
Problems and Solutions Section 1.1 (1.1 through 1.19) 
 

1.1 The spring of Figure 1.2 is successively loaded with mass and the corresponding (static) 

displacement is recorded below.  Plot the data and calculate the spring's stiffness.  Note 

that the data contain some error.  Also calculate the standard deviation. 

 

m(kg) 10 11 12 13 14 15 16 

x(m) 1.14 1.25 1.37 1.48 1.59 1.71 1.82 

 

 Solution: 
 

 Free-body diagram: 

 

 

m

k

kx

mg
  

Plot of mass in kg versus displacement in m     

Computation of slope from mg/x 

m(kg) x(m) k(N/m) 

10 1.14 86.05 

11 1.25 86.33 

12 1.37 85.93 

13 1.48 86.17 

14 1.59 86.38 

15 1.71 86.05 

16 1.82 86.24 
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From the free-body diagram and static 

equilibrium: 

 

 
kx = mg (g = 9.81m / s

2
)

k = mg / x
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computed stiffness is: 
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1.2 Derive the solution of m˙ ̇ x + kx = 0  and plot the result for at least two periods for the case 

with ωn = 2 rad/s, x0 = 1 mm, and v0 = 5  mm/s. 

 

 Solution: 
 

 Given:   

0=+ kxxm !!   (1) 
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 The sum of x1 and x2 is also a solution so that the total solution is: 
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 Substitute initial conditions: x0 = 1 mm, v0 = 5  mm/s 
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 Therefore the solution is: 
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Using the Euler formula to evaluate the exponential terms yields:
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 Using Mathcad the plot is: 
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1.3 Solve m˙ ̇ x + kx = 0  for k = 4 N/m, m = 1 kg, x0 = 1 mm, and v0 = 0.  Plot the solution. 

 

 Solution: 
 

 This is identical to problem 2, except v
0

= 0.  !n =
k

m
= 2 rad/s

"

#$
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initial conditions: 
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x(t)= cos (2t ) 

 The following plot is from Mathcad: 

  

 Alternately students may use equation (1.10) directly to get 
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1.4 The amplitude of vibration of an undamped system is measured to be 1 mm.  The phase 

shift from t = 0 is measured to be 2 rad and the frequency is found to be 5 rad/s.  

Calculate the initial conditions that caused this vibration to occur.  Assume the response 

is of the form x(t) = Asin(!nt + ").  

 

 Solution: 
 

 Given:  rad/s5,rad2,mm1 === !"A .  For an undamped system: 

  

 

x t( ) = Asin !nt + "( ) = 1sin 5t + 2( )    and

v t( ) = !x t( ) = A!n cos !nt + "( ) = 5cos 5t + 2( )
 

 Setting t = 0 in these expressions yields: 

  x(0) = 1sin(2) = 0.9093 mm 
      v(0) = 5 cos(2) = - 2.081 mm/s 

 

1.5 Find the equation of motion for the hanging spring-mass system of Figure P1.5, and 

compute the natural frequency.  In particular, using static equilibrium along with 

Newton’s law, determine what effect gravity has on the equation of motion and the 

system’s natural frequency.  

 

Figure P1.5 
 
 Solution: 
 The free-body diagram of problem system in (a) for the static case and in (b) for the 

dynamic case, where x is now measured from the static equilibrium position. 

 

                                                 (a)                      (b) 

 From a force balance in the static case (a): mg = kxs , where xs  is the static deflection of 

the spring.  Next let the spring experience a dynamic deflection x(t) governed by 

summing the forces in (b) to get 



 

m!!x(t) = mg ! k(x(t) + xs ) " m!!x(t) + kx(t) = mg ! kxs

                                          " m!!x(t) + kx(t) = 0 "#n =
k

m

 

 since mg = kxs  from static equilibrium. 

 

1.6 Find the equation of motion for the system of Figure P1.6, and find the natural frequency.  

In particular, using static equilibrium along with Newton’s law, determine what effect 

gravity has on the equation of motion and the system’s natural frequency. Assume the 

block slides without friction. 
 

 
Figure P1.6 

 
 Solution: 
 Choosing a coordinate system along the plane with positive down the plane, the free-

body diagram of the system for the static case is given and (a) and for the dynamic case 

in (b): 

 

          
 In the figures, N is the normal force and the components of gravity are determined by the 

angle θ as indicated.  From the static equilibrium: !kxs + mgsin" = 0 .  Summing forces 

in (b) yields: 



 

Fi! = m!!x(t) " m!!x(t) = #k(x + xs ) + mgsin$

                    " m!!x(t) + kx = #kxs + mgsin$ = 0

                     " m!!x(t) + kx = 0

                                             "%n =
k

m
 rad/s

 

 

 

1.7 An undamped system vibrates with a frequency of 10 Hz and amplitude 1 mm.  Calculate 

the maximum amplitude of the system's velocity and acceleration. 

 

 Solution: 
 

 Given: First convert Hertz to rad/s:  !n = 2"fn = 2" 10( ) = 20" rad/s.  We also have that 

A= 1 mm. 

 

 For an undamped system: 

 

  ( ) ( )!" += tAtx
n

sin  

 

 and differentiating yields the velocity:  v t( ) = A!n cos !nt + "( ) .  Realizing that both the 

sin and cos functions have maximum values of 1 yields: 

 

  ( ) mm/s 62.8=== !" 201
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1.8 Show by calculation that A sin (ωnt + φ) can be represented as Bsinωnt + Ccosωnt and 

calculate C and B in terms of A and φ. 

 

 Solution: 
 

 This trig identity is useful:  sin a + b( ) = sinacosb + cosasinb  

 

 Given:  ( ) ( ) ( ) ( ) ( )!"!"!" sincoscossinsin tAtAtA
nnn

+=+  

 

  
             = Bsin!nt + C cos!nt

where B = A cos"      and C = A sin"
 

 

 

 

1.9 Using the solution of equation (1.2) in the form  x(t) = Bsin!nt + Ccos!nt  

 calculate the values of B and C in terms of the initial conditions x0 and v0. 

 

 Solution: 
 Using the solution of equation (1.2) in the form 

 

  x t( ) = Bsin!nt + Ccos!nt  

 and differentiate to get: 

˙ x (t) = !n Bcos(!nt) " !nCsin(!nt)  

 Now substitute the initial conditions into these expressions for the position and velocity 

to get: 

x
0

= x(0) = Bsin(0) + C cos(0) = C

v
0

= ˙ x (0) = !nB cos(0) " !nC sin(0)

              = !nB(1) "! nC(0) =! nB

 

 Solving for B and C yields: 
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v
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0
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0
cos! nt  



1.10  Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. 

 

Solution: Following the lead given in Example 1.1.2, write down the general expression 

of the velocity by differentiating equation (1.10): 

 

x(t) = Asin(! nt + ") # ˙ x (t) = A!n cos(!nt + ")

# v(0) = A!n cos(!n 0 + ") = A!n cos(")
 

From the figure:  
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Substitution of these values into the expression for v(0) yields 
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verifying the agreement between the figure and the initial velocity condition. 



 

1.11 (a)A 0.5 kg mass is attached to a linear spring of stiffness 0.1 N/m.  Determine the natural 

frequency of the system in hertz.  b) Repeat this calculation for a mass of 50 kg and a 

stiffness of 10 N/m.  Compare your result to that of part a. 

 

 Solution: From the definition of frequency and equation (1.12) 

 

a( )          !n =
k

m
=

.5

.1
= 0.447 rad/s

      fn =
!n

2"
=

2.236

2"
= 0.071 Hz

b( )            !n =
50

10
= 0.447rad/s, fn =

!n

2"
= 0.071 Hz

 

 

 Part (b) is the same as part (a) thus very different systems can have same natural 

frequencies. 

 



1.12 Derive the solution of the single degree of freedom system of Figure 1.4 by writing 

Newton’s law, ma = -kx, in differential form using adx = vdv and integrating twice. 

 

Solution:  Substitute a = vdv/dx into the equation of motion ma = -kx, to get mvdv = -

kxdx.  Integrating yields: 
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Here c2 is a second constant of integration that is convenient to write as c2 = -φ/ωn.  

Rearranging yields 
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 in agreement with equation (1.19). 

 

 

 



 

1.13 Determine the natural frequency of the two systems illustrated. 

                          

(a)                                                   (b) 

Figure P1.13 

 Solution:  
 (a)  Summing forces from the free-body diagram in the x direction yields: 

-k1x

+x

 -k2x

 

Free-body diagram for part a 
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 Examining the coefficient of x 
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 (b)  Summing forces from the free-body diagram in the x direction yields: 
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Free-body diagram for part b 
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1.14* Plot the solution given by equation (1.10) for the case k = 1000 N/m and m = 10 kg for 

two complete periods for each of the following sets of initial conditions: a) x0 = 0 m, v0 = 

1 m/s, b) x0 = 0.01 m, v0 = 0 m/s, and c) x0 = 0.01 m, v0 = 1 m/s. 

 

 Solution:  Here we use Mathcad: 

 a) all units in m, kg, s 
 

 

 parts b and c are plotted in the above by simply changing the initial conditions as 
appropriate 
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1.15* Make a three dimensional surface plot of the amplitude A of an undamped oscillator 

given by equation (1.9) versus x0 and v0 for the range of initial conditions given by –0.1 < 

x0 < 0.1 m and -1 < v0 < 1 m/s, for a system with natural frequency of 10 rad/s. 

Solution: Working in Mathcad the solution is generated as follows: 
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1.16 A machine part is modeled as a pendulum connected to a spring as illustrated in Figure 

P1.16.  Ignore the mass of pendulum’s rod and derive the equation of motion.  Then 

following the procedure used in Example 1.1.1, linearize the equation of motion and 

compute the formula for the natural frequency. Assume that the rotation is small enough 

so that the spring only deflects horizontally. 

 

 

Figure P1.16 
 

Solution: Consider the free body diagram of the mass displaced from equilibrium: 

 
 There are two forces acting on the system to consider, if we take moments about point O 

(then we can ignore any forces at O). This yields 

 

MO! = JO" # m!
2 ""$ = %mg!sin$ % k!sin$ • !cos$

             # m!
2 ""$ + mg!sin$ + k!

2
sin$ cos$ = 0

 



 Next consider the small θ  approximations to that  sin! ! !  and cos!=1.   Then the 

linearized equation of motion becomes: 

 

!!!(t) +
mg + k"

m"

"
#$

%
&'
!(t) = 0  

 Thus the natural frequency is  

 

!n =
mg + k!

m!
 rad/s  

 

 

1.17 A pendulum has length of 250 mm.  What is the system’s natural frequency in Hertz? 

 

Solution: 

 Given:  l =250 mm 

 Assumptions:  small angle approximation of sin 

From Window 1.1, the equation of motion for the pendulum is as follows: 

IO
˙ ̇ ! + mg! = 0 ,   where IO = ml

2
! ˙ ̇ " +

g

l
" = 0  

 The coefficient of θ yields the natural frequency as: 

 

 

 

  
f

n
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2"
= 0.996  Hz  

 

1.18 The pendulum in Example 1.1.1 is required to oscillate once every second.  What length 

should it be? 

  

 Solution: 

 Given: f = 1 Hz  (one cycle per second) 
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1.19 The approximation of sin θ = θ, is reasonable for θ less than 10°.  If a pendulum of length 

0.5 m, has an initial position of θ(0) = 0, what is the maximum value of the initial angular 

velocity that can be given to the pendulum with out violating this small angle 

approximation? (be sure to work in radians) 

 

 Solution:  From Window 1.1, the linear equation of the pendulum is 

 

 

 

 For zero initial position, the solution is given in equation (1.10) by 

 

 

 

since sin is always less then one.  Thus if we need θ < 10°= 0.175 rad, then we need to 

solve: 

 

 

 

 for v0 which yields: 

v0 < 0.773  rad/s. 
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Problems and Solutions for Section 1.2 and Section 1.3 (1.20 to 1.51) 

 

Problems and Solutions Section 1.2   (Numbers 1.20 through 1.30) 

 

1.20* Plot the solution of a linear, spring and mass system with frequency ωn =2 rad/s, 

x0 = 1 mm and v0 =  2.34 mm/s, for at least two periods. 

 Solution: From Window 1.18, the plot can be formed by computing: 

  

A =
1

!n

!n

2
x

0

2
+ v

0

2
= 1.54 mm,  " = tan

#1
(
!n x

0

v
0

) = 40.52
!

 

x(t) = Asin(! nt + ")  

 This can be plotted in any of the codes mentioned in the text.  In Mathcad the 

program looks like.   

 

 In this plot the units are in mm rather than meters.



 

 

1.21* Compute the natural frequency and plot the solution of a spring-mass system with 

mass of 1 kg and stiffness of 4 N/m, and initial conditions of x0 = 1 mm and v0 =  

0 mm/s, for at least two periods. 

 Solution: Working entirely in Mathcad, and using the units of mm 

yields:

 

 Any of the other codes can be used as well. 

 



 

 

1.22  To design a linear, spring-mass system it is often a matter of choosing a spring 

constant such that the resulting natural frequency has a specified value.  Suppose 

that the mass of a system is 4 kg and the stiffness is 100 N/m.  How much must 

the spring stiffness be changed in order to increase the natural frequency by 10%? 

Solution:  Given m =4 kg and k = 100 N/m the natural frequency is  

!n =
100

4
= 5 rad/s  

Increasing this value by 10% requires the new frequency to be 5 x 1.1 = 5.5 rad/s.  

Solving for k given m and ωn yields: 

5.5 =
k

4
! k = (5.5)

2
(4) =121 N/m  

Thus the stiffness k must be increased by about 20%. 



 

 

 

 

 

 

1.23 Referring to Figure 1.8, if the maximum peak velocity of a vibrating system is 

200 mm/s at 4 Hz and the maximum allowable peak acceleration is 5000 mm/s
2
, 

what will the peak displacement be? 

 

  

mm/sec200=v

x (mm) a = 5000 mm/sec
2

f = 4 Hz

 

  

 Solution: 

 Given:  vmax = 200 mm/s   @  4 Hz 

              amax = 5000 mm/s  @  4 Hz 

 xmax = A 

 vmax = Aωn 

 amax = Aω n
 2
 

 ! x
max

=
v

max

"n

=
v

max

2# f
=

200

8#
= 7.95 mm  

 

 At the center point, the peak displacement will be x = 7.95 mm 



1.24 Show that lines of constant displacement and acceleration in Figure 1.8 have 

slopes of +1 and –1, respectively.  If rms values instead of peak values are used, 

how does this affect the slope? 

 

 Solution: Let 
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 Peak values: 
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 Since xmax is constant, the plot of ln maxx!  versus ln 2πf is a straight line of slope 

+1.  If ln maxx!!  is constant, the plot of ln maxx!  versus ln 2πf is a straight line of 

slope –1.  Calculate RMS values 

 Let 
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 The last two equations can be rewritten as:  

rmsrmsrms xfxx !="= 2

.

 

rmsrmsrms xfxx
.

2

..

2!="=  

The logarithms are: 

 fxx !+= 2lnlnln
maxmax

.

 

 fxx !+= 2lnlnln max

.

max

..

 

The plots of rmsx
.

ln  versus f!2ln  is a straight line of slope +1 when xrms is constant, and 

–1 when rmsx
..

  is constant. Therefore the slopes are unchanged. 



 

 

 

1.25 A foot pedal mechanism for a machine is crudely modeled as a pendulum 

connected to a spring as illustrated in Figure P1.25.  The purpose of the spring is 

to keep the pedal roughly vertical.  Compute the spring stiffness needed to keep 

the pendulum at 1° from the horizontal and then compute the corresponding 

natural frequency.  Assume that the angular deflections are small, such that the 

spring deflection can be approximated by the arc length, that the pedal may be 

treated as a point mass and that pendulum rod has negligible mass. The values in 

the figure are m = 0.5 kg, g = 9.8 m/s
2
, 
 
!

1
= 0.2 m and !

2
= 0.3 m.   

 

 

Figure P1.25 

Solution: You may want to note to your students, that many systems with springs are 

often designed based on static deflections, to hold parts in specific positions as in this 

case, and yet allow some motion.  The free-body diagram for the system is given in 

the figure.   

 



 

For static equilibrium the sum of moments about point O yields (θ1 is the static 

deflection): 
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Again take moments about point O to get the dynamic equation of motion: 

 
MO! = J !!" = m"

2

2 !!" = #"
1

2
k(" +"

1
) + mg"

2
= #"

1

2
k" + "

1

2
k"

1
# mg"

2
"  

Next using equation (1) above for the static deflection yields: 

 

m!
2

2 ""! + !
1

2
k! = 0

                               " ""! +
!

1

2
k

m!
2

2

#

$%
&

'(
! = 0

                                            ")n =
!

1

!
2

k

m
=

0.2

0.3

2106

0.5
= 43.27  rad/s

 

 

1.26 An automobile is modeled as a 1000-kg mass supported by a spring of 

stiffness k = 400,000 N/m.  When it oscillates it does so with a maximum 

deflection of 10 cm.  When loaded with passengers, the mass increases to as much 

as 1300 kg.  Calculate the change in frequency, velocity amplitude, and 

acceleration amplitude if the maximum deflection remains 10 cm. 

 

 Solution: 

 Given: m1 = 1000 kg 

  m2 = 1300 kg 

k = 400,000 N/m  



xmax =  A  = 10 cm  

 

 

 

 

 

 

 

 

 

v1  =  Aωn1  = 10  cm  x  20  rad/s  = 200 cm/s 

v2  =  Aωn2  = 10  cm  x  17.54  rad/s  = 175.4 cm/s  

Δv  =  175.4 -  200  =  -24.6  cm/s 

 

a1  =  Aωn1
2  = 10  cm  x  (20  rad/s)2

  = 4000 cm/s2
 

a2  =  Aωn2
2  = 10  cm  x  (17.54  rad/s)

2
  = 3077 cm/s2  

Δa  =  3077 -  4000  =  -923  cm/s
2 

srad
m

k
n

/20
1000

000,400

1

1
===!  

srad
m

k
n

/54.17
1300

000,400

2

2
===!  

srad /46.22054.17 !=!="#  

!f =
!"

2#
=

$2.46

2#
= 0.392 Hz  



 

1.27 The front suspension of some cars contains a torsion rod as illustrated in Figure 

P1.27 to improve the car’s handling.  (a) Compute the frequency of vibration of 

the wheel assembly given that the torsional stiffness is 2000 N m/rad and the 

wheel assembly has a mass of 38 kg.  Take the distance x = 0.26 m.  (b) 

Sometimes owners put different wheels and tires on a car to enhance the 

appearance or performance.  Suppose a thinner tire is put on with a larger wheel 

raising the mass to 45 kg.  What effect does this have on the frequency? 

 

 

 

 

Figure P1.27 

 Solution:  (a) Ignoring the moment of inertial of the rod, and computing the 

moment of inertia of the wheel as   mx
2
, the frequency of the shaft mass system is  

!n =
k

mx
2

=
2000 N "m

38 "kg (0.26 m)
2

= 27.9 rad/s  

 (b)  The same calculation with 45 kg will reduce the frequency to 

!n =
k

mx
2

=
2000 N "m

45 "kg (0.26 m)
2

= 25.6 rad/s  

This corresponds to about an 8% change in unsprung frequency and could 

influence wheel hop etc.  You could also ask students to examine the effect of 

increasing x, as commonly done on some trucks to extend the wheels out for 

appearance sake. 

 



1.28 A machine oscillates in simple harmonic motion and appears to be well modeled 

by an undamped single-degree-of-freedom oscillation.  Its acceleration is 

measured to have an amplitude of 10,000 mm/s
2
 at 8 Hz.  What is the machine's 

maximum displacement?  

 

 Solution: 

 Given: amax = 10,000 mm/s
2
 @  8 Hz 

The equations of motion for position and acceleration are: 

  

 

x = Asin(!nt + ")             (1.3)

!!x = #A!n

2
sin(!nt + ")      (1.5)

 

 The amplitude of acceleration is 000,10
2

=nA!  mm/s
2
 and ωn = 2πf = 2π(8) = 

16π rad/s, from equation (1.12). 

 The machine's displacement is 

( )
22

16

000,10000,10

!"

==

n

A  

 A = 3.96 mm 

 

 

1.29 A simple undamped spring-mass system is set into motion from rest by giving it 

an initial velocity of 100 mm/s.  It oscillates with a maximum amplitude of 10 

mm.  What is its natural frequency? 

  

Solution: 

 Given: x0 = 0, v0 = 100 mm/s, A = 10 mm 

 From equation (1.9), 

n

v
A

!

0
=  or 

10

1000
==

A

v
n! ,  so that:   ωn= 10 rad/s 



1.30 An automobile exhibits a vertical oscillating displacement of maximum amplitude 

5 cm and a measured maximum acceleration of 2000 cm/s
2
.  Assuming that the 

automobile can be modeled as a single-degree-of-freedom system in the vertical 

direction, calculate the natural frequency of the automobile. 

  

Solution: 

 Given:  A = 5 cm.  From equation (1.15) 

  cm/s 2000
2

== nAx !!!  

 Solving for ωn yields: 

  

  

!n =
2000

A
=

2000

5

!n = 20rad/s

 



Problems Section 1.3  (Numbers 1.31 through 1.46) 
 

1.31 Solve 04 =++ xxx !!!  for x0 = 1 mm, v0 = 0 mm/s.  Sketch your results and 

determine which root dominates. 

 Solution: 

 Given 0 mm, 1  where04 00 ===++ vxxxx !!!  

 Let 

Substitute these into the equation of motion to get: 

ar
2
e

rt
+ 4are

rt
+ ae

rt
= 0

! r
2

+ 4r +1 = 0 ! r
1,2

= "2 ± 3
 

 So 

 

x = a
1
e

!2 + 3( ) t
+ a

2
e

!2 ! 3( ) t

˙ x = ! 2 + 3( )a
1
e

!2+ 3( ) t
+ ! 2 ! 3( )a

2
e

!2! 3( ) t
 

Applying initial conditions yields, 

 
 

 

Substitute equation (1) into (2) 

 

 
 
 Solve for a2 

      
 

Substituting the value of a2 into equation (1), and solving for a1 yields, 

 
 
 

! x(t) =

v
0

+ 2 + 3( )x
0

2 3
e

"2+ 3( ) t
+

"v
0

+ " 2 + 3( )x
0

2 3
e

"2" 3( ) t  

The response is dominated by the root:  !2 + 3    as the other root dies off 

very fast. 

x
0

= a
1

+ a
2

! x
0
" a

2
= a

1
(1)

v
0

= " 2 + 3( ) a
1

+ " 2 " 3( )a2
(2)

 

v
0

= ! 2 + 3( )(x0
! a

2
) + ! 2 ! 3( )a2

v
0

= ! 2 + 3( )x0
! 2 3 a

2

 

a
2

=
!v

0
+ ! 2 + 3( ) x

0

2 3
 

a
1

=
v

0
+ 2 + 3( ) x

0

2 3
 

 x = ae
rt
! !x = are

rt
! !!x = ar

2
e

rt
 



 

1.32 Solve 022 =++ xxx !!!  for x0 = 0 mm, v0 = 1 mm/s and sketch the response.  You 

may wish to sketch x(t) = e-t and x(t) =-e-t
 first. 

 Solution: 

 Given 02 =++ xxx !!!  where x0 = 0, v0 = 1 mm/s 

 Let: x = ae
rt
! !x = are

rt
! !!x = ar

2
e

rt
 

 Substitute into the equation of motion to get 

 ar
2
e

rt
+ 2are

rt
+ ae

rt
= 0 ! r

2
+ 2r +1 = 0 ! r

1,2
= "1 ± i  

 So 

 
 
x = c

1
e

!1+ i( ) t
+ c

2
e

!1! i( ) t
" !x = !1+ i( )c

1
e

!1+ i( ) t
+ !1! i( )c

2
e

!1! i( ) t
 

 Initial conditions: 

 

 

 

Substituting equation (1) into (2) 

  

 

 

 

 

Applying Euler’s formula 

 

 

 

 

Alternately use equations (1.36) and (1.38).  The plot is similar to figure 1.11.

x
0

= x 0( ) = c
1

+ c
2

= 0 ! c
2

= "c
1

(1)

v
0

= ˙ x 0( ) = "1+ i( )c
1

+ "1" i( )c
2

=1 (2)
 

v
0

= !1 + i( )c1
! !1! i( )c1

= 1

c
1

= !
1

2
i, c

2
=

1

2
i

x t( ) = !
1

2
ie

!1+i( ) t
+

1

2
ie

!1! i( ) t
= !

1

2
ie

! t
e

it
! e

!it
( )

 

x t( ) = !
1

2
ie

!t
cos t + isin t ! (cos t ! i sin t)( )  

x t( ) = e
! t

sin t  



1.33 Derive the form of λ1 and λ2 given by equation (1.31) from equation (1.28) 

and the definition of the damping ratio. 

 

 Solution: 

 Equation (1.28): kmc
mm

c
4

2

1

2

2
2,1 !±!="  

 Rewrite, !
1,2

= "
c

2 m m

#
$%

&
'(

k

k

#

$%
&

'(
±

1

2 m m

k

k

#

$%
&

'(
c

c

#
$%

&
'(

c
2 " 2 km

2

( )
c

c

#
$%

&
'(

2

 

 Rearrange,!
1,2

= "
c

2 km

#
$%

&
'(

k

m

#

$%
&

'(
±

c

2 km

k

m

#

$%
&

'(
1

c

#
$%

&
'(

c
2

1"
2 km

c

#

$%
&

'(

2)

*
+
+

,

-
.
.

 

 Substitute: 

!n =
k

m
 and " =

c

2 km
#$

1,2
= %"!n ±"!n

1

c

&
'(

)
*+

c 1%
1

" 2

&
'(

)
*+

                                           #$
1,2

= %"!n ±!n " 2
1%

1

" 2

&
'(

)
*+

,

-
.

/

0
1

                                           #$
1,2

= %"!n ±!n " 2 %1

 



1.34 Use the Euler formulas to derive equation (1.36) from equation (1.35) and to 

determine the relationships listed in Window 1.4. 

 Solution: 

 Equation (1.35):  x t( ) = e
!"# nt

a
1
e( )

j# n 1!"
2

t

! a
2
e
! j# n 1!"

2
t
 

 From Euler,  

  

x t( ) = e!"# nt
(a

1
cos #n 1 !" 2 t( ) + a

1
j sin #n 1 !" 2 t( )

                        + a
2

cos #n 1 !" 2
t( ) ! a

2
j sin #n 1 !" 2

t( ))

= e
!"# nt

a
1

+ a
2( )cos#d t + j a

1
! a

2( )sin#d t

 

  Let:  A1=( )
21

aa + , A2=( )
21

aa ! , then this last expression becomes 

  x t( ) = e
!"# nt

A
1
cos# dt + A

2
sin#d t  

  Next use the trig identity: 

  
2

11

21
tan,

A

A
AAA

!
="+=  

  to get: x t( ) = e
!"#nt

Asin(#dt + $)  

  



1.35 Using equation (1.35) as the form of the solution of the underdamped 

system, calculate the values for the constants a1 and a2 in terms of the initial 

conditions x0 and v0. 

 Solution: 

 Equation (1.35):  

x t( ) = e
!"# nt

a
1
e

j# n 1!"
2

t
+ a

2
e
! j# n 1!"

2
t( )  

˙ x t( ) = (!"#n + j#n 1! "2
)a

1
e

!"#n + j#n 1!" 2

( )t
+ (!"#n ! j# n 1 !" 2

)a
2

e
!"# n ! j#n 1!" 2

( )t

 

 Initial conditions 

  x
0

= x(0 ) = a
1

+ a
2
! a

1
= x

0
" a

2
     (1) 

  v
0

= ˙ x (0) = (!"# n + j#n 1 !" 2
)a

1
+ (!"#n ! j#n 1 !" 2

)a
2
 (2) 

 Substitute equation (1) into equation (2) and solve for a2 

  

v
0

= !"#n + j# n 1!" 2( )(x0
! a

2
) + !"#n ! j# n 1!" 2( )a2

v
0

= !"#n + j# n 1!" 2( )x0
! 2 j# n 1! " 2

a
2

 

 

 Solve for a2 

  a
2

=
!v

0
!"#nx0

+ j#n 1!" 2
x

0

2 j#n 1!" 2

 

 Substitute the value for a2 into equation (1), and solve for a1 

a
1

=
v

0
+ !"nx0

+ j"n 1#! 2
x

0

2 j"n 1#! 2

  



1.36 Calculate the constants A and φ in terms of the initial conditions and thus 

verify equation (1.38) for the underdamped case. 

Solution:  

From Equation (1.36),  

x(t) = Ae
!"#nt

sin #dt + $( )  

 Applying initial conditions (t  = 0) yields, 

!= sin
0

Ax                   (1) 

        !"+!#"$== cossin
00

AAxv
dn

!           (2) 

Next solve these two simultaneous equations for the two unknowns A and φ.  

From (1),   

!sin

0
x

A =                 (3) 

Substituting (3) into (1) yields 

!

"
+#"$=

tan

0

00

x
xv d

n    !    tan! =
x

0
"d

v
0

+#"nx
0

 .    

Hence,      

! = tan
"1

x
0
#d

v
0

+$#nx0

%

&
'

(

)
*             (4) 

From (3),   
A

x
0

sin =!                                                      (5) 

and From (4),  cos! =
v

0
+"#nx

0

x
0
# d( )

2

+ v
0

+"#nx
0( )

2
   (6)  

 

Substituting (5) and (6) into (2) yields, 

2

2

0

2

00
)()(

d

dn
xxv

A
!

!"! ++
=  

which are the same as equation (1.38)  

   



 

1.37 Calculate the constants a1 and a2 in terms of the initial conditions and thus verify  

equations (1.42) and (1.43) for the overdamped case. 

 

Solution:   From Equation (1.41) 

 x t( ) = e
!"# nt

a
1
e
#n "

2
!1 t

+ a
2
e
!# n "

2
!1 t( )  

taking the time derivative yields: 

˙ x t( ) = (!"#n +#n " 2
!1)a

1
e

!"# n +#n " 2
!1( )t

+ (!"# n !#n "2
!1)a

2
e
!"# n !# n " 2

!1( )t

 

 Applying initial conditions yields, 

 

x
0

= x 0( ) = a
1
+ a

2
! x

0
" a

2
= a

1
            (1)

v
0

= !x 0( ) = "#$n +$n # 2 " 1( )a1
+ "#$n "$n # 2 " 1( )a2

(2)
        

   Substitute equation (1) into equation (2) and solve for a2 

                         

v
0

= !"#n + #n " 2 !1( )(x0
! a

2
) + ! "# n !#n " 2 !1( )a2

v
0

= !"#n + #n " 2
!1( ) x

0
! 2#n " 2

!1 a
2

        

 Solve for a2 

a
2

=
!v

0
!"# n x

0
+#n " 2 !1 x

0

2#n " 2 !1
 

 Substitute the value for a2 into equation (1), and solve for a1 

a
1

=
v

0
+!"nx0

+"n ! 2 #1 x
0

2"n ! 2 #1

 

 

 

 

 

 

 

 



1.38     Calculate the constants a1 and a2 in terms of the initial conditions and thus verify  

equation (1.46) for the critically damped case. 

 

Solution: 

From Equation (1.45), 

 x(t) = (a
1

+ a
2
t)e

!" nt
 

 
 
! !x

0
= "#na1

e
"#nt

" #na2
te

"#nt
+ a

2
e
"#nt

 

 Applying the initial conditions yields: 

10
ax =    (1) 

and 

  
120

)0( aaxv
n

!"== !   (2) 

solving these two simultaneous equations for the two unknowns a1 and a2.  

Substituting (1) into (2) yields,   

 
01

xa =  

  
002

xva
n

!+=   

which are the same as equation (1.46). 



1.39 Using the definition of the damping ratio and the undamped natural frequency, 

derive equitation (1.48) from (1.47). 

 

Solution:  

m

k
n

=!   thus,  
2

n
m

k
!=  

km

c

2

=!  thus,  
n

m

km

m

c
!"=

!
= 2

2
 

Therefore, 0=++ x
m

k
x

m

c
x !!!  

becomes,  

 ˙ ̇ x (t) + 2!"n
˙ x (t) +"n

2
x(t ) = 0  

 

1.40 For a damped system, m, c, and k are known to be m = 1 kg, c = 2 kg/s, k = 10 

N/m. Calculate the value of ζ and ωn. Is the system overdamped, underdamped, or 

critically damped? 

 Solution: 

Given: m = 1 kg, c = 2 kg/s, k = 10 N/m 

 

Natural frequency: srad
m

k
n

/16.3
1

10
===!  

Damping ratio: 316.0
)1)(16.3(2

2

2
==

!
="

m

c

n

 

Damped natural frequency: 

  

!
d

= 10 1"
1

10

#

$%
&

'(

2

= 3.0  rad/s  

 

Since 0 < ζ < 1, the system is underdamped. 

 

 

 

 

 

 

 



 

 

 

1.41 Plot x(t) for a damped system of natural frequency ωn = 2 rad/s and initial 

conditions x0 = 1 mm, v0 = 1 mm, for the following values of the damping ratio: 

  ζ = 0.01, ζ = 0.2, ζ = 0.1, ζ = 0.4, and ζ = 0.8.  

 

 Solution: 
  
 Given: ωn = 2 rad/s, x0 = 1 mm, v0 = 1 mm, ζi = [0.01;  0.2;  0.1;  0.4;  0.8] 

 Underdamped cases: 

  

  !"di = "n 1 # $ i

2
 

 

 From equation 1.38, 

 

 Ai =
v

0
+! i"nx0( )

2

+ x
0
"di( )

2

"di

2
  !i = tan

"1 x
0
#di

v
0
+ $i#n x

0

 

 

The response is plotted for each value of the damping ratio in the following using 

Matlab: 

 

 

0 2 4 6 8 10 12 14 16 18 20
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t

x
(
t
)
,
 
m
m



1.42 Plot the response x(t) of an underdamped system with ωn = 2 rad/s, ζ = 0.1, and  

v0 = 0 for the following initial displacements: x0 = 10 mm and x0 = 100 mm. 

 

Solution: 
 
Given: ωn = 2 rad/s, ζ = 0.1, v0 = 0, x0 = 10 mm and x0 = 100 mm. 

 

Underdamped case: 

  

 !"d = "n 1 # $ i

2
= 2 1#0.1

2
= 1.99 rad/s  

 

 A =
v

0
+!" nx0( )

2

+ x
0
"d( )

2

"d

2
= 1.01 x

0
  

 

 ! = tan
"1 x

0
#d

v
0

+ $#n x
0

= 1.47 rad  

 

where 

 

 x(t) = Ae
!"#nt

sin #dt + $( )  

 

 

The following is a plot from Matlab. 
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1.43 Solve 0=+! xxx !!!  with x0 = 1 and v0 =0 for x(t) and sketch the response. 

Solution:  This is a problem with negative damping which can be used to tie into 

Section 1.8 on stability, or can be used to practice the method for deriving the 

solution using the method suggested following equation (1.13) and eluded to at 

the start of the section on damping.   To this end let x(t) = Ae
!t

 the equation of 

motion to get: 

(!
2
" ! +1)e

!t
= 0  

This yields the characteristic equation: 

!
2
" ! + 1 = 0 #! =

1

2
±

3

2
j,   where  j = "1  

There are thus two solutions as expected and these combine to form 

x(t) = e
0.5t

(Ae

3

2
jt

+ Be
!

3

2
jt

)  

Using the Euler relationship for the term in parenthesis as given in Window 1.4, 

this can be written as 

x(t) = e
0.5t

(A
1
cos

3

2
t + A

2
sin

3

2
t)  

Next apply the initial conditions to determine the two constants of integration:  

x(0) = 1 = A
1
(1) + A

2
(0)! A

1
=1 

 

Differentiate the solution to get the velocity and then apply the initial velocity 

condition to get 

 

!x(t) =

1

2
e

0
(A

1
cos

3

2
0 + A

2
sin

3

2
0) + e

0
3

2
(!A

1
sin

3

2
0 + A

2
cos

3

2
0) = 0

" A
1
+ 3(A

2
) = 0 " A

2
= !

1

3
,

                        " x(t) = e
0.5t

(cos
3

2
t !

1

3
sin

3

2
t)

 

This function oscillates with increasing amplitude as shown in the following plot 

which shows the increasing amplitude.  This type of response is referred to as a 

flutter instability. This plot is from Mathcad. 



 

 

 

 

 

1.44 A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m and 

damping coefficient of 300 kg/s.  Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

 

!n =
k

m
=

3000 N/m

100 kg
= 5.477 rad/s

" =
c

c
cr

=
300

2 km
=

300

2 (3000)(100)
= 0.274

 

 

Since ζ is less then 1, the solution is underdamped and will oscillate.  The damped 

natural frequency is!d = !n 1 "#2
= 5.27 rad/s. 

 

 

 



1.45 A sketch of a valve and rocker arm system for an internal combustion engine is 

give in Figure P1.45.  Model the system as a pendulum attached to a spring and a 

mass and assume the oil provides viscous damping in the range of ζ = 0.01. 

Determine the equations of motion and calculate an expression for the natural 

frequency and the damped natural frequency.  Here J is the rotational inertia of 

the rocker arm about its pivot point, k is the stiffness of the valve spring and m is 

the mass of the valve and stem.  Ignore the mass of the spring. 

 

 

 

Figure P1.45 

Solution: The model is of the form given in the figure. You may wish to give this figure 

as a hint as it may not be obvious to all students. 

 

 Taking moments about the pivot point yields: 

 

(J + m!
2
)""!(t) = "kx! " c"x! = "k!

2
! " c!

2 "!

             # (J + m!
2
)""!(t) + c!

2 "! + k!
2
! = 0

 

 Next divide by the leading coefficient to get; 

 

!!!(t) +
c"

2

J + m"
2

"
#$

%
&'
!!(t) +

k"
2

J + m"
2
!(t) = 0  



 From the coefficient of q, the undamped natural frequency is 

 

!n =
k!

2

J + m!
2

 rad/s  

 From equation (1.37), the damped natural frequency becomes 

 

!d = !n 1"# 2
= 0.99995

k!
2

J + m!
2
"

k!
2

J + m!
2

 

 This is effectively the same as the undamped frequency for any reasonable 

accuracy.  However, it is important to point out that the resulting response will 

still decay, even though the frequency of oscillation is unchanged.  So even 

though the numerical value seems to have a negligible effect on the frequency of 

oscillation, the small value of damping still makes a substantial difference in the 

response.  

  

1.46 A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and 

damping coefficient of  200 kg/s.  Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Is the system overdamped, 

underdamped or critically damped?  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

 

!n =
k

m
=

1500 N/m

150 kg
= 3.162 rad/s

" =
c

c
cr

=
200

2 km
=

200

2 (1500)(150)
= 0.211

 

This last expression follows from the equation following equation (1.29).  Since ζ 

is less then 1, the solution is underdamped and will oscillate.  The damped natural 

frequency is!d = !n 1 "# 2
= 3.091 rad/s , which follows from equation (1.37). 



1.47* The system of Problem 1.44 is given a zero initial velocity and an initial 

displacement of 0.1 m.  Calculate the form of the response and plot it for as long 

as it takes to die out. 

Solution: Working from equation (1.38) and using Mathcad the solution is: 

 



1.48* The system of Problem 1.46 is given an initial velocity of 10 mm/s and an initial 

displacement of -5 mm.  Calculate the form of the response and plot it for as long 

as it takes to die out.  How long does it take to die out? 

Solution: Working from equation (1.38), the form of the response is programmed 

in Mathcad and is given by: 

 

 

It appears to take a little over 6 to 8 seconds to die out.  This can also be plotted in 

Matlab, Mathematica or by using the toolbox. 

 



1.49* Choose the damping coefficient of a spring-mass-damper system with mass of 

150 kg and stiffness of 2000 N/m such that it’s response will die out after about 2 

s, given a zero initial position and an initial velocity of 10 mm/s. 

Solution: Working in Mathcad, the response is plotted and the value of c is 

changed until the desired decay rate is meet: 

 
 
 

 
 

 In this case ζ = 0.73 which is very large!  

k 2000

x0 0
v0 0.010

m 150

c 800

!n
k

m

!
c

.2 .m k

!d .!n 1 "
2

! atan

."d x0

v0 ..# "n x0

x t ..A sin .!n t " e
..# !n t

0 0.5 1 1.5 2 2.5 3

0.002

0.002

x t

t



 

1.50 Derive the equation of motion of the system in Figure P1.50 and discuss the effect 

of gravity on the natural frequency and the damping ratio. 

 

Solution: This requires two free body diagrams.   One for the dynamic case and 

one to show static equilibrium. 

!x

mg         x(t)            mg         y(t)

ky      cdy /dt                       k!x

 

    (a)   (b) 

From the free-body diagram of static equilibrium (b) we have that mg = kΔx, 

where Δx represents the static deflection.  From the free-body diagram of the 

dynamic case given in (a) the equation of motion is: 

m˙ ̇ y ( t) + c˙ y (t) + ky(t) ! mg = 0  

From the diagram, y(t) = x(t) + Δx.  Since Δx is a constant, differentiating and 

substitution into the equation of motion yields: 

  

˙ y (t) = ˙ x (t)  and  ˙ ̇ y ( t) = ˙ ̇ x ( t)!

m˙ ̇ x (t) + c ˙ x ( t) + kx(t) + (k"x # mg)

= 0

! " # $ # 
= 0  

where the last term is zero from the relation resulting from static equilibrium.  

Dividing by the mass yields the standard form 

˙ ̇ x (t) + 2!"n
˙ x (t) +"n

2
x(t ) = 0 

It is clear that gravity has no effect on the damping ratio ζ or the natural 

frequency ωn.  Not that the damping force is not present in the static case because 

the velocity is zero. 

 

  



 

1.51 Derive the equation of motion of the system in Figure P1.46 and discuss the effect 

of gravity on the natural frequency and the damping ratio.  You may have to make 

some approximations of the cosine.  Assume the bearings provide a viscous 

damping force only in the vertical direction. (From the A. Diaz-Jimenez, South 

African Mechanical Engineer, Vol. 26, pp. 65-69, 1976) 

 

 Solution: First consider a free-body diagram of the system: 

 x(t)

c ˙ x (t)
  k!!

 

Let α be the angel between the damping and stiffness force.  The equation of 

motion becomes 

  
m˙ ̇ x (t) = !c˙ x (t) ! k("! +# s )cos$  

From static equilibrium, the free-body diagram (above with c = 0 and stiffness 

force kδs) yields: Fx = 0 = mg ! k" s cos#$ .  Thus the equation of motion 

becomes 

  m˙ ̇ x + c ˙ x + k!!cos" = 0     (1) 

Next consider the geometry of the dynamic state: 



   h

   x        !

  

    !

"

  ! +# !

 

From the definition of cosine applied to the two different triangles: 

  

cos! =
h

!
   and  cos" =

h + x

! + #!
   

Next assume small deflections so that the angles are nearly the same cos α = cos 

θ, so that 

  

h

!
!

h + x

!+ "!
# "! ! x

!

h
# "! !

x

cos$
 

For small motion, then this last expression can be substituted into the equation of 

motion (1) above to yield: 

m˙ ̇ x + c ˙ x + kx = 0 , α and x small 

Thus the frequency and damping ratio have the standard values and are not 

effected by gravity.  If the small angle assumption is not made, the frequency can 

be approximated as 

 

!n =
k

m
cos

2" +
g

h
sin

2 " ,    # =
c

2m! n

 

as detailed in the reference above.  For a small angle these reduce to the normal 

values of 

!n =
k

m
,    and  " =

c

2m! n

 

as derived here. 

 

 

 



Problems and Solutions Section 1.4 (problems 1.52 through 1.65) 

1.52 Calculate the frequency of the compound pendulum of Figure 1.20(b) if a mass mT 

is added to the tip, by using the energy method. 

 Solution Using the notation and coordinates of Figure 1.20 and adding a tip mass 

the diagram becomes: 

 

 If the mass of the pendulum bar is m, and it is lumped at the center of mass the 

energies become: 

 Potential Energy:               

 

U =
1

2
(! ! !cos")mg + (! ! !cos")mtg

   =
!

2
(1! cos")(mg + 2mtg)

 

 Kinetic Energy:             

  

T =
1

2
J ˙ ! 

2
+

1

2
Jt

˙ ! 
2

=
1

2

m!2

3

˙ ! 
2

+
1

2
mt!

2 ˙ ! 
2

   = (
1

6
m +

1

2
mt )!

2 ˙ ! 
2

 

 Conservation of energy (Equation 1.52) requires T + U = constant: 

  

!

2
(1! cos")(mg + 2mtg) + (

1

6
m +

1

2
mt )!

2 ˙ " 
2

= C  

 Differentiating with respect to time yields:  

 

!

2
(sin!)(mg + 2mtg) "! + (

1

3
m + mt )!

2 "! ""! = 0

      " (
1

3
m + mt )!

""! +
1

2
(mg + 2mtg)sin! = 0

 

 Rearranging and approximating using the small angle formula sin θ ~ θ, yields: 

 θ          mt 



 

!!!(t) +

m

2
+ mt

1

3
m + mt

g

"

"

#

$
$
$

%

&

'
'
'
!(t) = 0 ()n =

3m + 6mt

2m + 6mt

g

"
 rad/s  

 Note that this solution makes sense because if mt = 0 it reduces to the frequency of 

the pendulum equation for a bar, and if m = 0 it reduces to the frequency of a 

massless pendulum with only a tip mass.   

 

1.53 Calculate the total energy in a damped system with frequency 2 rad/s and 

damping ratio ζ = 0.01 with mass 10 kg for the case x0 = 0.1 and v0 = 0.  Plot the 

total energy versus time. 

 Solution: Given:  ωn = 2 rad/s, ζ = 0.01, m = 10 kg, x0 = 0.1 mm, v0 = 0. 

 Calculate the stiffness and damped natural frequency: 

 

k = m! n

2
=10(2)

2
= 40 N/m

!d = !n 1"# 2
= 2 1 "0.01

2
= 2 rad/s

 

 The total energy of the damped system is 

E(t ) =
1

2
m ˙ x 

2
(t) +

1

2
kx(t)  

 where 
x(t) = Ae!0.02 t

sin(2t +" )

˙ x (t) = !0.02Ae!0.02 t
sin(2t + ") + 2Ae!0.02t

cos(2t + ")
 

 Applying the initial conditions to evaluate the constants of integration yields: 

x(0) = 0.1 = Asin!

˙ x (0) = 0 = "0.02Asin! + 2A cos!

#! = 1.56 rad/s,   A = 0.1  m

 

 Substitution of these values into E(t) yields: 





 

1.54 Use the energy method to calculate the equation of motion and natural frequency 

of an airplane's steering mechanism for the nose wheel of its landing gear.  The 

mechanism is modeled as the single-degree-of-freedom system illustrated in 

Figure P1.54. 

   

 The steering wheel and tire assembly are modeled as being fixed at ground for 

this calculation.  The steering rod gear system is modeled as a linear spring and 

mass system (m, k2) oscillating in the x direction.  The shaft-gear mechanism is 

modeled as the disk of inertia J and torsional stiffness k2.  The gear J turns 

through the angle θ such that the disk does not slip on the mass.  Obtain an 

equation in the linear motion x. 

 Solution: From kinematics: x = r! ," ˙ x = r ˙ !  

 Kinetic energy: 
22

2

1

2

1
xmJT !! += !  

