.2602 |

[13.1423 2.6573 0 |
M=| 2.6573 8.4299 1.6101|
| o 16101 2.7751]

o, = 10406 rad/s, w, = 27309 rad/s, as; = 47797 rad/s
Note that a ten element model yields

o, = 10316 rad/s, m, = 25183 rad/s



8.15 Consider the machine punch of Figure P8.15. This punch is made of two materials
and is subject to an impact in the axial direction. Use the finite element method
with two elements to model this system and estimate (calculate) the first two
natural frequencies. Assume E; =8 x 10" Pa, E; = 2.0 x 10" Pa, p; = 7200
kg/m?®, p, = 7800 kg/m®, I = 0.2 m, A; = 0.009 m?, and A; = 0.0009 .

Solution: The total strain energy of the system is

1 ,28A 2EATWTTL -1Tu]
V®=5%f7_*‘7_hﬂt4 1ﬁ%&

The vector of derivatives of the potential energy gives
[V ]

|El |:gFElA1 +E A —EA T

Eq L -BA  EAlu)

The stiffness matrix is then

gFElAl +E, A -E A
| -EA E,A, J

In similar fashion, the total kinetic energy is

1w pAl LFL}”HTFZPZAZ P2A2—|r'-}:ﬂ
T(t)‘Z{Lﬁ 6 12[%] [ A, ZPZ%JL%J}



8.16

The mass matrix is then

M :_|r2(/32A2 +pA)  pA

12L PA szAzJ
E, = 8 x10"Pa, p, = 7200kg/m?®, E, = 2.0x 10" Pa, p, = 7800kg/m?,
| =.2A =.0009, A, =.0001

92 —21 .. - [242 013]
K=l 2% M=013 o]

o = 47556.1 rad/s, o, = 101975 rad/s

Recalculate the frequencies of Problem 8.15 assuming that it is made entirely of
one material and size (i.e., E1 = E;, p1 = p2, and A; = Ay), say steel, and compare
your results to those of Problem 8.15.

Solution:

Assume A; = Ay, E; = Ep, p1=p2

r4 -2] ,  [052 .013]
=12 2 1% M= 013 026

o = 40798.6 rad/s, o, = 142525 rad/s

The first natural frequency decreased. This example illustrates how a punch can be
modified to raise the first natural frequency by changing the base material.



8.17 A bridge support column is illustrated in Figure P8.17. The column is made of
concrete with a cross-sectioned area defined by A(x) = Age™, where A, is the area
of the column at ground. Consider this pillar to be cantilevered (i.e., fixed) at
ground level and to be excited sinusoidally at its tip in the longitudinal direction
due to traffic over the bridge. Calculate a single-element finite element model of
this system and compute its approximate natural frequency.

Solution:
A(X) = Age™

The potential energy is

where u(x,t) = (1 —?) U (t) +TX b, (t)

VO =2 00 - b))

EAe-— 12
=——=u5(t
2l e 2V

The stiffness is then

_EA-]
1 e

Likewise, the kinetic energy is

[aux )T
L & |

Alp

T(t) = JA dx e-5)05(t)

The mass is then



Alp

M=—=—(2e-5)
e

The first natural frequency is then approximately

_JK_JW_NMF
“TYM T Y@e-5% 1 Y,




8.18

8.19

Redo Problem 8.17 using two elements. What would happen if the “traffic”
frequency corresponds with one of the natural frequencies of the support column?

Solution: The shape functions for a 2 element model are

U (1) = (1 —ﬁ) 0, (t)+ —uz(t)

Uy (x,t) = 2(1— —T) U (1) + (TX —1) us(t)

The total stain energy in matrix form is

V(t) = %[u2 U JK [u, Lb]T

where

4A§ 1Eo [1+4e -1l
11
Likewise the mass matrlx can be found from the total potential energy to be

_pfs(elf)lo 6ve |
€

" e | 10-6/  8-13Ve]
and the natural frequencies are then
1. E : E
®, =ﬁ — radls, o, :@ — rad/s
I o, I Jo,

If the traffic frequency corresponds to a natural frequency of a pillar, the bridge
might fail.

Problems 8.17 and 8.18 represent approximations. As pointed out in Problem
8.18, it is important to know the natural frequencies of this column as precisely as
possible. Hence consider modeling this column as a uniform bar of average cross
section, calculate the first few natural frequencies, and compare them to the results
in Problem 8.17 and 8.18. Which model do you think is closest to reality?

Solution:

The natural frequencies of a rod with constant cross sectional area are independent
of the area. Therefore the first 2 natural frequencies are

1571 |E 4712 |E
a)l—l —radls, w,= _I — rad/s
P Vp

It is doubtful that these results are better since we know from the finite element
model that the varying cross sectional area does have an effect.



8.20 Torsional vibration can also be modeled by finite elements. Referring to Figure
P8.20, calculate a single-element mass and stiffness matrix for the torsional
vibration following the steps of Section 8.1. (Hint: 6(x,t) = c1(t)0 + ca(t),

T(t) = % oo [, 0, 0T dx and V(o) =% ]G [6(xt)] dx.)

Solution:

From equation (6.64), The static (time independent) displacement of the torsional
rod element must satisfy

2
o gy 000
X X

which has the same form as equation (8.1). This can be integrated to yield
B(x) =Ci0 + C;

Atx=0

8(0) = 04(t) = C;

Likewise, at x = |

0(1) =0,(t) =Cil + C,

_0,0-C, _6,-0)
| |

G

Substituting the values of C; and C, into the shape function yields

O(x,t) = (1—?)01(0 + (Tx)ez (1)

Evaluating the strain energy yields
GJ
v =—r 6 -26160,+ )
1
=cle0 Ko 6nf



where the stiffness matrix is defined by

_Gyf 1 -1
T EEY

Likewise, evaluating the Kinetic energy yields
T() =L O+ 00+ )
-~Plo ZoMpo Xof

where the mass matrix is defined by

p_r 1]
61 2]



Problems and Solutions Section 8.3 (8.21 through 8.33)

8.21

8.22

Use equations (8.47) and (8.46) to derive equation (8.48) and hence make sure
that the author and reviewer have not cheated you.

Solution:

u(x,t)= C,(t)x* + C,(t)x* + C,(t)x + C, (t) (8.46)
u(0,t) =u,(t) u (0,t) =u,(t)

u(l ) = uy) 0,011 = u,(t) (8.47)

Substituting(8.46) into (8.47)

u(0,t) = G, (t) =u, ()

U, (0,1) = C5(t) = u,(t)

u(l,t)= C,(t)I° + C,(t)I* + C,(t)l + C,(t) = u,(t)
u, (I,t) =3C, (1)l + 2C, (t)I + C,(t) = u,(t)

This gives

C =5 (20U, - w) +1(u, +u,))

C, =5 (U ~u) ~ (U, +24,))

C3=U2
C,=u

It is instructive, though tedious, to derive the beam element deflection given by
equation (8.49). Hence derive the beam shape functions.
Solution:

Substituting (8.48) into (8.46) gives

u(x,t)=

: r
1—3):—2+2)|(—3Ju1(t)+IL

| —

X x>

P N L
37~ I—3Ju3(t)+IL—Z X—3Ju4(t)

+
|



8.23  Using the shape functions of Problem 8.22, calculate the mass and stiffness
matrices given by equations (8.53) and (8.56). Although tedious, this involves
only simple integration of polynomials in x.

Solution:

T(t) = Ij PA(U(x, 1)) dx
0

==Y MY

NI~ NP

where

u=[u(t) () us®) u®]
And M is given by equation (8.35).

Similarly

V() =%j El[u,, (x,0)fx
=luTKu
2

where K is given by (8.56)



8.24  Calculate the natural frequencies of the cantilevered beam given in equation
(8.69) using | =1 m and compare your results with those listed in Table 6.1.