 Potential energy: 
2

1

2

2

2

1

2

1 !kxkU +=  

 Substitute 
r

x
=! :

2

2

12

2

22

2
2

1

2

1

2

1

2

1
x

r

k
xkxmx

r

J
UT +++=+ !!  

 Derivative: 
( )

0=
+

dt

UTd
 

  

J

r
2

˙ ̇ x ̇  x + m˙ ̇ x ̇  x + k
2
x˙ x +

k
1

r
2

x˙ x = 0

J

r
2

+ m
! 

" 

# 

$ 
˙ ̇ x + k

2
+

k
1

r
2

! 

" 

# 

$ 
x

% 

& ' 

( 

) * 
˙ x = 0

 

 Equation of motion: 
J

r
2

+ m
! 

" 

# 

$ 
˙ ̇ x + k

2
+

k
1

r
2

! 

" 

# 

$ 
x = 0  

 Natural frequency: 

  

!
n

=

k
2

+
k

1

r
2

J

r
2

+ m

=
k

1
+ r

2
k

2

J + mr
2

 



1.55  A control pedal of an aircraft can be modeled as the single-degree-of-freedom 

system of Figure P1.55.  Consider the lever as a massless shaft and the pedal as a 

lumped mass at the end of the shaft.  Use the energy method to determine the 

equation of motion in θ and calculate the natural frequency of the system.  Assume 

the spring to be unstretched at θ = 0. 

 

  Figure P1.55 

Solution: In the figure let the mass at θ = 0 be the lowest point for potential energy.  

Then, the height of the mass m is (1-cosθ)2.  

 Kinematic relation:  x = 1θ 

 Kinetic Energy: 

  

T =
1

2
m ˙ x 

2
=

1

2
m!

2

2 ˙ ! 
2
 

 Potential Energy: 

  

U =
1

2
k(!

1
!)

2
+ mg!

2
(1 " cos! ) 

 Taking the derivative of the total energy yields: 

  

d

dt
(T + U ) = m!

2

2 ˙ ! ˙ ̇ ! + k(!
1

2
!) ˙ ! + mg!

2
(sin! ) ˙ ! = 0 

 Rearranging, dividing by dθ/dt and approximating sinθ with θ yields: 

  

m!
2

2˙ ̇ ! + (k!
1

2
+ mg!

2
)! = 0

               "# n =
k!

1

2
+ mg!

2

m!
2

2

 

 



1.56 To save space, two large pipes are shipped one stacked inside the other as 

indicated in Figure P1.56.  Calculate the natural frequency of vibration of the 

smaller pipe (of radius R1) rolling back and forth inside the larger pipe (of radius 

R).  Use the energy method and assume that the inside pipe rolls without slipping 

and has a mass m. 

 

Solution: Let θ be the angle that the line between the centers of the large pipe and 

the small pipe make with the vertical and let α be the angle that the small pipe 

rotates through.  Let R be the radius of the large pipe and R1 the radius of the 

smaller pipe. Then the kinetic energy of the system is the translational plus 

rotational of the small pipe.  The potential energy is that of the rise in height of 

the center of mass of the small pipe. 

R        !  

R – R1

y

R
1

x

 

From the drawing:  

y + (R! R
1
)cos" + R

1
= R

     # y = (R ! R
1
)(1! cos")

               # ˙ y = (R ! R
1
)sin(") ˙ " 

 

Likewise examination of the value of x yields: 

x = (R ! R
1
)sin"

       # ˙ x = (R! R
1
)cos" ˙ " 

 

Let β denote the angle of rotation that the small pipe experiences as viewed in the 

inertial frame of reference (taken to be the truck bed in this case).  Then the total 



kinetic energy can be written as: 

T = Ttrans + Trot =
1

2
m ˙ x 2 +

1

2
m ˙ y 2 +

1

2
I

0

˙ ! 
2

     =
1

2
m(R" R

1
)

2
(sin

2
# + cos

2
#) ˙ # 

2
+

1

2
I

0

˙ ! 
2

                           $ T =
1

2
m(R " R

1
)

2 ˙ # 
2

+
1

2
I

0

˙ ! 
2

 

The total potential energy becomes just: 

V = mgy = mg(R! R
1
)(1! cos")  

Now it remains to evaluate the angel β.   Let α be the angle that the small pipe 

rotates in the frame of the big pipe as it rolls (say) up the inside of the larger pipe.  

Then 

β = θ – α 

were α is the angle “rolled” out as the small pipe rolls from a to b  in figure 

P1.56. The rolling with out slipping condition implies that arc length a’b must 

equal arc length ab.  Using the arc length relation this yields that  Rθ =R1α.  

Substitution of the expression β = θ – α yields: 

 

R! = R
1
(! " # ) = R

1
! " R

1
# $ (R " R

1
)! = "R

1
#

    $ # =
1

R
1

(R
1
" R)!  and   ˙ # =

1

R
1

(R
1
" R) ˙ ! 

 

which is the relationship between angular motion of the small pipe relative to the 

ground (β) and the position of the pipe (θ). Substitution of this last expression into 

the kinetic energy term yields: 

T =
1

2
m(R! R

1
)

2 ˙ " 
2

+
1

2
I

0
(

1

R
1

(R
1
! R) ˙ " )

2

            #  T = m(R! R
1
)

2 ˙ " 
2

 

 

Taking the derivative of T + V  yields 

d

d!
T + V( ) = 2m(R" R

1
)

2 ˙ ! ˙ ̇ ! + mg(R" R
1
)sin! ˙ ! = 0

         # 2m(R " R
1
)

2 ˙ ̇ ! + mg(R " R
1
)sin! = 0

 

Using the small angle approximation for sine this becomes 

2m(R ! R
1
)

2 ˙ ̇ " + mg(R ! R
1
)" = 0

         # ˙ ̇ " +
g

2(R ! R
1
)
" = 0

                   #$ n =
g

2(R ! R
1
)

 

 

   



1.57 Consider the example of a simple pendulum given in Example 1.4.2.  The 

pendulum motion is observed to decay with a damping ratio of ζ = 0.001.  

Determine a damping coefficient and add a viscous damping term to the 

pendulum equation. 

 

 Solution: From example 1.4.2, the equation of motion for a simple pendulum is 

  0=+ !!
!

""
g

 

 So 

  

!n =
g

!
.  With viscous damping the equation of motion in normalized form 

becomes: 

  

˙ ̇ ! + 2"#n
˙ ! +#n

2! = 0  or with " as given :

                     $ ˙ ̇ ! + 2 .001( )# n
˙ ! + #n

2! = 0

 

 The coefficient of the velocity term is 

  

  

c

J
=

c

m!
2

= .002( )
g

!

c = 0.002( )m g!
3

 



1.58 Determine a damping coefficient for the disk-rod system of Example 1.4.3.  

Assuming that the damping is due to the material properties of the rod, determine 

c for the rod if it is observed to have a damping ratio of ζ = 0.01. 

 Solution: The equation of motion for a disc/rod in torsional vibration is 

  0=+ !! kJ !!  

 or ˙ ̇ ! + "n

2
! = 0 where "n =

k

J
 

 Add viscous damping: 

  

˙ ̇ ! + 2"#n
˙ ! +#n

2! = 0

˙ ̇ ! + 2 .01( )
k

J
˙ ! + #n

2! = 0

 

 From the velocity term, the damping coefficient must be 

  

  

c

J
= 0.02( )

k

J

   ! c = 0.02 kJ

 

 

1.59 The rod and disk of Window 1.1 are in torsional vibration.  Calculate the damped 

natural frequency if J = 1000 m
2
 ⋅  kg, c = 20 N⋅  m⋅ s/rad, and k = 400 N⋅m/rad. 

 Solution: From Problem 1.57, the equation of motion is 

  0=++ !!! kcJ !!!  

 The damped natural frequency is 

  !d = !n 1 "# 2
 

 where !n =
k

J
=

400

1000
= 0.632 rad/s  

 and ! =
c

2 kJ
=

20

2 400 "1000
= 0.0158 

 Thus the damped natural frequency is   !d = 0.632 rad/s  



1.60 Consider the system of P1.60, which represents a simple model of an aircraft 

landing system.  Assume, x = rθ.  What is the damped natural frequency? 

 

 Solution:  From Example 1.4.1, the undamped equation of motion is 

  m +
J

r
2

! 

" 

# 

$ 
˙ ̇ x + kx = 0 

 From examining the equation of motion the natural frequency is: 

!n =
k

meq

=
k

m +
J

r
2

 

 An add hoc way do to this is to add the damping force to get the damped equation 

of motion: 

  m +
J

r
2

! 

" 

# 

$ 
˙ ̇ x + c˙ x + kx = 0  

 The value of ζ is determined by examining the velocity term: 

c

m +
J

r
2

= 2!"n #! =
c

m +
J

r
2

1

2
k

m +
J

r
2

                #! =
c

2 k m +
J

r
2

$
%&

'
()

 

 Thus the damped natural frequency is 



!d = !n 1"# 2
=

k

m +
J

r
2

1"
c

2 k m +
J

r
2

$
%&

'
()

$

%

&
&
&
&

'

(

)
)
)
)

2

                       *!d =
k

m +
J

r
2

"
c

2

4 m +
J

r
2

$
%&

'
()

2
=

r

2(mr
2

+ J )
4(kmr

2
+ kJ ) " c

2
r

2

 

 

    

 

1.61 Consider Problem 1.60 with k = 400,000 N⋅m, m = 1500 kg, J = 100 m
2⋅kg, r = 25 

cm, and c = 8000 N⋅m⋅s.  Calculate the damping ratio and the damped natural 

frequency.  How much effect does the rotational inertia have on the undamped 

natural frequency? 

 Solution: From problem 1.60: 

  ! =
c

2 k m +
J

r 2

" 

# 

$ 

% 

 and &d =
k

m +
J

r
2

'
c2

4 m +
J

r 2

" 

# 

$ 

% 

2  

 Given: 

  

k = 4 ! 10
5
 Nm/rad

m = 1.5 !10
3
 kg

J = 100 m
2
kg

r = 0.25 m and

c = 8 !10
3
 N "m " s/rad

 

 Inserting the given values yields 

  ! = 0.114 and "d = 11.16 rad/s 

 For the undamped natural frequency, !n =
k

m + J / r
2

 

 With the rotational inertia, !n = 36.886 rad/s  

 Without rotational inertia, !n = 51.64 rad/s 



 The effect of the rotational inertia is that it lowers the natural frequency by almost 

33%. 

 

1.62 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.62.  Model each of the brackets as a spring 

of stiffness k, and assume the inertia of the pulleys is negligible. 

                         

                                                 Figure P1.62 

 

Solution: Let x denote the distance mass m moves, then each spring will deflects 

a distance x/4.  Thus the potential energy of the springs is  

  

U = 2 !
1

2
k

x

4

"
#$

%
&'

2

=
k

16
x

2
 

The kinetic energy of the mass is  

   
T =

1

2
m!x

2
 

Using the Lagrange formulation in the form of Equation (1.64): 

   

d

dt

!
!!x

1

2
m!x

2
"
#$

%
&'

"

#$
%

&'
+

!
!x

kx
2

16

"

#$
%

&'
= 0 (

d

dt
m!x( ) +

k

8
x = 0

                                 ( m!!x +
k

8
x = 0 ()

n
=

1

2

k

2m
 rad/s

 

 

1.63 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.63.  This figure represents a simplified 

model of a jet engine mounted to a wing through a mechanism which acts as a 

spring of stiffness k and mass ms. Assume the engine has inertial J and mass m 

and that the rotation of the engine is related to the vertical displacement of the 

engine, x(t) by the “radius” r0 (i.e. 
  
x = r

0
! ). 

 

 



 

Figure P1.63 

 Solution: This combines Examples 1.4.1 and 1.4.4.  The kinetic energy is  

   

T =
1

2
m!x

2
+

1

2
J !! 2

+ T
spring

=
1

2
m +

J

r
0

2

"

#
$

%

&
' !x

2
+ T

spring
 

The kinetic energy in the spring (see example 1.4.4) is 

   
T

spring
=

1

2

m
s

3
!x

2
 

Thus the total kinetic energy is  

   

T =
1

2
m +

J

r
0

2
+

m
s

3

!

"
#

$

%
& !x

2
 

The potential energy is just  

  
U =

1

2
kx

2
 

Using the Lagrange formulation of Equation (1.64) the equation of motion results 

from: 

   

d

dt

!
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2
m +

J

r
0

2
+

m
s

3

"

#
$

%

&
' !x

2
"

#
$

%

&
'

"

#
$$

%

&
''

+
!
!x

1

2
kx

2
"
#$

%
&'

= 0

                           ( m +
J

r
0

2
+

m
s

3

"

#
$

%

&
' !!x + kx = 0

                                          ()
n

=
k

m +
J

r
0

2
+

m
s

3

"

#
$

%

&
'

 rad/s

 

 

1.64 Lagrange’s formulation can also be used for non-conservative systems by adding 

the applied non-conservative term to the right side of equation (1.64) to get  

   

d

dt

!T

! !q
i

"

#$
%

&'
(
!T

!q
i

+
!U

!q
i

+
!R

i

! !q
i

= 0  



Here Ri is the Rayleigh dissipation function defined in the case of a viscous 

damper attached to ground by 

   
R

i
=

1

2
c !q

i

2
 

Use this extended Lagrange formulation to derive the equation of motion of the 

damped automobile suspension of Figure P1.64 

 

 

Figure P1.64 

 

 Solution: The kinetic energy is (see Example 1.4.1): 

   
T =

1

2
(m +

J

r
2
) !x

2
 

 The potential energy is: 

  
U =

1

2
kx

2
 

 The Rayleigh dissipation function is 

   
R =

1

2
c !x

2
 

 The Lagrange formulation with damping becomes 

   

d
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2
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= 0

                                         ) (m +
J

r
2
)!!x + c !x + kx = 0

 



1.65 Consider the disk of Figure P1.65 connected to two springs.  Use the energy 

method to calculate the system's natural frequency of oscillation for small angles 

θ(t). 

 

 Solution: 

 Known:  x = r! , ˙ x = r ˙ !  and 
2

2

1
mrJ

o
=  

 Kinetic energy: 

  

Trot =
1

2
Jo

˙ ! 
2

=
1

2

mr
2

2

" 

# 

$ % 

& 
!2

=
1

4
mr2 ˙ ! 

2

Ttrans =
1

2
m ˙ x 

2
=

1

2
mr

2 ˙ ! 
2

T = Trot + Ttrans =
1

4
mr

2 ˙ ! 
2

+
1

2
mr

2 ˙ ! 
2

=
3

4
mr

2 ˙ ! 
2

 

 Potential energy: U = 2
1

2
k a + r( )![ ]

2" 

# 

$ 

% 
= k a + r( )

2!2
 

 Conservation of energy: 

  

T + U =  Constant

d

dt
T + U( ) = 0

d

dt

3

4
mr

2 ˙ ! 
2

+ k a + r( )
2! 2" 

# 

$ 

% 
= 0

3

4
mr2

2 ˙ ! ˙ ̇ ! ( ) + k a + r( )
2

2 ˙ ! !( ) = 0

3

2
mr2˙ ̇ ! + 2k a + r( )

2! = 0

 

 Natural frequency: 

  

!n =
keff

meff

=
2k a + r( )

2

3

2
mr

2

!n = 2
a + r

r

k

3m
 rad/s

 

 

 



Problems and Solutions Section 1.5 (1.66 through 1.74)  

 

1.66 A helicopter landing gear consists of a metal framework rather than the coil 

spring based suspension system used in a fixed-wing aircraft.  The vibration of the 

frame in the vertical direction can be modeled by a spring made of a slender bar 

as illustrated in Figure 1.21, where the helicopter is modeled as ground.  Here l = 

0.4 m, E = 20 × 10
10

 N/m
2
, and m = 100 kg.  Calculate the cross-sectional area that 

should be used if the natural frequency is to be fn = 500 Hz. 

 Solution:  From Figure 1.21 

  !n =
k

m
=

EA

lm
 (1) 

 and 

  !n = 500 Hz
2" rad

1 cycle

# 

$ 

% & 

' 
= 3142 rad/s 

 Solving (1) for A yields: 

A =
!n

2lm

E
=

3142( )
2

.4( ) 100( )

20 "10
10

A = 0.0019 m
2

= 19cm
2

 



1.67 The frequency of oscillation of a person on a diving board can be modeled as the 

transverse vibration of a beam as indicated in Figure 1.24.  Let m be the mass of 

the diver (m = 100 kg) and l = 1 m.  If the diver wishes to oscillate at 3 Hz, what 

value of EI should the diving board material have? 

  

 Solution: From Figure 1.24, 

  !n

2
=

3EI

ml
3

 

 and 

  !n = 3Hz
2" rad

1 cycle

# 

$ 

% & 

' 
= 6" rad/s 

 Solving for EI 

  

  
EI =

!
n

2
ml

3

3
=

6"( )
2

100( ) 1( )
3

3
= 11843.5 Nm

2
 

 

 

1.68 Consider the spring system of Figure 1.29.  Let k1 = k5 = k2 =100 N/m, k3 = 50 

N/m, and k4 = 1 N/m.  What is the equivalent stiffness? 

  

 Solution: Given: k
1

= k
2

= k
5

= 100 N/m,k
3

= 50 N/m,  k
4

= 1 N/m  

 From Example 1.5.4 

  

keq = k
1
+ k

2
+ k

5
+

k
3
k

4

k
3

+ k
4

                        ! keq = 300.98 N/m

 



1.69 Springs are available in stiffness values of 10, 100, and 1000 N/m.  Design a 

spring system using these values only, so that a 100-kg mass is connected to 

ground with frequency of about 1.5 rad/s. 

  

 Solution: Using the definition of natural frequency: 

  !n =
keq

m
 

 With m = 100 kg and ωn = 1.5 rad/s the equivalent stiffness must be: 

 keq = m!n

2
= 100( ) 1.5( )

2

= 225 N/m   

There are many configurations of the springs given and no clear way to determine 

one configuration over another.  Here is one possible solution.  Choose two 100 

N/m springs in parallel to get 200 N/m, then use four 100 N/m springs in series to 

get an equivalent spring of 25 N/m to put in parallel with the other 3 springs since 

keq =
1

1

k
1

+
1

k
2

+
1

k
3

+
1

k
4

=
1

4 100
= 25  

Thus using six 100 N/m springs in the following arrangement will produce an 

equivalent stiffness of 225 N/m 

 

 

 

 

1 

 

2 

 

3 

 

4 

5 6 



1.70 Calculate the natural frequency of the system in Figure 1.29(a) if k1 = k2 = 0.  

Choose m and nonzero values of k3, k4, and k5 so that the natural frequency is 100 

Hz. 

  

 Solution: Given:  k
1

= k
2

= 0 and ! n = 2" 100( ) = 628.3 rad/s  

 From Figure 1.29, the natural frequency is 

  !n =
k

5
k

3
+ k

5
k

4
+ k

3
k

4

m k
3

+ k
4( )

and keq = k
5

+
k

3
k

4

k
3

+ k
4

" 

# 

$ 
% 

& 

'  

 Equating the given value of frequency to the analytical value yields: 

  !n

2
= 628.3( )

2

=
k

5
k

3
+ k

5
k

4
+ k

3
k

4

m k
3

+ k
4( )

 

 Any values of k3, k4, k5, and m that satisfy the above equation will do.  Again, the 

answer is not unique.  One solution is 

  kg 127.0 and N/m, 000,50 N/m, 1,N/m 1
543

==== mkkk  

1.71* Example 1.4.4 examines the effect of the mass of a spring on the natural 

frequency of a simple spring-mass system.  Use the relationship derived there and 

plot the natural frequency versus the percent that the spring mass is of the 

oscillating mass.  Use your plot to comment on circumstances when it is no longer 

reasonable to neglect the mass of the spring. 

Solution: The solution here depends on the value of the stiffness and mass ratio 

and hence the frequency.  Almost any logical discussion is acceptable as long as 

the solution indicates that for smaller values of ms, the approximation produces a 

reasonable frequency.  Here is one possible answer.  For 



 

From this plot, for these values of m and k it looks like a 10 % spring mass 
causes less then a 1 % error in the frequency. 

 

 

  



1.72    Calculate the natural frequency and damping ratio for the system in Figure P1.72 

given the values m = 10 kg, c = 100 kg/s, k1 = 4000 N/m, k2 = 200 N/m and k3 = 

1000 N/m.  Assume that no friction acts on the rollers.  Is the system overdamped, 

critically damped or underdamped? 

 

     Figure P1.72 

 Solution: Following the procedure of Example 1.5.4, the equivalent spring 

constant is:   

� 

keq = k
1

+
k

2
k

3

k
2

+ k
3

= 4000 +
(200)(1000)

1200
= 4167 N/m 

Then using the standard formulas for frequency and damping ratio: 

� 

!n =
keq

m
=

4167

10
= 20.412 rad/s

" =
c

2m!n

=
100

2(10)(20.412)
= 0.245

 

Thus the system is underdamped. 

 

1.73   Repeat Problem 1.72 for the system of Figure P1.73. 

 

Figure P1.73 

Solution: Again using the procedure of Example 1.5.4, the equivalent spring 

constant is:   

keq = k
1

+ k
2

+ k
3

+
k

4
k

5

k
4

+ k
5

= (10 +1 + 4 +
2 !3

2 +3
)kN/m = 16.2 kN/m  

Then using the standard formulas for frequency and damping ratio: 



!n =
keq

m
=

16.2 "10
3

10
= 40.25 rad/s

# =
c

2m!n

=
1

2(10)(40.25)
= 0.00158

 

Thus the system is underdamped. 

 

1.74 A manufacturer makes a cantilevered leaf spring from steel (E = 2 x 10
11

 N/m
2
) 

and sizes the spring so that the device has a specific frequency.  Later, to save weight, the 

spring is made of aluminum (E = 7.1 x 10
10

 N/m
2
).  Assuming that the mass of the spring 

is much smaller than that of the device the spring is attached to, determine if the 

frequency increases or decreases and by how much. 

 Solution:  Use equation (1.68) to write the expression for the frequency twice:  

  

!
al

=
3E

al

m!
3

   and !
steel

=
3E

steel

m!
3

 rad/s  

 Dividing yields: 

  

!
al

!
steel

=

3E
al

m!3

3E
steel

m!3

=
7.1 "10

10

2 "10
11

= 0.596 

 Thus the frequency is decreased by about 40% by using aluminum.  

 

 



Problems and Solutions Section 1.6 (1.75 through 1.81)  

 

 

1.75 Show that the logarithmic decrement is equal to 

  ! =
1

n
ln

x
0

xn

 

 where xn  is the amplitude of vibration after n cycles have elapsed. 

 Solution: 

  

  

ln
x t( )

x t + nT( )

!

"
#
#

$

%
&
&

= ln
Ae

'()
n
t
sin )

d
t + *( )

Ae
'()

n
t + nt( )

sin )
d
t +)

d
nT + *( )

!

"

#
#

$

%

&
&

 (1) 

 Since n!d T = n 2"( ),   sin !d t + n!d T +#( ) = sin !d t + #( )  

 Hence, Eq. (1) becomes 

  

  

ln
Ae

!"#
n
t
sin #

d
t + $( )

Ae
!"#

n
t + nT( )

e
!"#

n
nt

sin #
d
t +#

d
nt + $( )

%

&

'
'

(

)

*
*

= ln e
"#

n
nT

( ) = n"#
n
T  

 Since 

  

ln
x t( )

x t + T( )

!

"
#
#

$

%
&
&

= '(
n
T = ) ,  

 Then 

  

ln
x t( )

x t + nT( )

!

"

#
#

$

%

&
&

= n'  

 Therefore, 

  ! =
1

n
ln

xo

xn

" original amplitude

" amplitude n cycles later
 

 Here x0 = x(0). 

 



1.76 Derive the equation (1.70) for the trifalar suspension system. 

 Solution: Using the notation given for Figure 1.29, and the following geometry: 

  

 

r

!

r !
"

l

r !

l h

 

 Write the kinetic and potential energy to obtain the frequency:  

 Kinetic energy: T
max

=
1

2
Io

˙ ! 
2

+
1

2
I ˙ ! 

2
 

 From geometry, !rx =  and ˙ x = r ˙ !  

  T
max

=
1

2
Io + I( )

˙ x 2

r
2

 

 Potential Energy: 

  U
max

= mo + m( )g l ! l cos"( )  

 Two term Taylor Series Expansion of cos φ! 1"
#2

2
:  

  U
max

= mo + m( )gl
!2

2

" 

# 

$ % 

& 
 

 For geometry, sin 
l

r!
" = , and for small φ, sin φ = φ so that φ

l

r!
=  

  

U
max

= mo + m( )gl
r

2!2

2l2

" 

# 

$ % 

& 

U
max

= mo + m( )g
r 2! 2

2l

" 

# 

$ % 

& 
 where r! = x

U
max

=
mo + m( )g

2l
x

2

 

 Conservation of energy requires that: 



  

T
max

= U
max

    !

1

2

Io + I( )

r 2
˙ x 2 =

mo + m( )g

2l
x2

 

 At maximum energy, x = A and ˙ x = !nA  

  

1

2

Io + I( )

r 2
!n

2
A

2
=

mo + m( )g

2l
A

2

             " Io + I( ) =
gr 2 mo + m( )

!n

2
l

 

 Substitute !n = 2"fn =
2"

T
 

  

Io + I( ) =
gr

2
mo + m( )

2! /T( )
2
l

I =
gT

2
r

2
mo + m( )

4!
2l

" Io

 

 were T is the period of oscillation of the suspension. 



1.77 A prototype composite material is formed and hence has unknown modulus.  An 

experiment is performed consisting of forming it into a cantilevered beam of 

length 1 m and I = 10
-9
 m

4
 with a 6-kg mass attached at its end.  The system is 

given an initial displacement and found to oscillate with a period of 0.5 s.  

Calculate the modulus E. 

 

 Solution:  Using equation (1.66) for a cantilevered beam, 

  T =
2!

"n

= 2!
ml3

3EI
 

 Solving for E and substituting the given values yields 

  

E =
4!

2ml3

3T
2
I

=
4!

2
6( ) 1( )

3

3 .5( )
2

10
"9

( )

                    # E = 3.16 $10
11

 N/m
2

 



1.78 The free response of a 1000-kg automobile with stiffness of k = 400,000 N/m is 

observed to be of the form given in Figure 1.32.  Modeling the automobile as a 

single-degree-of-freedom oscillation in the vertical direction, determine the 

damping coefficient if the displacement at t1 is measured to be 2 cm and 0.22 cm 

at t2. 

 Solution:  Given:  x1 = 2 cm and x2 = 0.22 cm where t2 = T + t1 

 Logarithmic Decrement:! = ln
x

1

x
2

= ln
2

0.22
= 2.207  

 Damping Ratio:

( )
331.0

207.24

207.2

4
2222

=

+

=

+

=

!"!

"
#  

 Damping Coefficient:  ( ) ( )( ) kg/s 256,131000000,400331.022 === kmc !  

 

 

 

 

1.79 A pendulum decays from 10 cm to 1 cm over one period.  Determine its damping 

ratio. 

 Solution: Using Figure 1.31: x
1

= 10 cm and x
2

= 1 cm  

 Logarithmic Decrement: 303.2
1

10
lnln

2

1
===

x

x
!  

 Damping Ratio:! =
"

4# 2
+ " 2

=
2.303

4# 2
+ 2.303( )

2
= 0.344  



1.80 The relationship between the log decrement δ and the damping ratio ζ is often 

approximated as δ =2πζ.  For what values of ζ would you consider this a good 

approximation to equation (1.74)? 

 Solution: From equation (1.74), 
2

1

2

!

"!
#

$
=  

 For small ζ, !"# 2=  

 A plot of these two equations is shown: 

 

 

 The lower curve represents the approximation for small ζ, while the upper curve 

is equation (1.74).  The approximation appears to be valid to about ζ = 0.3. 



1.81 A damped system is modeled as illustrated in Figure 1.10.  The mass of the 

system is measured to be 5 kg and its spring constant is measured to be 5000 N/m.  

It is observed that during free vibration the amplitude decays to 0.25 of its initial 

value after five cycles.  Calculate the viscous damping coefficient, c. 

 Solution: 

 Note that for any two consecutive peak amplitudes, 

  
xo

x
1

=
x

1

x
2

=
x

2

x
3

=
x

3

x
4

=
x

4

x
5

= e
!
 by definition 

  !
xo

x
5

=
1

0.25
=

x
0

x
1

"
x

1

x
2

"
x

2

x
3

"
x

3

x
4

"
x

4

x
5

= e
5#

 

 So, 

  ( ) 277.04ln
5

1
==!  

 and 

  044.0

4
22

=

+

=

!"

!
#  

 Solving for c, 

  
( ) ( )

s/m-N 94.13

55000044.022

=

==

c

kmc !
 

 



Problems and Solutions Section 1.7 (1.82 through 1.89)  

 

1.82 Choose a dashpot's viscous damping value such that when placed in parallel with 

the spring of Example 1.7.2 reduces the frequency of oscillation to 9 rad/s. 

 Solution: 

 The frequency of oscillation is !d = !n 1 "# 2
 

 From example 1.7.2:!n = 10 rad/s,  m = 10 kg,   and k =10
3
 N/m  

 So, 9 = 10 1 !" 2
 

  ! 0.9 = 1 "# 2
! (0.9)

2
=1 "# 2

 

    
 
! = 1" 0.9( )

2

= 0.436   

Then  

c = 2m!n" = 2(10)(10)(0.436) = 87.2 kg/s 

 

1.83 For an underdamped system, x0 = 0 and v0 = 10 mm/s.  Determine m, c, and k such 

that the amplitude is less than 1 mm. 

 Solution:  Note there are multiple correct solutions. The expression for the 

amplitude is: 

  

A
2

= x
0

2
+

(vo + !"nxo )
2

" d

2

for xo = 0 # A =
vo

"d

< 0.001 m #"d >
vo

0.001
=

0.01

0.001
= 10

 

 So 

  

!d =
k

m
1"# 2( ) >10

$
k

m
1" # 2

( ) >100,$ k = m
100

1 "# 2

 

 (1)  Choose ! = 0.01"
k

m
> 100.01 

 (2)  Choose m = 1 kg ! k > 100.01   

 (3)  Choose k = 144 N/m >100.01  

  

!"n = 144
rad

s
=12

rad

s

!"d = 11.99
rad

s

! c = 2m#"n = 0.24 
kg

s

 



1.84 Repeat problem 1.83 if the mass is restricted to lie between 10 kg < m < 15 kg. 

 

 Solution: Referring to the above problem, the relationship between m and k is 

k >1.01x10
-4
 m 

 after converting to meters from mm.  Choose m =10 kg and repeat the calculation 

at the end of Problem 1.82 to get ωn (again taking ζ = 0.01).  Then k = 1000 N/m 

and: 

 

  

!"n =
1.0 # 10

3

10

rad

s
=10 

rad

s

!"d = 9.998  
rad

s

! c = 2m$"n = 2.000 
kg

s

 

 



1.85 Use the formula for the torsional stiffness of a shaft from Table 1.1 to design a 1-

m shaft with torsional stiffness of 10
5
 N⋅m/rad. 

 Solution: Referring to equation (1.64) the torsional stiffness is 

  

  

kt =
GJp

!
 

 Assuming a solid shaft, the value of the shaft polar moment is given by 

  Jp =
!d 4

32
 

 Substituting this last expression into the stiffness yields:  

  

  

kt =
G!d4

32!
 

 Solving for the diameter d yields 

  

d =
kt 32( )!

G!
" 

# 

$ 

% 

1
4

 

Thus we are left with the design variable of the material modulus (G).  Choose 

steel, then solve for d.  For steel G = 8 × 10
10

 N/m
2
.  From the last expression the 

numerical answer is 

  

  

d =

10
5 Nm

rad
32( ) 1m( )

8 !10
10 N

m
2

"
#$

%
&'
(( )

)

*

+
+
+
+

,

-

.

.

.

.

1

4

= 0.0597 m  

   

1.86 Repeat Example 1.7.2 using aluminum.  What difference do you note? 

 Solution: 

 For aluminum G = 25 × 10
9
 N/m

2
 

 From example 1.7.2, the stiffness is k = 10
3
 = 

3

4

64nR

Gd
 and d = .01 m 

 So, 10
3

=
25 !10

9

( ) .01( )
4

64nR
3

 

 Solving for nR3
 yields:  nR3

 = 3.906 × 10
-3
m

3
 

 Choose R = 10 cm = 0.1 m, so that 



  

  

n =
3.906 !10

"3

0.1( )
3

= 4 turns  

 Thus, aluminum requires 1/3 fewer turns than steel.  

 

1.87 Try to design a bar (see Figure 1.21) that has the same stiffness as the spring of 

Example 1.7.2.  Note that the bar must remain at least 10 times as long as it is 

wide in order to be modeled by the formula of Figure 1.21. 

 Solution: 

 From Figure 1.21, 
l

EA
k =  

 For steel, E = 210 ! 10
9
 N/m

2
 

 From Example 1.7.2, k = 10
3
 N/m 

 So, 10
3

=
210 !10

9

( )A

l
 

        l = 2.1 !10
8

( )A 

 If A = 0.0001 m
2
 (1 cm

2
), then 

  l = 2.1 !10
8

( ) 10
"4

( ) = 21,000 m  21km or 13 miles( )  

Not very practical at all. 



1.88 Repeat Problem 1.87 using plastic (E = 1.40 × 10
9
 N/m

2
) and rubber (E = 7 × 10

6
 

N/m
2
).  Are any of these feasible? 

 Solution: 

 From problem 1.53, 
l

EA
k   N/m 10

3
==  

 For plastic, E = 1.40 ! 10
9
 N/m

2
 

 So, m 140=l  

 For rubber, E = 7 !10
6
 N/m

2
 

 So, m 7.0=l  

 Rubber may be feasible, plastic would not.  

 

1.89      Consider the diving board of Figure P1.89. For divers, a certain level of static       

deflection is desirable, denoted by Δ.  Compute a design formula for the dimensions 

of the board (b, h and ! ) in terms of the static deflection, the average diver’s mass, m, 

and the modulus of the board. 

 

Figure P1.89 

Solution: From Figure 1.15 (b),  !k = mg  holds for the static deflection.  The 

period is: 

  

T =
2!

"
n

= 2!
m

k
= 2!

m

mg / #
= 2!

#

g
                            (1) 

 From Figure 1.24, we also have that 

   

T =
2!

"
n

= 2!
m!

3

3EI
                                         (2) 

 Equating (1) and (2) and replacing I with the value from the figure yields: 



   

2!
m!

3

3EI
= 2!

12m!
3

3Ebh
3

= 2!
"

g
#
!

3

bh
3

=
"E

4mg
 

Alternately just use the static deflection expression and the expression for the 

stiffness of the beam from Figure 1.24 to get 

   

!k = mg " !
3EI

!
3

= mg "
!

3

bh
3

=
!E

4mg
 

 



 Problems and Solutions Section 1.8 (1.90 through 1.93)  

 

1.90 Consider the system of Figure 1.90 and (a)  write the equations of motion in terms 

of the angle, θ, the bar makes with the vertical.   Assume linear deflections of the 

springs and linearize the equations of motion.  Then (b) discuss the stability of the 

linear system’s solutions in terms of the physical constants, m, k, and  ! .  Assume 

the mass of the rod acts at the center as indicated in the figure. 

 

 

Figure P1.90 

 Solution:  Note that from the geometry, the springs deflect a distance 

   kx = k(!sin!)  and the cg moves a distance 
  
!

2
cos! .  Thus the total potential 

energy is 

   

   
U = 2 !

1

2
k(!sin")

2
#

mg!

2
cos"  

 and the total kinetic energy is 

   
T =

1

2
J

O
!!

2
=

1

2

m"
2

3

!!
2
 

 The Lagrange equation (1.64) becomes 

   

d

dt

!T

! !"
#
$%

&
'(

+
!U

!"
=

d

dt

m"
2

3

!"
#

$%
&

'(
+ 2k"sin" cos" )

1

2
mg"sin" = 0  

 Using the linear, small angle approximations  sin! " !   and  cos! " 1 yields 

   

a)    
m!

2

3

""! + 2k!
2 "

mg!

2

#
$%

&
'(
! = 0  

 Since the leading coefficient is positive the sign of the coefficient of θ determines 

the stability.  

 b)             

   

if   2k! !
mg

2
> 0 " 4k >

mg

!
"  the system is stable

if   4k = mg "#(t) = at + b"  the system is unstable

if   2k! !
mg

2
< 0 " 4k <

mg

!
"  the system is unstable

 



 Note that physically this results states that the system’s response is stable as long 

as the spring stiffness is large enough to over come the force of gravity. 

 

 

1.91 Consider the inverted pendulum of Figure 1.37 as discussed in Example 1.8.1.  

Assume that a dashpot (of damping rate c) also acts on the pendulum parallel to 

the two springs.  How does this affect the stability properties of the pendulum? 

 Solution: The equation of motion is found from the following FBD: 

  

m

l

c

k k

0

!

Fdash

mg

2Fsp +

 

 Moment about O: !Mo = I ˙ ̇ "  

 ml
2 ˙ ̇ ! = mgl sin! " 2
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2
cos!# 
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" c

l

2

˙ ! 
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l

2
cos!# 

$ 
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& 
 

 When θ is small, sinθ ≈ θ and cosθ ≈ 1 

  

ml2 ˙ ̇ ! +
cl

2

4

˙ ! +
kl

2

2
" mgl

# 

$ 

% & 

' 
! = 0

ml ˙ ̇ ! +
cl

4

˙ ! +
kl

2
" mg

# 

$ 

& 

' 
! = 0

 

 For stability, 
kl

2
> mg  and c  > 0. 

 The result of adding a dashpot is to make the system asymptotically stable. 



1.92 Replace the massless rod of the inverted pendulum of Figure 1.37 with a solid 

object compound pendulum of Figure 1.20(b).  Calculate the equations of 

vibration and discuss values of the parameter relations for which the system is 

stable. 

 Solution: 

  

m2

m1

k k

0

!

m2g

2Fsp +

 

 Moment about O:  !!!IM
o

="  

 m
1
g

l

2
sin! + m

2
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l

2
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$ 

% 

& 
=

1

3
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1
l

2
+ m

2
l

2# 

$ 

% 

& 
˙ ̇ !  

 When θ is small, sinθ ≈ θ and cosθ ≈ 1. 
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 For stability, 
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2
>

m
1

2
+ m

2

! 
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# 
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g.  

 

1.93 A simple model of a control tab for an airplane is sketched in Figure P1.93.  The 

equation of motion for the tab about the hinge point is written in terms of the 

angle θ from the centerline to be 

   
J !!! + (c " f

d
) !! + k! = 0 . 

 Here J is the moment of inertia of the tab, k is the rotational stiffness of the hinge, 

c is the rotational damping in the hinge and 
  
f

d
!!   is the negative damping provided 



by the aerodynamic forces (indicated by arrows in the figure).  Discuss the 

stability of the solution in terms of the parameters c and fd . 

 

Figure P1.93 A simple model of an airplane control tab 

Solution: The stability of the system is determined by the coefficient of  
!!  since 

the inertia and stiffness terms are both positive. There are three cases 

Case 1  c - fd > 0  and the system’s solution is of the form 
  
!(t) = e

"at
sin(#

n
t + $)  

and the solution is asymptotically stable. 

Case 2 c - fd < 0  and the system’s solution is of the form 
  
!(t) = e

at
sin("

n
t + #)  

and the solution is oscillates and grows without bound, and exhibits flutter 

instability as illustrated in Figure 1.36. 

Case 3 c = fd   and the system’s solution is of the form 
  
!(t) = Asin("

n
t + #)  and 

the solution is stable as illustrated in Figure 1.34. 

 

 



Problems and Solutions Section 1.9 (1.94 through 1.101)  

 

1.94*  Reproduce Figure 1.38 for the various time steps indicated. 

Solution: The code is given here in Mathcad, which can be run repeatedly with different 

Δt to see the importance of step size.  Matlab and Mathematica can also be used to show 

this. 

 

  



 

1.95*  Use numerical integration to solve the system of Example 1.7.3 with m = 1361 kg, 

k = 2.688 x 10
5
 N/m, c = 3.81 x 10

3
 kg/s subject to the initial conditions x(0) = 0 and v(0) 

= 0.01 mm/s.  Compare your result using numerical integration to just plotting the 

analytical solution (using the appropriate formula from Section 1.3) by plotting both on 

the same graph. 

Solution: The solution is shown here in Mathcad using an Euler integration.  This can 

also been done in the other codes or the Toolbox: 

 



 

 

 

1.96*  Consider again the damped system of Problem 1.95 and design a damper such that 

the oscillation dies out after 2 seconds.  There are at least two ways to do this. Here it is 

intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or 1.9.4, 

using different values of the damping parameter c until the desired response is achieved. 

Solution: Working directly in Mathcad (or use one of the other codes).  Changing c until 

the response dies out within about 2 sec yields c =6500 kg/s or ζ = 0.17. 

 



1.97*  Consider again the damped system of Example 1.9.2 and design a damper such 

that the oscillation dies out after 25 seconds.  There are at least two ways to do this. Here 

it is intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or 

1.9.4, using different values of the damping parameter c until the desired response is 

achieved. Is your result overdamped, underdamped or critically damped? 

Solution: The following Mathcad program is used to change c until the desired response 

results. This yields a value of c = 1.1 kg/s or ζ = 0.225, an underdamped solution. 

 



 

1.98*  Repeat Problem 1.96 for the initial conditions x(0) = 0.1 m and v(0) = 0.01 mm/s. 

 

Solution:  Using the code in 1.96 and changing the initial conditions does not change the 

settling time, which is just a function of ζ and ωn.  Hence the value of c = 6.5x10
3
 kg/s (ζ 

= 0.17) as determined in problem 1.96 will still reduce the response within 2 seconds. 

 



1.99*  A spring and damper are attached to a mass of 100 kg in the arrangement given in 

Figure 1.9.  The system is given the initial conditions x(0) = 0.1 m and v(0) = 1 mm/s.  

Design the spring and damper ( i.e. choose k and c) such that the system will come to rest 

in 2 s and not oscillate more than two complete cycles.  Try to keep c as small as 

possible.  Also compute ζ. 

Solution: In performing this numerical search on two parameters, several underdamped 

solutions are possible. Students will note that increasing k will decrease ζ. But increasing 

k also increases the number of cycles which is limited to two.  A solution with c = 350 

kg/s and k =2000 N/m is illustrated. 



1.100* Repeat Example 1.7.1 by using the numerical approach of the previous 5 

problems. 

Solution: The following Mathcad session can be used to solve this problem by varying 

the damping for the fixed parameters given in Example 1.7.1. 

  

The other codes or the toolbox may also be used to do this. 



 

1.101* Repeat Example 1.7.1 for the initial conditions x(0) = 0.01 m and v(0) = 1 mm/s. 

 

Solution: The above Mathcad session can be used to solve this problem by varying the 

damping for the fixed parameters given in Example 1.7.1.  For the given values of initial 

conditions, the solution to Problem 1.100 also works in this case.  Note that if x(0) gets 

too large, this problem will not have a solution.   

 

 



Problems and Solutions Section 1.10 (1.102 through 1.114)  

 

1.102 A 2-kg mass connected to a spring of stiffness 10
3
 N/m has a dry sliding friction 

force (Fc) of 3 N.  As the mass oscillates, its amplitude decreases 20 cm.  How 

long does this take? 

 Solution: With m = 2kg, and k = 1000 N/m the natural frequency is just 

!n =
1000

2
= 22.36 rad/s  

 From equation (1.101): slope =  

  

!2µmg"
n

#k
=
!2F

c
"

n

#k
=
$x

$t
 

 Solving the last equality for Δt yields:  

!t =
"!x#k

2 fc$n

=
"(0.20)(# )(10

3
)

2(3)(22.36)
= 4.68 s  

 

 

1.103 Consider the system of Figure 1.41 with m = 5 kg and k = 9 × 10
3
 N/m with a 

friction force of magnitude 6 N.  If the initial amplitude is 4 cm, determine the 

amplitude one cycle later as well as the damped frequency. 

 Solution: Given m = 5 kg, k = 9 !10
3
 N/m,  fc = 6 N,  x

0
= 0.04 m , the amplitude 

after one cycle is x
1

= x
0
!

4 fc

k
= 0.04 !

(4)(6)

9 "10
3

= 0.0373 m  

 Note that the damped natural frequency is the same as the natural frequency in the 

case of Coulomb damping, hence !n =
k

m
=

9 "10
3

5
= 42.43 rad/s  

 

 



1.104*  Compute and plot the response of the system of Figure P1.104 for the case where 

x0 = 0.1 m, v0 = 0.1 m/s, µκ = 0.05, m = 250 kg, θ = 20° and k =3000 N/m.  How long 

does it take for the vibration to die out? 

 

Figure P1.104 

Solution: Choose the x y coordinate system to be along the incline and perpendicular to 

it.  Let µs denote the static friction coefficient, µk the coefficient of kinetic friction and Δ 

the static deflection of the spring.  A drawing indicating the angles and a free-body 

diagram is given in the figure: 

 

For the static case 

  
F

x! = 0 " k# = µ
s
N + mg sin$ ,  and  F

y! = 0 " N = mg cos$  

For the dynamic case 

   

F
x! = m!!x = "k(x + #) + µ

s
N + mg sin$ " µ

k
N
!x

| !x |
 

Combining these three equations yields 

   

m!!x + µ
k
mg cos!

!x

!x
+ kx = 0  

Note that as the angle θ goes to zero the equation of motion becomes that of a spring 

mass system with Coulomb friction on a flat surface as it should.   

 



mgFs

Fn

Ff

mgFs

Fn

Ff

x 

y 

Answer: The oscillation dies out after about 0.9 s. This is illustrated in the following 

Mathcad code and plot. 

 

 

Alternate Solution (Courtesy of Prof. Chin An Tan of Wayne State University): 

Static Analysis: 

 

In this problem, ( )x t  is defined as the displacement of the mass 

from the equilibrium position of the spring-mass system under 

friction.  Thus, the first issue to address is how to determine this 

equilibrium position, or what is this equilibrium position.  In 

reality, the mass is attached onto an initially unstretched spring on 

the incline.  The free body diagram of the system is as shown.  The 

governing equation of motion is: 

mX k X= !!!
zero initially

sin
f

F mg "! +  

where ( )X t  is defined as the displacement measured from the unstretched position of the 

spring.  Note that since the spring is initially unstretched, the spring force 
s

F kX=  is zero 



initially.  If the coefficient of static friction 
s

µ  is sufficiently large, i.e., tan( )
s

µ !> , then 

the mass remains stationary and the spring is unstretched with the mass-spring-friction in 

equilibrium.  Also, in that case, the friction force cos

N

f s

F

F mgµ !"
!"#"$

, not necessarily equal 

to the maximum static friction.  In other words, these situations may hold at equilibrium: 

(1) the maximum static friction may not be achieved; and (2) there may be no 

displacement in the spring at all.  In this example, tan(20 ) 0.364=
!

 and one would expect 

that 
s

µ  (not given) should be smaller than 0.364 since 0.05
k

µ =  (very small).  Thus, one 

would expect the mass to move downward initially (due to weight overcoming the 

maximum static friction).  The mass will then likely oscillate and eventually settle into an 

equilibrium position with the spring stretched. 

 

 



Dynamic Analysis: 

 

The equation of motion for this system is: 

cos
x

mx kx mg
x

µ != " "
!

!!