Solution:

312 0 54 -65
y_PAl 02 65 -5
840| 54 65 156 -1l
65 -75 -11 1

(24 0 -12 3
0O 2 -3 1
2
K = 8El
-12 -3 12 -3
3 1 -3 1
L 2

Following the procedures of section 4.2

w, =3.5177 ’ﬂ w, =22.2215 ’ﬂ
PA PA
w5 = 75.1571 E w, =218.138 El
VPA VPA

From continuous theory, the natural frequencies of a cantilevered beam are

El
o =B J; where B, = 3.51601, 8, =22.0345, 8, =61.6972, 3, =120.9019.

The predictions of the first two natural frequencies are quite accurate while the
predictions of the third and fourth natural frequencies are terrible.



8.25 Calculate the finite element model of a cantilevered beam one meter in length
using three elements. Calculate the natural frequencies and compare them to
those obtained in Problem 8.23 and with the exact values listed in Table 6.4.

Solution: Define u; using the following figure;

* U, Us Us Us
ror
OO

+— 2t >
The equation for element one is

PAI[ 156 —221T¥] EI[12 %HFUJ_O
120|221 412 | of | "6l 4]y, ]

The equation for element two is

(156 221 54 —13IT¥] [12 61 -12 6l Tus]
pAll 2210 42 131 3Pyl gl 61 4> -6l 2° |y, | .
220l 54 13 156 20T Flo2 —6l 12 —ellul”

|—13 -3z 221 a2 || el 22 —el 47y ]

The equation for element 3 is the same as for element 2 but with the vector
[us us us ug] " replaced with [us ug u7 ug]".

Combining the elemental equation using the superposition of the like coordinates
yields



(32 0 54 -13 0 0 T¥]

| o 82 131 31> 0 0

oall 54 13 312 0o 54 -13 ]l
20013 —a7 o 82 13 -2l
o o s 13 156 22!
Lo 0 13 317 -221 4I? JL

(24 0 -12 6 0 0 Tu,]

o 82 -6 22 0 0 [uy,l
Ell-12 61 24 0o -12 el u5|
e 22 0 82 e 22lyl”
o 0 12 6 12 —slly,

Lo 0 6l 22 -6 4|2JL8J

which can also be written in the form

312 0 54 -13 0 0 ]
o 8 13 3 0 0 [
onll 54 13 32 0 54 -13l ¢l
20013 3 0o 8 13 -3yl
o 0 54 13 186 220!
Lo 0 -13 -3 -22 Jhaﬂ

(24 0 -12 6 0 0Tu]
o 8 6 2 0 0yl
LEl |12 6 24 0 -12 61yl
TTle 2 0o 8 w6 2lyl”
o 0 12 6 12 —sly, !
0 0 6§ 2 A

Following the procedure of example 8.3.3

- 39075 |EL |, =2.456> |EL
I pA I pA
1 [EI 1 |EI
1“ Y pA 1“Y pA
1 [EI El

w5 =29.42— |— , wg = 58, 64—2 —
1Y pA -y pA

0

2

%)



8.26  Consider the cantilevered beam of Figure P8.26 attached to a lumped spring-mass
system. Model this system using a single finite element and calculate the natural
frequencies. Assume m = (pAl)/420.

Solution: Define u; using the following figure:
ul u3

The model for the spring mass system is

[0 0Wﬂ+gfl _1—|FU3—|:0
lo mlw| Pl 1]u)
The single element model for the beam is
ﬂrl% —221T¥ EHZ —6I1ru31_0
420|221 a2 || -6l a2 |u,|T
Superimposing like coordinates yields
[156 221 o] _[13 -6 -1Tu,l
%I—zzl 41° o||ﬁg|+%|—6| 4> 0luy,l=0
Lo o 1 "[2 o 1]u]

The equation of motion may also be written

, 1156 22 0T %] [13 -6 -1 us]
PAL | 2 4 olwglels 4 ol l=0

42081 5 ] |4 0 1]y

The eigenvalue/eigenvector problem is then

(A-Al)v=0



where

A=M"K pAl” A= pAl” w?
420E1" 420El
[ -5714 4571 -.0286]

A=|-46429 35143 -.1571]

[ 0 0 |
A, =.0294, 2, =1, 1, =2.9134
W, = 3.52£2 El
1Y pA
W, = 20.49£2 e
"\ PA
a)3=34.98i =

12\ pA



8.27 Repeat Problem 8.26 using two finite elements for the beam and compare the

frequencies.

Solution:

A two element model of a cantilevered beam has been created in example 8.3.3.

Superimposing like coordinates for this example with the spring mass model

yields

840
6.5

8EI| -12
5

0 54
21> 6.5l
6.51 156

—7517 11

0 0
0 -12
212 -3l
=3l 12+-=

1z 4

2
o 1
8

6.5
—751°
~111
|2
0

3

=3l

2
I

0]

0 [us]
11y, |
“lulog

0 ” U

|u7
1 o

Note that the coordinate vector for the spring mass system has changed from [us

U5]T to [us UG]T.

As in (8.26), the equations may be written in the form



[312 0 54 -65 0 ¥
A o 2 65 -75 ol I¥
PR | 54 65 156 -11
6720El |

65 -.75 -11 1
0 0O 0 0 2JW J

(24 0 -12 0]
o 2 -3 0 [us]
| lu, |
8EI|—12 -3 12+1 — 1” 4|

8 8 Il ug

-3 1 ” lug

|
__é SJL J

The eigenvalue/eigenvector problem is then

N w

(A-Av=0
where

K pAI* A= pAl* o
6720EI 6720EI
[ 2878 0640 —.2907 .0868 —.0004]
| 36700 2.1247 -5.9000 1.5919 -—.0062 |
A=l 9274 2094 -1.0368 3516 —.0041
117.8241 48163 —20.7187 6.6253 —.0519 |
0 0  -0625 0 0625

=.0427, A, =.2455, A= 2772, A, =.9173, 2,5— 2.6614

3 50 20 12 22.73
y Wy = I2 N

The one element (3 DOF) model predicted the first 2 natural frequencies well.
The prediction of the third natural frequency was extremely poor using only one
element.



8.28 Calculate the natural frequencies of a clamped-clamped beam for the physical
parameters | = 1m, E = 2 x 10" N/m?, p = 7800 kg/m®, 1 =10° m*, and A = 107
m?, using the beam theory of Chapter 6 and a four-element finite element model

of the beam.
Solution:
Using VTBS8 1
[14.49 0 25071 -151 O 0 |
| 0 .0232 .0151 -.0087 O 0 |
\y_|2507 151 1449 0 2507 -151 |
“l_151 —o0087 0 0232 151 —.0087!
- 0 25071 .151 1449 0
L 0 0 -151 —0087 O .0232J
and
[3072 0 -1536 192 O 0]
|0 64 -192 16 0 0 |
J-1536 -192 3072 0 -1536 192
K =1x10%

| 192 16 0 64 192 16 I
0 0 1536 -192 3072 O
{ 0 0 192 16 0 64 J

Remember to zero the x translations since we are not interested in the extensional
deformations. The natural frequencies are then found to be

1= 1134 rad/s, o, = 3152 rad/s, oz = 6253 rad/s, ws= 11830 rad/s, ws= 19565
rad/s, mg = 31524 rad/s

From distributed theory

1= 1132.9 rad/s, ;= 3122.9 rad/s, oz = 6122.2 rad/s, ws= 10120 rad/s, ws =
15118 rad/s, wg= 21115 rad/s



8.29

Repeat Problem 8.28 with two elements and compare the frequencies with the
four-element model. Calculate the frequencies of a clamped-clamped beam using
one element. Any comment?

Solution:

Since only two of the six degrees of freedom are free, the mass and stiffness
matrices are simply

2pA—F156 (0 ]
|2
|0 Ay

and
2E [12 01

—3lo 4!
ol )

where | =1 m. The natural frequencies are then

192 EI
13 El

@ = | 756 AT = =22. 736|— ;\ =1151 rad/s
220
ToET
0, = % - 81.96%2 ‘/g _ 4151 rad/s
420

If you are only interested in the first natural frequency, a two degree of freedom
model is adequate. However, the six degree of freedom model is much more
accurate and can better predict the second mode. (In general, a finite element
model must have twice as many degrees of freedom as the number of modes you
want to predict).