!
 

where ( )x t  is the displacement measured from the equilibrium position.  Define 

1
( ) ( )x t x t=  and 

2
( ) ( )x t x t= ! .  Employing the state-space formulation, we transform the 

original second-order ODE into a set of two first-order ODEs.  The state-space equations 

(for MATLAB code) are: 

2

1

2 1

2

2

( )
( )

cos( )

x t
x td d

x kx
gx tdt dt

x m
µ !

" #
" # $ $

= =% & % &' '( ) $ $
( )

x
 

 

MATLAB Code: 

 

x0=[0.1, 0.1]; 
ts=[0, 5]; 
[t,x]=ode45('f1_93',ts,x0); 
plot(t,x(:,1), t,x(:,2)) 
title('problem 1.93'); grid on; 
xlabel('time (s)');ylabel('displacement (m), velocity (m/s)'); 
 
%--------------------------------------------- 
function xdot = f1_93(t,x) 
% computes derivatives for the state-space ODEs 
m=250; k=3000; mu=0.05; g=9.81; 
angle = 20*pi/180; 
xdot(1) = x(2); 
xdot(2) = -k/m*x(1) - mu*g*cos(angle)*sign(x(2)); 
% use the sign function to improve computation time 
xdot = [xdot(1); xdot(2)]; 
 

Plots for 0.05µ =  and 0.02µ =  cases are shown.  From the 0.05µ =  simulation results, 

the oscillation dies out after about 0.96 seconds (using ginput(1) command to 

estimate).  Note that the acceleration may be discontinuous at 0v =  due to the nature of 

the friction force. 

 

Effects of µ: 

 

Comparing the figures, we see that reducing µ leads to more oscillations (takes longer 

time to dissipate the energy).  Note that since there is a positive initial velocity, the mass 

is bounded to move down the incline initially.  However, if µ is sufficiently large, there 

may be no oscillation at all and the mass will just come to a stop (as in the case of 



0.05µ = ).  This is analogous to an overdamped mass-damper-spring system.  On the 

other hand, when µ is very small (say, close to zero), the mass will oscillate for a long 

time before it comes to a stop. 
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x0 = 0.1 m, v 0 = 0.1 m/s

µ = 0.05, m = 250 kg
k = 3,000 N/m, ! = 20 o

x
ss

 = -0.0261

x(t)

v(t)

The mass has no oscillation due
to sufficiently large friction.

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
problem 1.93

time (s)

d
i
s
p
l
a
c
e
m
e
n
t
 
(
m
)
,
 
v
e
l
o
c
i
t
y
 
(
m
/
s
)

x0 = 0.1 m, v 0 = 0.1 m/s
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k = 3,000 N/m, ! = 20o

a(t) is discontinuous due to friction
force changes direction as the mass
changes its direction of motion.

x(t)

v(t)

x
s s

 = -0.0114

 

 

Discussion on the ceasing of motion: 

 

Note that when motion ceases, the mass reaches another state of equilibrium.  In both 

simulation cases, this occurs while the mass is moving upward (negative velocity).  Note 

that the steady-state value of ( )x t  is very small, suggesting that this is indeed the true 

equilibrium position, which represents a balance of the spring force, weight component 

along the incline, and the static friction. 

 

 



 

1.105*  Compute and plot the response of a system with Coulomb damping of equation 

(1.90) for the case where x0 = 0.5 m, v0 = 0, µ = 0.1, m = 100 kg and k =1500 N/m.  How 

long does it take for the vibration to die out? 

Solution: Here the solution is computed in Mathcad using the following code.  Any of 

the codes may be used.  The system dies out in about 3.2 sec. 

 

 



1.106*  A mass moves in a fluid against sliding friction as illustrated in Figure P1.106.  

Model the damping force as a slow fluid (i.e., linear viscous damping) plus Coulomb 

friction because of the sliding, with the following parameters: m = 250 kg, µ =0.01, c = 

25 kg/s and k =3000 N/m .  a) Compute and plot the response to the initial conditions: x0 

= 0.1 m, v0 = 0.1 m/s. b) Compute and plot the response to the initial conditions: x0 = 0.1 

m, v0 = 1 m/s.  How long does it take for the vibration to die out in each case? 

 

Figure P1.106 

Solution: A free-body diagram yields the equation of motion. 

 mg

N

x(t)

fc1

f
c2

 kx(t)

 

 

 

m˙ ̇ x (t) + µmgsgn( ˙ x ) + c ˙ x (t) + kx(t) = 0 

where the vertical sum of forces gives 

the magnitude µN = µmg for the 

Coulomb force as in figure 1.41.

The equation of motion can be solved by using any of the codes mentioned or by using 

the toolbox.  Here a Mathcad session is presented using a fixed order Runge Kutta 

integration.  Note that the oscillations die out after 4.8 seconds for v0=0.1 m/s for the 

larger initial velocity of v0=1 m/s the oscillations go on quite a bit longer ending only 

after about 13 seconds.   While the next problem shows that the viscous damping can be 

changed to reduce the settling time, this example shows how dependent the response is 

on the value of the initial conditions.  In a linear system the settling time, or time it takes 

to die out is only dependent on the system parameters, not the initial conditions.  This 

makes design much more difficult for nonlinear systems. 



 



 

1.107*  Consider the system of Problem 1.106 part (a), and compute a new damping 

coefficient, c, that will cause the vibration to die out after one oscillation. 

Solution: Working in any of the codes, use the simulation from the last problem and 

change the damping coefficient c until the desired response is obtained.  A Mathcad 

solution is given which requires an order of magnitude higher damping coefficient, 

c = 275 kg/s 

 

 

 



 

1.108  Compute the equilibrium positions of ˙ ̇ x +!n

2
x + "x

2
= 0.  How many are there? 

Solution: The equation of motion in state space form is 

˙ x 
1

= x
2

˙ x 
2

= !"n

2x
1
! #x

1

2
 

 The equilibrium points are computed from: 

x
2

= 0

!" n

2 x
1
! #x

1

2
= 0

 

 Solving yields the two equilibrium points: 
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1.109 Compute the equilibrium positions of ˙ ̇ x +!n

2
x " #

2
x

3
+ $x

5
= 0. How many are 

there? 

Solution: The equation of motion in state space form is 

˙ x 
1

= x
2

˙ x 
2

= !"n

2x
1

+ #2x
1

3 ! $x
1

5
 

 The equilibrium points are computed from: 

x
2

= 0

!" n

2 x
1
+ #2 x

1

2 ! $x
1

5
= 0

 

Solving yields the five equilibrium points (one for each root of the previous 

equation). The first equilibrium (the linear case) is: 

x
1

x
2

! 

" 
# 

$ 

% 
& 

=
0

0

! 

" 
# 

$ 

% 
& 
  

 Next divide!" n

2
x

1
+ #

2
x

1

2
! $x

1

5
= 0 by x1 to obtain: 

!" n

2
+ #

2
x

1

2
!$x

1

4
= 0  

which is quadratic in x1

2
 and has the following roots which define the remaining 

four equilibrium points: x2  = 0 and 

x
1

= ±
!" 2

+ " 4 ! 4#$n

2

!2#

x
1

= ±
!" 2 ! " 4 ! 4#$n

2

!2#

 

 

 



 

1.110*  Consider the pendulum example 1.10.3 with length of 1 m an initial conditions of 

θ0 =π/10 rad and ˙ ! 
0

= 0.  Compare the difference between the response of the linear 

version of the pendulum equation (i.e. with sin(θ) = θ) and the response of the nonlinear 

version of the pendulum equation by plotting the response of both for four periods. 

 

Solution: First consider the linear solution.  Using the formula’s given in the text 

the solution of the linear system is just:!(t) = 0.314sin(3.132t + "
2
) .  The 

following Mathcad code, plots the linear solution on the same plot as a numerical 

solution of the nonlinear system. 
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Note how the amplitude of the nonlinear system is growing.  The difference 

between the linear and the nonlinear plots are a function of the ration of the linear 

spring stiffness and the nonlinear coefficient, and of course the size of the initial 

condition.  It is work it to investigate the various possibilities, to learn just when 

the linear approximation completely fails. 
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1.111*  Repeat Problem 1.110 if the initial displacement is θ0 = π/2 rad. 

Solution: The solution in Mathcad is: 

 
Here both solutions oscillate around the “stable” equilibrium, but the nonlinear 
solution is not oscillating at the natural frequency and is increasing in amplitude. 

 
 
 
 



1.112 If the pendulum of Example 1.10.3 is given an initial condition near the 

equilibrium position of θ0 = π rad and ˙ ! 
0

= 0, does it oscillate around this 

equilibrium? 

 

 Solution  The pendulum will not oscillate around this equilibrium as it is 

unstable.  Rather it will “wind” around the equilibrium as indicated in the solution 

to Example 1.10.4.   



 

1.113*  Calculate the response of the system of Problem 1.109 for the initial conditions 

of x0 = 0.01 m, v0 = 0, and a natural frequency of 3 rad/s and for β = 100, γ = 0. 

Solution: In Mathcad the solution is given using a simple Euler integration as follows: 

   

β:=100                
 

 

 
 
The other codes may be used to compute this solution as well. 
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This is the linear solution θ(t) 



 

1.114*  Repeat problem 1.113 and plot the response of the linear version of the system (β 

=0) on the same plot to compare the difference between the linear and nonlinear versions 

of this equation of motion. 

Solution: The solution is computed and plotted in the solution of Problem 1.113.  Note 

that the linear solution starts out very close to the nonlinear solution.  The two solutions 

however diverge.  They look similar, but the nonlinear solution is growing in amplitude 

and period. 
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Problems and Solutions Section 2.1 (2.1 through 2.15)  
 

2.1 To familiarize yourself with the nature of the forced response, plot the solution of a 

forced response of equation (2.2) with ω = 2 rad/s, given by equation (2.11) for a variety 

of values of the initial conditions and ωn as given in the following chart: 

 

Case x
0
 v

0
 f

0
 ωn 

1 0.1 0.1 0.1 1 

2 -0.1 0.1 0.1 1 

3 0.1 0.1 1.0 1 

4 0.1 0.1 0.1 2.1 

5 1 0.1 0.1 1 

 

Solution: Given: !  = 2 rad/sec. 

 From equation (2.11): 

  x(t) = 

n

v

!

0
sin 

n
! t + (x

0
 - 

22

0

!! "
n

f
) cos 

n
! t + 

22

0

!! "
n

f
 cos! t 

 

 Insert the values of x
0
, v

0
, f

0
, and !n for each of the five cases. 
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2.2 Repeat the calculation made in Example 2.1.1 for the mass of a simple spring-mass 

system where the mass of the spring is considered and known to be 1 kg. 

 
Solution: Given: m

sp
 = 1 kg, Example 1.4.4 yields that the effective mass is 

 m
e
 = m + 

3

sp
m

 = 10 +
3

1
 = 10.333 kg. 

 Thus the natural frequency, X and the coefficients in equation (2.11) for the system now 

become 

  

!
n

=
1000

10 + 1

3

= 9.837 rad/s, ! = 2!
n

= 19.675 rad/s

X =
f

0

!
n

2
"!

2
=

2.338

9.837
2
"19.675

2
= "8.053#10

"3
 m,  

v
0

!
n

= 0.02033 m

 

 Thus the response as given by equation (2.11) is 

 

x(t) = 0.02033sin9.837t + 8.053!10
"3

(cos9.837t " cos19.675t) m  

 
 

2.3 A spring-mass system is driven from rest harmonically such that the displacement 

response exhibits a beat of period of 0.2!  s.  The period of oscillation is measured to be 

0.02!  s.  Calculate the natural frequency and the driving frequency of the system. 

 
Solution: Given: Beat period: T

b
 = 0.2! s, Oscillation period: T

0
 = 0.02! s 

 Equation (2.13):  x(t) = 
22

0
2

!! "
n

f
sin 

  

!
n
"!

2
t

#

$
%

&

'
( sin

  

!
n

+!

2
t

"

#
$

%

&
'  

 

 So,    T
b
= 0.2! = 

!!

"

#
n

4
 

     !! "
n

 = 
!

!

2.0

4
 = 20 rad/s 

     T
0
 = 0.02!  = 

!!

"

+
n

4
 

     !! +
n

 = 
!

!

02.0

4
= 200 rad/s 

 Solving for 
n

! and !  gives: 

Natural frequency: 
n

!  = 110 rad/s 

 Driving frequency: !  = 90 rad/s 
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2.4 An airplane wing modeled as a spring-mass system with natural frequency 40 Hz is 

driven harmonically by the rotation of its engines at 39.9 Hz.  Calculate the period of the 

resulting beat. 

 
Solution: Given:  

n
! = 2! (40) = 80!  rad/s, !  = 2! (39.9) = 79.8!  rad/s 

 Beat period: T
b
= 

!!

"

#
n

4
= 

!!

!

8.7980

4

"
 = 20 s. 

 
 

2.5 Derive Equation 2.13 from Equation 2.12 using standard trigonometric identities. 

 

Solution: Equation (2.12): x(t) = 
22

0

!! "
n

f
 [cos ! t – cos 

n
! t] 

  Let  A =  
22

0

!! "
n

f
 

  x(t) = A [cos! t – cos 
n

! t] 

   = A [1 + cos! t – (1 + cos 
n

! t)] 

   = A [2cos
2

t
2

!
 – 2cos

2
tn

2

!
] 

   = 2A [(cos
2

t
2

!
 - cos

2

2

n
!

 cos
2

t
2

!
) - (cos

2
tn

2

!
 - cos

2
tn

2

!
 cos

2
t

2

!
)] 

   = 2A [(1 - cos
2

tn

2

!
) cos

2
t

2

!
 – (1 - cos

2
t

2

!
) cos

2
tn

2

!
] 

   = 2A [sin
2

t
2

!
 cos

2
t

2

!
 - cos

2
t

2

!
 sin

2
t

2

!
] 

   = 2A [sin tn

2

!
 cos t

2

!
 - cos tn

2

!
 sin t

2

!
] [sin tn

2

!
 cos t

2

!
 - cos tn

2

!
 sin t

2

!
] 

   = 2A sin 
!n "!

2
t

# 

$ 

% 

& 
 sin 

!n +!

2
t

" 

# 

$ 

% 
 

   x(t) = 
2 f

0

!n

2
" !

2
 sin 

!n "!

2
t

# 

$ 

% 

& 
 sin 

!n +!

2
t

" 

# 

$ 

% 
  which is Equation (2.13). 
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2.6 Compute the total response of a spring-mass system with the following values: k = 1000 

N/m, m = 10 kg, subject to a harmonic force of magnitude F
0
 = 100 N and frequency of 

8.162 rad/s, and initial conditions given by x
0
 = 0.01 m and v

0
 = 0.01 m/s.  Plot the 

response. 

 
Solution: Given:  k = 1000 N/m, m = 10 kg, F0=100 N, ω = 8.162 rad/s 

x0=0.01m, v0=0.01 m/s 

From Eq. (2.11):   

t
f

t
f

xt
v

tx

n

n

n

n
n

!

!!

!

!!

!
!

coscos)(sin)(
22

0

22

0
0

0

"

+

"

"+=  

srad
m

k
n /10

10

1000
===!               f

F

m
N m

0

0
100

10
10= = = /  

In Mathcad the solution is 
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2.7 Consider the system in Figure P2.7, write the equation of motion and calculate the 

response assuming a) that the system is initially at rest, and b) that the system has an 

initial displacement of 0.05 m. 

 
Solution:  The equation of motion is 

m ˙ ̇ x + k x = 10sin10t  

Let us first determine the general solution for 

˙ ̇ x +!n

2
x = f

0
sin! t  

Replacing the cosine function with a sine function in Eq. (2.4) and following the same 

argument, the general solution is: 

x(t) = A
1
sin!nt + A

2
cos!nt +

f
0

!n

2
"!

2
sin!t  

Using the initial conditions, x(0) = x
0
 and ˙ x (0) = v

0
, a general expression for the 

response of a spring-mass system to a harmonic (sine) excitation is: 

x(t) = (
v

0

!n

"
!

!n

#
f
0

!n

2
" !

2
)sin!nt + x

0
cos!nt +

f
0

!n

2
"!

2
sin!t  

Given:  k=2000 N/m, m=100 kg, ω=10 rad/s, 

  

!
n

=
k

m
=

2000

100
= 20 rad/s = 4.472 rad/s           f

0
=

F
0

m
=

10

100
= 0.1N/kg  

a) x0 = 0 m, v0 = 0 m/s 

Using the general expression obtained above: 

x(t) = (0 !
10

20
"

0.1

20
2

!10
2
)sin 20t + 0 +

0.1

20
2

! 10
2

sin10t  

  = 2.795!10
"3

sin4.472t "1.25!10
"3

sin10t  

b) x0 = 0.05 m, v0 = 0 m/s 

x(t) = (0 !
10

20
"

0.1

20
2

!10
2
)sin 20t + 0.05cos 20t +

0.1

20
2

!10
2

sin10t  

  

= 0.002795sin4.472t + 0.05cos4.472t ! 0.00125sin10t

          = 5.01"10
!2

sin(4.472t + 1.515) !1.25"10
!3

sin10t
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2.8  Consider the system in Figure P2.8, write the equation of motion and calculate the 

response assuming that the system is initially at rest for the values =
1

k 100 N/m, =
2

k  

500 N/m and m = 89 kg. 

 

Solution: The equation of motion is 

m ˙ ̇ x + k x = 10sin10 t          where    k =
1

1

k
1

+
1

k
2

 

The general expression obtained for the response of an underdamped spring-mass system 

to a harmonic (sine) input in Problem 2.7 was: 

x(t) = (
v

0

!n

"
!

!n

#
f
0

!n

2
" !

2
)sin!nt + x

0
cos!nt +

f
0

!n

2
"!

2
sin!t  

Substituting the following values 

k = 1/(1/100+1/500)= 83.333 N/m,   m = 89 kg              ω = 10  rad/s 

!n =
k

m
=

83.333

89
= 0.968 rad/s         kgN

m

F
f /112.0

89

10
0

0
===  

and initial conditions: x0 = 0, v0 = 0 

The response of the system is evaluated as 

tttx 10sin00113.0968.0sin0117.0)( !=  
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2.9 Consider the system in Figure P2.9, write the equation of motion and calculate the 

response assuming that the system is initially at rest for the values !  = 30°, k = 1000 N/m 

and m = 50 kg. 

 

Figure P2.9 

 

 Solution: Free body diagram: 

Assuming x = 0 to be at equilibrium: 

Fx = m˙ ̇ x = !k(x + ") + mgsin#$ + 90sin25t    (1) 

where  Δ is the static deflection of the spring.  From static equilibrium in the x direction 

yields 

!k" + mgsin#      (2) 

Substitution of (2) onto (1), the equation of motion becomes 

m ˙ ̇ x + k x = 90sin2.5t  

The general expression for the response of a mass-spring system to a harmonic (sine) 

excitation (see Problem 2.7) is: 

x(t) = (
v

0

!n

"
!

!n

#
f
0

!n

2
" !

2
)sin!nt + x

0
cos!nt +

f
0

!n

2
"!

2
sin!t  

Given:  v0 = 0,  x0 = 0, ! = 2.5 rad/s 

!n =
k

m
=

1000

50
= 20 = 4.472 rad/s   ,   f

0
=

F
0

m
=

90

50
=

9

5
N/kg  

 

So the response is: 

x(t) = !0.0732sin 4.472t + 0.1309sin 2.5t

m 

x 

mg sin θ 

F=90 sin 2.5 t 

Fs 

(Forces that are normal 

to the x direction are 

neglected) 

θ 
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2.10 Compute the initial conditions such that the response of : 

m x!!  + kx =  F
0
 cos! t 

oscillates at only one frequency (! ). 

 
Solution:  From Eq. (2.11): 

t
f

t
f

xt
v

tx

n

n

n

n
n

!

!!

!

!!

!
!

coscos)(sin)(
22

0

22

0
0

0

"

+

"

"+=  

For the response of tFxkxm !cos
0

=+!!  to have only one frequency content, namely, 

of the frequency of the forcing function, ω, the coefficients of the first two terms are set 

equal to zero.  This yields that the initial conditions have to be 

22

0

0

!! "
=

n

f
x    and   0

0
=v  

Then the solution becomes 

t
f

tx

n

!
!!

cos)(
22

0

"
=  

 

2.11 The natural frequency of a 65-kg person illustrated in Figure P.11 is measured along 

vertical, or longitudinal direction to be 4.5 Hz.  a) What is the effective stiffness of this 

person in the longitudinal direction? b) If the person, 1.8 m in length and 0.58 m
2
 in cross 

sectional area, is modeled as a thin bar, what is the modulus of elasticity for this system? 

 

Figure P2.11 Longitudinal vibration of a person 

Solution: a) First change the frequency in Hz to rad/s: 

  

!
n

= 4.5
cycles

s

2"  rad

cycles
= 9"  rad/s . 

Then from the definition of natural frequency: 

  
k = m!

n

2
= 65 " (9# )

2
= 5.196 $10

4
 N/m  

b) From section 1.4, the value of the stiffness for the longitudinal vibration of a beam is 

   
k =

EA

!
! E =

k!

A
=

5.196 "10
4

( )(1.8)

0.58
= 1.613"10

5
 N/m

2
= 1.613"10

5
 Pa  

 

2.12 If the person in Problem 2.11 is standing on a floor, vibrating at 4.49 Hz with an 

amplitude of 1 N (very small), what longitudinal displacement would the person “feel”? 

Assume that the initial conditions are zero.  
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Solution: Using equation (2.12) for a cosine excitation and zero initial conditions yields 

(converting the frequency from Hertz to rad/s and using the value of k calculated in 2.11): 

 

  

X =
F

0

m

1

!
n

2
"!

2
=

1

65

1

k

m
" (4.49 #2$ )

2

                           =
1

65

1

5.196 %10
4

65
" (4.49 #2$ )

2

= 0.00443347 = 0.0043 m

 

  

 

 
2.13  Vibration of body parts is a significant problem in designing machines and structures.  A 

jackhammer provides a harmonic input to the operator’s arm.  To model this situation, 

treat the forearm as a compound pendulum subject to a harmonic excitation (say of mass 

6 kg and length 44.2 cm) as illustrated in Figure P2.13. Consider point O as a fixed pivot. 

Compute the maximum deflection of the hand end of the arm if the jackhammer applies a 

force of 10 N at 2 Hz.  

 

Figure P2.13 Vibration model of a forearm driven by a jackhammer 

  
Solution: Taking moments about point O yields (referring to Example 1.4.6 for the 

inertial of a compound pendulum): 

   

m!
2

3

""! + mg
!

2
sin! = F

O
!cos! cos"t  

Using the linear approximation for sine and cosine and dividing through by the inertia 

yields: 

   

!!! +
3g

2"
! =

3F
O

m"
cos"t  

Thus the natural frequency is 
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!
n

=
3g

2!
=

3(9.81)

2(0.442)
= 5.77 rad/s   (=0.92 Hz)  

and the system is well away from resonance.  Referring to equation (2.13), the amplitude 

for zero initial conditions is (converting the driving frequency from 2 Hertz to 2(2π) 

rad/s): 

   

! =
2 f

0

"
n

2 #" 2
=

2
3F

0
!

m!
2

$

%&
'

()

3g

2!
# (2 *2+ )

2

= 0.182 rad  

Note that sin(0.182) = 0.181 so the approximation made above is valid.  The maximum 

linear displacement of the hand end of the arm  is just 

 

  
X = r ! = 0.442 "0.182 = 0.08 m  

 

2.14 Consider again the camera problem of Example 2.1.3 depicted in Figure P2.14, and 

determine the torsional natural frequency, the maximum torsional deflection experienced 

by the camera due to the wind and the linear displacement corresponding to the computed 

torsional deflection.  Model the camera in torsional vibration as suggested in the figure 

where JP = 9.817x10
-6

 m
4
 and L = 0.2 m.  Use the values computed in Example 2.1.3 for 

the mass (m =3 kg), shaft length (  ! = 0.55 m), torque (M0 = 15 x L Nm) and frequency (ω 

= 10 Hz).  Here G is the shear modulus of aluminum and the rotational inertia of the 

camera is approximated by J = mL
2
.  In the example, torsion was ignored.  The purpose 

of this problem is to determine if ignoring the torsion is a reasonable assumption or not. 

Please comment on this assumption based on the results of the requested calculation. 

 

Figure P2.14 Torsional vibration of a camera 

 

Solution: First calculate the rotational stiffness and inertia from the data given: 

   
k =

GJ
p

!
=

2.67 !10
10
! 9.817 !10

"6

0.55
= 4.766 !10

5
 N #m  

where the modulus is taken from Table 1.2 for aluminum.  The inertia is approximated by 

  J = mL
2

= 3(0.2)
2

= 0.12 kg !m
2
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The torsional natural frequency is thus 

  

!
n

=
k

J
= 1.993"10

3
 rad/s  

This is well away from the driving frequency.  To see the effect, recall equation 

magnitude of the forced response given in Example 2.1.2: 

  

2 f
0

!
n

2
"!

2
=

2M
0

/ J

!
n

2
"!

2
= 1.26 #10

"5
 rad  

Clearly this is very small.  To change this to a linear displacement of the camera tip, use  

  X = r! = (0.2)(1.26 "10
#5

) = 2.52 "10
#6

 m  

well within the limit imposed on the camera’s vibration requirement of 0.01 m.  Thus, the 

assumption to ignore torsional vibration in designing the length of the mounting bracket 

made in example 2.1.3 is justified. 

 

 

2.15 An airfoil is mounted in a wind tunnel for the purpose of studying the aerodynamic 

properties of the airfoil’s shape.  A simple model of this is illustrated in Figure P2.15 as a 

rigid inertial body mounted on a rotational spring, fixed to the floor with a rigid support. 

Find a design relationship for the spring stiffness k in terms of the rotational inertia, J, the 

magnitude of the applied moment, M0, and the driving frequency, ω, that will keep the 

magnitude of the angular deflection less then 5°.  Assume that the initial conditions are 

zero and that the driving frequency is such that 
  
!

n

2
"!

2
> 0 . 

 
Figure P2.15 Vibration model of a wing in a wind tunnel 

 
Solution: Assuming compatible units, the equation of motion is: 

   
J !!!(t) + k!(t) = M

0
cos"t # !!!(t) +

k

J
!(t) =

M
0

J
cos"t  

From equation (2.12) the maximum deflection for zero initial conditions is 
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!
max

=

2M
0

J

k

J
"# 2

< 5°
$rad

180°
=

$
36

rad

             %
2M

0

J
< (

k

J
"# 2

)
$
36

rad %
36J

$
2M

0

J
+
$# 2

36

&

'(
)

*+
< k

 



Problems and Solutions Section 2.2 (2.16 through 2.31) 
  

2.16 Calculate the constants A and !  for arbitrary initial conditions, x
0
 and v

0
, in the     case 

of the forced response given by Equation (2.37).  Compare this solution to the transient 

response obtained in the case of no forcing function (i.e. F
0
 = 0). 

 

Solution: From equation (2.37)  
 

x(t) = Ae
!"#nt

sin(# dt + $) + X cos(#t !%) &

˙ x (t) = !"# nAe
!"# nt

sin(#dt +$) + A#de
!"#nt

cos(#dt + $) ! X# sin(#t !% )

 

Next apply the initial conditions to these general expressions for position and 

velocity to get:  

x(0) = A sin! + X cos"

˙ x (0) = #$%n Asin! + A%d cos! + X% sin"
 

Solving this system of two equations in two unknowns yields:  

  

! = tan
"1

(x
0
" X cos#)$

d

v
0

+ (x
0
" X cos#)%$

n
" X$ sin#

&

'(
)

*+

A =
x

0
" X cos#
sin!

 

Recall that X has the form 

 

X =
F

0
/ m

(!n

2 "! 2
)

2
+ (2#!n! )

2
   and   $ = tan

"1 2#!n!
!n

2 "! 2

% 

& 

' 
( 

) 

*  

Now if F0 = 0, then X = 0 and A and φ from above reduce to: 

 

! = tan
"1 x

0
#d

v
0

+ x
0
$#n

% 

& 

' ( 

) 

* 

A =
x

0

sin!
=

(v
0

+$#n x
0
)

2
+ (x

0
#d )

2

#d

2

 

These are identical to the values given in equation (1.38). 



2.17  Show that Equations (2.28) and (2.29) are equivalent by verifying Equations 

(2.29) and (2.30).  

 

 

Solution: From equation (2.28) and expanding the trig relation yields 

 

xp = X cos(!t "#) = X cos!t cos# + sin!t sin#[ ]

                       = (X cos#)

As

!"# $#
cos!t + (X sin#)

Bs

!"# $#
sin!t  

 Now with As and Bs defined as indicated, the magnitude is computed: 

X = As

2
+ Bs

2
 

 and  

Bs

As

=
X sin!
X cos!

"! = tan
#1

Bs

As

$

%&
'

()
 

2.18 Plot the solution of Equation (2.27) for the case that m = 1 kg, !  = 0.01, !n
 = 2 

rad/s.  F
0
 = 3 N, and !  = 10 rad/s, with initial conditions x

0
 = 1 m and v

0
 = 1 

m/s. 

 

Solution: The particular solution is given in equations  (2.36) and (2.37).  

Substitution of the values given yields: xp = 0.03125cos(10t + 8.333!10
"3

) .  

Then the total solution has the form: 

x(t) = Ae
!0.02t

sin(2t + ") + 0.03125cos(10t + 0.008333)

= e
!0.02t

Asin2t + Bcos2t( ) + 0.03125cos(10t + 0.008333)
 

Differentiating then yields 

 

!x(t) = !0.02e
!0.02t

Asin2t + Bcos2t( ) + sin(2t + ")

       + 2e
!0.02t

Acos2t ! Bsin2t( ) ! 0.3125sin(10t + 0.008333)
 

Apply the initial conditions to get: 

 

x(0) = 1 = B + 0.03125cos(0.00833)! B = 0.969

!x(0) = 1 = "0.02B + 2A " 0.3125sin(0.00833)! A = 0.489
 

So the solution and plot become (using Mathcad): 



 

 



2.19 A 100 kg mass is suspended by a spring of stiffness 30 × 10
3
 N/m with a viscous 

damping constant of 1000 Ns/m.  The mass is initially at rest and in equilibrium.  

Calculate the steady-state displacement amplitude and phase if the mass is excited 

by a harmonic force of 80 N at 3 Hz. 

 

Solution: Given m = 100kg, k =30,000 N/m, c = 1000 Ns/m, F0 = 80 N and ω = 

6π rad/s: 

f
0

=
F

0

m
=

80

100
= 0.8 m/s

2
,     !n =

k

m
= 17.32 rad/s

" =
c

2 km
= 0.289

X =
0.8

17.32
2

+ 36# 2

( )
2

+ 2(0.289)(17.32)(6# )( )
2

= 0.0041 m

 

Next compute the angle from 

! = tan
"1

188.702

"55.323

#
$%

&
'(

 

Since the denominator is negative the angle must be found in the 4
th
 quadrant.  To 

find this use Window 2.3 and then in Matlab type atan2(188.702,-55.323) or use 

the principle value and add π to it.  Either way the phase is  θ =1.856 rad. 

 

2.20 Plot the total solution of the system of Problem 2.19 including the transient. 

 

Solution: The total response is given in the solution to Problem 2.16.  For the 

values given in the previous problem, and with zero initial conditions the response 

is determined by the formulas: 



X = 0.0041,     ! = 1.856  

 

Plotting the result in Mathcad yields 

 

2.21 Consider the pendulum mechanism of Figure P2.21 which is pivoted at point O.  

Calculate both the damped and undamped natural frequency of the system for small 

angles.  Assume that the mass of the rod, spring, and damper are negligible.  What 

driving frequency will cause resonance? 



 
 
Solution: Assume the driving frequency to be harmonic of the standard form. To get the 

equation of motion take the moments about point O to get: 

  

M
0! = J ˙ ̇ " (t) = m!

2˙ ̇ " (t)

                     = #k!
1
sin"(!

1
cos" ) # c!

2

˙ " (!
2
cos")

                                   # mg(!sin" ) + F
0
cos$t(! cos" )

 

Rearranging and approximating sinθ ~ θ and cosθ ~1 yields: 

  
m!

2˙ ̇ ! (t) + c!
2

2 ˙ ! (t) + (k!
1

2
+ mg!)!(t) = F

0
!cos"t  

Dividing through by the coefficient of the inertia term and using the standard definitions for ζ 

and ω yields: 

  

!n =
k!

1

2
+ mg!

m! 2
 which is the resnonant frequency

" =
c!

2

2

2 (k!
1

2
+ mg!)mg!

!d = !n 1 #" 2
=

k!
1

2
+ mg!

m!
2

1 # c
2
!

2

4

4(k!
1

2
+ mg!)mg!

$ 

% 

& 
' 

( 

) 

 



2.22 Consider the pivoted mechanism of Figure P2.21 with k = 4 x 10
3
 N/m.  l

1
 = 0.05 

m. l
2

 = 0.07   m. and l = 0.10 m. and m = 40 kg.  The mass of the beam is 40 kg;  it is 

pivoted at point 0 and assumed to be rigid.  Design the dashpot (i.e. calculate c) so that 

the damping ratio of the system is 0.2.  Also determine the amplitude of vibration of the 

steady-state response if a 10-N force is applied to the mass, as indicated in the figure, at a 

frequency of 10 rad/s. 

 

Solution: This is similar to the previous problem with the mass of the beam included this 

time around.  The equation of motion becomes: 

  
meq

˙ ̇ ! + ceq
˙ ! + keq! = F

0
!cos"t  

 Here: 

  

meq = m!2
+

1

3
(!

3
+ !

1

3
)

mb

!+ !
1

= 0.5 kg !m
2

ceq = c!
2

2
= 0.25c

keq = k!
1

2
+ mg! +

1

2
(! " !

1
)mbg = 4.326 #10

3
 Nm

 

Using the formula the damping ratio and these numbers: 

  

! =
!

2

2c

2 meq keq

= 0.2 " c = 3.797 #10
3
 kg/s  

Next compute the amplitude: 

X =
10 / 0.5

(keq / meq !10
2
)

2
+ (2 " 0.2 "10 "#n )

2
= 2.336 $10

3
  rad  



2.23   In the design of Problem 2.22, the damping ratio was chosen to be 0.2 because 

it limits the amplitude of the forced response.  If the driving frequency is shifted 

to 11 rad/s, calculate the change in damping coefficient needed to keep the 

amplitude less than calculated in Problem 2.22. 

 

Solution: In this case the frequency is far away from resonance so the change in 

driving frequency does not matter much.  This can also be seen numerically by 

the following Mathcad session.  

 

 

The new amplitude is only slightly larger in this case.  The problem would be more 

meaningful if the driving frequency is near resonance.  Then the shift in amplitude will be 

more substantial and added damping may improve the response. 

 

2.24 Compute the forced response of a spring-mass-damper system with the following 

values: c = 200 kg/s, k = 2000 N/m, m = 100 kg, subject to a harmonic force of 

magnitude F
0
  = 15 N and frequency of 10 rad/s and initial conditions of x

0
  = 

0.01 m and v
0
 = 0.1 m/s.  Plot the response.  How long does it take for the 

transient part to die off? 

 
Solution: 
Calculate the parameters 



!n =
k

m
=

2000

100
= 4.472  rad/s       f

0
=

F
0

m
=

15

100
= 0.15  N/kg  

!d = !n 1"# 2
= 4.472 1" 0.224

2
= 4.359  rad/s          

! =
c

2m" n

=
200

2 #100 # 4.472
= 0.224  

Initial conditions:  x0 = 0.01 m,  v0 = 0.1 m/s 

Using equation (2.38) and working in Mathcad yields 

x(t) = e
! t

(0.0104 cos4.359t + 0.025sin 4.359t) +1.318 "10
!6

(0.335cos10t + 37.7sin10t)

  

 

 

 

a plot of m vs seconds. The time for the amplitude of the transient response to be 

reduced, for example, to 0.1 % of the initial (t = 0) amplitude can be determined by: 

e
! t

= 0.001 ,  then t = ! ln0.001 = 6.908sec  



2.25 Show that Equation (2.38) collapses to give Equation (2.11) in the case of zero damping.  
 

Solution: 
Eq. (2.38): 

  

x(t) = e
!"#

n
t

(x
0
!

f
0
(#

n

2 !# 2
)

(#
n

2 !# 2
)

2
+ (2"#

n
# )

2
)cos#

d
t

$
%
&

'&

                    +

"#
n

#
d

(x
0
!

f
0
(#

n

2 !# 2
)

(#
n

2 !# 2
)

2
+ (2"#

n
# )

2
)

!
2"#

n
# 2

f
0

#
d

(#
n

2 !# 2
)

2
+ (2"#

n
# )

2() *+
+

v
0

#
d

,

-

.

.

.

.

.

/

0

1
1
1
1
1

sin#
d
t

$

%

&
&
&
&

'

&
&
&
&

2

3

&
&
&
&

4

&
&
&
&

+
f

0

(#
n

2 !# 2
)

2
+ (2"#

n
# )

2
(#

n

2 !# 2
)cos#t + 2"#

n
# sin#t() *+

 

In case of ζ = 0, this equation becomes: 

  

x(t) = 1!

(x
0
"

f
0

(#
n

2 "# 2
) + 0

)cos#
d
t

$
%
&

'&

+ 0 " 0 +
v

0

#
d

(

)*
+

,-
sin#

d
t

$

%

&
&

'

&
&

.

/

&
&

0

&
&

+
f

0

(#
n

2 "# 2
)
cos#t

=
v

0

#
n

sin #
n
t + (x

0
"

f
0

#
n

2 "# 2
)cos#

n
t +

f
0

#
n

2 "# 2
cos#t

 

(Note: ωd = ωn for ζ = 0) 

 

 

2.26 Derive Equation (2.38) for the forced response of an underdamped system. 
 

Solution: 
From Sec. 1.3, the homogeneous solution is: 

xh (t) = e
!"# nt

(A
1
sin#dt + A

2
cos#dt)  

From equations (2.29) and (2.35), the particular solution is: 

xp(t) =
(! n

2 "! 2
) f

0

(!n
2 " ! 2

)
2

+ (2#! n! )
2

cos!t +
2#! n!f

0

(! n
2 "! 2

)
2

+ (2#!n! )
2

sin!t  

Then the general solution is: 

x(t) = xh (t) + xp (t) = e
!"# nt

(A
1
sin#d t + A

2
cos#dt)

+
(#n

2 ! #2
) f

0

(#n

2
! # 2

)
2

+ (2"# n#)
2

cos#t +
2"# n#f

0

(# n

2
!# 2

)
2

+ (2"# n# )
2

sin#t
 

Using the initial conditions, x(0) = x0 and ˙ x (0) = v
0
, the constants, A1 and A2, are 

determined: 



A
2

=x
0
!

("n

2 ! "2
) f

0

("n

2 ! "2
)

2
+ (2#" n")

2

A
1

=
v

0

"d

+
"

" d

$
2#" n"f

0

(" n

2 !" 2
)

2
+ (2#" n" )

2
+#

"n

" d

(x
0
!

(" n

2 !" 2
) f

0

("n

2 ! "2
)

2
+ (2#" n" )

2
)

 

Then, Eq. (2.30) is obtained by substituting the expressions for A1 and A2 into the general 

solution and simplifying the resulting equation. 

 

 

2.27 Compute a value of the damping coefficient c such that the steady state response 

amplitude of the system in Figure P2.27 is 0.01 m. 

 
Figure P2.27 

Solution: 
From Eq. (2.39), the amplitude of the steady state response is given by 

X =
f
0

(!n

2 "! 2
)

2
+ (2#!n! )

2
 

Then substitute, 2ζωn = c/m, c =
F

0

2

!
2
"X

2
# m

2 (!n

2
# !

2
)

2

!
2

 into this equation 

and solve for c: 

 

Given: 

X = 0.01m                     s/rad3.6=!        F
0

= 20N       m = 100kg  

 

  
!

n

2
=

k

m
=

2000

100
= 20 (rad/s)

2
" c = 55.7 kg/s  

 

 

2.28 Compute the response of the system in Figure P2.28 if the system is initially at 

rest for the values k
1
 = 100 N/m, k

2
 = 500 N/m, c = 20 kg/s and m = 89 kg. 

 

Solution: 
The equation of motion is: 

m˙ ̇ x + c ˙ x + kx = 25cos3t          where   k =
1

1/ k
1
+ 1/ k

2

 

Using Eq. (2.37) in an alternative form, the general solution is: 



  
x(t) = e

!"#
n
t
( A

1
sin#

d
t + A

2
cos#

d
t) + X cos(#t !$)  

where 

X =
f
0

(!n

2 "! 2
)

2
+ (2#!n! )

2

=
25 / 89

(0.966
2 " 3

2
)

2
+ (2 $0.116 $0.966 $ 3)

2

= 0.0347 m

 

! = tan
"1
#

2$% n%

%n

2
"% 2

= tan
"1
#
2 # 0.116 # 0.966 # 3

0.966
2
" 3

2
= 3.058rad        (see Window 2.3) 

Using the initial conditions, x(0) = 0 and ˙ x (0) = 0 , the constants, A1 and A2, are 

determined: 

A2 = 0.0345                A1 = −0.005 

Given:  c = 20 kg/sec,  m = 89 kg 

k =
1

1/ k
1
+ 1/ k

2

=
1

1/100 +1/ 500
= 83N/m  

!n =
k

m
=

83

89
= 0.966 rad/s                       ! =

c

2m" n

=
20

2 #89 #0.966
= 0.116  

!d = !n 1 "# 2
= 0.966 1 " 0.116

2
= 0.9595rad/s  

Substituting the values into the general solution: 

x(t) = e
!0.112t

(!0.005sin0.9595t + 0.0345cos0.9595t) + 0.0347cos(3t ! 3.058)  

 

2.29 Write the equation of motion for the system given in Figure P2.29 for the case 

that F(t) = F cos! t and the surface is friction free.  Does the angle!  effect the 

magnitude of oscillation? 

 

Solution: 
Free body diagram: 

m 

x 

mg sin!  

F(t)=F cos "t 
(Forces that are normal 

to the x direction are 
neglected) 

! 

Fs 

 

 
Assuming x = 0 to be at the equilibrium: 
 

Fx = F + mgsin! " Fs = m˙ ̇ x #  



where )
sin

(
k

mg
xkF

s

!
+=      and        F(t ) = F cos! t  

 

Then the equation of motion is: 

m ˙ ̇ x + k x = F cos! t  

Note that the equation of motion does not contain θ which means that the 

magnitude of the response is not affected by the angle of the incline. 

 

2.30 A foot pedal for a musical instrument is modeled by the sketch in Figure P2.30.  

With k = 2000 N/m, c = 25 kg/s, m = 25 kg and F(t) = 50 cos 2! tN, compute the 

steady state response assuming the system starts from rest.  Also use the small 

angle approximation.  

 

Solution: Free body diagram of pedal follows: 

 

Summing the moments with respect to the point, O: 

   
M

0
= F(3 ! a) " F

c
(2 ! a) " F

s
(a) = I

o
!!#$  

where   
  
I

o
= m(3a)

2
= 9a

2
m  ,  

  
F

s
= kasin!                            

   
F

c
= c(2 ! a ! sin" #) = 2cacos" !"  

Substituting these equations and simplifying (sin! "!  , cosθ =1,for small θ): 

   9a
2
m !!! + 4a

2
c !! + a

2
k! = 3a F(t)  

Given: k = 2000 N/m, c = 25kg/s  , m = 25 kg , F(t ) = 50cos2!t  ,    a = 0.05 m 

The equation of motion becomes: 
   0.5625!!! + 0.25 !! + 5! = 7.5cos2"t  

Observing the equation of motion, equivalent mass, damping and stiffness 

coefficients are: 

  ceq = 0.25,     meq = 0.5625,       keq = 5 ,   

  

f
0

=
F

0

m
eq

=
7.5

0.5625
= 13.33  ,  !=" 2  

!n =
keq

meq

=
5

0.5625
= 2.981                        ! =

ceq

2meq"n

= 0.0745  



From Eq. (2.36), the steady-state response is: 

  

!(t) =

f
0eq

("
n

2 #" 2
)

2
+ (2$"

n
" )

2

cos("t # tan
#1

2$
eq
"

n
"

"
n

2 #" 2
)

       %!(t) = 0.434cos(2& t # 3.051)  rad

 

 

2.31 Consider the system of Problem 2.15, repeated here as Figure P2.31 with the 

effects of damping indicated. The physical constants are J =25 kg m
2
, k = 2000 

N/m, and the applied moment is 5 Nm at 1.432 Hz acting through the distance r = 

0.5 m.  Compute the magnitude of the steady state response if the measured 

damping ratio of the spring system is ζ = 0.01.  Compare this to the response for 

the case where the damping is not modeled (ζ = 0). 

 

 
Figure P2.31 Model of an airfoil in at wind tunnel including the effects of damping. 

 

 Solution From equation (2.39) the magnitude of the steady state response for an 

underdamped system is 

  

! =
M

0
/ J

k

J
"# 2

$
%&

'
()

2

+ 2*#
n
#( )

2

 

Substitution of the given values yields (here X = rθ) 

  

! = 0.2 rad and X = 0.1 m for "= 0

! = 0.106 rad and X = 0.053 m for "= 0.01

 

where X is the vertical displacement of the wing tip.  Thus a small amount of 

damping can greatly reduce the amplitude of vibration. 
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Problems and Solutions Section 2.3 (2.32 through 2.36) 
 

2.32 Referring to Figure 2.10, draw the solution for the magnitude X for the case m = 100 kg, c 

= 4000 N s/m, and k = 10,000 N/m.  Assume that the system is driven at resonance by a 

10-N force. 

 

Solution: 
Given:  m = 100 kg, c = 4000 N s/m, k = 10000 N/m, 

o
F = 10 N, 

! = !n =
k

m
= 10 rad/s 

!  

  

= tan
!1

cw

k ! m" 2

#

$
%

&

'
( = tan

!1
(40,000)

(10,000 !10,000)

#

$
%

&

'
( = 90° =

)

2
rad 

 

 
 

From the figure: 

X =
Fo

(k ! m" 2
)
2

+ (c")
2

=
10

(10,000 !10,000)
2

+ (40,000)
2

  

X = 0.00025 m 

 

cωX 

F0 

(k-mω2
)X 

φ 
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2.33 Use the graphical method to compute the phase shift for the system of Problem 2.32 if ω 

= ωn/2 and again for the case ω = 2ωn. 

 

Solution: 
From Problem 2.32 !n= 10 rad/s 

(a) ! =
!n

2
= 5 rad/s 

 X =
10

(10,000 ! 2500)
2

+ (20,000)
2

= .000468 m 

 kX = (10,000)(.000468) = 4.68 N 

 cωX = (4000)(5)(.000468) = 9.36 N 

 m!
2
X = (100)

2
)5( (.000468) = 1.17 N 

 

From the figure given in problem 2.32: 

 !  = tan
!1 9.36

4.68 !1.17

" 

# 

$ 

% 
= 69.4° = 1.21rad 

 

(b) ! = 2!n = 20  rad/s 

 X =
10

(10000 ! 40000)
2

+ (80000)
2

= .000117 m 

 kX = (10000)(.000117) = 1.17 N 

 cωX = (4000)(20)(.000117) = 9.36 N 

 m!
2
X =(100)

2
)20( (.000117) = 4.68 N 

From the figure: 

 

  !  

 

= tan
!1

9.36

1.17 ! 4.68

"

#
$

%

&
' = !69.4° = !1.21rad 
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2.34 A body of mass 100 kg is suspended by a spring of stiffness of 30 kN/m and dashpot of 

damping constant 1000 N s/m.  Vibration is excited by a harmonic force of amplitude 80 

N and a frequency of 3 Hz.  Calculate the amplitude of the displacement for the vibration 

and the phase angle between the displacement and the excitation force using the graphical 

method. 