8.30 Estimate the first natural frequency of a clamped-simply supported beam. Use a
single finite element.

Solution: Since we are using only one element, we need only take the finite
element matrix for a single element and strike out the rows and columns
corresponding to the fixed degrees of freedom to get the global matrices. This
yields
3 2
v pA’ KA 3El
420 I

Since there is only a single degree of freedom

10} =«/£=\/420l E:20.49i El rad/s
" M 12\ pA 12\ pA
Distributed theory yields

1 ’El
w0, =15.42|—2 ;

One degree of freedom is not enough to predict the first natural frequency.

8.31 Consider the stepped beam of Figure P8.31 clamped at each end. Both pieces are
made of aluminum. Use two elements, one for each step, and calculate the natural
frequencies.

Solution: Only a single degree of freedom is free. The mass and stiffness
matrices are therefore scalars.

K= % + Sy _ 809375000 N/m
1 2

M =5(M +M] ~10.41kg
3L L

w =JK =8819.2 rad/s
M



8.32  Use a two-element model of nonuniform length to estimate the first few natural
frequencies of a clamped-clamped beam. Use the spacing indicated in Figure
P8.32. Compare the result to the actual frequencies and to those of Problem 8.28
and 8.29.

Solution: Since it has been shown in example 8.3.3 that the variable | can be
factored outside of the mass and stiffness matrices, we can substitute the
percentage of total length of each element into the mass and stiffness matrices and
get the correct natural frequencies.

M = pA(.251)[ 156 -22 ><.251Jr PA(751)[ 156 22 x.75]
420 | 22x.25 4x25% | 420 |22x.75 4x.75%]

 pAI[156 11
“a20| 11 1.75)
Similarly,

El [ 12 —6x25] gl [ 12 6x.75]
T | 6x25 4x.25 | (7513 6%.75 4x.75%)
EI[796.4 -85.3]
~ 7% |-85.3 21.33]

o =feigM 1K) [ =

where M and K represent the mass and stiffness matrices with the variables E, I,
I, p and A factored out.

1 |EI 1 [EI
0, =253l |—, w,=132.6 5 ,|—
1“ Y pA 1“ Y pA

This is not nearly as good as the two element model where m; was found to be

1 [El
w, =22.74= |—
1“ Y pA

as opposed to the “actual” (from distributed parameter theory) value of

1 [El
o, = 2237 |—
1Y pA



8.33  Calculate the first natural frequency of a clamped-pinned beam using first one,
then two elements.

Solution:
From problem 8.30, using one element yields

1 |EI
a)1=20.49|—2 ﬁ\

Using the vibration toolbox and the method described in 8.3.3 (also in the
README.8 file) the two element model yields

1 |EI

=15.56= [—
@1 12y pA
1 |El

w, =58.41= |—
1“Y pA

1 |EI
0;=155.6=_|—



Problems and Solutions Section 8.4 (8.34 through 8.43)

8.34

8.35

Refer to the tapered bar of Figure P8.13. Calculate a lumped-mass matrix for this
system and compare it to the solution of Problem 8.13. Since the beam is tapered,
be careful how you divide up the mass.

Solution: The lumped mass at node 2 should be the total mass between x = .25
and x = .75. Therefore

M, = 2700 715’; [ (@) 2h1(h )x}dx

=26.5
likewise for node 3

|\/|3_27oojL (h 1) +2h1(h )x}dx

=7.289
The mass matrix is then

[265 0 |
M =
| o 7.289]
and the natural frequencies are

o1 = 6670 rad/s and w, = 13106 rad/s.
For the distributed mass system

o1 = 7414 rad/s and w, = 20368 rad/s.
The first natural frequency found by the distributed mass model is slightly better
than the lumped mass model when compared to the three element distributed mass
model derived in problem 13.
Calculate and compare the natural frequencies obtained for a tapered bar by using
first, the consistent-mass matrix (Problem 8.12), and second, the lumped-mass
matrix (Problem 8.34).

Solution:

See solution for Problem 8.34.



8.36  Consider again the machine punch of Problem 8.16 and Figure P8.15. Calculate
the natural frequencies of this system using a lumped-mass matrix and compare
the results to those obtained with the consistent-mass matrix.

Solution:

The lumped mass matrix is

[ p AL JrPzAzlz 0 ]
M=l 2 2 |

0 PaAl,
L =~
:rlfAﬁﬁa 0]
0 A
ro78 0 7
| o .039]

The natural frequencies are

o = 38756 rad/s and «, = 93565 rad/s.

The results for the consistent mass matrix were
o =40798.6 rad/s and «, = 142525 rad/s.

The first natural frequency is within 5% for both predictions. For this case, the
inconsistent mass matrix is adequate for the 1% mode.



8.37  Consider again the bridge support of Figure P8.17 discussed in connection with
Problem 8.17. Develop a four-element finite element model of this structure
using a lumped-mass approximation and calculate the natural frequencies. Use
constant area elements.

Solution:

We will use elements which each have constant cross section by finding the
average area for each element. Elements are numbered from one to four from
bottom to top.

.251

_i.ZSI :i ~ X
A= ({A(X)dx .25|[ . IJO

= —4Ag (6% —1)=.8848A,
likewise
A, =.6891A,, A, = 5367A,, A, =.4179A,

Assembling the stiffness matrix yields

[1.5739 —.6891 0 0 ]

EA | —6891 1.2258 -5367 0 |
511 0 5367 .9546 -—.4179]
0 0 4179 4179 |

To find the mass matrix, we will assume again that the elements have constant
cross section. This yields

[1.5739 0 0 0 ]

pAIl 0 12258 0 0 |
M==31 o 0 9546 0 |
| o 0 0 .4179]

The natural frequencies are then

1 |E 1|E 1 |E 1 |E
w, =1.86-—, 0, =450~ |—, ©0;=6.62-_|—, ©w, =7.78-_|—,
I\ p I\ p I\ p IYp



8.38

8.39

Consider the torsional vibration problem illustrated in Figure P8.20 and discussed
in Problem 8.20. Calculate a lumped-mass matrix for the single element.

Solution:

The total mass moment of inertia would be divided between the two degrees of
freedom.

Therefore
I. O
M:yp 1
2[0 1]

Estimate the first three natural frequencies of a clamped-free bar of length | in
torsional vibration by using a lumped-mass model and four elements.

Solution:
The stiffness matrix is

(2 -1 0 0]
aGyl-1 2 -2 0|
| lo 2 2 4l

o 0 -1 1]

1 00 0]
o0 10 0
M=o 0 1 (1J|
Lo 0 0 —J

2

The natural frequencies are then

1 1
o =1.561I ‘/% w, = 4.445|1 ‘/% 03 =6.657 ‘/% 0, = 784637 ‘/G—g
Jo,

From table 6.3, it can be seen that the first two natural frequencies predicted by
the finite element model are good approximations.



8.40

8.41

Calculate the natural frequencies of a pinned-pinned beam of length | using one
element and the consistent-mass matrix of equation (8.73).

Solution:
The mass matrix is

_pA|3r1 0]
a8 0 1]

and the stiffness matrix is

_EM 2]

“=Tl2 4

Finding the natural frequencies gives

1 [EI 1 [EI
,=9.798—= . |—, 0, =16.971= |—
1“ Y pA “ Y pA

The first natural frequency from distributed theory is

1 [El
®,=9.869=.[—
1“Y pA

Calculate the natural frequencies of a pinned-pinned beam of length | using one
element and the lumped-mass matrix of equation (8.73). Compare your results to
those obtained with at consistent-mass matrix of Problem 8.40.