 

 Solution: 
Given: m = 100kg, k = 30 kN/m, 

o
F = 80 N, c = 1000 Ns/m,  

! = 3(2" )= 18.85 rad/s 

 kX = 30000 X 

 cωX = 18850 X 

 m!
2
X =35530 X 

 

Following the figure given in problem 2.32: 

 

  

! = tan
"1

c# X

k " m# 2

( ) X

$

%

&
&

'

(

)
)

 

!  = tan
!1 (18850)X

(30000 ! 35530)X

" 

# 
$ 

% 

& 
' 

= 106.4° = 1.86 rad 

Also from the figure,  

  

X =
F

0

k ! m"
2

( )
2

+ c"( )
2

 

22
)18850()3553030000(

80

+!

=X = 0.00407 m 
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2.35 Calculate the real part of equation (2.55) to verify that it yields equation (2.36) and hence 

establish the equivalence of the exponential approach to solving the damped vibration 

problem. 

 
Solution: 
Equation (2.55)  xp(t) =

Fo

(k ! m" 2
)

2
+ (c")

2
e

j("t!# )  

where θ 

  

= tan
!1

c"

k ! m" 2

#

$
%

&

'
(  

 Using Euler’s Rule: xp(t) =
Fo

(k ! m" 2
)

2
+ (c")

2
[cos("t !# ) + j sin("t !# )] 

 The real part is:  xp(t) =
Fo

(k ! m" 2
)

2
+ (c")

2
cos("t !# )  

 Rearranging:  xp (t) =
Fo /m

(!2 "! 2
)

2
+ (2#!n! )

2
cos !t " tan

"1 2#!n!
!n

2 "! 2

$ 

% 
& 

' 

( 
) 

* 

+ 

, 
- 

. 

/  

 which is Equation (2.36). 

 
 
 
 
 
2.36 Referring to equation (2.56) and Appendix B, calculate the solution x(t) by using a table 

of Laplace transform pairs and show that the solution obtained this way is equivalent to 

(2.36). 

 

Solution: Taking the Laplace transform of the equation of motion is given in Equation 

(2.56):  Xp = (ms
2

+ cs + k)X (s) =
Fos

s
2

+ !
2

 

Solving this expression algebraically for X yields 

X(s) =
F

0
s

(ms
2

+ cs + k)(s
2

+! 2
)

=
f
0
s

(s
2

+ 2"!ns +! 2
)(s

2
+! 2

)
 

 Using Laplace Transform pairs from the table, this last expression is changed into the 

time domain to get: 

    x(t) =
f
0

(!n

2 "! 2
)

2
+ (2#!n! )

2

 cos (ωt-! ) 
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Problems and Solutions Section 2.4 (2.37 through 2.50) 
 

2.37 A machine weighing 2000 N rests on a support as illustrated in Figure P2.37.  The 

support deflects about 5 cm as a result of the weight of the machine.  The floor under the 

support is somewhat flexible and moves, because of the motion of a nearby machine, 

harmonically near resonance (r =1) with an amplitude of 0.2 cm.  Model the floor as base 

motion, and assume a damping ratio of ! = 0.01, and calculate the transmitted force and 

the amplitude of the transmitted displacement. 

 

Figure P2.37 
Solution: 

 
Given:  Y = 0.2 cm, ! = 0.01, r = 1, mg = 2000N.  The stiffness is computed from the 

static deflection and weight: 

 Deflection of 5 cm implies:  k = 

  

mg

!
=

mg

5cm
 = 

2000

0.05
 = 40,000 N/m 

Transmitted displacement from equation (2.70):    X = Y 

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

= 10 cm 

Transmitted force from equation (2.77): F T = kYr
2

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

= 4001N 

 

 

 

 

2.38 Derive Equation (2.70) from (2.68) to see if the author has done it correctly. 

 

Solution: 
 

Equation (2.68) states:   

x p  (t) = ! nY 

  

!
n

2
+ (2"!

b
)

2

(!
n

2 #!
b

2
)

2
+ (2"!

n
!

b
)

2

$

%
&
&

'

(
)
)

1/ 2

 cos(!bt "#1
"#

2
) 

The magnitude is:    X  = ! nY 

  

!
n

2
+ (2"!

b
)

2

(!
n

2 #!
b

2
)

2
+ (2"!

n
!

b
)

2

$

%
&
&

'

(
)
)

1/ 2
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    = ! nY 

  

(!
n

"4
)(!

n

2
+ (2#!

b
)

2
)

(!
n

"4
)((!

n

2 "!
b

2
)

2
+ (2#!

n
!

b
)

2
)

$

%
&
&

'

(
)
)

1/ 2

 

    = ! nY  

  

(!
n

"2
)(1+ (2#r)

2
)

(1" r
2
)

2
+ (2#r)

2

$

%
&
&

'

(
)
)

1/ 2

*  

    = ! nY  

  

1

!
n

1+ (2"r)
2

(1# r
2
)

2
+ (2"r)

2

$

%
&

'

(
)

1/ 2

*  

           X  = Y 

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

 

This is equation (2.71). 

 

2.39 From the equation describing Figure 2.13, show that the point ( 2 , 1) 

corresponds to the value TR > 1 (i.e., for all r < 2 , TR > 1). 

 

Solution: 
 

Equation (2.71) is TR = 
X

Y
 =

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

  

 Show TR > 1 for r < 2  

    TR = 
X

Y
 = 

  

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

> 1 

     
1+ (2!r)

2

(1" r
2
)

2
+ (2!r)

2
> 1 

      

     1 + (2!r)
2

> (1" r
2
)

2
+ (2!r)

2
  

      

     1 > (1! r
2
)

2
 

 

 Take the real solution:  

  

1! r
2

< +1 or  1! r
2

< !1"

!r
2

> !2 " r
2

< 2 " r < 2
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2.40 Consider the base excitation problem for the configuration shown in Figure P2.40.  In this 

case the base motion is a displacement transmitted through a dashpot or pure damping 

element.  Derive an expression for the force transmitted to the support in steady state.   

 

Figure P2.40 
Solution: The entire force passes through the spring. Thus the support sees the force FT = 

kX where X is the magnitude of the displacement. From equation (2.65) 

FT = kX =
2!"n"bkY

("n

2 #"b

2
)

2
+ (2!"n"b )

2

             =
2!rkY

(1# r
2
)

2
+ (2!r)

2

 

 

 
2.41   A very common example of base motion is the single-degree-of-freedom model of an 

automobile driving over a rough road.  The road is modeled as providing a base motion 

displacement of y(t) = (0.01)sin (5.818t) m.  The suspension provides an equivalent 

stiffness of k = 4 x 10
5
 N/m, a damping coefficient of c = 40 x 10

3
 kg/s and a mass of 

1007 kg.  Determine the amplitude of the absolute displacement of the automobile mass. 

 

Solution:  
From the problem statement we have (working in Mathcad) 
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2.42 A vibrating mass of 300 kg, mounted on a massless support by a spring of stiffness 

40,000 N/m and a damper of unknown damping coefficient, is observed to vibrate with a 

10-mm amplitude while the support vibration has a maximum amplitude of only 2.5 mm 

(at resonance).  Calculate the damping constant and the amplitude of the force on the 

base. 

 

Solution: 
 

Given:  m = 300 kg, k = 40,000 N/m, !b = !n (r = 1) , X = 10 mm, Y = 2.5 mm. 

 Find damping constant (Equation 2.71) 

 

   

  

X

Y
=

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

)
 

10

2.5
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

   16 = 

 

1+ 4! 2

4! 2
" ! 2

=
1

60
=

c
2

4km
    or 

   c =

 

4(40,000)(300)

60
=  894.4 kg/s 

 

 Amplitude of force on base: (equation (2.76)) 

 

   

  

F
T

= kYr
2

1+ (2!r)
2

1" r
2

( )
2

+ 2!r( )
2

#

$

%
%
%

&

'

(
(
(

1/ 2

)

F
T

= (40,000)(0.0025)(1)
2

1+ 4
1

60

*
+,

-
./

4
1

60

*
+,

-
./

#

$

%
%
%
%

&

'

(
(
(
(

1/ 2

)

F
T

= 400 N
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 2.43 Referring to Example 2.4.1, at what speed does car 1 experience resonance?  At what 

speed does car 2 experience resonance?  Calculate the maximum deflection of both cars 

at resonance. 

 

Solution: 
 

Given:  m
1
 = 1007 kg, m

2
 =1585 kg, k = 4x10

5
 N/m; c = 2,000 kg/s, Y = 0.01m 

 Velocity for resonance: (from Example 2.4.1) 

   !b = 0.2909v (v in km/h) 

 Car 1: !
1

=
k

m
=

4 "10
4

1007
= !b = 0.2909v

1
  

   v
1
 = 21.7 km/h 

 

 Car 2: !
2

=
k

m
=

4 "10
4

1585
= !b = 0.2909v

2
 

   v
2

 = 17.3 km/h 

 

 Maximum deflection: (Equation 2.71 with r = 1) 

  X = Y 

 

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

 Car 1: !
1

=
c

2 km
1

=
2000

2 (4 "10
5
)(1007)

= 0.158  

  X
1
 = (0.01) 

 

1+ 4(0.158)
2

4(0.158)
2

!

"
#

$

%
&

1/ 2

= 0.033 m 

  

 Car 2: !
2

=
c

2 km
2

=
2000

2 (4 "10
4
)(1585)

= 0.126  

  X
2

 = (0.01) 

 

1+ 4(0.126)
2

4(0.126)
2

!

"
#

$

%
&

1/ 2

= 0.041 m 
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2.44 For cars of Example 2.4.1, calculate the best choice of the damping coefficient so that the 

transmissibility is as small as possible by comparing the magnitude of !  = 0.01, ! = 0.1 

and ! = 0.2 for the case r = 2.  What happens if the road “frequency” changes? 

 

Solution:   
 

From Equation 2.62, with r = 2, the displacement transmissibility is: 

  

  

X

Y
=

1+ (2!r)
2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

=
1+ 16! 2

9 + 16! 2

#

$
%

&

'
(

1/ 2

  

  For ! = 0.01, 
X

Y
= 0.334 

  For ! = 0.1, 
X

Y
= 0.356 

  For ! = 0.2, 
X

Y
= 0.412 

  The best choice would be ! = 0.01. 

 

If the road frequency increases, the lower damping ratio would still be the best choice.  

However, if the frequency decreases, a higher damping ratio would be better because it 

would approach resonance. 

 

 

2.45 A system modeled by Figure 2.12, has a mass of 225 kg with a spring stiffness of 3.5 

× 10
4
 N/m.  Calculate the damping coefficient given that the system has a deflection (X) 

of 0.7 cm when driven at its natural frequency while the base amplitude (Y) is measured 

to be 0.3 cm. 

 

Solution: 
 

Given: m = 225 kg, k = 3.5x10
4
 N/m, X = 0.7 cm, Y = 0.3 cm,! = !b . 

 Base excitation: (Equation (2.71) with r = 1) 

  

  

X

Y
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(
 

0.7

0.3
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

  ! = 0.237 =
c

2 km
 

  c = (0.237)(2)[(3.5x10
4
)(225)]

1/2
  

      c = 1331 kg/s 
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2.46 Consider Example 2.4.1 for car 1 illustrated in Figure P2.46, if three passengers totaling 

200 kg are riding in the car.  Calculate the effect of the mass of the passengers on the 

deflection at 20, 80, 100, and 150 km/h.  What is the effect of the added passenger mass 

on car 2? 

 
Figure P2.46 Model of a car suspension with the mass of the occupants, mp, included. 

 
Solution: 

 

Add a mass of 200 kg to each car.  From Example 2.4.1, the given values are:   

m
1
 = 1207 kg, m

2
= 1785 kg, k = 4x10

4
 N/m; c = 2,000 kg/s, !b = 0.29v. 

 Car 1: !
1

=
k

m
=

4 "10
4

1207
= 5.76 rad/s 

  !
1

=
c

2 km
1

=
2000

2 (4 "10
5
)(1207)

= 0.144  

 Car 2: !
2

=
k

m
=

4 "10
4

1785
= 4.73 rad/s 

  !
2

=
c

2 km
2

=
2000

2 (4 "10
5
)(1785)

= 0.118  

 Using Equation (2.71): 

  

X = Y
1+ (2!r)

2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

produces the following: 

 

Speed (km/h) !b  

(rad/s) 

r
1
 r

2
 x

1
 

(cm) 

x
2

 

(cm) 

20 5.817 1.01 1.23 3.57 1.77 

80 23.271 3.871 4.71 0.107 0.070 

100 29.088 5.05 6.15 0.072 0.048 

150 2.40 7.58 9.23 0.042 0.028 

 

At lower speeds there is little effect from the passengers weight, but at higher speeds the 

added weight reduces the amplitude, particularly in the smaller car.
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2.47 Consider Example 2.4.1.  Choose values of c and k for the suspension system for 

car 2 (the sedan) such that the amplitude transmitted to the passenger compartment is as 

small as possible for the 1 cm bump at 50 km/h.  Also calculate the deflection at 100 

km/h for your values of c and k. 

 

Solution: 
 

For car 2, m = 1585 kg. 

 Also, !b = 0.2909(50) = 14.545 rad/s and Y = 0.01 m. 

 From equation (2.70), 

   

  

X = Y
1+ (2!r)

2

(1" r
2
)

2
+ (2!r)

2

#

$
%

&

'
(

1/ 2

 

From Figure 2.9, we can choose a value of r away from resonance and a low damping 

ratio.  Choose r = 2.5 and ! =0.05. 

  

So, r = 2.5 = 
!b

!
=

14.545

k / 1585
 

  k = 53,650 N/m 

  ! = 0.05 = 
c

2 km
 

c = 922.2 kg/s 

 So, 

  

X = (0.01)
1+ [2(0.05)(2.5)]

2

1! 2.5( )
2

( )
2

+ [2(0.05)(2.5)]
2

"

#

$
$
$
$

%

&

'
'
'
'

1/ 2

= 0.00196 m  

 

 At 100 km/h, ωb = 29.09 rad/s and r =
!b

k / m
= 5.  
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2.48  Consider the base motion problem of Figure 2.12. a) Compute the damping ratio needed 

to keep the displacement magnitude transmissibility less then 0.55 for a frequency ratio 

of r = 1.8.  b) What is the value of the force transmissibility ratio for this system? 

 

 Solution: Working with equation (2.71), make a plot of TR versus ζ and use equation 

(2.77) to compute the value of the force transmissibility.  The following Mathcad session 

illustrates the procedure.  

 
 From the plot a value of ζ = 0.2 keeps the displacement transmissibility less then 0.55 as 

desired.  The value of the force transmissibility is then 1.697.  Precise values can be 

found by equating the above expression to 0.55. 

 

2.49  Consider the effect of variable mass on an aircraft landing suspension system by 

modeling the landing gear as a moving base problem similar to that shown in Figure 

P2.46 for a car suspension.  The mass of a regional jet is 13, 236 kg empty and its 

maximum takeoff mass is 21,523 kg.  Compare the maximum deflection for a wheel 

motion of magnitude 0.50 m and frequency of 35 rad/s, for these two different masses.  

Take the damping ratio to be ζ = 0.1 and the stiffness to be 4.22 x 10
6
 N/m. 

    

Solution: Using a Mathcad worksheet the following calculations result: 
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Note that if the suspension stiffness were defined around the full case, when empty the 

plane would bounce with a larger amplitude then when full.  Note Mathcad does not have 

a symbol for a Newton so the units on stiffness above are kg/sec
2
 in order to allow 

Mathcad to compute the units. 

 
2.50  Consider the simple model of a building subject to ground motion suggested in Figure 

P2.50. The building is modeled as a single degree of freedom spring-mass system where 

the building mass is lumped atop of two beams used to model the walls of the building in 

bending.  Assume the ground motion is modeled as having amplitude of 0.1 m at a 

frequency of 7.5 rad/s.  Approximate the building mass by 10
5
 kg and the stiffness of 

each wall by 3.519 x 10
6
 N/m. Compute the magnitude of the deflection of the top of the 

building. 

 

Figure P2.50 A simple model of a building subject to ground motion, such as an 

earthquake. 

 

Solution: The equation of motion is  

   m
!!x(t) + 2kx(t) = 0.1cos7.5t  

The natural frequency and frequency ratio are 

  

!
n

=
2k

m
= 8.389  rad/s    and   r =

!

!
n

=
7.5

8.389
= 0.894  
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The amplitude of the steady state response is given by equation (2.70) with ζ = 0 in this 

case: 

  

X = Y
1

1! r
2

= 0.498 m  

Thus the earthquake will cause serious motion in the building and likely break. 
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 Problems and Solutions Section 2.5 (2.51 through 2.58) 
 
 

2.51 A lathe can be modeled as an electric motor mounted on a steel table.  The table plus the 

motor have a mass of 50 kg.  The rotating parts of the lathe have a mass of 5 kg at a 

distance 0.1 m from the center.  The damping ratio of the system is measured to be ! = 

0.06 (viscous damping) and its natural frequency is 7.5 Hz.  Calculate the amplitude of 

the steady-state displacement of the motor, assuming 
r

!  = 30 Hz. 

 

 Soltuion:   
Given: m = 50 kg, 5=

o
m , e = 0.1m, 06.0=! , !n = 7.5Hz 

 Let !r =30 Hz 

 So, r =
!r

!n

= 4  

 From Equation (2.84), 

  
222

2

222

2

)]4)(06.0(2[)41(

4

50

)1.0)(5(

)2()1(
!

+!
=

+!
=

rr

r

m

em
X o

"
 

  X = 0.011m 

  X = 1.1 cm 

 

 

2.52 The system of Figure 2.18 produces a forced oscillation of varying frequency.  As the 

frequency is changed, it is noted that at resonance, the amplitude of the displacement is 

10 mm.  As the frequency is increased several decades past resonance the amplitude of 

the displacement remains fixed at 1 mm.  Estimate the damping ratio for the system. 

 

Solution: Equation (2.84) is 

222

2

)2()1( rr

r

m

em
X o

!+"
=  

 At resonance,   X = 10 mm = 
!2

1

m

em
o

 

   
!2

110
=

em

m

o

  

 When r is very large, 1=
em

Xm

o

 and X = 1 mm, so  

   1=
em

m

o

 

 Therefore, 10(1) = 
!2

1
 

   05.0=!  
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2.53 An electric motor (Figure P2.53) has an eccentric mass of 10 kg (10% of the total mass) 

and is set on two identical springs (k = 3200 /m).  The motor runs at 1750 rpm, and the 

mass eccentricity is 100 mm from the center.  The springs are mounted 250 mm apart 

with the motor shaft in the center.  Neglect damping and determine the amplitude of the 

vertical vibration. 

 
Solution: 
Given m0 = 10 kg, m= 100 kg,  k = 2x3.2 N/mm, ,  e = 0.1 m  

  
!

r
= 1750

rev

min
(

min

60sec

2"  rad

rev
) = 183.26

rad

s
 rad/s 

Vertical vibration: 

 

 

  

!
n

=
2(3.2)(1000)

100
= 8 rad/s 

 

  

r =
!

r

!
n

=
183.3

8
= 22.9 

From equation (2.84) 

 

  

X = e
m

0

m

r
2

|1! r
2

|
== 0.01 m  

 
2.54 Consider a system with rotating unbalance as illustrated in Figure P2.53.  Suppose the 

deflection at 1750 rpm is measured to be 0.05 m and the damping ratio is measured to be 

! = 0.1.  The out-of-balance mass is estimated to be 10%.  Locate the unbalanced mass 

by computing e.  

 

Solution:  Given:  X = 0.05 m, ,1.0=!  ,1.0 mm
e

=  and from the solution to problem 

2.53 the frequency ratio is calculated to be r = 22.9.  Solving the rotating unbalance 

Equation (2.84) for e yields: 

 

  

X =
m

0
e

m

r
2

(1! r
2
)

2
+ (2"r)

2

# e =
mX

m
0

(1! r
2
)

2
+ (2"r)

2

r
2

= 0.499 m  

This sort of calculation can be introduced to discuss the application of machinery 

diagnostics if time permits.  Machinery diagnostics deals with determining the location 

and extend of damage from measurements of the response and input. 

 

2.55 A fan of 45 kg has an unbalance that creates a harmonic force.  A spring-damper system 

is designed to minimize the force transmitted to the base of the fan. A damper is used 

having a damping ratio of ! = 0.2.  Calculate the required spring stiffness so that only 

10% of the force is transmitted to the ground when the fan is running at 10,000 rpm.  

  

 Solution: The equation of motion of the fan is 

m˙ ̇ x + c ˙ x + kx = m
0
e!

2
sin(!t + ")  

 The steady state solution as given by equation (2.84) is 
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x(t) =
m

0
e

m

r
2

(1! r
2
)

2
+ (2"r)

2

sin#t  

where r is the standard frequency ratio.  The force transmitted to the ground is 

 

F(t) = kx + c!x =
m

0
e

m

kr
2

(1! r
2
)

2
+ (2"r)

2

sin#t +
m

0
e

m

c#r
2

(1! r
2
)

2
+ (2"r)

2

cos#t  

Taking the magnitude of this quantity, the magnitude of the force transmitted becomes 

F
0

=
m

0
e

m

r
2

k
2

+ c
2! 2

(1" r
2
)

2
+ (2#r)

2

= m
0
e!

1+ (2#r)
2

(1" r
2
)

2
+ (2#r)

2

 

From equation (2.81) the magnitude of the force generated by the rotating mass Fr is 

Fr = m
0
e!

2
 

The limitation stated in the problem is that F0 = 0.1Fr, or 

m
0
e! 2

1+ (2"r)
2

(1# r
2
)

2
+ (2"r)

2

= 0.1m
0
e! 2

 

Setting ζ =  0.2 and solving for r yields: 

r
4
!17.84r

2
! 99 = 0  

which yields only one positive solution for r
2
, which is   

  

r
2

= 22.28 =
! 2

k
m

"
k

m
=

10000 # 2$
60

%
&'

(
)*

2

1

22.28

     " k = 45
10000 # 2$

60

%
&'

(
)*

2

1

22.28
= 2.21#10

6
 N/m
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2.56 Plot the normalized displacement magnitude versus the frequency ratio for the out of 

balance problem (i.e., repeat Figure 2.20) for the case of ! = 0.05. 

 

 Solution:  Working in Mathcad using equation (2.84) yields: 
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 2.57  Consider a typical unbalanced machine problem as given in Figure P2.57 with a machine 

mass of 120 kg, a mount stiffness of 800 kN/m and a damping value of 500 kg/s.  The out 

of balance force is measured to be 374 N at a running speed of 3000 rev/min.  a) 

Determine the amplitude of motion due to the out of balance.  b) If the out of balance 

mass is estimated to be 1% of the total mass, estimate the value of the e.  

 

 

Figure P2.57 Typical unbalance machine problem. 

Solution: 
a) Using equation (2.84) with m0e = F0/ωr

2
 yields: 

 

b) Use the fact that F0= m0eωr
2
 to get 

in meters. 
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2.58 Plot the response of the mass in Problem 2.57 assuming zero initial conditions. 

 

Solution:   The steady state response is the particular solution given by equation (2.84) 

and is plotted here in Mathcad: 
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Problems and Solutions Section 2.6 (2.59 through 2.62) 
 

2.59 Calculate damping and stiffness coefficients for the accelerometer of Figure 2.23 with 

moving mass of 0.04 kg such that the accelerometer is able to measure vibration between 

0 and 50 Hz within 5%.  (Hint:  For an accelerometer it is desirable for YZ
b

2
/! = 

constant.) 

 

Solution: Use equation (2.90): 

 

Given:  m = 0.04 kg with error < 5% 

  0.2f = 50 Hz !  f = 250 Hz !  ω = 2 f! = 1570.8 rad/s 

Thus,    k = 
2

!m = 98,696 N/m 

When r = .2,   0.95 < 
222

)2()1(

1

rr !+"
<1.05 (± 5% error) 

This becomes  0.8317+0.1444
2! <1<1.016+0.1764

2!  

Therefore,   

  

! = 0.7 =
c

2 km
 

   )04)(.98696()7(.2=c  

   c = 87.956 Ns/m 

 

 

2.60 The damping constant for a particular accelerometer of the type illustrated in Figure 2.23 

is 50 N s/m.  It is desired to design the accelerometer (i.e., choose m and k) for a 

maximum error of 3% over the frequency range 0 to 75 Hz. 

 

Solution: Given 0.2f = 75 Hz !  f = 375 Hz !  ω n= 2 f! = 2356.2 rad/s.  Using 

equation (2.93) when r = 0.2: 

0.97 < 
222

)2()1(

1

rr !+"
<1.03 (± 3% error) 

This becomes  0.8671 + 0.1505
2! <1<0.9777+0.1697

2!  

Therefore,   0.3622 < ! <0.9395 

Choose  

  

! = 0.7 =
c

2m"
=

50

2m(2356.2)
 

   m = 0.015 kg 

   k = m! n

2
 = 8.326 × 10

4
 N/m 
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2.61 The accelerometer of Figure 2.23 has a natural frequency of 120 kHz and a damping ratio 

of 0.2.  Calculate the error in measurement of a sinusoidal vibration at 60 kHz. 

 

Solution: 
 

Given: ω = 120 kHz, ,2.=!  
b

! = 60 kHz 

 So,  1288.1

))5)(.2(.2()5.1(

1

)2()1(

1

222222

>=

+!
=

+! rr "
 

The error is 
1

1288.1 !
 × 100% = 28.8% 

 
 
2.62 Design an accelerometer (i.e., choose m, c and k) configured as in Figure 2.23 with very 

small mass that will be accurate to 1% over the frequency range 0 to 50 Hz. 

 

Solution: 
 

Given: error < 1% , 0.2f = 50 Hz !  f = 250 Hz !  ω = 2 f! = 1570.8 rad/s 

When r =0.2,   0.99 < 
222

)2()1(

1

rr !+"
<1.01 (± 1% error) 

This becomes  0.9032 + 0.1568
2! <1<0.9401 + 0.1632

2!  

Therefore,   0.6057 < ! <0.7854 

Choose  m = 0.01 kg , then 
2

!mk =  = 24,674 N/m  

Thus   

  

! = 0.7 =
c

2 km
 implies that: c = 21.99 Ns/m 
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Problems and Solutions Section 2.7 (2.63 through 2.79) 
 

2.63 Consider a spring-mass sliding along a surface providing Coulomb friction, with stiffness 

1.2 × 10
4
N/m and mass 10 kg, driven harmonically by a force of 50 N at 10 Hz.  

Calculate the approximate amplitude of steady-state motion assuming that both the mass 

and the surface that it slides on, are made of lubricated steel. 

 

Solution: Given: m = 10 kg, k = 1.2x10
4
N/m, Fo = 50 N, ω =10(2! ) = 20!  rad/s 

  ω = 
k

m
= 34.64 rad/s 

  for lubricated steel, µ = 0.07 

 

 From Equation (2.109) 

  

X =
F

o

k

1!
4µmg

" (F
o)

#

$
%
%

&

'
(
(

2

(1! r
2
)

 

    

  

X =
50

1.2 !10
4

1"
4(.07)(10)(9.81)

# (50)

$

%
&

'

(
)

2

(1"
20#

34.64

*
+,

-
./

2

)

 

    X =1.79 × 10
!3

m 

 

 

2.64 A spring-mass system with Coulomb damping of 10 kg, stiffness of 2000 N/m, and 

coefficient of friction of 0.1 is driven harmonically at 10 Hz.  The amplitude at steady 

state is 5 cm.  Calculate the magnitude of the driving force. 

 

Solution:   
Given: m = 10 kg, k = 2000 N/m, µ = 0.1, ω =10(2! ) = 10(2! ) = 20!  rad/s, 

  ωn= 
k

m
= 14.14 rad/s, X = 5 cm 

 Equation (2.108) 

  

X =

F
0

k

(1! r
2
)

2
+

4µmg

"kX

#

$
%

&

'
(

2

) F
0

= Xk (1! r
2
)

2
+

4µmg

"kX

#

$
%

&

'
(

2

 

     

   

 

  

F
0

= (0.05)(2000) 1!
20"

14.14

#

$
%

&

'
(

2)

*
+
+

,

-
.
.

2

+
4(0.1)(10)(9.81)

" (2000)(.05)

)
*+

,
-.

2

= 1874 N  
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2.65 A system of mass 10 kg and stiffness 1.5 × 10
4
 N/m is subject to Coulomb damping.  If 

the mass is driven harmonically by a 90-N force at 25 Hz, determine the equivalent 

viscous damping coefficient if the coefficient of friction is 0.1. 

 

Solution: 
Given: m = 10 kg, k = 1.5x10

4
 N/m, 

  
F

0
= 90 N, ω  = 25(2! ) = 50!  rad/s, 

  ωn= 
k

m
= 38.73 rad/s, µ = 0.1 

 Steady-state Amplitude using Equation (2.109) is 

  

  

X =
F

0

k

1!
4µmg

" (F
o
)

#

$
%

&

'
(

2

(1! r
2
)

=
90

1.5)10
4

1!
4(0.1)(10)(9.81)

" (90)

#

$
%

&

'
(

2

1!
50"

38.73

*
+,

-
./

2
= 3.85)10

!4
 m  

 From equation (2.105), the equivalent Viscous Damping Coefficient becomes: 

  

  

c
eq

=
4µmg

!" X
=

4(0.1)(10)(9.81)

! (50! )(3.85#10
$4

)
= 206.7 Ns/m  
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2.66 a.  Plot the free response of the system of Problem 2.65 to initial conditions of x(0) = 0 

and  !x (0) = |F
0

/m| = 9 m/s using the solution in Section 1.10. 
b. Use the equivalent viscous damping coefficient calculated in Problem 2.65 and plot 

the free response of the “equivalent” viscously damped system to the same initial 

conditions. 

 

Solution: See Problem 2.65 

(a) x(0) = 0 and  !x (0) = 
Fo

m
= 9 m/s 

! =
k

m
=

1.5x10
4

10
=38.73 rad/s 

 

  From section 1.10: 

 

   
 
m!!x + kx = µmg for  !x < 0  

   
 
m!!x + kx = !µmg for  !x > 0  

 

  Let Fd = µmg = (0.1)(10)(9.81) = 9.81 N 

 

  To start, 
 
!x(0) = !nB1

= 9  

  Therefore, A
1

=
Fd

k
and B

1
=

9

!n

 

  So, x(t) = 
Fd

k
cos!nt +

9

!
sin!nt "

Fd

k
 

  This will continue until  !x  = 0, which occurs at time t
1
: 

   x(t) = A
2
cos!nt + B

2
sin!nt +

Fd

k
 

    !x  (t) = !"nA2
sin"nt +"nB2

cos"nt  

   x(t
1
) = A

2
cos!nt1 + B

2
sin!nt1 +

Fd

k
 

   
 
!x(t

1
) = 0 = !"nA2

sin"nt1 +"nB2
cos"nt1  

  Therefore,  A
2

= x(t
1
) ! Fd / k( )cos"nt1 and B

2
= x(t

1
) ! Fd / k( )sin"nt1  

  So, x(t) = x(t
1
) ! Fd / k( )cos"nt1#$ %&cos"nt + x(t

1
) ! Fd / k( )sin"nt1#$ %&sin"nt +

Fd

k
 

   

Again, when  !x = 0 at time t
2
, the motion will reverse: 

 

   x(t) = A
3
cos!nt + B

3
sin!nt "

Fd

k
 

    !x  (t) = !"nA3
sin"nt +"nB3

cos"nt  

   x(t
2
) = A

3
cos!nt2

+ B
3
sin!nt2

"
Fd

k
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!x(t

2
) = 0 = !"nA3

sin"nt2
+"nB3

cos"nt2
 

  Therefore,  A
3

= x(t
2
) + Fd / k( )cos!nt2

and B
3

= x(t
2
) ! Fd / k( )sin"nt2

 

  So, x(t) = x(t
2
) + Fd / k( )cos!nt2

"# $%cos!nt + x(t
2
) + Fd / k( )sin!nt2

"# $%sin!nt &
Fd

k
 

  This continues until  !x = 0 and kx < µmg = 9.81 N 

 

 
 

(b) From Problem 2.65, 
 
c

eq
= 206.7 kg/s 

The equivalently damped system would be: 

 
   
m!!x + c

eq
!x + kx = 0  

Also,  !n =
k

m
=

1.5x10
4

10
= 38.73 rad/s 

 

  

! =

c
eq

2 km
=

206.7

2 (1.5x10
4
)(10)

0.2668 

 !d = !n 1"# 2
= 37.33 rad/s 

 

The solution would be found from Equation 1.36: 

 

 x(t) = Ae
!"#nt

sin(#dt + $)  

 
 
!x(t) = !"#nAe

!"#nt
sin(#dt + $) +#d Ae

!"#nt
cos(#dt + $)  

 x(0) = Asin! = 0  

 
 
!x(0) = !"#nAsin$ +#d Acos$ = 9 
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Therefore,  A =
9

!d

= 0.2411m and !  = 0 rad 

So,
  x(t) = 0.2411e

!10.335t
sin(37.33t)   

 

 

 

 

 

2.67 Referring to the system of Example 2.7.1, calculate how large the magnitude of the 

driving force must be to sustain motion if the steel is lubricated.  How large must this 

magnitude be if the lubrication is removed? 

 

Solution:   
 

From Example 2.7.1 m = 10 kg, k = 1.5 × 10
4
 N/m, Fo = 90 N, 

    ! = 25(2" ) = 50" rad/s 

 Lubricated Steel µ = 0.07  

 Unlubricated Steel µ = 0.3  

 Lubricated:  Fo >
4µmg

!
=

4(0.07)(10)(9.81)

!
 

    Fo = 8.74 N 

 Unlubricated:  Fo >
4µmg

!
=

4(0.3)(10)(9.81)

!
 

    Fo = 37.5 N  
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2.68 Calculate the phase shift between the driving force and the response for the system of 

Problem 2.67 using the equivalent viscous damping approximation. 

 

Solution: 
 

From Problem 2.67: m = 10 kg, k = 1.5 × 10
4
 N/m, Fo = 90 N, 

    ! = 25(2" ) = 157.1 rad/s 

    !n =
k

m
= 38.73 rad/s 

 From Equation (2.111), and since r>1 

    

  

! = tan
"1

"4µmg

#F
0

1"
4µmg

#F
o

$

%&
'

()

2

*

+

,
,
,
,
,
,

-

.

/
/
/
/
/
/

 

 Since in Problem 2.67, !Fo = 4µmg , this reduces to  

    

 

! = tan
"1

"1

0

#

$
%

&

'
( =

")

2
rad = -90˚ 
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2.69 Derive the equation of vibration for the system of Figure P2.69 assuming that a viscous 

dashpot of damping constant c is connected in parallel to the spring.  Calculate the energy 

loss and determine the magnitude and phase relationships for the forced response of the 

equivalent viscous system. 

 

 

Solution: Sum of the forces in Figure P2.69 

 
m!!x = !kx ! c!x ! µmg sgn

 
( !x)  

 
m!!x + c!x + µmg sgn 

 
( !x) + kx = 0 

Assume the mass is moving to the left 
 
( !x(0) = 0, x(0) = x

0
)  

   
 
m!!x ! c!x + µmg + kx = 0  

   
 
!!x + 2!"n

!x # µg +"n

2
x = 0  

  The solution of the form: 

   x(t) = ae
rt

+
µg

!n

2
 

  Substituting:  

   ar
2
e

rt
+ 2!"nare

rt # µg +"n

2
ae

rt
+ µg = 0  

   r
2

+ 2!"nr +"n

2
= 0  

   r =
!2"#n ± 4" 2#n

2 ! 4#n

2

2
= !"#n ±#n " 2 !1  

  So,  x(t) = a
1
e

(!"#n +#n " 2 !1)t
+ a

1
e

(!"#n !#n " 2 !1)t
+

µg

#n

2
 

   

  

x(t) = e
!"#

n
t
(a

1
e
!"#

d
t
+ a

2
e
!"#

d
t
) +

µg

#
n

2
 

   x(t) = Xe
!"#nt

sin(#dt +$) +
µg

#n

2
 

  Initial conditions 

   x(0) = X sin(!) +
µg

"n

2
= xo  

   
 
!x(0) = X(!"#n )(sin$) + X#d cos$ = 0  

    !X"#n sin$ + X#d cos$ = 0  

    

  

tan! =
"

d

#"
n

$! = tan
%1

"
d

#"
n

&

'
(

)

*
+  
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    X =

xo !
µg

"n

2

#
$%

&
'(

"d

2
+ ()"n )

2

"d

 

 

  

x(t) =

x(0) !
µg

"
n

2

#

$
%

&

'
( "

d

2
+ ()"

n
)

2

"
d

e
!)"

n
t
sin "

d
t + tan

!1
"

d

)"
n

*

+
,

-

.
/

#

$
%

&

'
( +

µg

"
n

2
(1) 

           

  This will occur until
 
!x(t) = 0 :    

   
 
!x(t) = X(!"#n )e

!"#nt
sin(#dt +$) + A

0
e
!"#nt#d cos(#dt +$) = 0  

    !"#n sin(#dt +$) +#d cos(#dt +$) = 0  

   ! tan("dt +#) =
"d

$"n

 

   t =
!

"d

  

  So Equation (1) is valid from0 ! t !
"

#d

  

  For motion to the right 

 

   Initial conditions (From Equation (1)): 

   x
!
"d

#

$%
&

'(
= Xe

)*"n

!
"d

#
$%

&
'(
cos+ +

µg

"n

2
=

x(0) )
µg

"n

2

#
$%

&
'(
*"n

"d

e
)*"n

!
"d( )

+
µg

"n

2
 

   

 

!x
!
"d

#

$%
&

'(
= 0  

   x(t) = A
1
e !!"#nt

sin(#dt +$
1
) !

µg

#n

2
 

   x(0) = A
1
sin!

1
"

µg

#n

2
=

x(0) "
µg

#n

2

$
%&

'
()
*#

#d

e
"*#n

+
#d

$
%&

'
()

+
µg

#n

2
 

   
 
!x(0) = A

1
(!"#n )sin$

1
+ X#d cos$

1
= 0  

 

  Solution: x(t) = A
1
e
!"#nt

sin(#dt +$
1
) !

µg

#n

2
 

    

  

A
1

=
!

d

2
+ ("!

n
)

2

!
d

x(0) #
µg

!
n

2

$

%
&

'

(
) "! n

!
d

e
#"!

n

*
!

d

$

%
&

'

(
)

+
µg

!
n

2

+

,

-
-
-
-
-

.

/

0
0
0
0
0
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! = tan
"1

#
d

$#
n

%

&
'

(

)
*  

  Forced Case: 

    
 
m!!x ! c!x + µmg sgn

 
( !x) + kx = Fo cos(!t)  

   

Approximate Steady-state Response: 

    xss (t) = X sin(!t "#)  

   

Energy Dissipated per Cycle: 

  

 

!E = Fddx = c!x
dx

dt
+ µmgsgn !x

dx

dt

"

#$
%

&'
dt

2(

2(

)

**  

  

 

= (c!x
2
dt) + µmg sgn( !x) !xdt

2!

2!

"

#
2!

2!

"

#  

  !E = "c#X
2

+ 4µmgX  

 

This results in an equivalent viscously damped system: 

  
 
!!x + 2(! +!eq )"n

!x +"n

2
x = Fo cos"t  

    where !eq =
2µg

"#n#X
 

  The magnitude is: 

    

  

X =

F
0

k

(1! r)
2

+ (2(" +"
eq

)r)
2

 

 

  Solving for X: 

  

  

X =

8µgcr
2

!k"
#

$%
&

'(
+

8µgcr
2

!k"
#

$%
&

'(
) 2 (1) r

2
)

2
+

c
2
r

2

km

*

+
,

-

.
/

4µgr

!"
n
"

#

$%
&

'(

2

)
F

0

k

#

$%
&

'(

2*

+

,
,

-

.

/
/

4 (1) r
2
)

2
+

c
2
r

2

km

*

+
,

-

.
/

 

  The phase is: 

    

  

! = tan
"1

2(# +#
eq

)r

1" r
2

$

%
&
&

'

(
)
)

= tan
"1

2#r +
4µgr

*+
n
+ X

1" r
2

$

%

&
&
&
&

'

(

)
)
)
)
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2.70 A system of unknown damping mechanism is driven harmonically at 10 Hz with an 

adjustable magnitude.  The magnitude is changed, and the energy lost per cycle and 

amplitudes are measured for five different magnitudes.  The measured quantities are: 

 

! E(J) 0.25 0.45 0.8 1.16 3.0 

X (M) 0.01 0.02 0.04 0.08 0.15 

 Is the damping viscous or Coulomb? 
Solution: 

 

For viscous damping, !E = "c#X
2
 

 For Coulomb damping, !E = 4µmgX  

 

For the data given, a plot of !E  vs X
2
 yields a curve, while !E  vs X yields a straight 

line. Therefore, the damping is likely  Coulomb in nature 
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2.71 Calculate the equivalent loss factor for a system with Coulomb damping. 

 

Solution: 
 

Loss Factor:   ! =
"E

2#U
max

 

 For Coulomb damping: !E = 4µmgX  

     U
max

=
1

2
kX

2
 

     ! =
4µmgX

2"
1

2
kX

2#
$%

&
'(

=
4µmg

"kX
 

 Substituting for X (from Equation 2.109): 

     ! =
4µmg

"Fo

1# r
2

1#
4µmg

"Fo

$
%&

'
()

2

     

 

 

 

2.72 A spring-mass system (m = 10 kg, k = 4 × 10
3
 N/m) vibrates horizontally on a surface 

with coefficient of friction µ  = 0.15.  When excited harmonically at 5 Hz, the steady-

state displacement of the mass is 5 cm.  Calculate the amplitude of the harmonic force 

applied. 

 

Solution: Given: m = 10 kg, k = 4 × 10
3
N/m, µ = 0.15, X = 5 cm = 0.05 m, 

   ! = 5(2" ) = 10" rad/s, !n =
k

m
= 20 rad/s 

 Equation (2.109) 

  

X =

F
0

k

(1! r
2
)

2
+

4µmg

"kX

#
$%

&
'(

2

)

Fo = kX (1! r
2
)

2
+

4µmg

"kX

#
$%

&
'(

2

= (0.05)(4 )10
3
) 1!

10"
20

#
$%

&
'(

2#

$
%

&

'
(

2

+
4(0.15)(10)(9.81)

" (4x10
3
)(0.05)

#
$%

&
'(

2

 

Fo = 294 N 
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2.73 Calculate the displacement for a system with air damping using the equivalent viscous 

damping method.  

 

Solution: 
 

The equivalent viscous damping for air is given by Equation (2.131): 

ceq =
8

3!
"#X  

 

 From Equation 2.31: 

   X =
Fo

!n

2 "! 2

( )
2

+ 2#!n!( )
2

=
Fo

!n

2 "! 2

( )
2

+
ceq

m
!n

$
%&

'
()

2
 

  X =
Fo

!n

2 "! 2

( )
2

+
8

3#m
$!X

%
&'

(
)*

2

=
Fom

k (1" r
2
)

2
+

8

3#m
$r

2
X

%
&'

(
)*

2

 

 

 Solving for X and taking the real solution: 

   X =

!
1

2
(1! r

2
)

2
+

1

2
(1! r

2
)

2
+

16Fo"r
2

3#km

$
%&

'
()

2

8"r
2

3#m

$
%&

'
()

 



 2-  56 

 

2.74 Calculate the semimajor and semiminor axis of the ellipse of equation (2.119).  Then 

calculate the area of the ellipse.  Use c = 10 kg/s, ω = 2 rad/s and X = 0.01 m. 

 

Solution: The equation of an ellipse usually appears when the plot of the ellipse is 

oriented along with the x axis along the principle axis of the ellipse.  Equation (2.1109) is 

the equation of an ellipse rotated about the origin.  If k is known, the angle of rotation can 

be computed from formulas given in analytical geometry.   However, we know from the 

energy calculation that the stiffness does not effect the amount of energy dissipated. Thus 

only the orientation of the ellipse is effected by the stiffness, not its area or axis.  Thus we 

can use this fact to answer the question.  First re-write equation (2.119) with k = 0 to get: 

F
2

+ c
2! 2

x
2

= c
2! 2

X
2

"
F

c!X

#
$%

&
'(

2

+
x

X

#
$%

&
'(

2

= 1

 

This is the equation of an ellipse with major axis a and minor axis b given by  

a = X = 0.01 m,   and   b = c!X = 0.2 kg m/s
2
 

The area, and hence energy lost per cycle through the damper then becomes 

!c"n X
2
= (3.14159)(10)(2)(.0001) = 0.006283 Joules. 

Alternately, realized that Equation 2.119 is that of ellipse rotated by an angle !  defined 

by tan2!  = -2k/( c
2
!n

2
+ k

2
"1).  Then match the ellipse to standard form, read off the 

major and minor axis (say a and b) and calculate the area from!ab .  See the following 

web site for an elipse http://mathworld.wolfram.com/Ellipse.html  

 

 
 

2.75 The area of a force deflection curve of Figure P2.28 is measured to be 2.5 N- m, and the 

maximum deflection is measured to be 8 mm.  From the “slope” of the ellipse the 

stiffness is estimated to be 5 × 10
4
 N/m.  Calculate the hysteretic damping coefficient.  

What is the equivalent viscous damping if the system is driven at 10 Hz? 

 

 

Solution: 
 

Given: Area = 2.5N • m , k = 5x10
4
 N/m, X = 8 mm, ! = 10(2" ) = 20" rad/s 

  

Hysteric Damping Coefficient: 

   !E  = Area =!k"X
2
  

   2.5 = ! (5 "10
4
)#(0.008)

2
 

   ! = 0.249  

 

 Equivalent Viscous Damping: 

   ceq =
k!

"
=

(5 #10
4
)(0.249)

20$
 

   ceq = 198 kg/s 
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2.76 The area of the hysteresis loop of a hysterically damped system is measured to be 5 

N • m and the maximum deflection is measured to be 1 cm. Calculate the equivalent 

viscous damping coefficient for a 20-Hz driving force.  Plot c eq versus ω for 2!  !  ω !  

100!  rad/s. 

 

Solution: 
 

Given: Area = 5N • m , X = 1 cm, ! = 20(2" ) = 40" rad/s 

  

Hysteric Damping Coefficient: 

   !E  = Area =!k"X
2
  

   5 = !k"(0.01)
2
 

   k! = 15,915 N/m 

 

 Equivalent Viscous Damping: 

   ceq =
k!

"
=

15915

40#
 

   ceq = 126.65 kg/s 

 

 To plot, rearrange so that 

   !ceq"X
2

= #E    

   ceq =
!E

"#X
2

=
5

"# (.01)
2

=
50,000

"#
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2.77 Calculate the nonconservative energy of a system subject to both viscous and hysteretic 

damping. 

 

Solution: 
 

!E = !Ehys + !Evisc   

  !E = "c#X
2

+ k"$X
2

 

  !E = (c" + k#)$X
2
 

 

 
 

2.78 Derive a formula for equivalent viscous damping for the damping force of the form, F d  = 

c( !x )
n

where n is an integer.   

 

Solution: 
 

Given:  
 
Fd = c( !x)

n
 

 Assume the steady-state response x = X sin!t.  