Solution:

The consistent mass matrix is

_pAR[4 -3
~420|-3 4]
which gives

1 |EI 1 [EI
®, =10.96= .|—, w, =50.20= .[—
1“ Y pA “ Y pA

which is worse than the inconsistent mass matrix results. (See solution 8.40)



8.42

8.43

Calculate a three-element finite element model of a cantilevered beam (see
Problem 8.25) using a lumped mass that includes rotational inertia. Also calculate
the system’s natural frequencies and compare them with those obtained with a
consistent-mass matrix of Problem 8.25 and with the values obtained by the
methods of Chapter 6.

Solution:

1 i) using the [u; luz] convention
2'gg) MO L Tt

1

- . 1
The mass matrix is M = pAl dlag(l,—,l, ,
24 24

for the displacement vector.
The natural frequencies are then

1 [El
O =2 A

a; = .368, 2.00, 4.98, 10.7, 14.5, 17.1

This is not as good as the consistent mass matrix results. From distributed
parameter theory a; = .3911.

Repeat Problem 8.42 using a lumped-mass matrix that neglects the rotational
degree of freedom. Discuss any problems you encounter when trying to solve the
related eigenvalue problem.

Solution:

M = pAl diag(l,o,l,o,%,o)

The singularity of the mass matrix does not allow a solution to be found.



Problems and Solutions Section 8.5 (8.44 through 8.49)

8.44  Derive a consistent-mass matrix for the system of Figure 8.9. Compare the
natural frequencies of this system with those calculated with the lumped-mass
matrix computed in Section 8.5.

Solution: Using the vibration toolbox
[.6857 0 ]

M=pAl o 7238]
The natural frequencies are then

1 |E 1 |E
w, = .8311~- |— and o, =1.479- _[—
I\p I\ p

These are higher than those predicted with the inconsistent mass matrix

8.45 Consider the two beam system of Figure P8.45. Use VTB8_1 to create a two-
element, rod/beam element model and compute the first three natural frequencies.
Use A = 0.0004 m% | =1.33 x 10® m*, and the properties of aluminum. Assume
that nodes 1 and 3 are clamped.

Solution:

%scipt file for problem 8.45

node=[0 0;1 .5;2 1;1 1.5;0 2];

ncon=[1 2 69el0 .004 1.33e-8 0 2700;
2 3 69e10 .004 1.33e-8 0 2700;
3 4 69e10 .004 1.33e-8 0 2700;

4 5 69el10 .004 1.33e-8 0 2700];

zero=[1 1;

gaoapErek
WNEFPWNBE

1;
conm=[];
force=[];

save VTB8_45._con

Running this yields that the first three natural frequencies are given as 377.5,
8763.7 and 10951.2 rad/s.



8.46

8.47

Follow the procedure of Problem 8.45 using two elements for each beam.
Compare the natural frequencies and mode shapes of the four element model
produced here to those of the two-element model of Problem 8.45. State which
model is better and why.

Solution: Use the script file from 8.45 ending in VTB8_46.con

The first five natural frequencies are 286.8, 419.1, 1074.5, 1510.8, and 2838.9
rad/s. The result from the four element model is probably better because the
additional elements allow the first few modes to be found in more detail. Notice
the difference in the result for the first mode. The first mode is primarily a
rotation of the joint between the two beams. The two element model shows this
to be the only significant motion (load the .out data file to observe the mode shape
vector). The four element model shows that the middle of each beam displaces
and rotates as well.

The eight element model predicts the first five natural frequencies to be 284.3,
413.0,925.6, 1147.3, and 1959.7 rad/s, the first four of which agree well with the
four element model results.

Determine a finite element model of the three-bar truss of Figure P8.47 using a
lumped-mass matrix.