 The energy lost per cycle is given by Equation (2.99) as: 

   

 

!E = Fddx = c( !x)
n
!xdt = c ( !x)

n+1
dt

0

2"

#

$
0

2"

#

$"$  

 Substituting for  !x : 

   !E = " n+1
X

n+1
cos

n+1
("t)#$ %&dt

0

2'

"

(  

   Letu = !t : 

   !E = cX
n+1" n

cos
n+1

u( )du
0

2#

$  

 Equating this to Equation 2.91 yields: 

   !ceq"X
2

= cX
n+1" n

(cos
n+1

u)du
0

2!

#  

   ceq =
cX

n!1" n!1

#
(cos

n+1
u)du

0

2#

$  
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2.79 Using the equivalent viscous damping formulation, determine an expression for the 

steady-state amplitude under harmonic excitation for a system with both Coulomb and 

viscous damping present.   

 

Solution: 
 

!E = !Evisc + !Ecoul   

   !E = "c#X
2

+ 4umgX  

 

 Equate to Equivalent Viscously Damped System 

   !ceq"X
2

= !c"X
2

+ 4µmg  

   ceq =
!c"X + 4µmg

!"X
= c +

4µmg

!"X
= 2#eq"nm  

   !eq = ! +
2µg

"##n X
 

 Amplitude:  

   X =

Fo

k

(1! r
2
)

2
+ (2"eqr)

2

=

Fo

k

(1! r
2
)

2
+ 2"r +

4µmg

#kX

$
%&

'
()

2

 

 Solving for X: 

 X =

!
8µgcr

2

"k#
$
%&

'
()

+
8µgcr

2

"k*#
$
%&

'
()

2

! 4 (1! r
2
)

2
+

c
2

r
2

km

+

,
-

.

/
0

4µgr

"#n#
$
%&

'
()

2

!
Fo

k

$
%&

'
()

2+

,
-
-

.

/
0
0

2 (1! r
2
)

2
+

c
2
r

2

km

+

,
-

.

/
0
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Problems and Solutions Section 2.8 (2.80 through 2.86) 

 

2.80*.  Numerically integrate and plot the response of an underdamped system 

determined by m = 100 kg, k = 20,000 N/m, and c = 200 kg/s, subject to the initial 

conditions of x0 = 0.01 m and v0 = 0.1 m/s, and the applied force F(t) = 150cos5t.  Then 

plot the exact response as computed by equation (2.33).  Compare the plot of the exact 

solution to the numerical simulation. 

 

Solution: The solution is presented in Matlab: 

 
 

First the m file containing the state equation to integrate is set up and saved as ftp2_72.m 

 
 
function xdot=f(t, x) 
xdot=[-(200/100)*x(1)-(20000/100)*x(2)+(150/100)*cos(5*t); x(1)]; 
% xdot=[x(1)'; x(2)']=[-2*zeta*wn*x(1)-wn^2*x(2)+fo*cos(w*t) ; x(1)] 
% which is a state space form of 
% x" + 2*zeta*wn*x' + (wn^2)*x = fo*cos(w*t)    (fo=Fo/m) 
 
clear all; 
 

Then the following m file is created and run: 

 
%---- numerical simulation --- 
x0=[0.1; 0.01];          %[xdot(0); x(0)] 
tspan=[0 10]; 
[t,x]=ode45('fp2_72',tspan,x0);          
plot(t, x(:,2), '.'); 
hold on; 
 
%--- exact solution ---- 
t=0: .002: 10; 
m=100; k=20000; c=200; Fo=150 ; w=5 
wn=sqrt(k/m); zeta=c/(2*wn*m); fo=Fo/m; wd=wn*sqrt(1-zeta^2)     
x0=0.01; v0= 0.1; 
xe= exp(-zeta*wn*t) .* ( (x0-fo*(wn^2-w^2)/((wn^2-w^2)^2 ...  
 +(2*zeta*wn*w)^2))*cos(wd*t) ... 
 + (zeta*wn/wd*( x0-fo*(wn^2-w^2)/((wn^2-w^2)^2+(2*zeta*wn*w)^2)) ... 
 - 2*zeta*wn*w^2*fo/(wd*((wd^2-w^2)^2  ... 
 + (2*zeta*wn*w)^2))+v0/wd)*sin(wd*t) ) ... 
 + fo/((wn^2-w^2)^2+(2*zeta*wn*w)^2)*((wn^2-w^2)*cos(w*t) ... 
 + 2*zeta*wn*w*sin(w*t)) 
 
plot(t, xe, 'w');  
hold off;  
 

This produces the following plot: 
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2.81*.  Numerically integrate and plot the response of an underdamped system 

determined by m = 150 kg, and k = 4000 N/m subject to the initial conditions of x0 = 0.01 

m and v0 = 0.1 m/s, and the applied force F(t) = 15cos10t , for various values of the 

damping coefficient.  Use this “program” to determine a value of damping that causes the 

transient term to die out with in 3 seconds.  Try to find the smallest such value of 

damping remembering that added damping is usually expensive. 

 

Solution: The solution is given by the following Mathcad session.  A value of c = 350 

kg/s corresponding to ζ = 0.226 gives the desired result. 

 

 



  2-   63 

2.82*.  Solve Problem 2.7 by numerically integrating rather than using analytical 

expressions. 

 

 

Solution: The following session in Mathcad illustrates the solution: 

a) zero initial conditions 

 

 

 

b) Using and initial condition of x(0) = 0.05 m.   Note the difference in the response. 
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2.83*.  Numerically simulate the response of the system of Problem 2.30. 

 

 

Solution: From problem 2.30, the equation of motion is 

 
9a

2
m !!! + 4 a

2
ccos! !! + a

2
k sin! = "3a F(t)  

 where k = 2000 kg, c = 25kg/s  , m = 25 kg , F(t) = 50cos2!t  ,    a = 0.05 m 

Placing the equation of motion in first order form and numerically integrating 

using Mathcad yields 
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2.84*.  Numerically integrate the system of Example 2.8.1 for the following sets of initial 

conditions: 

a) x0 = 0.0 m and v0 = 0.1 m/s 

b) x0 = 0.01 m and v0 = 0.0 m/s 

c) x0 = 0.05 m and v0 = 0.0 m/s 

d) x0 = 0.0 m and v0 = 0.5 m/s 

Plot these responses on the same graph and note the effects of the initial conditions on the 

transient part of the response. 

 

Solution: The following are the solutions in Mathcad.  Of course the other codes and 

Toolbox will yield the same results. 

a) 

 

b) 
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c) 

  

d) 

 

Note the profound effect on the transient, but of course no effect on the steady state.
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2.85*.  A DVD drive is mounted on a chassis and is modeled as a single degree-degree-

of-freedom spring, mass and damper.  During normal operation, the drive (having a mass 

of 0.4 kg) is subject to a harmonic force of 1 N at 10 rad/s.  Because of material 

considerations and static deflection, the stiffness is fixed at 500 N/m and the natural 

damping in the system is 10 kg/s.  The DVD player starts and stops during its normal 

operation providing initial conditions to the module of x0 = 0.001 m and v0 = 0.5 m/s.  

The DVD drive must not have an amplitude of vibration larger then 0.008 m even during 

the transient stage.  First compute the response by numerical simulation to see if the 

constraint is satisfied.  If the constraint is not satisfied, find the smallest value of damping 

that will keep the deflection less then 0.008 m. 

 

Solution:  The solution is given by the following Mathcad session: 

 

 

This yields c =17 kg/s as a solution. 
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2.86  Use a plotting routine to examine the base motion problem of Figure 2.12 by 

plotting the particular solution (for an undamped system) for the three cases k = 

1500 N/m,  and k = 700 N/m.  Also note the values of the three frequency ratios 

and the corresponding amplitude of vibration of each case compared to the input.  

Use the following values: ωb  = 4.4 rad/s, m = 100 kg, and Y = 0.05 m. 

 

 Solution;  The following Mathcad worksheet shows the plotting: 

 

 Note that k2, the softest system (smallest k) has the smallest amplitude, smaller 

than the amplitude of the input as predicted by the magnitude plots in section 2.3.  

Thus when  r > 2 , the amplitude is the smallest.  
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Problems and Solutions Section 2.9 (2.87 through 2.93) 

 

2.87*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a harmonic excitation of 300 N at a frequency of 

approximately one third the natural frequency (ω = ωn/3) and initial conditions of x0 = 

0.01 m and v0 = 0.1 m/s.  The system has a mass of 100 kg, a damping coefficient of 170 

kg/s and a linear stiffness coefficient of 2000 N/m.  The value of k1 is taken to be 10000 

N/m
3
.  Compute the solution and compare it to the linear solution (k1 = 0).  Which system 

has the largest magnitude? 

Solution: The following is a Mathcad simulation. The green is the steady state magnitude 

of the linear system, which bounds the linear solution, but is exceeded by the nonlinear 

solution. The nonlinear solution has the largest response. 
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2.88*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear hard spring of the form 

k(x) = kx + k
1
x

3
 

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 

natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 

system has a mass of 100 kg, a damping coefficient of 170 kg/s and a linear stiffness 

coefficient of 2000 N/m.  The value of k1 is taken to be 10000 N/m
3
.  Compute the 

solution and compare it to the linear solution (k1 = 0).  Which system has the largest 

magnitude? 

Solution: The Mathcad solution appears below. Note that in this case the linear 

amplitude is the largest! 
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2.89*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 

natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 

system has a mass of 100 kg, a damping coefficient of 15 kg/s and a linear stiffness 

coefficient of 2000 N/m.  The value of k1 is taken to be 100 N/m
3
.  Compute the solution 

and compare it to the hard spring solution (k(x) = kx + k
1
x

3
).   

Solution: The Mathcad solution is presented, first for a hard spring, then for a soft spring 

 

 

Next consider the result for the soft spring and note that the nonlinear response is higher 

in the transient then the linear case (opposite of the hardening spring), but nearly the 

same in steady state as the hardening spring. 
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2.90*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 

natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 

system has a mass of 100 kg, a damping coefficient of 15 kg/s and a linear stiffness 

coefficient of 2000 N/m.  The value of k1 is taken to be 1000 N/m
3
.  Compute the solution 

and compare it to the quadratic soft spring (k(x) = kx + k
1
x

2
).  

 

Solution: The response to both the hardening and softening spring are given in the 

following Mathcad sessions.  In each case the linear response is also shown for 

comparison. With the soft spring, the response is more variable, whereas the hardening 

spring seems to reach steady state.   
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2.91*.  Compare the forced response of a system with velocity squared damping as 

defined in equation (2.129) using numerical simulation of the nonlinear equation to that 

of the response of the linear system obtained using equivalent viscous damping as 

defined by equation (2.131).  Use as initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a 

mass of 10 kg, stiffness of 25 N/m, applied force of 150 cos (ωnt) and drag coefficient of 

α = 250. 

Solution: 

 



2-   75 

 

2.92*. Compare the forced response of a system with structural damping (see table 2.2) 

using numerical simulation of the nonlinear equation to that of the response of the linear 

system obtained using equivalent viscous damping as defined in Table 2.2.  Use as initial 

conditions, x0 = 0.01 m and v0 = 0.1 m/s with a mass of 10 kg, stiffness of 25 N/m, 

applied force of 150 cos (ωnt) and solid damping coefficient of b = 25. 

Solution: The solution is presented here in Mathcad 
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Chapter Three Solutions 
 

Problem and Solutions for Section 3.1 (3.1 through 3.14) 
 

3.1 Calculate the solution to 

  

   

!!x + 2 !x + 2x = ! t " #( )

x 0( ) = 1 !x 0( ) = 0

 

 and plot the response. 

 

 Solution: Given: 
   
!!x + 2 !x + 2x = ! t " #( ) x 0( ) = 1, !x 0( ) = 0  

  

  

!
n

=
k

m
= 1.414 rad/s,  " =

c

2 km
= 0.7071,    !

d
= !

n
1#" 2

= 1 rad/s  

 Total Solution: 
 
x t( ) = x

h
t( ) + x

p
t( )  

 Homogeneous:  From Equation (1.36) 

  

  

x
h

t( ) = Ae
!"#

n
t
sin #

d
t + $( )

A =
v

0
+"#

n
x

0
( )

2

+ x
0
#

d( )
2

#
d

2
,      $ = tan

!1
x

0
#

d

v
0

+"#
n
x

0

%

&
'

(

)
* = .785 rad

                  + x
h

t( ) = 1.414e
! t

sin t + .785( )

 

 Particular:  From Equation. (3.9) 

  

  

x
p

t( ) =
1

m!
d

e
"#!

n
t"$( )

sin!
d

t " $( ) =
1

1( ) 1( )
e
" t"%( )

sin t " %( )

But,    sin "t( ) = " sin t   So,     x
p

t( ) = "e
" t"%( )

sin t    &

 

  

  

x t( ) = 1.414e
! t

sin t + 0.785( ) 0 < t < "

x t( ) = 1.414e
! t

sin t + 0.785( ) ! e
!(t!" )

sin t t > "
 

 This is plotted below using the Heaviside function. 
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3.2 Calculate the solution to 

  

   

!!x + 2 !x + 3x = sin t + ! t " #( )

x 0( ) = 0 !x 0( ) = 1

 

 and plot the response. 

 

 Solution: Given:
   
!!x + 2 !x + 3x = sin t + ! t " #( ), x 0( ) = 0, !x 0( ) = 0   

  

  

!
n

=
k

m
= 1.732 rad/s, " =

c

2 km
= 0.5774,  !

d
= !

n
1#" 2

= 1.414 rad/s  

 Total Solution: 

  

x t( ) = x
h

+ x
p1

0 < t < !

x t( ) = x
h

+ x
p1

+ x
p2

t > !
 

 Homogeneous:  Eq. (1.36) 

  
  
x

h
t( ) = Ae

!"#
n
t
sin #

d
t + $( ) = Ae

! t
sin 1.414t + $( )  

 Particular:  #1 (Chapter 2) 

  

  

x
p1

(t) = X sin !t "#( ), where ! = 1 rad/s .  Note that  f
0

=
F

0

m
= 1

$ X =
f

0

!
n

2 "! 2

( )
2

+ 2%!
n
!( )

2

= 0.3536,  and # = tan
"1

2%!
n
!

!
n

2 "! 2

&

'
(
(

)

*
+
+

= 0.785 rad

                                         $ x
p1

t( ) = 0.3536sin t " 0.7854( )

 

 Particular:  #2 Equation 3.9 

  

  

x
p2

t( ) =
1

m!
d

e
"#!

n
t"$( )

sin!
d

t " %( ) =
1

1( ) 1.414( )
e
" t"$( )

sin1.414 t " $( )

                       & x
p2

t( ) = 0.7071e
" t"$( )

sin1.414 t " $( )

 

 The total solution for 0< t<π becomes: 

 

   

x t( ) = Ae
! t

sin 1.414t + "( ) + 0.3536sin t ! 0.7854( )

!x t( ) = !Ae
! t

sin(1.414t + ") + 1.414Ae
! t

cos 1.414t + "( ) + 0.3536cos t ! 0.7854( )

x 0( ) = 0 = Asin" ! 0.25# A =
0.25

sin"

!x 0( ) = 1 = !Asin" + 1.414Acos" + 0.25# 0.75 = 0.25!1.414 0.25( )
1

tan"

                  #" = 0.34 and A = 0.75

 

 Thus for the first time interval, the response is 

  
x t( ) = 0.75e

! t
sin 1.414t + 0.34( ) + 0.3536sin t ! 0.7854( ) 0 < t < "  

 Next consider the application of the impulse at t = π: 
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x t( ) = x
h

+ x
p1

+ x
p2

x t( ) = !0.433e
! t

sin 1.414t + 0.6155( ) + 0.3536sin t ! 0.7854( ) ! 0.7071e
! t!"( )

sin 1.414t ! "( ) t > "

 

 The response is plotted in the following (from Mathcad): 

 

 

 

3.3 Calculate the impulse response function for a critically damped system. 

 

 Solution: 
 

 The change in the velocity from an impulse is

  
v

0
=

F̂

m
, while x0 = 0.  So for a critically 

damped system, we have from Eqs. 1.45 and 1.46 with x0 = 0: 

 

  

  

x(t) = v
0
te

!"
n
t

# x(t) =
F̂

m
te

!"
n
t
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3.4 Calculate the impulse response of an overdamped system. 

 

 Solution: 
 

 The change in velocity for an impulse

  
v

0
=

F̂

m
, while x0 = 0.  So, for an overdamped 

system, we have from Eqs. 1.41, 1.42 and 1.43: 

 

  

  

x t( ) = e
!"#

n
t !v

0

2#
n
" 2 !1

e
!# (

n
" 2 !1)t

+
v

0

2#
n
" 2 !1

e
!# (

n
" 2 !1)t

$

%

&
&

'

(

)
)

x t( ) =
F̂

2m#
n
" 2 !1

e
!"#

n
t

e
!# (

n
" 2 !1)t ! e

!# (
n

" 2 !1)t$
%&

'
()

 

 

 

 

 

 

 

3.5 Derive equation (3.6) from equations (1.36) and (1.38). 

 

 Solution: 
 

 Equation 1.36: x(t) = 
  
Ae

!"#
n
t
sin #

d
t + $( )  

 

 Equation 1.38: 

  

A =
v

0
+!"

n
x

0
( )

2

+ x
0
"

d( )
2

"
d

2
, # = tan

$1
x

0
"

d

v
0

+!"
n
x

0

%

&
'

(

)
*  

 Since x0 = 0 and v0 = 

  

F̂

m
,  Equation 1.38 becomes 

  

  

A =
v

0

!
d

=
F̂

m!
d

" = tan
#1

0( ) = 0

 

 So Equation 1.36 becomes 

  

  

x t( ) =
F̂

m!
d

e
"#!

n
t
sin !

d
t( ) which is Equation 3.6 
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3.6 Consider a simple model of an airplane wing given in Figure P3.6.  The wing is 

approximated as vibrating back and forth in its plane, massless compared to the missile 

carriage system (of mass m).  The modulus and the moment of inertia of the wing are 

approximated by E and I, respectively, and l is the length of the wing.  The wing is 

modeled as a simple cantilever for the purpose of estimating the vibration resulting from 

the release of the missile, which is approximated by the impulse funciton Fδ(t).  

Calculate the response and plot your results for the case of an aluminum wing 2 m long 

with m = 1000 kg, ζ = 0.01, and I = 0.5 m
4
.  Model F as 1000 N lasting over 10

-2
s. 

Modeling of wing vibration resulting from the release of a missile.  (a) system of interest; 

(b) simplification of the detail of interest; (c) crude model of the wing: a cantilevered 

beam section (recall Figure 1.24); (d) vibration model used to calculate the response 

neglecting the mass of the wing. 

 

 Solution: Given:   

  

  

m = 1000 kg ! = 0.01

l = 4 m I = 0.5 m
4

F = 1000 N "t = 10
-2

 s

 

 From Table 1.2, the modulus of Aluminum is   E = 7.1!10
10

 N/m
2
 

 

 The stiffness is 

  

   

k =
3EI

!
3

=

3 7.1!10
10

( ) 0.5( )

4
3

= 1.664 !10
9
 N/m

"
n

=
k

m
= 1.29 !10

3
 rad/s (205.4 Hz)

"
d

= "
n

1#$ 2
= 1.29 !10

3
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 Solution (Eq. 3.6): 

 

  

  

x t( ) =
F!t( )e

"#$
n
t

m$
d

sin$
d
t = 7.753%10

"6
e
"12.9t

sin 1290t( )  m  

The following m-file 

t=(0:0.0001:0.5); 
F=1000;dt=0.01;m=1000;zeta=0.01;E=7.1*10^10;I=0.5;L=4; 
wn=sqrt((3*I*E/L^3)/m); 
wd=wn*sqrt(1-zeta^2); 
x=(F*dt/(m*wd))*exp(-zeta*wn*t).*sin(wd*t); 
plot(t,x) 

 

 

The solution worked out in Mathcad is given in the following: 
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3.7 A cam in a large machine can be modeled as applying a 10,000 N-force over an interval 

of 0.005 s.  This can strike a valve that is modeled as having physical parameters:  m = 10 

kg, c = 18 N•s/m, and stiffness k = 9000 N/m.  The cam strikes the valve once every 1 s.  

Calculate the vibration response, x(t), of the valve once it has been impacted by the cam.  

The valve is considered to be closed if the distance between its rest position and its actual 

position is less than 0.0001 m.  Is the valve closed the very next time it is hit by the cam? 

 

 Solution: Given: 

  

  

F = 10,000 N !t = 0.005 s

m = 10 kg c = 18 N " s/m k = 9000 N/m

#
n

=
k

m
= 30 rad/s $ =

c

2 km
= 0.03 #

d
= #

n
1%$ 2

= 29.99 rad/s

 

 

 Solution Eq. (3.6): 

  

  

x t( ) =
F!t( )e

"#$
n
t

m$
d

sin$
d
t

x t( ) =
10,000( ) 0.005( )e

" 0.03( ) 30( )t

10( ) 29.99( )
sin 29.99t( )

x t( ) = 0.1667e
"0.9t

sin 29.99t( )m

 

 

 At t=1 s: 
  
x 1( ) = 0.1667e

!0.9
sin(29.99) = !.06707 m  

 

 Since 
  
x 1( ) = 0.06707 > 0.0001,  the valve is not closed. 
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3.8 The vibration packages dropped from a height of h meters can be approximated by 

considering Figure P3.8 and modeling the point of contact as an impulse applied to the 

system at the time of contact.  Calculate the vibration of the mass m after the system falls 

and hits the ground.  Assume that the system is underdamped. 

 

 Solution: When the system hits the ground, it responds as if an impulse force acted on it. 

 

 From Equation (3.6): 

  

x t( ) =
F̂e

!"#
n
t

m#
d

sin#
d
t       where 

F̂

m
= v

0
 

 

 Calculate v0: 

 

 For falling mass: 

  
x =

1

2
at

2
 

 

 So, 
  
v

0
= gt

*
, where t

*
 is the time of impact from height h 

 

  

  

h =
1

2
gt

*2
! t

*
=

2h

g

v
0

= 2gh

 

 

 Let t = 0 when the end of the spring hits the ground 

 

 The response is 

  

x t( ) =
2gh

!
d

e
"#!

n
t
sin!

d
t  

 

 Where ωn, ωd, and ζ are calculated from m, c, k.  Of course the problem could be solved 

as a free response problem with x0 = 0, v0 = 
  

2gh  or an impulse response with impact 

model as the unit velocity given. 
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3.9 Calculate the response of 

  
   
3!!x(t) + 12 !x t( ) + 12x t( ) = 3! t( )  

 for zero initial conditions.  The units are in Newtons.  Plot the response. 

 

 Solution: Dividing the equation of motion by 3 reveals; 

  

  

!
n

= 4 = 2 rad/s " =
12

2 3( ) 2( )
= 1# critically damped

F̂ = 3 v
0

=
F$t

m
,       x

0
= 0

x = a
1
+ a

2
t( )e

%!
n
t

a
1

= 0 a
2

=
F$t

m

                   # x t( ) =
F̂

m
te

%2t
=

3

3
te

%2t
= te

%2t
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3.10 Compute the response of the system: 

   3
!!x(t) + 12 !x(t) + 12x(t) = 3! (t)  

subject to the initial conditions x(0) = 0.01 m and v(0) = 0.  The units are in Newtons.  

Plot the response. 

 

Solution:  From the previous problem the system is critically damped with a solution of 

the form 

  
x(t) = (a

1
+ a

2
t)e

!2t
. 

Applying the given initial conditions yields 

   

x(0) = 0.01 = a
1
    and  !x(0) = 0 = !2(0.01+ a

2
0) + a

2

                      " x(t) = (0.01+ 0.02t)e
!2t

 

 Next add to this the solution due to the unit impulse, which was calculated in Problem 3.9 

to get: 

  

x(t) = te
!2t

+ (0.01+ 0.02t)e
!2t

                " x(t) = (0.01+ 1.02t)e
!2t
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3.11 Calculate the response of the system 

  
   
3!!x(t) + 6 !x t( ) + 12x t( ) = 3! t( ) " ! (t "1)  

subject to the initial conditions x(0) =0.01 m and v(0) = 1 m/s.  The units are in Newtons.  

Plot the response. 

 

Solution:   First compute the natural frequency and damping ratio: 

  

!
n

=
12

3
= 2 rad/s,  " =

6

2 #2 #3
= 0.5,   !

d
= 2 1$ 0.5

2
= 1.73 rad/s  

so that the system is underdamped.  Next compute the responses to the two impulses: 

  

x
1
(t) =

F̂

m!
d

e
"#!

n
t
sin!

d
t =

3

3(1.73)
e
"(t"1)

sin1.73(t "1) = 0.577e
" t

sin1.73t,t > 0

x
2
(t) =

F̂

m!
d

e
"#!

n
(t"1)

sin!
d
(t "1) =

1

3(1.73)
e
" t

sin1.73t = 0.193e
"(t"1)

sin1.73(t "1),t > 1

 

 Now compute the response to the initial conditions from Equation (1.36) 

 

  

  

x
h

t( ) = Ae
!"#

n
t
sin #

d
t + $( )

A =
v

0
+"#

n
x

0
( )

2

+ x
0
#

d( )
2

#
d

2
,      $ = tan

!1
x

0
#

d

v
0

+"#
n
x

0

%

&
'

(

)
* = 0.071 rad

                  + x
h

t( ) = 0.5775e
! t

sin t + 0.017( )

 

 Using the Heaviside function the total response is 

 
  
x(t) = 0.577e

! t
sin1.73t + 0.583e

! t
sin t + 0.017( ) + 0.193e

!(t!1)
sin1.73(t !1)"(t !1)  

 This is plotted below in Mathcad: 

 

 Note the slight bump in the response at t = 1 when the second impact occurs.   

 

3.12 A chassis dynamometer is used to study the unsprung mass of an automobile as 

illustrated in Figure P3.12 and discussed in Example 1.4.1 and again in Problem 1.64.  

Compute the maximum magnitude of the center of the wheel due to an impulse of 5000 N 
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applied over 0.01 seconds.  Assume the wheel mass is m = 15 kg, the spring stiffness is k 

= 500,000 N/m, the shock absorber provides a damping ratio of ζ = 0.3, and the rotational 

inertia is J = 2.323 kg m
2
. Compute and plot the response of the wheel system to an 

impulse of 5000 N over 0.01 s.  Compare the undamped maximum amplitude to that of 

the maximum amplitude of the damped system (use r = 0.457 m). 

 

Figure P3.12 Simple model of an automobile suspension system mounted on a chassis 

dynamometer. The rotation of the car’s wheel/tire assembly (of radius r) is given by θ(t) 

and is vertical deflection by x(t).  

 

Solution: With the values given the natural frequency, damped natural frequency, and 

impulse are calculated to be: 

  

!
n

=
k

m + J / r
2

= 117.67 rad/s  = 18.73 Hz,  !
d

= 112.25 rad/s,  X =
F"t

(m + J / r
2
)!

n

= 0.014  m

The response is then plotted as 
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Note that the maximum amplitude of the undamped system, X, is not achieved. 

 
 
3.13 Consider the effect of damping on the bird strike problem of Example 3.1.1.  Recall from 

the example that the bird strike causes the camera to vibrate out of limits.  Adding 

damping will cause the magnitude of the response to decrease but may not be able to 

keep the camera from vibrating past the 0.01 m limit.  If the damping in the aluminum is 

modeled as ζ = 0.05, approximately how long before the camera vibration reduces to the 

required limit? (Hint: plot the time response and note the value for time after which the 

oscillations remain below 0.01 m). 

 

 Solution: Using the values given in Example 3.1.1 and equations (3.7) and (3.8), the 

response has the form 

  

x(t) =
m

b
v

m!
n

e
"#!

n
t
sin!

d
t = 0.026e

"13.07t
sin260.976t  

 Here mb is the mass of the bird and m is the mass of the camera. This is plotted in 

Mathcad below 

 

 From the plot, the amplitude remains below 0.01 m after about 0.057 s. 
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3.14  Consider the jet engine and mount indicated in Figure P3.14 and model it as a mass on 

the end of a beam as done in Figure 1.24.  The mass of the engine is usually fixed. Find a 

expression for the value of the transverse mount stiffness, k, as a function of the relative 

speed of the bird, v, the bird mass, the mass of the engine and the maximum displacement 

that the engine is allowed to vibrate. 

 

                 Figure P3.14 Model of a jet engine in transverse vibration due to a bird strike.  
 
 Solution:  The equation of motion is 

   m
!!x(t) + kx(t) = F̂! (t)  

 From equations (3.7) and (3.8) the magnitude of the response is 

  

X =
F̂

m!
n

 

 for an undamped system.  If the bird is moving with momentum mbv then: 

 

 

  

X =
m

b
v

m!
n

" X =
m

b
v

mk
" k =

1

m

m
b
v

X

#

$
%

&

'
(

2

 

 This can be used to provide some guidance in designing the engine mount. 
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Problems and Solutions for Section 3.2 (3.15 through 3.25) 

 

3.15 Calculate the response of an overdamped single-degree-of-freedom system to an 

arbitrary non-periodic excitation. 

 

 Solution: From Equation (3.12): 

  

x t( ) = F !( )h t " !( )d!
0

t

#  

 For an overdamped SDOF system (see Problem 3.4) 

 

  

h t ! "( ) =
1

2m#
n
$ 2 !1

e
!$#

n
t!"( )

e
#

n
$ 2 !1 t!"( ) ! e

!#
n

$ 2 !1 t!"( )%
&

'
( d"

x t( ) = F "( )
0

t

)
1

2m#
n
$ 2 !1

e
!$#

n
t!"( )

e
#

n
$ 2 !1 t!"( ) ! e

!#
n

$ 2 !1 t!"( )%
&

'
( d"

* x t( ) =
e
!$#

n

2m#
n
$ 2 !1

F "( )
0

t

) e
$#

n
"

e
#

n
$ 2 !1 t!"( ) ! e

!#
n

$ 2 !1 t!"( )%
&

'
( d"
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3.16 Calculate the response of an underdamped system to the excitation given in 

Figure P3.16. 

 Plot of a pulse input of the form f(t) = F0sint. 

 

Figure P3.16 
 

 Solution: 

  

  

x t( ) =
1

m!
d

e
"#!

n
t

F $( )e
#!

n
$

sin!
d

t " $( )%
&

'
(d$

0

t

)
F t( ) = F

0
sin t( ) t < *   From Figure P3.16( )

For t + * ,            x t( ) =
F

0

m!
d

e
"#!

n
t

sin$e
#!

n
$

sin!
d

t " $( )( )d$
0

t

)

 

 

  

x t( ) =
F

0

m!
d

e
"#!

n
t $

      
1

2 1+ 2!
d

+!
n

2%& '(
e
#!

n
t !

d
"1( )sin t "#!

n
cos t%& '( " !

d
"1( )sin!

d
t "#!

n
cos!

d
t{ }

%

&

)
)

+
1

2 1+ 2!
d

+!
n

2%& '(
e
#!

n
t !

d
"1( )sin t "#!

n
cos t%& '( + !

d
"1( )sin!

d
t "#!

n
cos!

d
t{ }
'

(

*
*

 

 

 For ! > " , :
  

f (! )h(t " ! )d!
0

t

# = f (! )h(t " ! )d!
0

$

# + (0)h(t " ! )d!
$

t

#  
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x t( ) =
F

0

m!
d

e
"#!

n
t

sin$e
#!

n
$

sin!
d

t " $( )( )d$
0

%

&

      =
F

0

m!
d

e
"#!

n
t '

  

1

2 1+ 2!
d

+!
n

2"# $%

e
&!

n
t !

d
'1( )sin !

d
t ' (( )"# $% '&! n

cos !
d

t ' (( )"# $%
"
#

$
%

                         ' !
d
'1( )sin!

d
t '&!

n
cos!

d
t

)
*
+

,+

-
.
+

/+

"

#

0
0

              +
1

2 1+ 2!
d

+!
n

2"# $%

e
&!

n
t !

d
+ 1( )sin !

d
t ' 1( )"# $% +&! cos !

d
t ' (( )"# $%

"
#

$
%

                         + !
d
'1( )sin!

d
t '&!

n
cos!

d
t

)
*
+

,+

-
.
+

/+

$

%

2
2

 

Alternately, one could take a Laplace Transform approach and assume the under-damped 

system is a mass-spring-damper system of the form 

 

 
m!!x t( ) + c!x t( ) + kx t( ) = F t( )  

The forcing function given can be written as 

 

F t( ) = F
0

H t( ) ! H t ! "( )( )sin t( )  

 

Normalizing the equation of motion yields 

 

 
!!x t( ) + 2!"n

!x t( ) +"n

2
x t( ) = f

0
H t( ) # H t # $( )( )sin t( )  

 

where f
0

=
F

0

m
 and m, c and k are such that 0 < ! < 1. 

 

Assuming initial conditions, transforming the equation of motion into the Laplace domain 

yields 

 

X s( ) =
f
0

1+ e
!" s

( )

s
2

+1( ) s
2

+ 2#$ns +$n

2

( )
 

 

The above expression can be converted to partial fractions 

 

X s( ) = f
0

1+ e
!" s

( )
As + B

s
2

+1

#
$%

&
'(

+ f
0

1+ e
!" s

( )
Cs + D

s
2

+ 2)*ns +*n

2

#

$%
&

'(
 

 

where A, B, C, and D are found to be 
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A =
!2"#n

1!#n

2

( )
2

+ 2"#n( )
2

B =
#n

2 !1

1!#n

2

( )
2

+ 2"#n( )
2

C =
2"#n

1!#n

2

( )
2

+ 2"#n( )
2

D =
1!#n

2

( ) + 2"#n( )
2

1!#n

2

( )
2

+ 2"#n( )
2

 

 

Notice that X s( )  can be written more attractively as 

 

X s( ) = f
0

As + B

s
2

+1
+

Cs + D

s
2

+ 2!"ns +"n

2

#

$%
&

'(
+ f

0
e
)* s As + B

s
2

+1
+

Cs + D

s
2

+ 2!"ns +"n

2

#

$%
&

'(

= f
0

G s( ) + e
)* s

G s( )( )

 

 

Performing the inverse Laplace Transform yields 

 

x t( ) = f
0

g t( ) + H t ! "( )g t ! "( )( )  

 

where g(t) is given below 

 

g t( ) = Acos t( ) + Bsin t( ) + Ce
!"#nt

cos #dt( ) +
D ! C"#n

#d

$

%&
'

()
e
!"#nt

sin #dt( )  

 

!d is the damped natural frequency,!d = !n 1"# 2
. 

 

Let m=1 kg, c=2 kg/sec, k=3 N/m, and F0=2 N. The system is solved numerically. Both 

exact and numerical solutions are plotted below 
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Figure 1 Analytical vs. Numerical Solutions 

 

Below is the code used to solve this problem 

 

% Establish a time vector 

t=[0:0.001:10]; 

 

% Define the mass, spring stiffness and damping coefficient 

m=1; 

c=2; 

k=3; 

 

% Define the amplitude of the forcing function 

F0=2; 

 

% Calculate the natural frequency, damping ratio and normalized force amplitude  

zeta=c/(2*sqrt(k*m)); 

wn=sqrt(k/m); 

f0=F0/m; 

 

% Calculate the damped natural frequency 

wd=wn*sqrt(1-zeta^2); 

 

% Below is the common denominator of A, B, C and D (partial fractions 

% coefficients) 

dummy=(1-wn^2)^2+(2*zeta*wn)^2; 

 

% Hence, A, B, C, and D are given by 

A=-2*zeta*wn/dummy; 

B=(wn^2-1)/dummy; 

C=2*zeta*wn/dummy; 
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D=((1-wn^2)+(2*zeta*wn)^2)/dummy; 

 

% EXACT SOLUTION 

% 

************************************************************************

* 

% 

************************************************************************

* 

for i=1:length(t) 

    % Start by defining the function g(t) 

    g(i)=A*cos(t(i))+B*sin(t(i))+C*exp(-zeta*wn*t(i))*cos(wd*t(i))+((D-

C*zeta*wn)/wd)*exp(-zeta*wn*t(i))*sin(wd*t(i)); 

    % Before t=pi, the response will be only g(t) 

    if t(i)<pi 

        xe(i)=f0*g(i); 

        % d is the index of delay that will correspond to t=pi 

        d=i; 

    else 

        % After t=pi, the response is g(t) plus a delayed g(t). The amount 

        % of delay is pi seconds, and it is d increments 

        xe(i)=f0*(g(i)+g(i-d)); 

    end; 

end; 

 

% NUMERICAL SOLUTION 

% 

************************************************************************

* 

% 

************************************************************************

* 

 

% Start by defining the forcing function 

for i=1:length(t) 

    if t(i)<pi 

        f(i)=f0*sin(t(i)); 

    else 

        f(i)=0; 

    end; 

end; 

 

% Define the transfer functions of the system 

% This is given below 

%         1 

% --------------------------- 
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% s^2+2*zeta*wn+wn^2 

 

% Define the numerator and denominator 

num=[1]; 

den=[1 2*zeta*wn wn^2]; 

% Establish the transfer function 

sys=tf(num,den); 

 

% Obtain the solution using lsim 

xn=lsim(sys,f,t); 

 

% Plot the results 

figure; 

set(gcf,'Color','White'); 

plot(t,xe,t,xn,'--'); 

xlabel('Time(sec)'); 

ylabel('Response'); 

legend('Forcing Function','Exact Solution','Numerical Solution'); 

text(6,0.05,'\uparrow','FontSize',18); 

axes('Position',[0.55 0.3/0.8 0.25 0.25]) 

plot(t(6001:6030),xe(6001:6030),t(6001:6030),xn(6001:6030),'--'); 

   

 

3.17 Speed bumps are used to force drivers to slow down.  Figure P3.17 is a model of a 

car going over a speed bump.  Using the data from Example 2.4.1 and an 

undamped model of the suspension system (k = 4 x 10
5
 N/m, m = 1007 kg), find 

an expression for the maximum relative deflection of the car’s mass versus the 

velocity of the car. Model the bump as a half sine of length 40 cm and height 20 

cm. Note that this is a moving base problem. 
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Figure P3.17  Model of a car driving over a speed bump. 

 

 

Solution: This is a base motion problem, so the first step is to translate the 

equation of motion into a useable form.  Summing forces yields in the vertical 

direction yields 

   
m!!x(t) + k x(t) ! y(t)( ) = 0  

were the displacement y(t) is prescribed.  Next defined the relative displacement 

to be z(t) = x(t)-y(t), the relative motion between the car’s wheel and body. The 

equation of motion becomes: 

   m!!z(t) + m!!y(t) + kz(t) = 0 ! m!!z(t) + kz(t) = "m!!y(t)  

Substitution of the form of y(t) into this last expression yields: 

   
m!!z(t) + kz(t) = mY!

b

2
sin!

b
t "(t) # "(t # t

1
)( )  

where Φ is the Heavyside step function and  ωb is the frequency associated with 

the bump.  The relationship between the bump frequency and the car’s constant 

velocity is  

   
!

b
=

2"

2!
v =

"

!
v  

where v is the speed of the car in m/s. For constant velocity, the time 
   
t
1

= v! , 

when the car finishes going over the bump.  

Here, z(t) is From equation (3.13) with zero damping the solution is: 

  

z(t) =
1

m!
n

f (t " #
0

t

$ )sin!
n
#d#       t < t

1
 

Substitution of f(t) =y(t) yields: 

  

z(t) =
Y!

b

2

!
n

sin(!
b
t "!

b
# )

0

t

$ sin!
n
#d# =

=
Y!

b

2

!
n

1

2
 

sin !
b
t " (!

n
+!

b
)#( )

"(!
n

+!
b
)

"
sin !

b
t + (!

n
"!

b
)#( )

!
n
"!

b

%

&
'
'

(

)
*
*

0

t

   

                      =  
Y!

b

2

!
n

1

!
n

2 "!
b

2
!

n
sin!

b
t "!

b
sin!

n
t( )      t < t

1

 

where the integral has been evaluated symbolically. Clearly a resonance situation 

prevails.  Consider two cases, high speed 
  
(!

b
>>!

n
) and low speed (

  
(!

b
<<!

n
) ) 

as when the two frequencies are near each other and obvious maximum occurs.  

For high speed, the amplitude can be approximated as 

  

Y!
b

2

!
n

!
b

!
n

2
"!

b

2
(!

n
/!

b
)sin!

b
t " sin!

n
t( ) #

Y!
b

2

!
n

!
b

!
n

2
"!

b

2
sin!

n
t  

For the values given, this has magnitude: 
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Z(v) !
Y

"
!

#
$%

&
'(

3

v
3

)
n
)

n

2 *)
b

2

( )
 

This increases with the cube of the velocity.  Thus the faster the car is going the 

more sever the bump is (larger relative amplitude of vibration), hence serving to 

slow motorist down.  A plot of magnitude versus speed shows bump size is 

amplified by the suspension system. 

 

For slow speed, magnitude becomes  

   

Z(v) !
Y

"
!

#
$%

&
'(

2

v
2)

n

)
n
)

n

2 *)
b

2

( )
 

A plot of the approximate magnitude versus speed is given below 
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Clearly at speeds above the designed velocity there is strong amplification of the 

bump’s magnitude, causing discomfort to the driver and passengers, encouraging 

a slow speed when passing over the bumb. 

 

3.18 Calculate and plot the response of an undamped system to a step function with a 

finite rise time of t1 for the case m = 1 kg, k = 1 N/m, t1 = 4 s and F0 = 20 N.  This 

function is described by 

 

  

  

F t( ) =

F
0
t

t
1

0 ! t ! t
1

F
0

t > t
1

"

#
$

%
$

 

 

 Solution: Working in Mathcad to perform the integrals the solution is: 
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3.19  A wave consisting of the wake from a passing boat impacts a seawall.  It is 

desired to calculate the resulting vibration.  Figure P3.19 illustrates the situation 

and suggests a model.  This force in Figure P3.19 can be expressed as 

 

  

  

F t( ) =
F

0
1!

t

t
0

"

#$
%

&'
0 ( t ( t

0

0 t > t
0

)

*
+

,
+

 

 

 Calculate the response of the seal wall-dike system to such a load. 

 

  

 Solution: From Equation (3.12):

  

x t( ) =

0

t

! F "( )h t # "( )d"  

 From Problem 3.18, 

  

h t ! "( ) =
1

m#
n

sin#
n

t ! "( ) for an undamped system 

 For 
  
t < t

0
:  

  

  

x t( ) =
1

m!
n 0

t

" F
0

1#
$
t
0

%

&'
(

)*
sin!

n
t # $( )d$

+

,
-
-

.

/
0
0

x t( ) =
F

0

m!
n 0

t

" sin!
n

t # $( )d$ #
1

t
0 0

t

" $ sin!
n

t # $( )d$
+

,
-
-

.

/
0
0

 

 After integrating and rearranging, 

  

  

x t( ) =
F

0

kt
0

1

!
n

sin!
n
t " t

#

$
%

&

'
( +

F
0

k
1" cos!

n
t#$ &' t < t

0
  

 For
  
t > t

0
:

  
f (! )h(t " ! )d!

0

t

# = f (! )h(t " ! )d!
0

t
0

# + (0)h(t " ! )d!
t
0

t

#  

 

  

x t( ) =
1

m!
n 0

t
0

" F
0

1#
$
t
0

%

&'
(

)*
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n
t # $( )d$

+

,

-
-

.

/

0
0

x t( ) =
F

0

m!
n 0

t
0

" sin!
n

t # $( )d$ #
1

t
0 0

t
0

" $ sin!
n

t # $( )d$
+

,
-
-

.

/
0
0
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 After integrating and rearranging, 

  

x t( ) =
F

0

kt
0
!

n

sin!
n
t " sin!

n
(t " t

0
)#$ %& "

F
0

k
cos!

n
t#$ %& t > t

0
 

3.20  Determine the response of an undamped system to a ramp input of the form F(t) = 

F0t, where F0 is a constant.  Plot the response for three periods for the case m = 1 kg, k = 

100 N/m and F0 = 50 N. 

 

 Solution: From Eq. (3.12): 

  

x t( ) =

0

t

! F "( )h t # "( )d"  

 From Problem 3.8, 

  

h t ! "( ) =
1

m#
n

sin#
n

t ! "( ) for an undamped system.  

Therefore, 

  

  

x t( ) =
1

m!
n 0

t

" F
0
#( )sin!

n
t $ #( )d#

%

&
'
'

(

)
*
*

=
F

0

m!
n 0

t

" # sin!
n

t $ #( )d#  

 

 After integrating and rearranging, 

 

  

  

x t( ) =
F

0

m!
n

"

!
n

#
1

!
n

2
sin!

n
"

$

%
&
&

'

(
)
)

=
F

0

k
t #

F
0

k!
n

sin!
n
t  

 

 Using the values m = 1 kg, k = 100 kg, and F0 = 50 N yields 

 

  
  
x t( ) = 0.5t ! .05sin 10t( )   m  
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3. 21     A machine resting on an elastic support can be modeled as a single-degree-of-

freedom, spring-mass system arranged in the vertical direction.  The ground is subject to 

a motion y(t) of the form illustrated in Figure P3.221.  The machine has a mass of 5000 

kg and the support has stiffness 1.5x10
3
 N/m.  Calculate the resulting vibration of the 

machine. 

 

Solution: Given m = 5000 kg, k = 1.5x10
3
 N/m, 

  
!

n
= k

m
= 0.548 rad/s and that 

the ground motion is given by: 

  

y(t) =

2.5t 0 ! t ! 0.2

0.75"1.25t 0.2 ! t ! 0.6

0 t # 0.6

$

%
&

'
&

 

The equation of motion is 
   m
!!x + k(x ! y) = 0  or 

   m
!!x + kx = ky = F(t)  The impulse 

response function computed from equation (3.12) for an undamped system is 

  

h(t ! " ) =
1

m#
n

sin#
n
(t ! " )  

This gives the solution by integrating a yh across each time step: 

  

x(t) =
1

m!
n

ky(" )sin!
n
(t # " )d"

0

t

$ = !
n

y(" )sin!
n
(t # " )d"

0

t

$  

For the interval 0< t < 0.2: 

  

x(t) = !
n

2.5" sin!
n
(t # " )d"

0

t

$
       % x(t) = 2.5t # 4.56sin0.548t   mm  0 & t & 0.2

 

For the interval 0.2< t < 0.6: 

  

x(t) = !
n

2.5" sin!
n
(t # " )d"

0

0.2

$ +!
n

(0.75#1.25" )sin!
n
(t # " )d"

0.2

t

$
      = 0.75# 0.5cos0.548(t # 0.2) #1.25t + 2.28sin0.548(t # 0.2)

 

Combining this with the solution from the first interval yields: 

  

x(t) = 0.75 + 1.25t ! 0.5cos0.548(t ! 0.2)

              +6.48sin0.548(t ! 0.2) ! 4.56sin0.548(t ! 0.2)  mm 0.2 " t " 0.6
 

Finally for the interval t >0.6: 
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x(t) = !
n

2.5t sin!
n
(t " # )d#

0

0.2

$ +!
n

(0.75"1.25t)sin!
n
(t " # )d#

0.2

0.6

$ +!
n

(0)sin!
n
(t " # )d#

0

t

$
      = "0.5cos0.548(t " 0.2) " 2.28sin0.548(t " 0.6) + 2.28sin0.548(t " 0.2)

Combining this with the total solution from the previous time interval yields: 

  

x(t) = !0.5cos0.548(t ! 0.2) + 6.84sin0.548(t ! 0.2) ! 2.28sin0.548(t ! 0.6)

                                                                ! 4.56sin0.548t   mm t " 0.6
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3.22 Consider the step response described in Figure 3.7.  Calculate tp by noting that it 

occurs at the first peak, or critical point, of the curve. 

 

 Solution: Assume t0 = 0.  The response is given by Eq. (3.17): 

 

  

  

x t( ) =
F

0

k
!

F
0

k 1!" 2

e
!"#

n
t
cos #

d
t !$( )  

 To find tp, compute the derivative and let 
   
!x t( ) = 0  

  

   

!x t( ) =
!F

0

k 1!" 2
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n
e
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n
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d
t !$( ) + e
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!
d
t "# " $ = tan
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n

!
d

&

'(
)

*+
(π can be added or subtracted without changing the 

tangent of an angle) 
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$1

$%!
n

!
d

&

'(
)

*+
,

-
.
.

/

0
1
1

 

 But, 

 

! = tan
"1

#

1"# 2

$

%
&
&

'

(
)
)

 

 So,  

  

  

t =
1

!
d

" + tan
#1

$

1#$ 2

%

&
'
'

(

)
*
*
# tan

#1
$

1#$ 2

%

&
'
'

(

)
*
*

+

,

-
-

.

/

0
0

t
p

=
"
!

d
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3.23 Calculate the value of the overshoot (o.s.), for the system of Figure P3.7. 

 

 Solution: 

 

 The overshoot occurs at 

 

t
p

=
!

"
d

 

 Substitute into Eq. (3.17): 

  

  

x t
p( ) =

F
0

k
!

F
0

k 1!" 2

e
!"#

n
$ /#

d cos #
d

$
#

d

%

&'
(

)*
!+

,

-
.
.

/

0
1
1

 

 The overshoot is 

  

  

o.s. = x t
p( ) ! x

ss
t( )

o.s. =
F

0

k
!

F
0

k 1!" 2

e
!"#

n
$ /#

d !cos%( ) !
F

0

k

 

 Since 

 

! = tan
"1

#

1"# 2

$

%
&
&

'

(
)
)

,  then cos! = 1-# 2
 

 

 

  

o.s. = !
F

0

k 1!" 2

e
!"#

n
$ /#

d( ) 1!" 2( )

o.s. =
F

0

k
e
!"#

n
$ /#

d

 

3.24 It is desired to design a system so that its step response has a settling time of 3 s 

and a time to peak of 1 s.  Calculate the appropriate natural frequency and 

damping ratio to use in the design. 

 

 Solution: 

 Given 
  
t

s
= 3s, t

p
= 1s  

 Settling time: 

  

  

t
s

=
3.5

!"
n

= 3 s #!"
n

=
3.5

3
= 1.1667 rad/s  

 Peak time: 

  

  

t
p

=
!
"

d

= 1 s     #"
d

= "
n

1$% 2
= !  rad/s

#"
n

1$
1.1667

"
n

&

'(
)

*+

2

= ! #"
n

2
1$

1.1667

"
n

&

'(
)

*+

2,

-

.

.

/

0

1
1

= ! 2

#"
n

2
1$

1.3611

"
n

2

,

-
.
.

/

0
1
1

= ! 2 #"
n

2 $1.311 = ! 2 #"
n

= 3.35 rad/s
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 Next use the settling time relationship to get the damping ratio: 

   
! =

1.1667

"
n

=
1.1667

3.35
#! = 0.3483  
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3.25 Plot the response of a spring-mass-damper system for this input of Figure 3.8 for 

the case that the pulse width is the natural period of the system (i.e., t1 = π⁄ωn). 

 

 Solution: 

 

 The values from Figure 3.7 will be used to plot the response. 

 

  

  

F
0

= 30 N

k = 1000 N/m

! = 0.1

" = 3.16 rad/s

 

 From example 3.2.2 and Figure 3.7, with 

  
t
1

=
!

"
 we have for t = 0 to t1, 

 

  

  

x t( ) =
F

0

k
!

F
0
e
!"#

n
t

k 1!" 2

cos #
d
t !$( ) where$ = tan

!1
"

1!" 2

%

&
'
'

(

)
*
*

 

 x(t) = .03 - .03015e-.316t
  cos(3.144t - .1002)         0 < t ≤ t1 

 

 For t > t1, 

 

  

  

x t( ) =
F

0
e
!"#

n
t

k 1!" 2

e
"#nt

1

cos #
d

t !
$
#

n

%

&'
(

)*
! +

,

-
.
.

/

0
1
1
! cos #

d
t !+( )

2
3
4

54

6
7
4

84
 

 

 x(t) = 0.0315e
-.316t

 {1.3691cos(3.144t – 3.026) – cos(3.144t - .1002)} t > t1 

 

 

 The plot in Mathcad follows: 
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Problems and Solutions Section 3.3 (problems 3.26-3.32) 
 

3.26 Derive equations (3.24). (3.25) and (3.26) and hence verify the equations for the Fourier 

coefficient given by equations (3.21), (3.22) and (3.23). 

 

 Solution: For n ! m, integration yields: 

 

  

  

0

T

! sin n"
T
t sin m"

T
tdt =

sin n # m( )"T
t

"
T

2 n # m( )
#

sin n + m( )"T
t

"
T

2 n + m( )

$

%
&
&

'

(
)
)

0

T

=

sin n # m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n # m( )"T

#

sin n + m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n + m( )"T

=

sin n # m( ) 2*( )$% '(
2 n # m( )"T

#
sin n + m( ) 2*( )$% '(

2 n + m( )"T

= 0

 

 

 Since m and n are integers, the sine terms are 0, so this is equal to 0. 

 

 Equation (3.24), for m = n: 

 

  

  

0

T

! sin
2

n"
T
tdt =

1

2
t #

1

4n"
T

sin 2n"
T
t( )

$

%
&

'

(
)

0

T

=
T

2
#

T

8n*
sin 2*

2*
T

+
,-

.
/0

T
$

%
&

'

(
)

=
T

2
#

T

8n*
sin 4n*$% '( =

T

2

 

 

 Since n is an integer, the sine term is 0, so this is equal to T/2. 

 

 So, 

  0

T

! sin n"
T
t sin m"

T
tdt =

0 m # n

T / 2 m = n

$
%
&

 

 

 Equation (3.25), for  m ! n  
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0

T

! cos n"
T
t cos m"

T
tdt =

sin n # m( )"T
t

2 n # m( )"T

#
sin n + m( )"T

t

2 $ + m( )"T

%

&
'
'

(

)
*
*

0

T

=

sin n # m( )
2+
T

,
-.

/
01

T
%

&
'

(

)
*

2 n # m( )"T

#

sin n + m( )
2+
T

,
-.

/
01

T
%

&
'

(

)
*

2 n + m( )"T

        =

sin n # m( ) 2+( )%& ()
2 n # m( )"T

#
sin n + m( ) 2+( )%& ()

2 n + m( )"T

= 0

 

 

 Since m and n are integers, the sine terms are 0, so this is equal to 0. 

 

 Equation (3.25), for m = n becomes: 

 

  

  

cos
2

0

T

! n"
T
tdt =

1

2
t +

1

4n"
T

sin 2n"
T
t( )

#

$
%

&

'
(

0

T

=
T

2
+

T

8n)
sin 2n

2)
T

*
+,

-
./

T
#

$
%

&

'
(

=
T

2
+

T

8n)
sin 4n)#$ &' =

T

2

 

 

 Since n is an integer, the sine term is 0, so this is equal to T/2. 

 

 So, 

  0

T

! cos n"
T
t cos m"

T
tdt =

0 m # n

T / 2 m = n

$
%
&

 

 

 Equation (3.26), for m ! n : 

 

  

0

T

! cos n"
T
t sin m"

T
tdt =

cos n # m( )"T
t

2"
T

n # m( )
#

cos n + m( )"T
t

2"
T

n + m( )

$

%
&
&

'

(
)
)

0

T

=

cos n # m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n # m( )"T

#

cos n + m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n + m( )"T

#
1

2 m # n( )"T

+
1

2 m + n( )"T

=

cos n # m( ) 2*( )$% '(
2 n # m( )"T

#
cos n + m( ) 2*( )$% '(

2 n + m( )"T

#
1

2 m # n( )"T

+
1

2 m + n( )"T

= 0

 

 

 Since n is an integer, the cosine term is 1, so this is equal to 0. 
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 So, 

  0

T

! cos n"
T
t sin m"

T
tdt = 0  

 Equation (3.26) for n = m becomes: 

  0

T

! cos n"
T
t sin n"

T
tdt =

1

2n"
T

sin
2

n"
T
t

#

$
%

&

'
(

0

T

=
T

4n)
sin

2
2)n = 0  

Thus 

  0

T

! cos n"
T
t sin n"

T
tdt = 0  
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3.27 Calculate bn from Example 3.3.1 and show that bn = 0, n = 1,2,…,∞ for the triangular 

force of Figure 3.12.  Also verify the expression an by completing the integration 

indicated.  (Hint:  Change the variable of integration from t to x = 2πnt/T.) 

 

 Solution: From Equation (3.23),

  

b
n

=
2

T
0

T

! F t( )sin n"
T
tdt . Computing the integral yields: 

  

  

b
n

=
2

T
0

T / 2

!
4

T
t "1

#
$%

&
'(

sin n)
T
tdt +

T / 2

T

! 1"
4

T
t "

T

2

#
$%

&
'(

*

+
,

-

.
/sin n)

T
tdt

*

+
,
,

-

.
/
/

b
n

=
2

T

4

T
0

T / 2

! t sin n)
T
tdt "

0

T / 2

! sin n)
T
tdt + 3

T / 2

T

! sin n)
T
tdt "

4

T
T / 2

T

! t sin n)
T
tdt

*

+
,
,

-

.
/
/

 

 

 Substitute 

  
x = n!

T
t =

2"n

T
t  

 

  

  

b
n

=
1

!n

2

!n
0

!n

" x sin xdx #
0

!n

" sin xdx + 3

!n

2!n

" sin xdx #
2

!n
!n

2!n

" x sin xdx
$

%
&
&

'

(
)
)

=
1

!n

2

!n
sin x # xcos x( )

0

!n

+ cos x
0

!n

# 3cos x
!n

2!n

#
2

!n
sin x # xcos x( )

!n

2!n$

%
&

'

(
)

=
1

!n

2

!n
#!ncos!n( ) + cos!n #1# 3+ 3cos!n #

2

!n
#2!n + !ncos!n( )

$

%
&

'

(
)

                            =
1

!n
#2cos!n + 4cos!n # 4 + 4 # 2cos!n$% '( =

1

!n
0$% '( = 0

 

 

 From equation (3.22), 

  

a
n

=
2

T
0

T

! F t( )cos n"
T
tdt  

 

 

  

a
n

=
2

T
0

T / 2

!
4

T
t "1

#
$%

&
'(

cos n)
T
tdt +

T / 2

T

! 1"
4

T
t "

T

2

#
$%

&
'(

*

+
,

-

.
/cos n)

T
tdt

*

+
,
,

-

.
/
/

a
n

=
2

T

4

T
0

T / 2

! t cos n)
T
tdt "

0

T / 2

! cos n)
T
tdt + 3

T / 2

T

! cos n)
T
tdt "

4

T
T / 2

T

! t cos n)
T
tdt

*

+
,
,

-

.
/
/

 

 

 Substitute 

  
x = n!

T
t =

2"n

T
t  
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a
n

=
1

!n

2

!n
0

!n

" xcos xdx #
0

!n

" cos xdx + 3

!n

2!n

" cos xdx #
2

!n
!n

2!n

" xcos xdx
$

%
&
&

'

(
)
)

=
1

!n

2

!n
cos x + x sin x( ) # sin x

0

!n

+ 3sin x
!n

2!n

#
2

!n
cos x # sin x( )

!n

2!n$

%
&

'

(
)

=
1

!n

2

!n
cos!n #1( ) #

2

!n
1# cos!n( )

$

%
&

'

(
)

=
2

! 2
n

2
cos!n #1#1+ cos!n$% '(

                                          =
4

! 2
n

2
cos!n #1$% '( =

0 n even

-8

! 2
n

2
n odd

*

+
,

-
,
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3.28 Determine the Fourier series for the rectangular wave illustrated in Figure P3.28. 

 

 Solution: The square wave of period T is described by 

  

  

F t( ) =
1 0 ! t ! "

#1 " ! t ! 2"

$
%
&

 

 Determine the coefficients 
  
a

0
,a

n
,b

n
 from direct integration: 

  

  

a
0

=
2

T
0

T

! F t( )dt

=
2

2"
0

"

! 1( )dt +

"

2"

! #1( )dt
$

%
&
&

'

(
)
)

=
1

"
t

0

"
# t

"

2"
dt$

%&
'
()

=
1

"
" # 2" + "$% '( =

1

"
0( )          * a

0
= 0

 

  

  

a
n

=
2

T
0

T

! F t( )cos n"
T
tdt,  where "

T
=

2#

T
=

2#

2#
= 1

=
2

2#
0

#

! cos ntdt $
#

2#

! cos ntdt
%

&
'
'

(

)
*
*

=
1

#

1

n
sin nt

0

#
$

1

n
sin nt

#

2#%

&
'

(

)
*

=
1

#n
sin n#( ) $ sin n2#( ) + sin n#( )%
&

(
) = 0

 

 

  

b
n

=
2

T
0

T

! F t( )sin"
T
tdt =

2

2#
0

#

! sin ntdt $
#

2#

! sin ntdt
%

&
'
'

(

)
*
*

=
1

#

$1

n
cos nt

0

#
$

1

n
cos nt

#

2#%

&
'

(

)
*=

1

#n
$cos n# + 1$1$ cos n#%& () =

2

#n
1$ cos n#%& ()

 

 If n is even, cosnπ = 1.  If n is odd, cosnπ = -1 

 So, 

  

b
n

=

0 n even

4

!n
n odd

"

#
$

%
$

 

 Thus the Fourier Series collapses to a sine series of the form 
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F t( ) = b
n

n=1

!

" sin nt =
4

n#n=1,3,!

!

" sin nt  

 

 The Vibration Toolbox can also be used: 

 t=0:pi/100:2*pi-pi/100; 

 f=-2*floor(t/pi)+1; 

 vtb3_3(f',t',100) 

 [a,b]=vtb3_3(f',t',100) 

 

 Note that vtb3_3 always gives some error on the order of delta t (.01 in this case). Using a 

smaller delta t reduced the error. 
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3.29 Determine the Fourier series representation of the sawtooth curve illustrated in Figure 

P3.29. 

 

 Solution:  The sawtooth curve of period T is 

  
F t( ) =

1

2!
t 0 " t " 2!  

 Determine coefficients 
  
a

0
,a

n
,b

n
: 

 

  

  

a
0

=
2

T
0

T

! F t( )dt =
2

2"
0

2"

!
1

2"
t

#
$%

&
'(

dt =
1

2" 2

#
$%

&
'(

1

2
t

2

0

2"

=
1

4" 2
4" 2 ) 0*+ ,- = 1

 

 

  

  

a
n

=
2

T
0

T

! F t( )cos n"
T
tdt,  where "

T
=

2#
T

=
2#
2#

= 1

=
2

2#
0

2#

!
1

2#
t

$
%&

'
()

cos ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

0

2#

! t cos ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

1

n
2

cos nt +
1

n
t sin nt

*

+
,

-

.
/

0

2#

=
1

2# 2

1

n
2

101( ) +
1

n
0 0 0( )

*

+
,

-

.
/ = 0

 

 

  

  

b
n

=
2

T
0

T

! F t( )sin n"
T
tdt =

2

2#
0

2#

!
1

2#
t

$
%&

'
()

sin ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

0

2#

! t sin ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

1

n
2

sin nt 0
1

n
t cos nt

*

+
,

-

.
/

0

2#

=
1

2# 2

1

n
2

0 0 0( ) 0
1

n
2# 0 0( )

*

+
,

-

.
/

=
1

2# 2

02#
n

$
%&

'
()

=
01

#n

 

 

 Fourier Series 

  

  

F t( ) =
1

2
+

n=1

!

" #1

$n

%
&'

(
)*

sin nt

F t( ) =
1

2
#

1

$ n=1

!

" 1

n
sin nt
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3.30 Calculate and plot the response of the base excitation problem with base motion specified 

by the velocity 

 

  
   
!y t( ) = 3e

! t / 2
"(t) m/s  

 

 where Φ(t) is the unit step function and m = 10 kg, ζ = 0.01, and k = 1000 N/m.  Assume 

that the initial conditions are both zero. 

 

 Solution: Given: 

  

   

!y t( ) = 3e
! t / 2

µ t( )  m/s

m = 10 kg,  " = 0.01, k = 1000 N/m

x 0( ) = !x 0( ) = 0

 

 

 From Equation (2.61): 

  

   

m!!x + c !x ! !y( ) + k x ! y( ) = 0

m!!x + c!!x + kx = c!y + ky
 

 Integrate by parts to find y(t): 

  
   
y t( ) = ! !y t( )dt = 3e

" t / 2
µ t( )dt  

 Let 

  

  

u = µ t( ) dv = 3e
! t / 2

dt

du = " t( )dt v = !6e
! t / 2

 

 When 

  
  
t > 0,µ t( ) = 1,   so  y t( ) = 6 1! e

!1/ 2

( )  

 

 So, 
   
m!!x + c !x + kx = c 3e

! t / 2

( ) + 6k 1! e
t / 2

( )  

 

 Since 
  c = 2! km = 2 kg/s,  

     10!!x + 2 !x + 1000x = 6000 ! 5994e
! t / 2

 

 

 The solution is given by equation (3.13): 
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x t( ) =
1

m!
d

e
"#!

n
t

0

t

$ F %( )e
#!

n
%

sin!
d

t " %( )&
'

(
)d%

!
n

=
k

m
= 10 rad/s

!
d

= !
n

1"# 2
= 10 rad/s

F t( ) = 6000 " 5994e
" t / 2

x t( ) =
1

100
e
"0.1t

0

t

$ 6000 " 5994e
"% / 2

( )e
0.1%

sin 10 t " %( )( )&
'

(
)d%

x t( ) = 60e
"0.1t

0

t

$ e
0.1t

sin 10 t " %( )&' ()d% "
0

t

$ e
"0.4t

sin 10 t " %( )&' ()d%
*
+
,

-,

.
/
,

0,

 

 

 After integrating and rearranging 

 

  
  
x t( ) = 6 ! 5.979e

! t / 2
! 0.0295cos10t ! 0.2990sin10t  m  
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3.31 Calculate and plot the total response of the spring-mass-damper system of Figure 2.1 with 

m = 100 kg, ζ = 0.1 and k = 1000 N/m to the signal of Figure 3.12, with maximum force 

of 1 N.  Assume that the initial conditions are zero and let T = 2π s. 

  
 Solution:  Given:  

   

m = 100 kg, k = 1000 N/m,! = 0.1,T = 2" s,  F
max

= 1N ,

x 0( ) = !x 0( ) = 0,   #
n

=
k

m
= 3.16 rad/s,  #

d
= # 1$! 2

= 3.15 rad/s,    #
T

=
2"

T
= 1 rad/s

 

 From example 3.3.1 and Figure 3.10, 

  

  

F t( )
n=1

!

" a
n
cos nt, a

n
=

0 n even

-8

# 2
n

2
n odd

$

%
&

'
&

 

 So, 

   

m!!x + c !x + kx = a
n

n=1

!

" cos nt n odd( )  

 The total solution is 

  

  

x t( ) = x
h

t( ) +

n=1

!

" x
cn

t( ) n odd( )  

 From equation (3.33), 

  

  

x
cn

t( ) =
a

n
/ m

!
n

2 " n!
T( )

2#
$%

&
'(

2

+ 2)!
n
n!

T
#$ &'

2#

$
%

&

'
(

1/ 2
cos n!

T
t "*

n( )

*
n

= tan
"1

2)!
n
n!

T

!
n

2 " n
2!

T

2

+

,
-

.

/
0 = tan

"1
(
0.6325n

10 " n
2

)

x
cn

t( ) =
"0.00811

n
2

n
4 "19.6n

2
+ 100#$ &'

1/ 2
cos nt " tan

"1
0.6325n

10 " n
2

+
,-

.
/0

#

$
%

&

'
(
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 So,

   

x t( ) = Ae
!"

n
t
sin "

d
t #$( ) +

n=1

%

& #0.00811

n
2

n
4 #19.6n

2
+ 100'( )*

1/ 2
cos nt # tan

#1
0.6325n

10 # n
2

+
,-

.
/0

'

(
1

)

*
2

'

(

1
1
1

)

*

2
2
2

  n odd( )

!x t( ) = #!"
n
Ae

#!"
n
t
sin "

d
t #$( )

      +"
d
Ae

#!"
n
t
cos "

d
t #$( ) +

n=1

%

& 0.00811

n n
4 #19.6n

2
+ 100'( )*

1/ 2
sin nt # tan

#1
0.6325n

10 # n
2

'

(

1
1
1

)

*

2
2
2

(n odd)

x 0( ) = 0 = #Asin$ +

n=1

%

& #0.00811

n
2

n
4 #19.6n

2
+ 100'( )*

1/ 2
cos nt # tan

#1
0.6325n

10 # n
2

+
,-

.
/0

'

(
1

)

*
2

'

(

1
1
1

)

*

2
2
2

  n odd( )

  

 

   

0 = !Asin" ! 0.00110

!x 0( ) = 0 = #$
n
Asin" +$

d
Acos"

+

n=1

%

& !0.000569

n
4 !19.6n

2
+ 100'( )*

1/ 2

0.00493n
2

+ 1'( )*

'

(

+
+
+

)

*

,
,
,

n odd( )

0 = #$
n
Asin" +$

d
Acos" ! 0.001186

 

 

 So A  = 0.00117  m and θ = - 1.232 rad. 

 

 The total solution is: 

 

  

  

x t( ) = 0.00117e
!0.316t

sin 3.15t + 1.23( )

+

n=1

"

# !0.00811

n
2

n
4 !19.6n

2
+ 100$% &'

1/ 2
cos nt ! tan

!1
0.6325n

10 ! n
2

(
)*

+
,-

$

%
.

&

'
/

$

%

.

.

.

&

'

/
/
/

 m n odd( )
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3.32 Calculate the total response of the system of Example 3.3.2 for the case of a base motion 

driving frequency of ωb = 3.162 rad/s. 

 

 Solution:  Let ωb = 3.162 rad/s. From Example 3.3.2, 

 

  
  
F t( ) = cY!

b
cos!

b
t + kY sin!

b
t = 1.581cos 3.162t( ) + 50sin 3.162t( )  

 

 Also, 

  

  

!
n

=
k

m
= 31.62 rad/s and " =

c

2 km
= 0.158

!
d

= !
n

1#" 2
= 31.22 rad/s

 

 

 The solution is 

 

  

  

x t( ) = Ae
!"#

n
t
sin #

d
t +$( ) +#

n
Y

#
n

2
+ 2"#

b( )
2

#
n

2 !#
b

2

( )
2

+ 2"#
n
#

b( )
2

%

&

'
'
'

(

)

*
*
*

1/ 2

cos #
b
t !+

1
!+

2
( )

x t( ) = Ae
!5t

sin 31.22t +$( ) + 0.0505cos 3.162t !+
1
!+

2
( )

+
1

= tan
!1

2"#
n
#

b

#
n

2 !#
b

2

,

-
.

/

0
1 = 0.0319 rad

+
2

= tan
!1

#
n

2"#
b

,

-.
/

01
= 1.54 rad

 

 

 So, 

 

   

x t( ) = Ae
!5t

sin 31.22t +"( ) + 0.0505cos 3.162t !1.57( )

!x t( ) = !5Ae
!5t

sin 31.22t +"( ) + 31.22Ae
!5t

cos 31.22t +"( ) ! 0.16sin 3.162t !1.57( )

        # x 0( ) = 0.01 = Asin" + 0.0505 0( )

        # !x 0( ) = 3! 5Asin" + 31.22Acos" + 0.16 1( )

 

 

 So,   A = 0.0932 m and ! = 0.107 rad   

  

 The total solution is 

 

  
  
x t( ) = 0.0932e

!5t
sin 31.22t + 0.107( ) + 0.0505cos 3.162t !1.57( )  m  
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Problems and Solutions for Section 3.4 (3.35 through 3.38) 
 

3.35 Calculate the response of 

  
   
m!!x + c !x + kx = F

0
!(t)  

 where Φ(t) is the unit step function for the case with x0 = v0 = 0.  Use the Laplace 

transform method and assume that the system is underdamped. 

 

 Solution: 
 

 Given: 

  

   

m!!x + c !x + kx = F
0
µ(t)

!!x + 2!"
n
!x +"

n

2
x =

F
0

m
µ(t)               (! < 1)

 

 

 Take Laplace Transform: 

 

  

  

s
2
X (s) + 2!"

n
sX (s) +"

n

2
X (s) =

F
0

m

1

s

#
$%

&
'(

X (s) =
F

0
/ m

s
2

+ 2!"
n
s +"

n

2

( )s
=

F
0

m"
n

2

#

$
%

&

'
(

"
n

2

s s
2

+ 2!"
n
s +"

n

2

( )

 

 

 Using inverse Laplace tables, 

 

  

  

x(t) =
F

0

k
!

F
0

k 1!" 2

e
!"#

n
t
sin #

n
1!" 2

t + cos
!1

(" )( )  
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3.36 Using the Laplace transform method, calculate the response of the system of 

Example 3.4.4 for the overdamped case (ζ > 1).  Plot the response for m = 1 kg, k 

= 100 N/m, and ζ = 1.5. 

 

 Solution: 
 

 From example 3.4.4, 

 

  

   

m!!x + c !x + kx = ! (t)

!!x + 2"#
n
!x +#

n

2
x =

1

m
! (t)               (" > 1)

 

 

 Take Laplace Transform: 

 

  

  

s
2
X (s) + 2!"

n
sX (s) +"

n

2
X (s) =

1

m

X (s) =
1 / m

s
2

+ 2!"
n
s +"

n

2
=

1 / m

(s + a)(s + b)

 

 

 Using inverse Laplace tables,
  
a = !"#

n
+#

n
" 2 !1 ,  b = !"#

n
!#

n
" 2 !1   

 

  

  

x(t) =
e
!"#

n
t

2m#
n
" 2 !1

e
#

n
" 2 !1t ! e

!#
n

" 2 !1t$
%&

'
()

 

 

 Inserting the given values yields:  

  
x(t) =

e
!15t

22.36
e

11.18t ! e
!11.18t"

#
$
%  m  
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3.37 Calculate the response of the underdamped system given by 

  
   
m!!x + c !x + kx = F

0
e
!at

 

 using the Laplace transform method.  Assume a > 0 and that the initial conditions 

are all zero. 

 

 Solution: 
 

 Given: 

 

  
   
m!!x + c !x + kx = F

0
e
!at

           a > 0,   initial conditions = 0  

 

 Rewrite: 

 

  

   
!!x + 2!"

n
!x +"

n

2
x =

F
0

m
e
#at

 

 

 Take Laplace Transform: 

 

  

  

s
2
X (s) + 2!"

n
sX (s) +"

n

2
X (s) =

F
0

m

1

s + a

#
$%

&
'(

X (s) =
F

0
/ m

s
2

+ 2!"
n
s +"

n

2

( )(s + a)

 

 

 For an underdamped system, the inverse Laplace Transform is 

 

  

  

x(t) =
F

0

m 2!"
n
a #"

n

2 # a
2

( )

$

%
&
&

'

(
)
)

e
#!"

n
t !"

n
# a

"
d

sin("
d
t) + cos("

d
t)

*

+
,

-

.
/ # e

#at
0
1
2

32

4
5
2

62
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3.38 Solve the following system for the response x(t) using Laplace transforms: 

  
   100!!x(t) + 2000x(t) = 50! (t)  

 where the units are in Newtons and the initial conditions are both zero. 

 

 Solution: 
 

 First divide by the mass to get 

 

  
   
!!x + 20x(t) = 0.5! (t)  

 

 Take the Laplace Transform to get 

 

  
  (s

2
+ 20)X (s) = 0.5  

 

 So 

 

  

  
X (s) =

0.5

s
2

+ 20
 

 

 Taking the inverse Laplace Transform using entry 5 of Table 3.1 yields 

 

  

  

X (s) =
0.5

20

!
"

s
2

+"
2

   where " = 20

# x(t) =
1

4 5

sin 20t
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Problems and Solutions Section 3.5 (3.39 through 3.42) 
 

3.39 Calculate the mean-square response of a system to an input force of constant PSD, S0, 

and frequency response function 

  

H !( ) =
10

3+ 2 j!( )
 

 

 Solution: 
 

 Given: 

  

S
ff

= S
0
 and H !( ) =

10

3+ 2 j!
 

 

 The mean square of the response can be found from Eqs (3.66) and (3.68): 

 

  

  

x
2

= E x
2!

"
#
$ =

%&

&

' H (( )
2

S
ff
(( )d(

x
2

= S
0

%&

&

'
10

3+ 2 j(

2

d(

 

 Using Eq. (3.67) yields 

 

  

  
x

2
=

50!S
0

3
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3.40 Consider the base excitation problem of Section 2.4 as applied to an automobile model of 

Example 2.4.1 and illustrated in Figure 2.16.  In this problem let the road have a random 

stationary cross section producing a PSD of S0.  Calculate the PSD of the response and 

the mean-square value of the response. 

 

 Solution: Given: 
  
S

ff
= S

0
 

 From example 2.4.1: 
  m = 1007 kg, c = 2000 kg/s, k = 40,000 N/m  

  

   

! =
c

2 km
=

2000

2 40000i1007

= 0.157      (underdamped)  

 

 So, 

  

  

H !( ) =
1

k " m!
2

+ jc!
=

1

4 #10
4
"1007!

2
+ 2000 j!

H !( )
2

=
1

4 #10
4
"1007!

2

( )
2

+ 2000( )
2

j!
2

H !( )
2

=
1

1.01#10
6
!

4
" 4.06 #10

7
!

2
+ 1.6 #10

9

 

 

 The PSD is found from equation (3.62): 

 

  

  

S
xx

!( ) = H !( )
2

S
ff
!( )

S
xx

!( ) =
1

1.01"10
6
!

4
# 8.46 "10

7
!

2
+ 1.6 "10

9

 

 

 The mean square value is found from equation (3.68): 

 

  

  

x
2

= E x
2!

"
#
$ =

%&

&

' H (( )
2

S
ff
(( )d(

x
2

= S
0

%&

&

'
1

4 )10
4 %1007( 2

+ 2000 j(

2

d(

 

 

 Using equation (3.70) yields 

 

  

  
x

2
=

!S
0

8 "10
10

 



3- 56 

3.41 To obtain a feel for the correlation functions, compute autocorrelation Rxx(τ) for the 

deterministic signal Asinωnt. 

 

 Solution: The autocorrelation is found from 

   

R
xx

(! ) = lim
T"#

1

T
Asin($

n
t)Asin

%T

2

T

2

& ($
n
(t + ! ))dt

          = lim
T"#

A
2

T
sin($

n
t)sin

%T

2

T

2

& ($
n
t)cos($

n
! )dt

                                       + lim
T"#

A
2

T
sin($

n
t)cos

0

T

& ($
n
t)sin($

n
! )dt

"0

! "###### $######

 

 Simplifying yields: 

 

  
R

xx
(! ) =

A
2
cos("

n
! )

2
 

  

 

 

3.42 Verify that the average  x ! x  is zero by using the definition given in equation (3.47). 

 

 Solution: 
 

 The definition is 

  

f = lim
T!"

1

T
0

T

# f t( )dt.   Let 

 

  

  

f (t) = x t( ) ! x ,    

             so that     f = lim
T"#

1

T
0

T

$ x t( ) ! x( )dt

            f = lim
T"#

1

T
x(t)

0

T

$ dt ! lim
T"#

1

T
x

0

T

$ dt

              = x ! x lim
T"#

1

T
dt

0

T

$ = x ! x = 0
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Problems and Solutions Section 3.6 (3.43 through 3.44) 
 
3.43 A power line pole with a transformer is modeled by 

 

  
  m
!!x + kx = ! !!y  

 

 where x and y are as indicated in Figure 3.23.  Calculate the response of the relative 

displacement (x – y) if the pole is subject to an earthquake base excitation of (assume the 

initial conditions are zero) 

 

  

   

!!y t( ) =
A 1!

t

t
0

"

#$
%

&'
0 ( t ( 2t

0

0 t > 2t
0

)

*
+

,
+

 

 

 

 Solution: Given: 
  m
!!x + kx = ! !!y  

  

   

!!y =
A 1!

t

t
0

"

#$
%

&'
0 ( t ( 2t

0

0 t > 2t
0

)

*
+

,
+

x 0( ) = !x 0( ) = 0

 

 

 The response x(t) is given by Eq. (3.12) as 

 

  

  

x t( ) =

0

t

! F "( )h t # "( )d"  

 

 where 

  

h t ! "( ) =
1

m#
n

sin#
n

t ! "( )  for an undamped system 

 

 For 
  
0 ! t ! 2t

0
,  
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x t( ) = A 1!
"
t
0

#

$%
&

'(
1

m)
n

#

$%
&

'(
sin)

n
t ! "( )d"

0

t

*

x t( ) =
A

m)
n

2
1!

t

t
0

+
1

t
0
)

n

sin)
n
t ! cos)

n
t

+

,
-

.

/
0

 

 For t>2t0, 

 

  

  

x t( ) = A 1!
"
t
0

#

$%
&

'(
1

m)
n

#

$%
&

'(
sin)

n
t ! "( )d"

0

2t
0

*

x t( ) =
A

m)
n

2

1

t
0
)

n

sin)
n
t ! sin)

n
t ! 2t

0
( )( ) ! cos)

n
t ! cos)

n
t ! 2t

0
( )

+

,
-

.

/
0

 

 

 Find y(t) when
  
0 ! t ! 2t

0
, 

 

  

   

!!y t( ) = A 1!
t

t
0

"

#$
%

&'

!y t( ) = At !
A

2t
0

t
2

+ C
1

y t( ) =
A

2
t

2 !
A

6t
0

t
3
+ C

1
t + C

2

 

 

 Using IC's yields C1 = C2 = 0.  Find y(t) when t > wt0: 

 

  

   

!!y t( ) = 0

!y t( ) = C
3

y t( ) = C
3
t + C

4

 

 

 Using IC's yields C3 = C4 =0. The relative displacement x(t) – y(t) is therefore: 

 

 For 
  
0 ! t ! 2t

0
 

  

  

x t( ) ! y t( ) =
A

m"
n

2
1!

t

t
0

+
1

t
0
"

n

sin"
n
t ! cos"

n
t

#

$
%

&

'
( !

A

2
t

2
+

A

6t
0

t
3
 

 For t > 2t0, 

 

  

  

x t( ) ! y t( ) =
A

m"
n

2

1

t
0
"

n

sin"
n
t ! sin"

n
t ! 2t

0
( )( ) ! cos"

n
t ! cos"

n
t ! 2t

0
( )

#

$
%

&

'
(  
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3.44 Calculate the response spectrum of an undamped system to the forcing function 

  

  

F t( ) =

F
0
sin

!t

t
1

0 " t " t
1

0 t > t
1

#

$
%

&
%

 

 assuming the initial conditions are zero. 

 

 Solution: Let
  
! = " / t

1
.  The solution is the homogeneous solution xh(t) and the 

particular solution 
  
x

p
t( )   or x t( ) = x

h
t( ) + x

p
t( ).   Thus 

  

  

x t( ) = Acos!
n
t + Bsin!

n
t +

F
0

k " m! 2

#

$%
&

'(
sin!t  

 where A and B are constants and ωn is the natural frequency of the system: 

 Using the initial conditions 
   
x 0( ) = !x 0( ) = 0  the constants A and B are 

  

  

A = 0, B =
!F

0
"

"
n

k ! m"
2

( )
 

 so that 

  

x t( ) =
F

0
/ k

1! " /"
n( )

2
sin"t !

"

"
n

sin"
n
t

#
$
%

&%

'
(
%

)%
, 0 * t * t

1
 

 Which can be written as (where 
  
! = F

0
/ k  the static deflection) 

  

  

x t( )

!
=

1

1"
#
2t

1

$

%&
'

()

2
sin

*t

t
1

"
#
2t

1

sin
2*t

#

+
,
-

.-

/
0
-

1-
, 0 2 t 2 t

1
 

 and where
  
! = 2" /#

n
.  After t1 the solution is a free response 

  
  
x t( ) = A 'cos!

n
t + B 'sin!

n
t, t > t

1
 

 where the constants A' and B' can be found by using the values of x(t = t1) and 

   
!x t = t

1
( ), t > t

0
.   This gives 

  

   

x t = t
1

( ) = a !
"

2t
1

sin
2#t

1

"

$

%
&

'

(
) = A 'cos*

n
t
1
+ B 'sin*

n
t
1

!x t = t
1

( ) = a !
#

t
1

!
#

t
1

cos
2#t

1

"

+
,
-

.-

/
0
-

1-
= !*

n
A 'sin*

n
t
1
+*

n
B 'cos*

n
t

 

 where 

  

  

a =
!

1"
#
2t

1

$

%&
'

()

2
 

 These are solved to yield    
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A ' =
a!

"
n
t
1

sin"
n
t
1
,    B ' = #

a!

"
n
t
1

1+ cos"
n
t
1

$% &'  

 So that after t1 the solution is 

  

  

x t( )

!
=

" / t
1

( )

2 1# " / 2t
1

( )
2

{ }
sin2$

t
1

"
#

t

"
%

&'
(

)*
# sin2$

t

"

+

,
-
-

.

/
0
0
, t 1 t

1
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Problems and Solutions for Section 3.7 (3.45 through 3.52) 
 

3.45 Using complex algebra, derive equation (3.89) from (3.86) with s = jω. 

 

 Solution: From equation (3.86): 

 

  

  
H s( ) =

1

ms
2

+ cs + k
 

 

 Substituting  s = j!  yields 

 

  

  

H j!( ) =
1

m j!( )
2

+ c j!( ) + k

=
1

k " m!
2
" cj!

 

 

 The magnitude is given by 

 

  

  

H j!
dr( ) =

1

m j!( )
2

+ cj!( ) + k

"

#
$
$

%

&
'
'

=
1

k ( m! 2 ( cj!

"

#
$

%

&
'

)

*

+
+
+

,

-

.

.

.

1/ 2

 

  

  

H j!( ) =
1

k " m!
2

( )
2

+ c!( )
2

which is Eq. (3.89) 

 

3.46 Using the plot in Figure 3.20, estimate the system’s parameters m, c, and k, as well as the 

natural frequency. 

 

 Solution: From Fig. 3.20 

 

  

  

1

k
= 2 ! k = 0.5

" = "
n

= 0.25 =
k

m
! m = 8

1

c"
# 4.6 ! c = 0.087
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3.47 Using the values determined in Problem 3.46 plot the inertance transfer function's 

magnitude and phase for this system.  

 

 Solution: From Problem 3.46 

  

  

1

k
= 2 ! k = 0.5," = "

n
= 0.25 =

k

m
! m = 8,

1

c"
# 4.6 ! c = 0.087  

 

 The inertance transfer function is given by Eq. (3.88): 

 

  

  
s

2
H s( ) =

s
2

ms
2

+ cs + k
 

 

 Substitute  s = j!  to get the frequency response function.  The magnitude is given by: 

 

  

  

j!( )
2

H j!( ) =
!

2

k " m!
2

( )
2

+ c!( )
2

=
!

2

0.5" 8!
2

( )
2

+ 0.087!( )
2

 

 

 The phase is given by 

 

  

 

! = tan
-1

Imaginary part of frequency response function

Real part of frequency response function

"
#$

%
&'

 

 

 Multiply the numerator and denominator of 
  

j!( )
2

H j!( )  by k " m!
2

( ) " cj!  to get 

 

  

  

j!( )
2

H j!( ) =
"!

2
k " m!( ) + cj!

3

k " m!
2

( )
2

+ c!( )
2

 

 

 So, 

  

! = tan
"1

c# 3

"# 2
k " m# 2

( )

$

%
&
&

'

(
)
)

= tan
"1

0.087#
8# 2 " 0.5

$
%&

'
()

 

 

 The magnitude and phase plots are shown on a semilog scale.  The plots are given in the 

following Mathcad session 
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3.48 Using the values determined in Problem 3.46 plot the mobility transfer function's 

magnitude and phase for the system of Figure 3.20. 

 

 Solution: From Problem 3.46 

  

  

1

k
= 2 ! k = 0.5," = "

n
= 0.25 =

k

m
! m = 8,

1

c"
# 4.6 ! c = 0.087    

 

 The mobility transfer function is given by equation (3.87): 

 

  

  
sH s( ) =

s

ms
2

+ cs + k
 

 

 Substitute  s = j!  to get the frequency response function.  The magnitude is given by 

 

  

  

j!( ) H j!( ) =
!

k " j!
2

( )
2

+ c!( )
2

=
!

0.5" 8!
2

( )
2

+ 0.087!( )
2

 

 

 The phase is given by 

 

  

 

! = tan
-1

Imaginary part of frequency response function

Real part of frequency response function

"
#$

%
&'

 

 

 Multiply the numerator and denominator of 
 
j!H j!( )  by j and by 

  
! k ! m"

2

( ) j ! c"  to 

get 

 

  

  

j!( ) H j!( ) =

j! k " m!
2

( ) + c!
2

k " m!
2

( )
2

+ c!( )
2

 

 

 So, 

  

! = tan
"1

# k " m# 2

( )

c# 2

$

%
&
&

'

(
)
)

= tan
"1

0.5" 8# 2

0.087#

$

%
&

'

(
)  

 

 The magnitude and phase plots are shown on a semilog scale. 
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3.49 Calculate the compliance transfer function for a system described by 

 

  
  
a!!!x + b!!!x + c!!x + d !x + ex = f t( )  

 

 where f(t) is the input force and x(t) is a displacement. 

 

 Solution: 

   The compliance transfer function is 

  

X s( )

F s( )
.  

 

 Taking the Laplace Transform yields 

 

  
  

as
4

+ bs
3
+ cs

2
+ ds + e( ) X s( ) = F s( )  

 

 So, 

  

X s( )

F s( )
=

1

as
4

+ bs
3
+ cs

2
+ ds + e
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3.50 Calculate the frequency response function for the compliance of Problem 3.49. 

 
 Solution: From problem 3.49, 

  

  
H s( ) =

1

as
4

+ bs
3
+ cs

2
+ ds + e

 

 Substitute  s = j!  to get the frequency response function: 

  

  

H j!( ) =
1

a j!( )
4

+ b j!( )
3

+ c j!( )
2

+ d j!( ) + e

H j!( ) =

a!
4
" c!

2
+ e " j "b!

3
+ d!( )

a!
4
" c!

2
+ e( )

2

+ "b!
3
+ d!( )

2

 

 

3.51 Plot the magnitude of the frequency response function for the system of Problem 3.49 for 

    a = 1,b = 4,c = 11,d = 16,  and e = 8. 

 

 Solution: From Problem 3.50 

  

H j!( ) =

a!
4
" c!

2
+ e " j "b!

3
+ d!( )

a!
4
" c!

2
+ e( )

2

+ "b!
3
+ d!( )

2
 

 The magnitude is 

  

H ( j! ) =
1

(!
4
"11!

2
+ 8)

2
+ ("4!

3
+ 16! )

2

 

 This is plotted in the following Mathcad session: 
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3.52 An experimental (compliance) magnitude plot is illustrated in Fig. P3.52.  Determine 

  ! ," ,c,m,  and k.  Assume that the units correspond to m/N along the vertical axis. 

 

 Solution: Referring to the plot, it starts at  

  
H (! j) =

1

k
 

 Thus: 

  
0.05 =

1

k
! k = 20 N/m  

 At the peak, ωn = ω = 3 rad/s.  Thus the mass can be determined by 

  

m =
k

!
n

2
" m = 2.22 kg  

 The damping is found from 

  

1

c!
= 0.11" c = 3.03 kg/s "#=

c

2 km
=

3.03

2 20 $2.22

= 0.227  
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Problems and Solutions Section 3.8 (3.53 through 3.56) 
 

3.53 Show that a critically damped system is BIBO stable. 

 

 Solution: 
 

 For a critically damped system 

 

  

  
h t ! "( ) =

1

m
t ! "( )e

!#
n

t!"( )
 

 

 Let f(t) be bounded by the finite constant M.  Using the inequality for integrals and 

 Equation (3.96) yields: 

 

  

  

x t( ) ! f (" )

0

t

# h t $ "( ) d" = M

0

t

#
1

m
t $ "( )e

$%
n

t$"( )
d"  

 

 The function h(t – τ) decays exponentially and hence is bounded by some constant times 

1/t, say M1/t.  This is just a statement the exponential decays faster then “one over t” 

does. Thus the above expression becomes; 

  

x(t) < M
M

1

t
0

t

! d" = MM
1
 

 

 This is bounded, so a critically damped system is BIBO stable. 
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3.54 Show that an overdamped system is BIBO stable. 

 

 Solution: For an overdamped system, 

 

  

  

h t ! "( ) =
1

2m#
n

$ 2 !1

e
!$#

n
t!"( )

e
#

n
$ 2 !1

%
&'

(
)* t!"( )

! e
! #

n
$ 2 !1

%
&'

(
)* t!"( )%

&'
(

)*
 

 

 Let f(t) be bounded by M, 

 

 From equation (3.96), 

 

  

  

x t( ) ! M

0

t

" h t # $( ) d$

x t( ) ! M

0

t

"
1

2m%
n
& 2 #1

e
#&%

n
t#$( )

e
%

n
& 2 #1

'
()

*
+, t#$( )

# e
# %

n
& 2 #1

'
()

*
+, t#$( )'

()
*

+,
d$

 

 

  

  

x t( ) !
M

2m"
n
# 2 $1

$1

"
n
# 2 $1 $#"

%

&
'
'

(

)
*
*

1$ e
"

n
# 2 $1$#"

n

%
&'

(
)* t%

&'
(

)*
+

,

-
-

                                      $
$1

"
n
# 2 $1 +#"

n

%

&
'
'

(

)
*
*

1$ e

"n #2$1$#"n

%
&'

(
)*

t%

&
'

(

)
*
.

/

0
0

 

 

  

 Since 
  
!

n
" 2 #1 #"!

n
< 0,  then   1! e

"n #2!1!#"n

$
%&

'
()

t

 is bounded. 

 

 Also, since -
  
!

n
" 2 #1 #"!

n
< 0,  then   1! e

"n #2!1!#"n

$
%&

'
()

t

 is bounded. 

 

 Therefore, an overdamped system is BIBO stable. 
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3.55 Is the solution of    2!!x + 18x = 4cos2t + cos t  Lagrange stable? 

 

 Solution: Given 

  

   

2!!x + 18x = 4cos2t + cos t

!
n
=

k

m
= 3

 

 

 The total solution will be 

 

  
  
x t( ) = x

h
t( ) + x

P1
t( ) + x

P2
t( )  

 

 From Eq. (1.3): 
  
x

h
t( ) = Asin !

n
t + "( )  

 

 From Eq. (2.7): 

  

x
P1

t( ) =

f
0

1

!
n

2
"2

2
cos2t  

 

 and 

  

x
P2

t( ) =

f
0

2

!
n

2
"1

2
cos t  

 

 Adding the solutions yields 

 

  

  

x t( ) = Asin 3t + !( ) +

f
0

1

3
2 " 2

2
cos2t +

f
0

1

3
2 "1

2
cos t < M  

 

 Since 3 ! 2,3 ! 1, and the homogeneous solution is marginally stable, this system is 

Lagrange stable. 
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3.56 Calculate the response of equation (3.99) for 
  
x

0
= 0,v

0
= 1 for the case that a = 4 and b = 

0.  Is the response bounded? 

 

 Solution: Given:
  
x

0
= 0,v

0
= 1,a = 4,b = 0 .  From Eq. (3.99), 

 

     !!x + !x + 4x = ax + b !x = 4x  

 

 So,    !!x + !x = 0  

 

 Let 

  

   

x t( ) = Ae
!t

!x t( ) = !Ae
!t

!!x t( ) = !
2
Ae

!t

 

 

 Substituting, 

  

  

!
2
Ae

!t
+ !Ae

!t
= 0

!
2

+ ! = 0

 

 

 So, 
 
!