Solution:
Using VTB8_1
EA[1.89 .48]
1|48 36]

The inconsistent mass matrix is

M=pAll o



8.48 Determine a finite element model for the three-bar truss of Figure P8.47 using a
consistent-mass matrix.

Solution:
Using VTBS8_1 the consistent mass matrix is

o[ 137 —0183]
=P _ 0183 6549 |

However, this mass matrix is created using beam/rod elements. Using simple rod
elements gives a consistent mass matrix

[48 167
M=pAl 16 12]

8.49 Compare the frequencies obtained for the system of Problem 8.48 with those of
Figure P8.47.

Solution:

The natural frequencies using the consistent mass matrix are

w; =1.7321 o, =2.1651

The natural frequencies using the inconsistent mass matrix are

w; =.4966 ®, =1.5012

These results are terribly inconclusive, but since we have seen in previous

examples that the consistent mass matrix generally yields the better results, one
would expect the same to be true in this case.



Problems and Solutions Section 8.6 (8.50 through 8.54)

8.50  Consider the machine punch of Figure P8.15. Recalculate the fundamental
natural frequency by reducing the model obtained in Problem 8.16 to a single
degree of freedom using Guyan reduction.

Solution:
From the results of 8.16

r4 -21 . [.052 .013]
_ 108 M =
K=l 2 1% M= 013 006
From (8.104)

Q'MQ =.052 +.013+.013+.026 =.104
From (8.105)

Q'KQ=(4-2)x10% =2 x10°

8
o= ‘/ 2x10° _ 43852.9 rad/s
104

which is a poor prediction of the first natural frequency. If we reorder K and M
(reducing to coordinate 2) we get

Q"MQ =.026 +.013+.013 =.052
Q'KQ=(2-1)x10%=1x10°
o = 43852.9 rad/s

which is the same result as reducing to coordinate 1.



8.51 Compute a reduced-order model of the three-element model of a cantilevered bar
given in Example 8.3.2 by eliminating u, and us using Guyan reduction. Compare
the frequencies of each model to those of the distributed model given in Window
8.1.

Solution:

[4 1 0]
M=LA L 4 g

%lo 1 2]

[2 -1 0]

k=2El 4 o _q

"o 4 1]

Let I\7I and IZ be the matrices with the coefficients factored out.

o E A VA
M, =4, M21:L0J:M12’ M22:L1 ZJ
] o, 2

lzllzzi IZ21:L0J:K1T1’ K22:L_1 1J

Using equations (8.104) and (8.105)

M, = Q"MQ=14
K,=Q'KQ=1
and

3EA

o 1|E
0, = T4pAl —1.964|J;

18

as compared to the distributed model value of

1[E
0, =157, ‘/—
o)



8.52  Consider the system defined by the matrices

2 0 0 0] 20 -1 0 0]
|0 0 0 O] -1 20 -3 0 |
oo 2 0l K7lo 3 2 -17l
0 0 0 0] lo 0 17 17]

Use mass condensation to reduce this to a two-degree-of-freedom system with a
nonsingular mass matrix.

Solution:
Following the same procedure as example 8.6.1

2 07 [19.95 —.157
M=1o 2|29K=|_15 3655

8.53 Recall the punch press problem modeled in Figure 4.28 and treated in Example
4.8.3. The mass and stiffness matrices are given by

[0.4x10° 0 0o | [30 x10* 30x10* 0o |
M=l 0 20x10° 0 | k=I30x10* 38x10* 8x10* |
0 0 8.0><103J L 0 8x10* 88><104J

Recalling that the only external force acting on the machine is at the xy(t)
coordinate, reduce this to a single-degree-of-freedom system using Guyan
reduction to remove x; and xs. Compare this single frequency with those of
Example 4.8.3.

Solution:

Following the same procedure as example 8.6.1

M, =1.7385 x10%, K, = 5.8537 x 10* and the natural frequency is

o, = /% =5.803rad/s
r

Example 4.8.3 gave the first natural frequency as m; = 5.387 rad/s which is within
10% of the Guyan reduced prediction.



8.54. Consider the beam example given in Example 7.6.2. Using the values given there
(An aluminum beam: 0.5128 m x 25.5 mm x 3.2 mm, E = 6.9x10" N/m? , p =
2715 kg/m®, A = 8.16 m* and | = 6.96x10™* m*), compute the first 4 natural
frequencies as accurately as possible and compare them to both the analytical
values and the measured values.