1,2
= 0,"1  

 

 The solution is 

 

  

   

x t( ) = A
1
e
!

1
t
+ A

2
e
!

2
t
= A

1
+ A

2
e
" t

!x t( ) = "A
2
e
"1

x 0( ) = 0 = A
1
+ A

2

!x 0( ) = 1 = "A
2

 

 

 So, 
  
A

1
= 1 and A

2
= !1 

 

 Therefore, 

 

  
  
x t( ) = 1! e

!1
 

 

 Since
  
x t( ) = 1! e

! t
1, the response is bounded. 
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Problems and Solutions from Section 3.9 (3.57-3.64) 

 

3.57*.  Numerically integrate and plot the response of an underdamped system 

determined by m = 100 kg, k = 1000 N/m, and c = 20 kg/s, subject to the initial 

conditions of x0 = 0 and v0 = 0, and the applied force F(t) = 30Φ(t -1).  Then plot the 

exact response as computed by equation (3.17).  Compare the plot of the exact solution to 

the numerical simulation. 

 

Solution: First the solution is presented in Mathcad: 

 

 

The Matlab code to provide similar plots is given next: 
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%Numerical Solutions  
%Problem #57 
clc 
clear 
close all 
%Numerical Solution 
x0=[0;0]; 
tspan=[0 15]; 
 
[t,x]=ode45('prob57a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #57'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
m=100; 
c=20; 
k=1000; 
F=30; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
to=1; 
phi=atan(d/sqrt(1-d^2)); 
 
%for t<to 
t=linspace(0,1,3); 
x=0.*t; 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(1,15); 
x=F/k-F/(k*sqrt(1-d^2)).*exp(-d.*w.*(t-to)).*cos(wd.*(t-to)-phi); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
%M-file for Prob #50 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=100; 
c=20; 
k=1000; 
F=30; 
 
if t<1 
   dx==0; 
   else 
 dx(1)=x(2); 
   dx(2)=-c/m*x(2) - k/m*x(1) + F/m; 
end 
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3.58*.  Numerically integrate and plot the response of an underdamped system 

determined by m = 150 kg, and k = 4000 N/m subject to the initial conditions of x0 = 0.01 

m and v0 = 0.1 m/s, and the applied force F(t) = F(t) = 15Φ(t -1), for various values of the 

damping coefficient.  Use this “program” to determine a value of damping that causes the 

transient term to die out with in 3 seconds.  Try to find the smallest such value of 

damping remembering that added damping is usually expensive. 

 

Solution: First the solution is given in Mathcad followed by the equivalent Matlab code. 

 

 

 

A value of c = 710 kg/s will do the job.  
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%Vibrations 
%Numerical Solutions  
%Problem #51 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0.01;0]; 
tspan=[0 15]; 
 
[t,x]=ode45('prob51a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #51'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=150; 
c=0; 
k=4000; 
F=15; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
to=1; 
phi=atan(d/sqrt(1-d^2)); 
 
 
 
%for t<to 
t=linspace(0,1,10); 
x0=0.01; 
v0=0; 
A=sqrt(v0^2+(x0*w)^2)/w; 
theta=pi/2; 
x=A.*sin(w.*t + theta); 
plot(t,x,'*') 
 
%for t>=to 
t=linspace(1,15); 
x2=F/k-F/(k*sqrt(1-d^2)).*exp(-d.*w.*(t-to)).*cos(wd.*(t-to)-phi); 
x1=A.*sin(w.*t + theta); 
 
x=x1+x2; 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
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%M-file for Prob #51 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=150; 
c=0; 
k=4000; 
F=15; 
 
 
if t<1 
   dx(1)=x(2); 
   dx(2)=-c/m*x(2)- k/m*x(1); 
   else 
 dx(1)=x(2); 
   dx(2)=-c/m*x(2) - k/m*x(1)+ F/m; 
end 
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3.59*.  Solve Example 3.3.2, Figure 3.9 by numerically integrating rather then using 

analytical expressions, and plot the response. 

 

Solution:  Both Mathcad and Matlab solutions follow: 

 
%Numerical Solutions  
%Problem #53 
clc 
clear 
close all 
%Numerical Solution 
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x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob53a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #53'); 
xlabel('Time, sec.'); 
ylabel('Displacement, mm'); 
hold on 
 
%Analytical Solution 
t1=0.2; 
t2=0.6; 
 
%for t<to 
t=linspace(0,t1); 
x=2.5*t-4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t1<t<t2 
t=linspace(t1,t2); 
x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-t1))- 4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t2<t 
t=linspace(t2,10); 
x=6.84.*sin(0.548.*(t-t1))-2.28.*sin(0.548.*(t-t2))-
4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #52 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=1; 
c=10; 
k=1000; 
Y=0.05; 
wb=3; 
 
a=c*Y*wb; 
b=k*Y; 
alpha=atan(b/a); 
AB=sqrt(a^2+b^2)/m; 
 
dx(1)=x(2); 
dx(2)=-c/m*x(2)- k/m*x(1)+ a/m*cos(wb*t) + b/m*sin(wb*t); 
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3.60*.  Numerically simulate the response of the system of Problem 3.21 and plot the 

response. 

 

Solution: The solution in Matlab is 

%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #53 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob53a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #53'); 
xlabel('Time, sec.'); 
ylabel('Displacement, mm'); 
hold on 
 
%Analytical Solution 
 
t1=0.2; 
t2=0.6; 
 
%for t<to 
t=linspace(0,t1); 
x=2.5*t-4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t1<t<t2 
t=linspace(t1,t2); 
x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-t1))- 4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t2<t 
t=linspace(t2,10); 
x=6.84.*sin(0.548.*(t-t1))-2.28.*sin(0.548.*(t-t2))-
4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
%Clay 
%Vibrations 
%Solutions 
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%M-file for Prob #53 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=5000; 
k=1.5e3; 
ymax=0.5; 
F=k*ymax; 
t1=0.2; 
t2=0.6; 
 
if t<t1 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m*(t/t1); 
elseif t<t2 & t>t1 
 dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/(2*t1*m)*(t2-t); 
else 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1);   
end 
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3.61*.  Numerically simulate the response of the system of Problem 3.18 and plot the 

response. 

Solution:  The solution in Matlab is 

%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #54 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob54a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #54'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
to=4; 
 
%for t<to 
t=linspace(0,to); 
x=5*(t-sin(t)); 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(to,10); 
x=5*(sin(t-to)-sin(t))+20; 
 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #54 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1; 
k=1; 
F=20; 
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to=4; 
 
if t<to 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m*(t/to); 
else  
 dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m; 
end 
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3.62*.  Numerically simulate the response of the system of Problem 3.19 for a 2 meter 

concrete wall with cross section 0.03 m
2
 and mass modeled as lumped at the end of 1000 

kg.  Use F0 = 100 N, and plot the response for the case t0 =0.25 s. 

Solution The solution in Matlab is: 

 
%Numerical Solutions  
%Problem #3.62 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 0.5]; 
 
[t,x]=ode45('prob55a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #55'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=1000; 
E=3.8e9; 
A=0.03; 
l=2; 
k=E*A/l; 
F=100; 
w=sqrt(k/m); 
to=0.25; 
 
 
%for t<to 
t=linspace(0,to); 
x=F/k*(1-cos(w*t))+ F/(to*k)*(1/w*sin(w*t)-t); 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(to,0.5); 
x=-F/k*cos(w*t)- F/(w*k*to)*(sin(w*(t-to))-sin(w*t)); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #3.62 
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function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1000; 
E=3.8e9; 
A=0.03; 
l=2; 
k=E*A/l; 
F=100; 
w=sqrt(k/m); 
to=0.25; 
 
 
if t<to 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1) + F/m*(1-t/to); 
   else 
 dx(1)=x(2); 
   dx(2)= - k/m*x(1); 
end 
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3.63*.  Numerically simulate the response of the system of Problem 3.20 and plot the 

response. 

Solution The solution in Matlab is: 

%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #56 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 2]; 
 
[t,x]=ode45('prob56a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #56'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
t=linspace(0,2); 
x=0.5*t-0.05*sin(10*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #56 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1; 
k=100; 
F=50; 
 
 
 dx(1)=x(2); 
 dx(2)= - k/m*x(1) + F/m*(t); 
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3.64*.  Compute and plot the response of the system of following system using numerical 

integration: 

   10!!x(t) + 20 !x(t) + 1500x(t) = 20sin25t + 10sin15t + 20sin2t  

with initial conditions of x0 = 0.01 m and v0 = 1.0 m/s. 

Solution The solution in Matlab is: 

%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #57 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0.01;1]; 
tspan=[0 5]; 
 
[t,x]=ode45('prob57a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #57'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=10; 
c=20; 
k=1500; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
 
 
Y1=0.00419; 
ph1=3.04; 
wb1=25; 
 
Y2=0.01238; 
ph2=2.77; 
wb2=15; 
 
Y3=0.01369; 
ph3=0.0268; 
wb3=2; 
 
A=0.1047; 
phi=0.1465; 
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x=A.*exp(-d*w.*t).*sin(wd*t+phi)+ Y1.*sin(wb1*t-ph1) + Y2*sin(wb2*t-
ph2) + Y3*sin(wb3*t-ph3); 
 
plot(t,x,'*') 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #57 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=10; 
c=20; 
k=1500; 
 
 
dx(1)=x(2); 
dx(2)= -c/m*x(2) - k/m*x(1) + 20/m*sin(25*t) + 10/m*sin(15*t) + 
20/m*sin(2*t) ; 
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Problems and Solutions Section 3.10 (3.65 through 3.71) 

 

3.65*.  Compute the response of the system in Figure 3.26 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 1.6) 

F(t ) = 1500 !(t " t
1
) " !(t " t

2
)[ ] N  

and initial conditions of x0 = 0.01 m and v0 = 1.0 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 300 N/m
3
.  Compute the solution and compare it to the linear solution 

(k1 = 0).  Which system has the largest magnitude?  Compare your solution to that of 

Example 3.10.1. 

Solution: The solution in Mathcad is 
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Note that for this load the load, which is more like an impulse, the linear and nonlinear 

responses are similar, whereas in Example 3.10.1 the applied load is a “wider” impulse 

and the linear and nonlinear responses differ quite a bit. 

 

3.66*. Compute the response of the system in Figure 3.26 for the case that the damping is 

linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k
1
x

3
 

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 1.6) 

F(t ) = 1500 !(t " t
1
) " !(t " t

2
)[ ] N  

and initial conditions of x0 = 0.01 m and v0 = 1.0 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 300 N/m
3
.  Compute the solution and compare it to the linear solution 

(k1 = 0).  How different are the linear and nonlinear responses?  Repeat this for t2 = 2.  

What can you say regarding the effect of the time length of the pulse? 

 

Solution:  The solution in Mathcad for the case t2 = 1.6 is 
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Note in this case the linear response is almost the same as the nonlinear response. 

Next changing the time of the pulse input to t2 = 2 yields the following: 
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Note that as the step input last for a longer time, the response of the linear and the 

nonlinear becomes much different. 
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3.67*.  Compute the response of the system in Figure 3.26 for the case that the damping 

is linear viscous and the spring stiffness is of the form 

k(x) = kx ! k
1
x

2
 

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 1500 !(t " t
1
) " !(t " t

2
)[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 450 N/m
3
. Which system has the largest magnitude? 

Solution:  The solution is computed in Mathcad as follows: 

 
Note that the linear response under predicts 

the actual response 
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3.68*. Compute the response of the system in Figure 3.26 for the case that the damping is 

linear viscous and the spring stiffness is of the form 

k(x) = kx + k
1
x

2
 

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 1500 !(t " t
1
) " !(t " t

2
)[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 450 N/m
3
. Which system has the largest magnitude? 

Solution:  The solution is calculated in Mathcad as follows: 

 

 

 

3.69*. Compute the response of the system in Figure 3.26 for the case that the damping is 

linear viscous and the spring stiffness is of the form 

k(x) = kx ! k
1
x

2
 

In this case (compared to the 

hardening spring of the previous 

problem, the linear response over 

predicts the time history. 
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and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 150 !(t " t
1
) " !(t " t

2
)[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 

damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 

of k1 is taken to be 5500 N/m
3
. Which system has the largest magnitude transient?  Which 

has the largest magnitude in steady state? 

 

Solution:  The solution in Mathcad is given below.  Note that the linear system response 

is less than that of the nonlinear system, and hence underestimates the actual response. 

 

 

 

3.70*.  Compare the forced response of a system with velocity squared damping as 

defined in equation (2.129) using numerical simulation of the nonlinear equation to that 

of the response of the linear system obtained using equivalent viscous damping as 



3- 96 

defined by equation (2.131).  Use as initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a 

mass of 10 kg, stiffness of 25 N/m, applied force of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 15 !(t " t
1
) " !(t " t

2
)[ ] N  

and drag coefficient of α = 25. 

 

Solution: The solution calculated in Mathcad is given in the follow: 

 

 

 

 

Note that the linear solution is very different from the nonlinear solution and dies out 

more rapidly. 
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3.71*.  Compare the forced response of a system with structural damping (see table 2.2) 

using numerical simulation of the nonlinear equation to that of the response of the linear 

system obtained using equivalent viscous damping as defined in Table 2.2.  Use the 

initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a mass of 10 kg, stiffness of 25 N/m, 

applied force of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 15 !(t " t
1
) " !(t " t

2
)[ ] N  

and solid damping coefficient of b = 8.  Does the equivalent viscous damping 

linearization, over estimate the response or under estimate it? 
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Solution:  The solution is calculated in Mathcad as follows. Note that the linear solution 

is an over estimate of the nonlinear response in this case. 

 



Problems and Solutions for Section 4.1 (4.1 through 4.16) 
 

4.1 Consider the system of Figure P4.1.  For 
  
c

1
= c

2
= c

3
= 0,  derive the equation of motion 

and calculate the mass and stiffness matrices.  Note that setting k3 = 0 in your solution 

should result in the stiffness matrix given by Eq. (4.9). 

 

Solution: 
For mass 1: 

 

  

   

m
1
!!x

1
= !k

1
x

1
+ k

2
x

2
! x

1
( )

" m
1
!!x

1
+ k

1
+ k

2
( )x

1
! k

2
x

2
= 0

 

 

For mass 2: 

 

  

   

m
2
!!x

2
= !k

3
x

2
! k

2
x

2
! x

1
( )

" m
2
!!x

2
! k

2
x

1
+ k

2
+ k

3
( )x

2
= 0

 

 

So,     M!!x + Kx = 0  

 

  

    

m
1

0

0 m
2

!

"
#
#

$

%
&
&
!!x +

k
1
+ k

2
'k

2

'k
2

k
2

+ k
3

!

"
#
#

$

%
&
&
x = 0  

Thus: 

  

  

M =
m

1
0

0 m
2

!

"
#
#

$

%
&
&

K =
k

1
+ k

2
'k

2

'k
2

k
2

+ k
3

!

"
#
#

$

%
&
&

 



4.2 Calculate the characteristic equation from problem 4.1 for the case 

  
  
m

1
= 9 kg m

2
= 1 kg k

1
= 24 N/m k

2
= 3 N/m k

3
= 3 N/m  

 

and solve for the system's natural frequencies. 

 

Solution: Characteristic equation is found from Eq. (4.9): 

 

  

  

det !"
2
M + K( ) = 0

!"
2
m

1
+ k

1
+ k

2
!k

2

!k
2

!"
2
m

1
+ k

2
+ k

3

=
!9"

2
+ 27 !3

!3 !"
2

+ 6
= 0

9"
4
! 81"

2
+ 153 = 0

 

 

Solving for ω: 

 

  

  

!
1

= 1.642
!

2
= 2.511

rad/s 

 

 

4.3 Calculate the vectors u1 and u2 for problem 4.2. 

 

 Solution:  Calculate u1: 

 

  

  

!2.697( ) 9( ) + 27 !3

!3 !2.697 + 6

"

#
$
$

%

&
'
'

u
11

u
21

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'  

 This yields 

  

   

2.727u
11
! 3u

21
= 0

!3u
11

+ 3.303u
21

= 0 or, u
21

= 0.909u
11

u
1

=
1

0.909

"

#
$

%

&
'

 

 Calculate u2: 

  

  

!6.303( ) 9( ) + 27 !3

!3 !6.303+ 6

"

#
$
$

%

&
'
'

u
12

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'  



 This yields  

   

!29.727u
12
! 3u

22
= 0

!3u
12

= 0.303u
22

= 0 or, u
12

= !0.101u
22

u
2

=
!0.101

1

"

#
$

%

&
'

 

   

4.4 For initial conditions x(0) = [1  0]
T
 and   !x (0) = [0 0]

T
 calculate the free response of the 

system of Problem 4.2.  Plot the response x1 and x2. 

 

 Solution: Given x(0) = [1  0]
T
, 
    
!x 0( ) = 0 0!" #$

T

, The solution is 

  

   

x t( ) = A
1
sin !

1
t + "

1
( )u

1
+ A

2
sin !

2
t + "

2
( )u

2

x
1

t( )

x
2

t( )

#

$
%
%

&

'
(
(

=

A
1
sin !

1
t + "

1
( ) ) 0.101A

2
sin !

2
t + "

2
( )

0.909A
1
sin !

1
t + "

1
( ) + A

2
sin !

2
t + "

2
( )

#

$
%
%

&

'
(
(

 

 Using initial conditions, 

  

  

1 = A
1
sin!

1
" 0.101A

2
sin!

2
1#$ %&

0 = 0.909A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = 1.642A
1
cos!

1
" 0.2536A

2
cos!

2
3#$ %&

0 = 6.033A
1
cos!

1
+ 2.511A

2
cos!

2
4#$ %&

 

 From [3] and [4],  
 
!

1
= !

2
= " / 2  

 From [1] and [2],  
  
A

1
= 0.916,   and  A

2
= !0.833  

 So, 

  

  

x
1

t( ) = 0.916sin 1.642t + ! / 2( ) + 0.0841sin 2.511t + ! / 2( )

x
2

t( ) = 0.833sin 1.642t + ! / 2( ) " 0.833sin 2.511t + ! / 2( )
 

 

  

    

x1 t( ) = 0.916cos1.642t + 0.0841cos2.511t

x
2

t( ) = 0.833 cos1.642t ! cos2.511t( )
 

 



 

4.5 Calculate the response of the system of Example 4.1.7 to the initial condition x(0) = 0,  !x  

(0) = [1  0]
T
, plot the response and compare the result to Figure 4.3. 

 

 Solution: Given:  x(0) = 0, 
    
!x 0( ) = 1 0!" #$

T

 

 

 From Eq. (4.27) and example 4.1.7, 

 

  

  

x
1

t( )

x
2

t( )

!

"
#
#

$

%
&
&

=

1

3
A

1
sin 2t + '

1( ) (
1

3
A

2
sin 2t + '

2
( )

A
1
sin 2t + '

1( ) + A
2
sin 2t + '

2
( )

!

"

#
#
#

$

%

&
&
&

 

 

 Using initial conditions: 

  

  

0 = A
1
sin!

1
" A

2
sin!

2
1#$ %&

0 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

3 = 2A
1
cos!

1
" 2A

2
cos!

2
3#$ %&

0 = 2A
1
cos!

1
+ 2A

2
cos!

2
4#$ %&

 

 From [1] and [2]: 

  
 
!

1
= !

2
= 0  

 From [3] and [4]: 

  

  
A

1
=

3 2

4
,   and  A

2
= !

3

4
 

 The solution is 



  

  

x
1

t( ) = 0.25 2 sin 2t + sin2t( )

x
2

t( ) = 0.75 2 sin 2t ! sin2t( )
 

 As in Fig. 4.3, the second mass has a larger displacement than the first mass. 



4.6  Repeat Problem 4.1 for the case that
  
k

1
= k

3
= 0 . 

 

 Solution: 
 

 The equations of motion are 

 

  

   

m
1
!!x

1
+ k

2
x

1
! k

2
x

2
= 0

m
2
!!x

2
! k

2
x

1
+ k

2
x

2
= 0

 

 

 So,    M!!x + Kx = 0  

 

  

   

m
1

0

0 m
2

!

"
#
#

$

%
&
&
!!x +

k
2

'k
2

'k
2

k
2

!

"
#
#

$

%
&
&

x = 0

M =
m

1
0

0 m
2

!

"
#
#

$

%
&
&

 and K =
k

2
'k

2

'k
2

k
2

!

"
#
#

$

%
&
&

 

 

 

 

 

4.7 Calculate and solve the characteristic equation for Problem 4.6 with m1 = 9, m2 = 1, k2 = 

10. 

 

 Solution: 
 

 The characteristic equation is found from Eq. (4.19): 

 

  

  

det !"
2
M + K( ) = 0

!9"
2

+ 10 !10

!10 !"
2

+ 10
= 9"

4
!100"

2
= 0

"
1,2

2
= 0,11.111

"
1

= 0

"
2

= 3.333

 



4.8 Compute the natural frequencies of the following system:  

 

 

6 2

2 4

!

"
#

$

%
& !!x(t) +

3 '1

'1 1

!

"
#

$

%
&x(t) = 0 . 

Solution: 
 

det(!" 2
M + K ) = det !" 2

6 2

2 4

#

$
%

&

'
( !

3 !1

!1 1

#

$
%

&

'
(

)

*+
,

-.
= 20ω4

-22ω2
+2=0, ω2

 = 0.1, 1 

   ω
1,2

 = 0.316, 1 rad/s 

 

 
 

4.9 Calculate the solution to the problem of Example 4.1.7, to the initial conditions 

  

   

x 0( ) =

1

3

1

!

"

#
#
#

$

%

&
&
&

!x 0( ) = 0  

 

 Plot the response and compare it to that of Fig. 4.3. 

 Solution: Given: 
    
x 0( ) = 1 / 3 1!" #$

T

, !x 0( ) = 0  

 From Eq. (4.27) and example 4.1.7, 

  

  

x
1

t( )

x
2

t( )

!

"
#
#

$

%
&
&

=

1

3
A

1
sin 2t + '

1( ) (
1

3
A

2
sin 2t + '

2
( )

A
1
sin 2t + '

1( ) + A
2
sin 2t + '

2
( )

!

"

#
#
#

$

%

&
&
&

 

 Using initial conditions: 

  

  

1 = A
1
sin!

1
" A

2
sin!

2
1#$ %&

1 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = 2A
1
cos!

1
" 2A

2
cos!

2
3#$ %&

0 = 2A
1
cos!

1
+ 2A

2
cos!

2
4#$ %&

 

 From [3] and [4]:  

 

!
1

= !
2

=
"

2
 

 From [1] and [2]: 
  
A

1
= 1,  and A

2
= 0  

 The solution is 



  

x
1

t( ) =
1

3
cos 2t

x
2

t( ) = cos 2t

 

 In this problem, both masses oscillate at only one frequency. 



4.10 Calculate the solution to Example 4.1.7 for the initial condition 

  

   

x 0( ) =
!

1

3

1

"

#

$
$
$

%

&

'
'
'

!x 0( ) = 0  

 

 Solution: 
  

 Given:  x(0) = [-1/3   1]
T
, 
   
!x 0( ) = 0  

 From Eq. (4.27) and example 4.1.7, 

 

  

  

x
1

t( )

x
2

t( )

!

"
#
#

$

%
&
&

=

1

3
A

1
sin 2t + '

1( ) (
1

3
A

2
2t + '

2
( )

A
1
sin 2t + '

1( ) + A
2
sin 2t + '

2
( )

!

"

#
#
#

$

%

&
&
&

 

 

 Using initial conditions: 

 

  

  

!1 = A
1
sin"

1
! A

2
sin"

2
1#$ %&

1 = A
1
sin"

1
+ A

2
sin"

2
2#$ %&

0 = 2A
1
cos"

1
! 2A

2
cos"

2
3#$ %&

0 = 2A
1
cos"

1
+ 2A

2
cos"

2
4#$ %&

 

 

 From [3] and [4] 

 

  

 

!
1

= !
2

=
"

2
 

 

 From [1] and [2]: 

 

  

  

A
1

= 0

A
2

= 1
 

 

 The solution is 

 

  

  

x
1

t( ) = !
1

3
cos2t

x
2

t( ) = cos2t

 



 

 In this problem, both masses oscillate at only one frequency (not the same frequency as in 

Problem 4.9, though.) 



4.11 Determine the equation of motion in matrix form, then calculate the natural frequencies 

and mode shapes of the torsional system of Figure P4.11.  Assume that the torsional 

stiffness values provided by the shaft are equal 
  

k
1

= k
2

( )  and that disk 1 has three times 

the inertia as that of disk
  
2(J

1
= 3J

2
) . 

 

 Solution: Let
  
k = k

1
= k

2
 and J

1
= 3J

2
.  The equations of motion are 

   

J
1

!!!
1
+ 2k!

1
" k!

2
= 0

J
2

!!!
2
" k!

1
+ k!

2
= 0

 

 So, 

  

   

J
2

3 0

0 1

!

"
#

$

%
& !!' + k

2 (1

(1 1

!

"
#

$

%
&' = 0  

 Calculate the natural frequencies: 

  

  

det !"
2
J + K( ) =

!3"
2
J

2
+ 2k !k

!k !"
2
J

2
+ k

= 0

"
1

= 0.482
k

J
2

"
2

= 1.198
k

J
2

 

 Calculate the mode shapes:  mode shape 1: 

 

  

  

!3 0.2324( )k + 2k !k

!k ! 0.2324( )k + k

"

#

$
$

%

&

'
'

u
11

u
12

"

#
$
$

%

&
'
'

= 0

u
11

= 0.7676u
12

 

 

 So, u1 = 

 

0.7676

1

!

"
#

$

%
&  

 mode shape 2: 

  

  

!3 1.434( )k + 2k !k

!k ! 1.434( )k + k

"

#

$
$

%

&

'
'

u
21

u
22

"

#
$
$

%

&
'
'

= 0

u
21

= !0.434u
22

 



 

 So, u2 = 

 

!0.434

1

"

#
$

%

&
'  



4.12 Two subway cars of Fig. P4.12 have 2000 kg mass each and are connected by a coupler.  

The coupler can be modeled as a spring of stiffness k = 280,000 N/m.  Write the equation 

of motion and calculate the natural frequencies and (normalized) mode shapes. 

 

  
 Solution: Given: 

  
m

1
= m

2
= m = 2000 kg k = 280,000 N/m  

 The equations of motion are: 

   

m!!x
1
+ kx

1
! kx

2
= 0

m!!x
2
! kx

1
+ kx

2
= 0

 

 In matrix form this becomes: 

  

   

m 0

0 m

!

"
#

$

%
& !!x +

k 'k

'k k

!

"
#

$

%
& x = 0

2000 0

0 2000

!

"
#

$

%
& !!x +

280,000 '280,000

'280,000 280,000

!

"
#

$

%
& x = 0

 

 Natural frequencies: 

  

  

det !"
2
M + K( ) = 0

!2000"
2

+ 280,000 !280,000

!280,000 !2000"
2

+ 280,000
= 0

4 #10
6
"

4
!1.12 #10

9
"

2
= 0

"
2

= 0,280 $"
1

= 0 rad/sec and  "
2

= 16.73 rad/sec

 

 Mode shapes:   

 Mode 1, 
 
!

1

2
= 0  

  

   

280,000 !280,000

!280,000 280,000

"

#
$

%

&
'

u
11

u
12

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

(u
11

= u
12

u
1

=
1

1

"

#
$
%

&
'

 

 Mode 2, 
 
!

2

2
= 280  



  

   

!280,000 !280,000

!280,000 !280,000

"

#
$

%

&
'

u
21

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

(u
21

= u
22

u
2

=
1

!1

"

#
$

%

&
'

 

 

 Normalizing the mode shapes yields 

  
u

1
=

1

2

1

1

!

"
#
$

%
& ,u

2
=

1

2

1

'1

!

"
#

$

%
&  

 Note that 

  
u

2
=

1

2

!1

1

"

#
$

%

&
'  is also acceptable because a mode shape times a constant (-1 in 

this case) is still a mode shape.



4.13 Suppose that the subway cars of Problem 4.12 are given the initial position of x10 = 

0, x20 = 0.1 m and initial velocities of v10 = v20 = 0.  Calculate the response of the cars. 

 

 Solution: 
 

 Given: 
    
x 0( ) = 0   0.1!" #$

T

, !x 0( ) = 0  

 

 From problem 12, 

 

  

  

u
1

=
1

1

!

"
#
$

%
&  and u

2
=

1

'1

!

"
#

$

%
&

(
1

= 0 rad/s and (
2

= 16.73 rad/s

 

 

 The solution is 

  

    

x t( ) = c
1
+ c

2
t( )u

1
+ Asin 16.73t + !( )u

2

" !x 0( ) = c
2
u

1
+ 16.73Acos !( )u

2
 and x 0( ) = c

1
u

1
+ Asin !( )u

2

 

 Using initial the conditions four equations in four unknowns result: 

  

  

0 = c
1
+ Asin! 1"# $%

0.1 = c
1
& Asin! 2"# $%

0 = c
2

+ 16.73Acos! 3"# $%
0 = c

2
&16.73Acos! 4"# $%

 

 

 From [3] and [4]:

  
c

2
= 0,   and  ! =

"

2
 rad  

 From [1] and [2]:
  
c

1
= 0.05 m and  A = !0.05 m  

 

 The solution is 

  

  

x
1

t( ) = 0.05! 0.05cos16.73t

x
2

t( ) = 0.05 + 0.05cos16.73t
 

 

 Note that if 

  
u

2
=

1

2

!1

1

"

#
$

%

&
'  is chosen as the second mode shape the answer will remain the 

same.  It might be worth presenting both solutions in class, as students are often skeptical 

that the two choices will yield the same result. 

 



4.14 A slightly more sophisticated model of a vehicle suspension system is given in Figure 

P4.14.  Write the equations of motion in matrix form.  Calculate the natural frequencies 

for k1 =10
3
 N/m, k2 = 10

4
 N/m, m2 = 50 kg, and m1 = 2000 kg. 

 

 Solution: The equations of motion are 

   

2000!!x
1
+ 1000x

1
!1000x

2
= 0

50!!x
2
!1000x

1
+ 11,000x

2
= 0

 

In matrix form this becomes: 

  

   

2000 0

0 50

!

"
#

$

%
& !!x +

1000 '1000

'1000 11,000

!

"
#

$

%
&x = 0  

 Natural frequencies: 

 

  

det !"
2
M + K( ) = 0

!2000"
2

+ 1000 !1000

!1000 !50"
2

+ 11,000
= 100,000"

4
! 2.205#10

7
"

2
+ 10

7
= 0

"
1,2

2
= 0.454,   220.046  $"

1
= 0.674 rad/s   and   "

2
= 14.8 rad/s

 



4.15 Examine the effect of the initial condition of the system of Figure 4.1(a) on the responses 

x1 and x2 by repeating the solution of Example 4.1.7, first for x10 = 0,x20 = 1 with 

   
!x

10
= !x

20
 = 0 and then for 

   
x

10
= x

20
= !x

10
= 0  and

   
!x

20
= 1.  Plot the time response in each 

case and compare your results against Figure 4.3. 

 

 Solution: From Eq. (4.27) and example 4.1.7, 

  

  

x
1

t( )

x
2

t( )

!

"
#
#

$

%
&
&

=

1

3
A

1
sin 2t + '

1( ) (
1

3
A

2
sin 2t + '

2
( )

A
1
sin 2t + '

1( ) + A
2
sin 2t + '

2
( )

!

"

#
#
#

$

%

&
&
&

  

 (a)
    
x 0( ) = 0 1!" #$

T

, !x 0( ) = 0 .  Using the initial conditions: 

 

  

  

0 = A
1
sin!

1
" A

2
sin!

2
1#$ %&

1 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = 2A
1
cos!

1
" 2A

2
cos!

2
3#$ %&

0 = 2A
1
cos!

1
+ 2A

2
cos!

2
4#$ %&

 

 From [3] and [4] 

 

!
1

= !
2

=
"

2
 

 From [1] and [2] 

  
A

1
= A

2
=

1

2
 

 The solution is 

  

x
1

t( ) =
1

6
cos 2t !

1

6
cos2t

x
2

t( ) =
1

2
cos 2t +

1

2
cos2t

 

 This is similar to the response of Fig. 4.3 



 

 (b)
    
x 0( ) = 0, !x 0( ) = 0 1!" #$

T

. Using these initial conditions: 

  

  

0 = A
1
sin!

1
" A

2
sin!

2
1#$ %&

0 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = 2A
1
cos!

1
" 2A

2
cos!

2
3#$ %&

1 = 2A
1
cos!

1
+ 2A

2
cos!

2
4#$ %&

 

 From [1] and [2] 
 
!

1
= !

2
= 0  

 From [3] and [4] 

  
A

1
=

2

4
,  and A

2
=

1

4
 

 

 The solution is 

 

  

  

x
1

t( ) =
2

12
sin 2t !

1

12
sin2t

x
2

t( ) =
2

4
sin 2t +

1

4
sin2t

 

 

 This is also similar to the response of Fig. 4.3 

 



 



4.16 Refer to the system of Figure 4.1(a).  Using the initial conditions of Example 4.1.7, 

resolve and plot x1(t) for the cases that k2 takes on the values 0.3, 30, and 300.  In each 

case compare the plots of x1 and x2 to those obtained in Figure 4.3.  What can you 

conclude? 

 

 Solution: Let k2 = 0.3, 30, 300 for the example(s) in Section 4.1.  Given  

  

    

x 0( ) = 1 0!" #$
T

 mm, !x 0( ) = 0 0!" #$
T

m
1

= 9,m
2

= 1,k
1

= 24

 

 Equation of motion becomes: 

  

   

9 0

0 1

!

"
#

$

%
& !!x +

24 + k
2

'k
2

'k
2

k
2

!

"
#
#

$

%
&
&

x = 0  

 (a)  k2 = 0.3 

  

  

det !"
2
M + K( ) =

!9"
2

+ 24.3 !0.3

!0.3 !"
2

+ 0.3
= 9"

4
! 27"

2
+ 7.2 = 0

"
2

= 0.2598,2.7042

"
1

= 0.5439

"
2

= 1.6444

 

 Mode shapes: 

 Mode 1, 
 
!

1

2
= 0.2958 

  

   

21.6374 !0.3

!0.3 0.004159

"

#
$

%

&
'

u
11

u
12

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

21.6374u
11
! 0.3u

12
= 0

u
11

= 0.01386u
12

u
1

=
0.01386

1

"

#
$

%

&
'

 

 Mode 2, 
 
!

2

2
= 2.7042  

  

   

!0.03744 !0.3

!0.3 2.4042

"

#
$

%

&
'

u
21

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

!0.3u
21

= 2.4042u
22

u
22

= !0.1248u
21

u
2

=
1

!0.1248

"

#
$

%

&
'

 

 The solution is  
  
x t( ) = A

1
sin !

1
t + "

1
( )u

1
+ A

2
sin !

2
t + "

2
( )u

2
 



 Using initial conditions 

 

  

  

1 = A
1

0.01386( )sin!
1
+ A

2
sin!

2
1"# $%

0 = A
1
sin!

1
+ A

2
&0.1248( )sin!

2
2"# $%

0 = A
1

0.01386( ) 0.5439( )cos!
1
+ A

2
1.6444( )cos!

2
3"# $%

0 = A
1

0.5439( )cos!
1
+ A

2
1.6444( ) &0.1248( )cos!

2
4"# $%

 

 

 From [3] and [4], 

  
 
!

1
= !

2
= " / 2  

 

 From [1] and [2], 

  

  

A
1

= 0.1246

A
2

= 0.9983
 

 So, 

  

  

x
1

t( ) = 0.001727cos(0.5439t) + 0.9983cos 1.6444t( )  mm

x
2

t( ) = 0.1246 cos 0.5439t( ) ! cos 1.6444t( )"
#

$
%  mm

 

 

 (b) k2 = 30 

  

  

det !"
2
M + K( ) =

!9"
2

+ 54 !30

!30 !"
2

+ 30
= 9"

4
! 32"

2
+ 720 = 0

"
2

= 2.3795,33.6205

"
1

= 1.5426

"
2

= 5.7983

 

 



 Mode shapes: 

 Mode 1, 
 
!

1

2
= 2.3795 

 

  

   

32.5845 !30

!30 27.6205

"

#
$

%

&
'

u
11

u
12

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

30u
11

= 27.6205u
12

u
11

= 0.9207u
12

u
1

=
0.9207

1

"

#
$

%

&
'

 

 

 Mode 2, 
 
!

2

2
= 33.6205 

 

  

   

!248.5845 !30

!30 !3.6205

"

#
$

%

&
'

u
21

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

30u
21

= !3 / 6205u
22

u
21

= !0.1207u
22

u
2

=
!0.1207

1

"

#
$

%

&
'

 

 

 The solution is 

 

  
  
x t( ) = A

1
sin !

1
t + "

1
( )u

1
+ A

2
sin !

2
t + "

2
( )u

2
 

 

 Using initial conditions, 

 

  

  

1 = A
1

0.9207( )sin!
1
+ A

2
("0.1207sin!

2
1#$ %&

0 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = A
1

0.9207( ) 1.5426( )cos!
1
+ A

2
"0.1207( ) 5.7983( )cos!

2
3#$ %&

0 = A
1

1.5426( )cos!
1
+ A

2
5.7983( )cos!

2
4#$ %&

 

 

 From [3] and [4] 

 

  
 
!

1
= !

2
= " / 2  

 

 From [1] and [2] 



 

  

  

A
1

= 0.9602

A
2

= !0.9602
 

 

 So, 

 

  

  

x
1

t( ) = 0.8841cos 1.5426t( ) + 0.1159cos 5.7983t( )  mm

x
2

t( ) = 0.9602 cos 1.5426t( ) ! cos 5.7983t( )"
#

$
%  mm

 

 

 (c)  k2 = 300 

 

  

  

det !"
2
M + K( ) =

!9"
2

+ 324 !300

!300 !"
2

+ 300
= 9"

4
! 3024"

2
+ 7200 = 0

"
2

= 2.3981,333.6019

"
1

= 1.5486

"
2

= 18.2648

 

 

 Mode shapes: 

 

 Mode 1, 
 
!

1

2
= 2.3981 

 



  

   

302.4174 !300

!300 297.6019

"

#
$

%

&
'

u
11

u
12

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

302.4174u
11

= 300u
12

u
11

= 0.9920u
12

u
1

=
0.9920

1

"

#
$

%

&
'

 

 

 Mode 2, 
 
!

2

2
= 333.6019  

 

  

   

!2678.4174 !300

!300 !33.6019

"

#
$

%

&
'

u
21

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

300u
21

= 33.6019u
22

u
21

= !0.1120u
22

u
2

=
!0.1120

1

"

#
$

%

&
'

 

 

 The solution is 

 

  
  
x t( ) = A

1
sin !

1
t + "

1
( )u

1
+ A

2
sin !

2
t + "

2
( )u

2
 

 

 Using initial conditions 

 

  

  

1 = A
1

0.9920( )sin!
1
+ A

2
"0.1120( )sin!

2
1#$ %&

0 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = A
1

0.9920( ) 1.5486( )cos!
1
+ A

2
"0.1120( ) 18.2648( ) 3#$ %&

0 = A
1

1.5486( )cos!
1
+ A

2
18.2648( )cos!

2
4#$ %&

 

 

 From [3] and [4] 
 
!

1
= !

2
= " / 2  

 From [1] and [2],  A1 = 0.9058 and A2 = -0.9058. 

 So, 

  

x
1

t( ) = 0.8986cos 1.5486t( ) + 0.1014cos 18.2648t( )  mm

x
2

t( ) = 0.9058 cos 1.5486t( ) ! cos 18.2648t( )"
#

$
%  mm

 



 

 As the value of k2 increases the effect on mass 1 is small, but mass 2 oscillates similar to 

mass 1 with a superimposed higher frequency oscillation. 



4.17 Consider the system of Figure 4.1(a) described in matrix form by Eqs. (4.11), (4.9), and 

(4.6).  Determine the natural frequencies in terms of the parameters m1, m2, k1 and k2.  

How do these compare to the two single-degree-of-freedom frequencies 
  
!

1
= k

1
/ m

1
 

and
  
!

2
= k

2
/ m

2
? 

 

 Solution: 
 

 The equation of motion is 

 

  

   

M!!x + Kx = 0

m
1

0

0 m
2

!

"
#
#

$

%
&
&
!!x +

k
1
+ k

2
'k

2

'k
2

k
2

!

"
#
#

$

%
&
&

x = 0
 

 

 The characteristic equation is found from Eq. (4.19): 

 

  

  

det !"
2
M + K( ) = 0

!m
1
"

2
+ k

1
+ k

2
!k

2

!k
2

!m
2
"

2
+ k

2

m
1
m

2
"

4
! k

1
m

2
+ k

2
m

1
+ m

2
( )( )"

2
+ k

1
k

2
= 0

 

 

  

  

!
1,2

2
=

k
1
m

2
+ k

2
m

1
+ m

2
( ) ± k

1
m

2
+ k

2
m

1
+ m

2
( )"

#
$
%

2

& 4m
1
m

2
k

1
k

2

2m
1
m

2

 

 So, 

  

  

!
1,2

=

k
1
m

2
+ k

2
m

1
+ m

2
( ) ± k

1
m

2
+ k

2
m

1
+ m

2
( )"

#
$
%

2

& 4m
1
m

2
k

1
k

2

2m
1
m

2

 

 

 In two-degree-of-freedom systems, each natural frequency depends on all four 

parameters (m1, m2, k1, k2), while a single-degree-of-freedom system's natural frequency 

depends only on one mass and one stiffness. 

 

 

 

 

 

 

 

 

 



4.18 Consider the problem of Example 4.1.7 and use a trig identity to show the x1(t) 

experiences a beat.  Plot the response to show the beat phenomena in the response. 

 

 

 Solution Applying the trig identity of Example 2.2.2 to x1 yields 

  
x

1
(t) = (cos 2t + cos2t) = cos(

2 ! 2

2
t)cos(

2 + 2

2
t) = cos0.586t cos3.414t  

 

Plotting x1 and cos(0.586t) yields the clear beat: 

 

 

 

 

 



Problems and Solutions for Section 4.2 (4.19 through 4.33) 
 

4.19 Calculate the square root of the matrix 

 

  

  

M =
13 !10

!10 8

"

#
$

%

&
'  

 

 

  

Hint:  Let M
1/ 2

=
a !b

!b c

"

#
$

%

&
';  calculate M

1/ 2

( )
2

 and compare to M .
"

#
$

%

&
'  

 

 Solution: Given: 

  

  

M =
13 !10

!10 8

"

#
$

%

&
'  

 

 If 

  

  

M
1/ 2

=
a !b

!b c

"

#
$

%

&
' , then 

 

  

M = M
1/ 2

M
1/ 2

=
a !b

!b c

"

#
$

%

&
'

a !b

!b c

"

#
$

%

&
' =

a
2

+ b
2 !ab ! bc

!ab ! bc b
2

+ c
2

"

#
$

%

&
' =

13 !10

!10 8

"

#
$

%

&
'  

 

 This yields the 3 nonlinear algebraic equations: 

  

a
2

+ b
2

= 13

ab + bc = 10

b
2

+ c
2

= 8

 

 

 There are several possible solutions but only one that makes M
1/2

 positive definite which 

is  a = 3, b = c = 2 as determined below in Mathcad. Choosing these values results in 

 

  

  

M
1/ 2

=
3 !2

!2 2

"

#
$

%

&
'  



 



4.20 Normalize the vectors 

 

  

 

1

!2

"

#
$

%

&
' ,

0

5

"

#
$
%

&
' ,

!0.1

0.1

"

#
$

%

&
'  

 

 first with respect to unity (i.e.,  x
T
x = 1) and then again with respect to the matrix M 

(i.e.,  x
T

Mx = 1), where 

 

  

  

M =
3 !0.1

!0.1 2

"

#
$

%

&
'  

 

 Solution: 
 

 (a)  Normalize the vectors 

 

  

   

x
1

=
1

!2

"

#
$

%

&
'

(
1

=
1

x
T
x

=
1

5

 

 

 Normalized: 

  

  
x

1
=

1

5

1

!2

"

#
$

%

&
' =

0.4472

!0.8944

"

#
$

%

&
'  

 

  

   

x
2

=
0

5

!

"
#
$

%
&

'
2

=
1

x
T
x

=
1

5

 

 Normalized: 

  

  
x

2
=

0

1

!

"
#
$

%
&  

 

  

   

x
3

=
!0.1

0.1

"

#
$

%

&
'

(
3

=
1

x
T
x

=
1

0.02

 

 

 Normalized: 



  

  
x

3
= 50

!0.1

0.1

"

#
$

%

&
' =

1

2

!1

1

"

#
$

%

&
' =

!0.7071

0.7071

"

#
$

%

&
'  

 (b)  Mass normalize the vectors 

 

  

   

x
1

=
1

!2

"

#
$

%

&
'

(
1

=
1

xT
Mx

=
1

11.4

 

 

 Mass normalized: 

  

  
x

1
=

1

11.4

1

!2

"

#
$

%

&
' =

0.2962

!.5923

"

#
$

%

&
'  

 

  

  
x

2
=

0

5

!

"
#
$

%
&  

 

  

   
!

2
=

1

xT
Mx

=
1

50

 

 

  

  
x

2
=

1

50

0

5

!

"
#
$

%
& =

1

2

0

1

!

"
#
$

%
& =

0

0.7071

!

"
#

$

%
&  

 

  

   

x
3

=
!0.1

0.1

"

#
$

%

&
'

(
3

=
1

x
T

Mx
=

1

0.052

 

 

 Mass normalized: 

  

  
x

3
=

1

0.052

!0.1

0.1

"

#
$

%

&
' =

!0.4385

0.4385

"

#
$

%

&
'  

 



4.21 For the example illustrated in Figure P4.1 with
  
c

1
= c

2
= c

3
= 0 , calculate the matrix  !K . 

 

 Solution: 
 

 From Figure 4.1, 

 

  

   

m
1

0

0 m
2

!

"
#
#

$

%
&
&
!!x +

k
1
+ k

2
'k

2

'k
2

k
2

+ k
3

!

"
#
#

$

%
&
&

x = 0  

 

  

   

!K = M
!1/ 2

KM
!1/ 2

=
m

1

!1/ 2
0

0 m
2

!1/ 2

"

#
$
$

%

&
'
'

k
1
+ k

2
!k

2

!k
2

k
2

+ k
3

"

#
$
$

%

&
'
'

m
1

!1/ 2
0

0 m
2

!1/ 2

"

#
$
$

%

&
'
'

!K =

m
1

!1
k

1
+ k

2
( ) !m

1

!1/ 2
m

2

!1/ 2
k

2

!m
1

!1/ 2
m

2

!1/ 2
k

2
m

1

!1
k

2
+ k

3
( )

"

#

$
$

%

&

'
'

 

 

 Since 
   
!K

T
= !K , !K  is symmetric. 

 

 Using the numbers given in problem 4.2 yields 

  

  

   

!K =
3 !1

!1 6

"

#
$

%

&
'  

 

 This is obviously symmetric. 

 



4.22 Repeat Example 4.2.5 using eight decimal places.  Does P
T
P = 1, and does 

   
P

T !KP = ! =  diag "
1

2 "
2

2#
$

%
&  exactly? 

 

 Solution: From Example 4.2.5, 

 

   

!K =
12 !1

!1 3

"

#
$

%

&
' ( det !K ! )I( ) = )2 !15) + 35 = 0

()
1

= 2.89022777,  and  )
2

= 12.10977223

 

 

 Calculate eigenvectors and normalize them: 

 

  

   

!
1

= 2.89022777

9.10977223 "1

"1 0.10977223

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
(   )9.10977223v

11
= v

12

v
1

= v
11

2
+ v

12

2
= v

11

2
+ 9.10977223( )

2

v
11

2
= 1

)v
11

= 0.10911677  and    v
12

= 0.99402894

v
1

= 0.10911677 0.99402894#$ &'
T

 

  

   

!
2

= 12.10977223

"
#0.10977223 #1

#1 #9.10977223

$

%
&

'

(
)

v
21

v
22

$

%
&
&

'

(
)
)

=
0

0

$

%
&
'

(
)

" v
21

= 9.10977223v
22

v
2

= v
21

2
+ v

22

2
= #9.10977223( )

2

v
22

2
+ v

22

2
= 1

v
21

= #9.10911677, and   v
22

= #0.99402894

v
2

= 0.99402894 0.10911677$% '(
T

 

 Now, 

   
P = v

1
v

2
!" #$ =

0.10911677 %0.99402894

0.99402894 0.10911677

!

"
&

#

$
'  

 Check P
T
P=I 

  

  

P
T
P =

1.00000000 0

0 1.00000000

!

"
#

$

%
& = I (to 8 decimal places) 

 Check 
   
P

T !KP = ! = diag "
1
,"

2
( )  



  

   

! = P
T !KP =

2.89022778 0.00000002

0.00000002 12.10977227

"

#
$

%

&
'

diag (
1
,(

2
( ) =

2.89022777 0

0 12.10977223

"

#
$

%

&
'

 

 This is accurate to 7 decimal places. 

 



4.23 Discuss the relationship or difference between a mode shape of equation (4.54) and an 

eigenvector of  !K . 

 

 Solution: 
 

 The relationship between a mode shape, u, of    M!!x + Kx = 0  and an eigenvector, v, of 

   !K = M
!1/ 2

KM
!1/ 2

 is given by 

 

  
   v i

= M
1/ 2u

i
or     u

i
= M

!1/ 2v
i
 

 

 If v is normalized, then u is mass normalized. 

 

 This is shown by the relation 

 

  
   v i

T v
i
= 1 = u

i

T
Mu

i
 

 

 

 

 

 

 

4.24 Calculate the units of the elements of matrix  !K . 

 

 Solution: 
 

    !K = M
!1/ 2

KM
!1/ 2

 

 

 M
-1/2

 has units kg
-1/2 

 

 K has units N/m = kg/s
2
 

 

 So,   !K has units 
  
kg

-1/2

( ) kg/s
2

( ) kg
!1/ 2

( ) = s
!2

 

 

  

 



4.25 Calculate the spectral matrix Λ and the modal matrix P for the vehicle model of Problem 

4.14, Figure P4.14. 

 

 Solution: From Problem 4.14: 

  

    
M!!x + Kx =

2000 0

0 50

!

"
#

$

%
& !!x +

1000 '1000

'1000 11,000

!

"
#

$

%
&x = 0  

 Calculate eigenvalues: 

  

   

det !K ! "I( ) = 0

!K = M
!1/ 2

KM
!1/ 2

=
0.5 !3.162

!3.162 220

#

$
%

&

'
(

0.5! " !3.162

!3.162 220 ! "
= "2 ! 220.5" + 100 = 0

"
1,2

= 0.454,220.05

 

 The spectral matrix is 

  

 

! = diag "
1

( ) =
0.454 0

0 220.05

#

$
%

&

'
(  

 Calculate eigenvectors and normalize them: 

  

   

!
1

= 0.454

0.0455 "3.162

"3.162 219.55

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

= 0 ) v
11

= 69.426v
12

v
1

= v
11

2
+ v

22

2
= 69.426( )

2

v
12

2
+ v

12

2
= 69.434v

12
= 1

) v
12

= 0.0144,  and v
11

= 0.9999

                                      ) v
1

=
0.9999

0.0144

#

$
%

&

'
(

 

 

  

   

!
2

= 220.05

"219.55 "3.162

"3.162 "0.0455

#

$
%

&

'
(

v
21

v
22

#

$
%
%

&

'
(
(

= 0

v
21

= 0.0144v
22

v
2

= v
21

2
+ v

22

2
= "0.0144( )

2

v
22

2
+ v

22

2
= 1.0001v

22
= 1

) v
22

= 0.9999,  and v
21

= "0.0144

                                       ) v
2

=
"0.0144

0.9999

#

$
%

&

'
(

 

 The modal matrix is 



   
P = v

1
v

2
!" #$ =

0.9999 %0.0144

0.0144 0.9999

!

"
&

#

$
'  

 



4.26 Calculate the spectral matrix Λ and the modal matrix P for the subway car system of   

Problem 4.12, Figure P4.12. 

 

 Solution: From problem 4.12 and Figure P4.12, 

  

    
M!!x + Kx =

2000 0

0 2000

!

"
#

$

%
& !!x +

280,000 '280,000

'280,000 280,000

!

"
#

$

%
&x = 0  

 Calculate eigenvalues: 

  

   

det !K ! "I( ) = 0

!K = M
!1/ 2

KM
!1/ 2

=
140 !140

!140 140

#

$
%

&

'
(

140 ! " !140

!140 140 ! "
= "2 ! 280" = 0

"
1,2

= 0,280

 

 The spectral matrix is 

  

  

! = diag "
i( ) =

0 0

0 280

#

$
%

&

'
(  

 Calculate eigenvectors and normalize them: 

  

   

!
1

= 0

140 "140

"140 140

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

= 0

v
11

= v
12

v
1

= v
11

2
+ v

12

2
= v

12

2
+ v

12

2
= 1.414v

12
= 1

v
12

= 0.7071

v
11

= 0.7071

v
1

=
0.7071

0.7071

#

$
%

&

'
(

 

 

   

  

   

!
2

= 280

140 "140

"140 140

#

$
%

&

'
(

v
21

v
22

#

$
%
%

&

'
(
(

= 0 ) v
21

= v
22

) v
2

= v
21

2
+ v

22

2
= v

22

2
+ v

22

2
= 14.14v

12
= 1) v

22
= 0.7071,v

21
= "0.7071

) v
2

=
"0.7071

0.7071

#

$
%

&

'
(

 



 The modal matrix is   

   
P = v

1
v

2
!" #$ =

0.7071 %0.7071

0.7071 0.7071

!

"
&

#

$
'  

 



4.27 Calculate   !K  for the torsional vibration example of Problem 4.11.  What are the units 

of  !K ? 

 

 Solution: From Problem 4.11, 

 

  

   

J !!! + K! = J
2

3 0

0 1

"

#
$

%

&
' !!! + k

2 (1

(1 1

"

#
$

%

&
'! = 0

"K = J
(1/ 2

KJ
(1/ 2

J
(1/ 2

= J
2

(1/ 2
0.5774 0

0 1

"

#
$

%

&
'

"K = J
2

(1/ 2
0.5774 0

0 1

"

#
$

%

&
' k

2 (1

(1 1

"

#
$

%

&
' J

2

(1/ 2
0.5774 0

0 1

"

#
$

%

&
'

"K =
k

J
2

0.6667 (0.5774

(0.5774 1

"

#
$

%

&
'

 

 

 The units of   !K  are 

 

  

  

kg !m2

rad

"

#$
%

&'

(1/ 2

N !m
rad

"
#$

%
&'

kg !m2

rad

"

#$
%

&'

(1/ 2

= s
(2

 



4.28  Consider the system in the Figure P4.28 for the case where m1 = 1 kg, m2 = 4 kg, k1 =  240 

N/m and k2=300 N/m.  Write the equations of motion in vector form and compute each of the 

following 

a) the natural frequencies 

b) the mode shapes 

c) the eigenvalues 

d) the eigenvectors 

e) show that the mode shapes are not orthogonal 

f) show that the eigenvectors are orthogonal 

g) show that the mode shapes and eigenvectors are related by M
! 1

2  

h) write the equations of motion in modal coordinates 

Note the purpose of this problem is to help you see the difference between 

these various quantities. 

 

 

Figure P1.28 A two-degree of freedom system 

Solution From a free body diagram, the equations of motion in vector form are 

 

1 0

0 4

!

"
#

$

%
& !!x +

540 '300

'300 300

!

"
#

$

%
&x =

0

0

!

"
#

$

%
&  

The natural frequencies can be calculated in two ways.  The first is using the determinant 

following example 4.1.5: 

a)  det(!"
2
M + K ) = 0 #"

1
= 5.5509,"

2
= 24.1700 rad/s  

The second approach is to compute the eigenvalues of the matrix  
!K = M

! 1
2KM

! 1
2  following 

example 4.4.4, which yields the same answers. The mode shapes are calculate following the 

procedures of example 4.1.6 or numerically using eig(K,M) in Matlab 

 b)   u
1

=
0.5076

0.8616

!

"
#

$

%
&,  u

2
=

0.9893

'0.1457

!

"
#

$

%
&  

The eigenvectors are vectors that satisfy 
!Kv = !v , where λ are the eigenvalues. These can be 

computed following example 4.2.2, or using [V,Dv]=eig(Kt) in Matlab. The eigenvalues 

and eigenvectors are 

c)    !
1

= 30.8120,    !
2

= 584.1880 ,   

d)   v
1

=
0.2826

0.9592

!

"
#

$

%
&,   v

2
=

'0.9592

0.2826

!

"
#

$

%
&  



To show that the mode shapes are not orthogonal, show that u
1

T
u

2
! 0 : 

e)  u
1

T
u

2
= (0.5076)(0.9893) + (0.8616)(!0.1457) = 0.3767 " 0  

To show that the eigenvectors are orthogonal, compute the inner product to show thatv
1

T
v

2
= 0 : 

f)   v
1

T
v

2
= (0.2826)(!0.9592) + (0.9592)(0.2826) = 0  

To solve the next part merely compute M
!1

2v
2

 and show that it is equal to u2 (see the discussion 

at the top of page 262. 

g)   M
!1

2v
2

=
0.9592

!0.1413

"

#
$

%

&
',  normalize to get 

-0.9893

0.1457

"

#
$

%

&
' = !u

2
  

Likewise, M
!1

2v
1

= u
1
. Note that if you use Matlab you’ll automatically get normalized vectors.  

But the product M
!1

2v
2

 will not be normalized, so it must be normalized before comparing it to 
u2. 

 

h) We can write down the modal equations, just as soon as we know the eigenvalues (squares of 

the frequencies).  They are: 

 

!!r
1
(t) + 30.812r

1
(t) = 0

!!r
2
(t) + 583.189r

2
(t) = 0

 

 

 

 

 

 

4.29 Consider the following system: 

 

  

   

1 0

0 4

!

"
#

$

%
& !!x +

3 '1

'1 1

!

"
#

$

%
&x = 0  

 

 where M is in kg and K is in N/m.  (a)  Calculate the eigenvalues of the system.  (b) 

Calculate the eigenvectors and normalize them. 

 

 Solution: Given:   

  

    
M!!x + Kx =

1 0

0 4

!

"
#

$

%
& !!x +

3 '1

'1 1

!

"
#

$

%
&x = 0  

 Calculate eigenvalues: 

  

   

det !K ! "I( ) = 0

!K = M
!1/ 2

KM
!1/ 2

=
3 !0.5

!0.5 0.25

#

$
%

&

'
(

3! " !0.5

!0.5 0.25! "
= "2 ! 3.25" + 0.5 = 0

"
1,2

= 0.162,3.088

 



 The spectral matrix is 

  

  

! = diag "
i( ) =

0.162 0

0 3.088

#

$
%

&

'
(  

 Calculate eigenvectors and normalize them: 

 

  

   

!
1

= 0.162

2.838 "0.5

"0.5 0.088

#

$
%

&

'
(

v
11

v
21

#

$
%
%

&

'
(
(

= 0 ) v
11

= 1.762v
21

v
1

= v
11

2
+ v

21

2
= 0.1762( )

2

v
21

2
+ v

21

2
= 1.015v

21
= 1

v
21

= 0.9848 and v
11

= 0.1735) v
1

=
0.1735

0.9848

#

$
%

&

'
(

 

 

  

   

!
2

= 3.088

"0.088 "0.5

"0.5 "2.838

#

$
%

&

'
(

v
12

v
22

#

$
%
%

&

'
(
(

= 0 ) v
12

= 1.762v
22

v
2

= v
12

2
+ v

22

2
= "5.676( )

2

v
22

2
+ v

22

2
= 5.764v

22
= 1

) v
22

= 0.1735  and   v
12

= "0.9848) v
2

=
"0.9848

0.1735

#

$
%

&

'
(

 



4.30 The torsional vibration of the wing of an airplane is modeled in Figure P4.30.  Write the 

equation of motion in matrix form and calculate the natural frequencies in terms of the rotational 

inertia and stiffness of the wing (See Figure 1.22). 

 

 Solution: From Figure 1.22, 

  

  

k
1

=

GJ
p

l
1

 and k
2

=

GJ
p

l
2

 

 Equation of motion: 

  

   

J
1

0

0 J
2

!

"
#
#

$

%
&
&
!!' +

k
1
+ k

2
(k

2

(k
2

k
2

!

"
#
#

$

%
&
&
' = 0

J
1

0

0 J
2

!

"
#
#

$

%
&
&
!!' +

GJ
p

1

l
1

+
1

l
2

)

*+
,

-.
(GJ

p

l
2

(GJ
p

l
2

GJ
p

l
2

!

"

#
#
#
#
#

$

%

&
&
&
&
&

' = 0

 

 Natural frequencies: 

  

   

!K = M
!1/ 2

KM
!1/ 2

=

GJ
p

J
1

1

l
1

+
1

l
2

"

#$
%

&'
!GJ

p

l
2

J
1
J

2

!GJ
p

l
2

J
1
J

2

GJ
p

J
2
l
2

(

)

*
*
*
*
*
*

+

,

-
-
-
-
-
-

det !K ! .I( ) =

GJ
p

J
1

1

l
1

+
1

l
2

"

#$
%

&'
! .

!GJ
p

l
2

J
1
J

2

!GJ
p

l
2

J
1
J

2

GJ
p

J
2
l
2

! .

(

)

*
*
*
*
*
*

+

,

-
-
-
-
-
-

 

 Solving for λ yields 

 

  

  

!
1,2

=

GJ
p

2

1

J
1

1

l
1

+
1

l
2

"

#$
%

&'
+

1

J
2
l
2

(

)
*
*

+

,
-
-

±

GJ
p

2

1

J
1

1

l
1

+
1

l
2

"

#$
%

&'
+

1

J
2
l
2

(

)
*
*

+

,
-
-

2

.
4

J
1
J

2
l
1
l
2

 

 

 The natural frequencies are 

 



  
 
!

1
= "

1
  and  !

2
= "

2
 

 



4.31 Calculate the value of the scalar a such that x1 = [a   -1   1]
T
 and x2 = [1   0   1]

T
 are 

orthogonal. 

 

 Solution: To be orthogonal, 
   x1

T x
2

= 0  

 

 So,

   

x
1

T x
2

= a !1 1"# $%

1

0

1

"

#

&
&
&

$

%

'
'
'

= a + 1 = 0 .  Therefore, a = -1. 

 

4.32 Normalize the vectors of Problem 4.31.  Are they still orthogonal? 

 

 Solution: From Problem 4.31, with a = -1, 

  

  

x
1

=

!1

!1

1

"

#

$
$
$

%

&

'
'
'

  and  x
2

=

1

0

1

"

#

$
$
$

%

&

'
'
'

 

 Normalize x1:  

  

!x
1

( )
T

!x
1

( ) = 1

a
2 "1 "1 1#$ %&

"1

"1

1

#

$

'
'
'

%

&

(
(
(

= 3! 2
= 1

! = 0.5774

 

 So, 

  

x
1

= 0.5774

!1

!1

1

"

#

$
$
$

%

&

'
'
'

 

 Normalize x2: 

  

  

!x
2

( )
T

!x
2

( ) = 1

a
2

1 0 1"# $%

1

0

1

"

#

&
&
&

$

%

'
'
'

= 2! 2
= 1

! = 0.7071

 

 So, 

  

x
2

= 0.7071

1

0

1

!

"

#
#
#

$

%

&
&
&

 

 Check orthogonality: 

  

   

x
1

T x
2

= 0.5774( ) 0.7071( ) !1 !1 1"# $%

1

0

1

"

#

&
&
&

$

%

'
'
'

= 0  Still orthogonal  



 



4.33 Which of the following vectors are normal?  Orthogonal? 

 

  

  

x
1

=

1

2

0

1

2

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

x
2

=

0.1

0.2

0.3

!

"

#
#
#

$

%

&
&
&

x
3

=

0.3

0.4

0.3

!

"

#
#
#

$

%

&
&
&

 

 

 Solution: 
 

 Check vectors to see if they are normal: 

 

  

  

x
1

= 1 / 2 + 0 + 1 / 2 = 1 = 1 Normal

x
2

= .1
2

+ .2
2

+ .3
2

= .14 = 0.3742 Not normal

x
3

= .3
2

+ .4
2

+ .3
2

= .34 = 0.5831 Not normal

 

 

 Check vectors to see if they are orthogonal: 

 

  

   

x
1

T x
2

= 1 / 2 0 1 / 2!
"

#
$

.1

.2

.3

!

"

%
%
%

#

$

&
&
&

= .2828 Not orthogonal

x
2

T x
3

= .1 .2 .3!" #$

.3

.4

.3

!

"

%
%
%

#

$

&
&
&

= 0.2 Not orthogonal

x
3

Tx
1

= .3 .4 .3!" #$

1 / 2

0

1 / 2

!

"

%
%
%

#

$

&
&
&

= 0.4243 Not orthogonal

 

 

 ∴ Only x1 is normal, and none are orthogonal. 



Problems and Solutions for Section 4.3 (4.34 through 4.43) 
 

4.34 Solve Problem 4.11 by modal analysis for the case where the rods have equal stiffness 

(i.e., 
  
k

1
= k

2
), J

1
= 3J

2
, and the initial conditions are x(0) = 

    
0 1!" #$

T

 and !x 0( ) = 0.  

 

 Solution: From Problem 4.11 and Figure P4.11, with 
  
k = k

1
= k

2
 and J

1
= 3J

2
:  

 

 

   

J
2

3 0

0 1

!

"
#

$

%
& !!' + k

2 (1

(1 1

!

"
#

$

%
&' = 0  

 

Calculate eigenvalues and eigenvectors: 

 

 

   

J
!1/ 2

= J
2

!1/ 2

1

3

0

0 1

"

#

$
$
$

%

&

'
'
'

!K = J
!1/ 2

KJ
!1/ 2

=
k

J
2

2

3

!1

3

!1

3

1

"

#

$
$
$
$

%

&

'
'
'
'

( det !K ! )I( ) = )2 !
5k

3J
2

) +
k

2

3J
2

2
= 0

)
1

=

5! 13( )k

6J
2

( *
1

= )
1
, and  

5 + 13( )k

6J
2

(*
2

= )
2

 

 

 

   

!
1

=

5" 13( )k

6J
2

#

5 + 13( )k

6J
2

"k

3J
2

"k

3J
2

5 + 13( )k

6J
2

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

v
11

v
12

$

%
&
&

'

(
)
)

= 0

# v
11

= 1.3205v
12
# v

1
=

0.7992

0.6011

$

%
&

'

(
)

 

 



 

   

!
2

=

5 + 13( )k

6J
2

"

#1# 13( )k

6J
2

#k

3J
2

#k

3J
2

1# 13( )k

6J
2

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

v2
11

v
22

$

%
&
&

'

(
)
)

= 0

" v
21

= #0.7522v
22
" v

2
=

#0.6011

0.7992

$

%
&

'

(
)

 

 

Now, 

   
P = v

1
v

2
!" #$ =

0.7992 %0.6011

0.6011 0.7992

!

"
&

#

$
'  

Calculate S and S
-1

: 

 

  

S = J
!1/ 2

P =
1

J
2

0.4614 !0.3470

0.6011 0.7992

"

#
$

%

&
'

S
!1

= P
T
J

1/ 2
= J

2

1/ 2
1.3842 0.6011

!1.0411 0.7992

"

#
$

%

&
'

 

Modal initial conditions: 

 

    

r 0( ) = S
!1" 0( ) = S

!1
0

1

#

$
%
&

'
( = J

2

1/ 2
0.6011

0.7992

#

$
%

&

'
(

!r 0( ) = S
!1 !" 0( ) = 0

 

Modal solution: 

 

   

r
1

t( ) =
!

1

2
r
10

2
+ !r

10

2

!
1

sin !
1
t + tan

"1
!

1
r
10

!r
10

#

$
%

&

'
(

r
2

t( ) =
!

2

2
r

20

2
+ !r

20

2

!
2

sin !
2
t + tan

"1
!

2
r
10

!r
20

#

$
%

&

'
(

 

 

 

  

r
1

t( ) = 0.6011J
2

1/ 2
sin !

1
t +

"

2

#

$
%

&

'
( = 0.6011J

2

1/ 2
cos!

1
t

r
2

t( ) = 0.7992J
2

1/ 2
sin !

2
t +

"

2

#

$
%

&

'
( = 0.6011J

2

1/ 2
cos!

2
t

 

 

   
r t( ) =

0.6011J
2

1/ 2
cos!

1
t

0.7992J
2

1/ 2
cos!

2
t

"

#
$
$

%

&
'
'

 



Convert to physical coordinates: 

 

   

! t( ) = Sr t( ) = J
2

1/ 2
0.4614 "0.3470

0.6011 0.7992

#

$
%

&

'
(

0.6011J
2

1/ 2
cos)

1
t

0.7992J
2

1/ 2
cos)

2
t

#

$
%
%

&

'
(
(

! t( ) =
0.2774cos)

1
t " 0.2774cos)

2
t

0.3613cos)
1
t + 0.6387cos)

2
t

#

$
%
%

&

'
(
(

 

where 

  

!
1

= 0.4821
k

J
2

 and !
2

= 1.1976
k

J
2

,  

 



4.35 Consider the system of Example 4.3.1.  Calculate a value of x(0) and 
   
!x 0( )  such that both 

masses of the system oscillate with a single frequency of 2 rad/s. 

 

 Solution: 
 

 From Example 4.3.1, 

 

  

  

S =
1

2

1 / 3 1 / 3

1 !1

"

#
$

%

&
'

S
!1

=
1

2

3 1

3 !1

"

#
$

%

&
'

 

 

 From Equations (4.67) and (4.68), 

 

  

   

r
1

t( ) =
!

1

2
r
10

2
+ r

10

2

!
1

sin !
1
t + tan

"1
!

1
r
10

!r
10

#

$
%

&

'
(

r
2

t( ) =
!

2

2
r

20

2
+ r

20

2

!
2

sin !
2
t + tan

"1
!

2
r

20

!r
20

#

$
%

&

'
(

 

 

 Choose x(0) and   !x (0) so that r1(t) = 0.  This will cause the frequency  2  to drop out.  

For r1(t) = 0, its coefficient must be zero. 

 

  

  

!
1

2
r
10

2
+ r

10

2

!
1

= 0 or !
1

2
r
10

2
+ r

10

2
= 0  

 

 Choose
   
r
10

= !r
20

= 0 . 

 

 Let r20 = 
   
3 / 2  and !r

20
= 0  as calculated in Example 4.3.1. 

 

 So, 
   
r 0( ) = 0 3 / 2!

"
#
$

T

and 
   
!r 0( ) = 0. 

 

 Solve for x(0) and
   
!x 0( ) : 

 



  

    

x 0( ) = Sr 0( ) =
1

12

1 / 3 1 / 3

1 !1

"

#
$

%

&
'

0

3 / 2

"

#
$
$

%

&
'
'

=
0.5

!1.5

"

#
$

%

&
'

!x 0( ) = S!r 0( ) = 0

 



4.36 Consider the system of Figure P4.36 consisting of two pendulums coupled by a spring.  

Determine the natural frequency and mode shapes.  Plot the mode shapes as well as the 

solution to an initial condition consisting of the first mode shape for k = 20 N/m, l = 0.5 

m and m1 = m2 = 10 kg, a = 0.1 m along the pendulum. 

 

 Solution: Given: 

  

  

k = 20 N/m m
1

= m
2

= 10 kg

a = 0.1 m l = 0.5 m

 

 For gravity use 
  g = 9.81 m/s

2
.  For a mass on a pendulum, the inertia is:   I = ml

2
 

 Calculate mass and stiffness matrices (for small θ). The equations of motion are: 

  

   

I
1

!!!
1

= ka
2 !

2
"!

1
( ) " m

1
gl!

1

I
2

!!!
2

= "ka
2 !

2
"!

1
( ) " m

2
gl!

2

# ml
2

!!!
1

!!!
2

$

%
&
&

'

(
)
)

+
mgl + ka

2 "ka
2

"ka
2

mgl + ka
2

$

%
&

'

(
)
!

1

!
2

$

%
&
&

'

(
)
)

=
0

0

$

%
&
'

(
)  

 

 Substitution of the given values yields: 

  

  

2.5 0

0 2.5

!

"
#

$

%
& !!' +

49.05 (0.2

(0.2 49.05

!

"
#

$

%
&' = 0  

 Natural frequencies: 

  

   

!K = M
!1/ 2

KM
!1/ 2

=
19.7 !0.08

!0.08 19.7

"

#
$

%

&
'

( )
1

= 19.54 and )
2

= 19.7 (*
1

= 4.42 rad/s and *
2

= 4.438 rad/s

 

 Eigenvectors: 

   

!
1

= 19.54

0.08 "0.08

"0.08 0.08

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
( ) v

1
=

1

2

1

1

#

$
%
&

'
(

 

 

   

!
2

= 19.7

"0.08 "0.08

"0.08 "0.08

#

$
%

&

'
(

v
21

v
22

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
( ) v

2
=

1

2

1

"1

#

$
%

&

'
(

 

 

 Now, 

   
P = v

1
v

2
!" #$ =

1

2

1 1

1 %1

!

"
&

#

$
'  

 



 Mode shapes: 

   

u
1

= M
!1/ 2v

1
=

0.4472

0.4472

"

#
$

%

&
'

u
2

= M
!1/ 2v

2
=

0.4472

!0.4472

"

#
$

%

&
'

 

 

 A plot of the mode shapes is simply 

 

 This shows the first mode vibrates in phase and in the second mode the masses vibrate 

out of phase. 

 

  

    

! 0( ) =
0.4472

0.4472

"

#
$

%

&
' !! 0( ) = 0,   S = M

(1/ 2
P =

0.4472 0.4472

0.4472 (0.4472

"

#
$

%

&
'

S
(1

= P
T

M
1/ 2

=
1.118 1.118

1.118 (1.118

"

#
$

%

&
' ,   r 0( ) = S

(1! 0( ) =
1

0

"

#
$
%

&
' !r 0( ) = 0

 

 

 From Eq. (4.67) and (4.68): 

  

r
1

t( ) = sin 4.42t +
!
2

"
#$

%
&'

= cos4.45t,   r
2

t( ) = 0  

 Convert to physical coordinates:

   
! t( ) = Sr t( ) =

0.4472cos4.42t

0.4472cos4.42t

"

#
$

%

&
' rad   

 

4.37 Resolve Example 4.3.2 with m2 changed to 10 kg.  Plot the response and compare the 

plots to those of Figure 4.6. 

 

 Solution: From examples 4.3.2 and 4.2.5, with m2 = 10 kg, 



  

    
M!!x + Kx =

1 0

0 10

!

"
#

$

%
& !!x +

12 '2

'2 12

!

"
#

$

%
&x = 0  

 Calculate eigenvalues and eigenvectors: 

  

   

M
!1/ 2

=

1 0

0
1

10

"

#

$
$
$

%

&

'
'
'

!K = M
!1/ 2

KM
!1/ 2

=
12 !0.6325

!0.6325 1.2

"

#
$

%

&
'

 

 

  

    

det( !K ! "I ) = "2 !13.2" + 14 = 0

"
1

= 1.163 #
1

= 1.078 rad/s

"
2

= 12.04 #
2

= 3.469 rad/s

P = v
1

v
2

$% &' =
0.0583 !0.9983

0.9983 0.0583

$

%
(

&

'
)

 

 Calculate S and S
-1

: 

  

  

S = M
!1/ 2

P =
0.0583 !0.9983

0.9983 0.0583

"

#
$

%

&
'

S
!1

= P
T

M
1/ 2

=
0.0583 3.1569

!0.9983 0.1842

"

#
$

%

&
'

 

 Modal initial conditions: 

  

    

r 0( ) = S
!1x 0( ) = S

!1
1

1

"

#
$
%

&
' =

3.2152

!0.8141

"

#
$

%

&
'

!r 0( ) = S
!1
!x 0( ) = 0

 

 Modal solution (from Eqs. (4.67) and (4.68): 

  

  

r
1

t( ) = 3.2152sin 1.078t +
!

2

"

#
$

%

&
' = 3.2152cos1.078t

r
2

t( ) = (0.8141cos3.469t

 

 Covert to physical coordinates: 

 

  

   

x t( ) = Sr t( ) =
0.0583 !0.9983

0.3157 0.0184

"

#
$

%

&
'

3.2152cos1.078t

!0.8141cos3.469t

"

#
$

%

&
'

x t( ) =
0.1873cos1.078t + 0.8127cos3.469t

1.015cos1.078t ! 0.0150cos3.469t

"

#
$

%

&
'

 

 



 

 

 These figures are similar to those of Figure 4.6, except the responses are reversed (θ2 

looks like x2 in Figure 4.6, and θ1 looks like x1 in Figure 4.6) 

 



4.38 Use modal analysis to calculate the solution of Problem 4.29 for the initial conditions 

 

  
    
x 0( ) = 0 1!" #$

T

mm( )  and !x 0( ) = 0 0!" #$
T

 mm/s( )  

 

 Solution:  From Problem 4.29, 

 

  

   

M =
1 0

0 4

!

"
#

$

%
&

'
1

= (
1

= 0.4024 rad/s

'
2

= (
2

= 1.7573 rad/s

P = v
1

v
2

!" $% =
0.1735 )0.9848

0.9848 0.1735

!

"
#

$

%
&

 

 

 Calculate S and S
-1

: 

 

  

  

S = M
!1/ 2

P =
0.1735 !0.9848

0.4924 0.0868

"

#
$

%

&
'

S
!1

= P
T

M
1/ 2

=
0.1735 1.9697

!0.9848 0.3470

"

#
$

%

&
'

 

 

 Modal initial conditions: 

 

  

    

r 0( ) = S
!1x 0( ) = S

!1
0

1

"

#
$
%

&
' =

1.9697

0.3470

"

#
$

%

&
'

r 0( ) = S
!1
!x 0( ) = 0

 

 

 Modal solution (from Eqs. (4.67) and (4.68): 

 

  

  

r
1

t( ) = 1.9697cos0.4024t

r
2
(t) = !.3470cos1.7573t

 

 

 Convert to physical coordinates: 

  

   

x t( ) = Sr t( ) =
0.1735 !0.9848

0.4924 0.0868

"

#
$

%

&
'

1.9697cos0.4024t

0.3470cos1.7573t

"

#
$

%

&
'

                     ( x t( ) =
0.3417cos0.4024t ! 0.3417cos1.7573t

0.9699cos0.4024t + 0.0301cos1.7573t

"

#
$

%

&
'mm

 

 



4.39 For the matrices 

 

  

  

M
!1/ 2

=

1

2

0

0 4

"

#

$
$
$

%

&

'
'
'

  and  P =
1

2

1 1

!1 1

"

#
$

%

&
'  

 

 calculate 
  
M

!1/ 2
P,  M

!1/ 2
P( )

T

,   and P
T

M
!1/ 2

 and hence verify that the computations in 

Eq. (4.70) make sense. 

 

 Solution: 
 

 Given 

  

  

M
!1/ 2

=

1

2

0

0 4

"

#

$
$
$

%

&

'
'
'

 and P =
1

2

1 1

!1 1

"

#
$

%

&
'  

 

 Now 

  

  

M
!1/ 2

P =
0.5 0.5

!2 2 !2 2

"

#
$
$

%

&
'
'

 

 

 So 

  

  

M
!1/ 2

P( )
T

=
0.5 !2 2

0.5 !2 2

"

#
$
$

%

&
'
'

P
T

M
!1/ 2

=
0.5 !2 2

0.5 !2 2

"

#
$
$

%

&
'
'

 

 Thus, 
  

M
!1/ 2

P( )
T

= P
T

M
!1/ 2

[Equation (4.71)] 

 



4.40 Consider the 2-degree-of-freedom system defined by: 

  

M =
9 0

0 1

!

"
#

$

%
& ,    and  K =

27 '3

'3 3

!

"
#

$

%
& . 

  Calculate the response of the system to the initial condition 

 

  

   

x
0

=
1

2

1

3

1

!

"

#
#
#

$

%

&
&
&

!x
0

= 0  

 

 What is unique about your solution compared to the solution of Example 4.3.1. 

 

 Solution:  Following the calculations made for this system in Example 4.3.1, 

  

  

!
1

= "
1

= 1.414 rad/s,    !
2

= "
2

= 2 rad/s

P =
1

2

1 1

1 #1

$

%
&

'

(
) * S = M

#1/ 2
P =

1

2

1

3

1

3

1 #1

$

%

&
&
&

'

(

)
)
)

 and  S
#1

= P
T

M
1/ 2

=
1

2

3 1

3 #1

$

%
&

'

(
)

 

 Next compute the modal initial conditions 

  

    
r 0( ) = S

!1x 0( ) =
1

0

"

#
$
%

&
' ,   and   !r 0( ) = S

!1
!x 0( ) = 0  

 Modal solution (from Eqs. (4.67) and (4.68)): 

  

   
r t( ) =

cos1.414t

0

!

"
#

$

%
&  

Note that the second coordinate modal coordinate has zero initial conditions and is hence 

not vibrating.  Convert this solution back into physical coordinates: 

 

  

   

x t( ) = Sr t( ) =
1

2

1

3

1

3

1 !1

"

#

$
$
$

%

&

'
'
'

cos1.414t

0

"

#
$

%

&
'

                                 ( x t( ) =
0.236cos1.414t

0.707cos1.414t

"

#
$

%

&
'

 

 

 The unique feature about the solution is that both masses are vibrating at only one 

frequency.  That is the frequency of the first mode shape.  This is because the system is 

excited with a position vector equal to the first mode of vibration.



4.41    Consider the 2-degree-of-freedom system defined by: 

  

M =
9 0

0 1

!

"
#

$

%
& ,    and  K =

27 '3

'3 3

!

"
#

$

%
& . 

             Calculate the response of the system to the initial condition 

  

   

x
0

= 0,    and !x
0

=
1

2

1

3

!1

"

#

$
$
$

%

&

'
'
'

 

 What is unique about your solution compared to the solution of Example 4.3.1 

and to Problem 4.40, if you also worked that? 

 

 

 Solution: From example 4.3.1, 

  

  

!
1

= "
1

= 1.414 rad/s, !
2

= "
2

= 2 rad/s,  P =
1

2

1 1

1 #1

$

%
&

'

(
)

* S = M
#1/ 2

P =
1

2

1

3

1

3

1 #1

$

%

&
&
&

'

(

)
)
)

,  and S
#1

= P
T

M
1/ 2

=
1

2

3 1

3 #1

$

%
&

'

(
)

 

 Modal initial conditions: 

  

    
r 0( ) = S

!1x 0( ) = 0,  and   !r 0( ) = S
!1
!x 0( ) =

0

1

"

#
$
%

&
'  

 Modal solution (from Eqs. (4.67) and (4.68)): 

  

   

r t( ) =

0

1

!
2

cos2t

"

#

$
$
$

%

&

'
'
'

=
0

0.5cos2t

"

#
$

%

&
'  

 Convert to physical coordinates: 

  

   

x t( ) = Sr t( ) =
1

2

1

3

1

3

1 !1

"

#

$
$
$

%

&

'
'
'

0

0.5cos2t

"

#
$

%

&
' =

0.118cos2t

!0.354cos2t

"

#
$

%

&
'  

 

 Compared to Example 4.3.1, only the second mode is excited, because the initial velocity 

is proportional to the second mode shape, and the displacement is zero.  Compared to the 

previous problem, here it is the second mode rather then the first mode that is excited. 



4.42 Consider the system of Problem 4.1.  Let k1 = 10,000 N/m, k2 = 15,000 N/m, and k3 = 

10,000 N/m.  Assume that both masses are 100 kg.  Solve for the free response of this 

system using modal analysis and the initial conditions 

 

  
    
x 0( ) = 1 0!" #$

T

!x 0( ) = 0  

 

 Solution: Given: 

  

    

k
1

= 10,000 N/m m
1

= m
2

= 100 kg

k
2

= 15,000 N/m x 0( ) = 1 0!" #$
T

k
3

= 10,000 N/m !x 0( ) = 0

 

 Equation of motion: 

 

  

    

M!!x + Kx = 0
100 0

0 100

!

"
#

$

%
& !!x +

25,000 '15,000

'15,000 25,000

!

"
#

$

%
&x = 0  

 

 Calculate eigenvalues and eigenvectors: 

 

  

   

M
!1/ 2

=
0.1 0

0 0.1

"

#
$

%

&
'

!K = M
!1/ 2

KM
!1/ 2

=
250 !150

!150 250

"

#
$

%

&
'

det !K ! (I( ) = (2 ! 500( + 40,000 = 0

(
1

= 100 )
1

= 10 rad/s

(
2

= 400 )
2

= 20 rad/s

 

 

 

   

!
1

= 100

150 "150

"150 150

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
(

v
1

=
1

2

1

1

#

$
%
&

'
(

 

 



 

   

!
2

= 400

"150 "150

"150 "150

#

$
%

&

'
(

v
21

v
22

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
(

v
2

=
1

2

1

"1

#

$
%

&

'
(

 

 

 Now, 

   
P = v

1
v

2
!" #$ =

1

2

1 1

1 %1

!

"
&

#

$
'  

 

 Calculate S and S
-1

: 

 

  

  

S = M
!1/ 2

P =
1

2

0.1 0.1

0.1 !0.1

"

#
$

%

&
'

S
!1

= P
T

M
1/ 2

=
1

2

10 10

10 !10

"

#
$

%

&
'

 

 

 Modal initial conditions: 

 

  

    

r 0( ) = S
!1x(0) =

1

2

10

10

"

#
$

%

&
'

!r 0( ) = S
!1
!x 0( ) = 0

 

 

 Modal solutions: 

 

  

   

r
1

t( ) =
!

1

2
r
10

2
+ !r

10

2

!
1

sin !
1
t + tan

"1
!

1
r
10

!r
10

#

$
%

&

'
(

r
2

t( ) =
!

2

2
r

20

2
+ !r

20

2

!
2

sin !
2
t + tan

"1
!

2
r

20

!r
20

#

$
%

&

'
(

 

 

 So 

  

   

r
1

t( ) = 7.071sin 10t + ! / 2( ) = 7.071cos10t

r
2

t( ) = 7.071sin 20t + ! / 2( ) = 7.071cos20t

r t( ) =
7.071cos10t

7.071cos20t

"

#
$

%

&
'

 

 

 Convert to physical coordinates: 

 



  

   

x t( ) = Sr t( ) =
1

2

0.1 0.1

0.1 0.1

!

"
#

$

%
&

7.071cos10t

7.7071cos20t

!

"
#

$

%
&

x t( ) =

0.5 cos10t + cos20t( )

0.5 cos10t ' cos20t( )

!

"

#
#

$

%

&
&

 

 



4.43 Consider the model of a vehicle given in Problem 4.14 and illustrated in Figure P4.14.  

Suppose that the tire hits a bump which corresponds to an initial condition of 

 

  

   
x 0( ) =

0

0.01

!

"
#

$

%
& !x 0( ) = 0  

 

 Use modal analysis to calculate the response of the car x1(t).  Plot the response for three 

cycles.  

 

 Solution: From Problem 4.14, 

  

    
M!!x + Kx =

2000 0

0 50

!

"
#

$

%
& !!x +

1000 '1000

'1000 11,000

!

"
#

$

%
&x = 0  

 Calculate the eigenvalues and eigenvectors: 

  

    

M
!1/ 2

=
0.0224 0

0 0.1414

"

#
$

%

&
' ,  !K = M

!1/ 2
KM

!1/ 2
=

0.5 !3.1623

!3.1623 0.1414

"

#
$

%

&
'

( det !K ! )I( ) = )2 ! 220.05) + 100 = 0 (
)

1
= 0.4545 *

1
= 0.6741 rad/s

)
2

= 220.05 *
2

= 14.834 rad/s

P = v
1

v
2

"# %& =
0.9999 !0.0144

0.0144 0.9999

"

#
$

%

&
'

 

 Calculate S and S
-1

: 

  

  

S = M
!1/ 2

P =
0.0224 !0.003

0.0020 0.1414

"

#
$

%

&
' ,   S

!1
= P

T
M

1/ 2
=

44.7167 0.1018

!0.6441 7.0703

"

#
$

%

&
'  

 Modal initial conditions: 

  

    
r 0( ) = S

!1x 0( ) = S
!1

0

0.01

"

#
$

%

&
' =

0.001018

0.07070

"

#
$

%

&
' ,   !r 0( ) = S

!1
!x 0( ) = 0  

 Modal solution (from equations (4.67) and (4.68)): 

   
r t( ) =

0.001018cos0.6741t

0.07070cos14.834t

!

"
#

$

%
&  

 Convert to physical coordinates: 



   
x t( ) = Sr t( ) =

0.0224 !0.0003

0.0020 0.1414

"

#
$

%

&
'

0.001018cos0.6741t

0.07070cos14.834t

"

#
$

%

&
' =

2.277 (10
!5

cos0.6741t ! 2.277 (10
!5

cos14.834t

2.074 (10
!6

cos0.6741t + 9.998 (10
!3

cos14.834t

"

#
$

%

&
'

 



Problems and Solutions for Section 4.4 (4.44 through 4.55) 

 

4.44 A vibration model of the drive train of a vehicle is illustrated as the three-degree-

of-freedom system of Figure P4.44.  Calculate the undamped free response [i.e. 

M(t) = F(t) = 0, c1 = c2 = 0] for the initial condition x(0) = 0,   !x (0) = [0   0   1]
T
.  

Assume that the hub stiffness is 10,000 N/m and that the axle/suspension is 

20,000 N/m.  Assume the rotational element J is modeled as a translational mass 

of 75 kg. 

 

 Solution: Let k1 = hub stiffness and k2 = axle and suspension stiffness. 

 The equation of motion is 

  

    

75 0 0

0 100 0

0 0 3000

!

"

#
#
#

$

%

&
&
&

!!x + 10,000

1 '1 0

'1 3 '2

0 '2 2

!

"

#
#
#

$

%

&
&
&

x = 0

x 0( ) = 0 and !x 0( ) = 0 0 1!" $%
T

 m/s

 

 Calculate eigenvalues and eigenvectors: 

  

   

M
!1/ 2

=

0.1155 0 0

0 0.1 0

0 0 0.0183

"

#

$
$
$

%

&

'
'
'

!K = M
!1/ 2

KM
!1/ 2

=

133.33 !115.47 0

!115.47 300 !36.515

0 !36.515 6.6667

"

#

$
$
$

%

&

'
'
'

 

 

  

   

det !K ! "I( ) = "
3
! 440"

2
+ 28,222" = 0

"
1

= 0 #
1

= 0 rad/s

"
2

= 77.951 #
2

= 8.8290 rad/s

"
3

= 362.05 #
3

= 19.028 rad/s

 

 



  

  

v
1

=

0.1537

0.1775

0.9721

!

"

#
#
#

$

%

&
&
&

, v
2

=

'0.8803

'0.4222

0.2163

!

"

#
#
#

$

%

&
&
&

, v
3

=

0.4488

'0.8890

0.0913

!

"

#
#
#

$

%

&
&
&

 

 Use the mode summation method to find the solution. 

 Transform the initial conditions: 

 

  
    
q 0( ) = M

!1/ 2x 0( ) = 0,    !q 0( ) = M
1/ 2
!x 0( ) = 0 0 54.7723"# $%

T

 

  

 The solution is given by: 

 

  
   
q t( ) = c

1
+ c

4
t( )v

1
+ c

2
sin !

2
t + "

2
( )v

2
+ c

3
sin !

3
t + "

3
( )v

3
 

 where 

 

    

!
i
= tan

"1
#

i
v

i

Tq 0( )

v
i

Tq 0( )

$

%
&

'

(
) i = 2,3

c
i
=

v
i

T
!q 0( )

#
i
cos!

i = 2,3

 

Thus, 

 
  
!

2
= !

3
= 0,c

2
"1.3417,  and c

3
= 0.2629  

So, 

 

    

q 0( ) = c
1
v

1
+ c

i
sin!

i
v

i

i=2

3

"

!q 0( ) = c
4
v

1
+ #

i
c

i
cos!

i
v

i

i=2

3

"
 

Premultiply by
  
v

1

T
;  

 

    

v
1

Tq 0( ) = 0 = c
1

v
1

T
!q 0( ) = 53.2414 = c

4

 

So, 

 
   
q t( ) = 53.2414tv

1
+ 1.3417sin 8.8290t( )v

2
+ 0.2629sin 19.028t( )v

3
 

Change to q(t): 

 

   

x t( ) = M
!1/ 2q t( )

x t( ) = 0.9449t

1

1

1

"

#

$
$
$

%

&

'
'
'

+

!0.1364

!0.05665

0.005298

"

#

$
$
$

%

&

'
'
'

sin8.8290t +

0.01363

!0.02337

0.0004385

"

#

$
$
$

%

&

'
'
'

sin19.028t  m
 

 

  



4.45 Calculate the natural frequencies and normalized mode shapes of 

 

  

   

4 0 0

0 2 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x +

4 '1 0

'1 2 '1

0 '1 1

!

"

#
#
#

$

%

&
&
&

x = 0  

 

 Solution: Given the indicated mass and stiffness matrix, calculate eigenvalues: 

  

   

M
!1/ 2

=

0.5 0 0

0 0.7071 0

0 0 1

"

#

$
$
$

%

&

'
'
'

( !K = M
!1/ 2

KM
!1/ 2

=

1 !0.3536 0

!0.3536 1 !0.7071

0 !0.7071 1

"

#

$
$
$

%

&

'
'
'

 

  

   

det !K ! "I( ) = "
3
! 3"

2
+ 2.375" ! 0.375 = 0

"
1

= 0.2094,   "
2

= 1,    "
3

= 1.7906

 

 The natural frequencies are: 

  

 

!
1

= 0.4576 rad/s

!
2

= 1 rad/s

!
3

= 1.3381 rad/s

 

 The corresponding eigenvectors are: 

  

  

v
1

=

!0.3162

!0.7071

!0.6325

"

#

$
$
$

%

&

'
'
'

v
2

=

0.8944

0

!0.4472

"

#

$
$
$

%

&

'
'
'

v
3

=

0.3162

!0.7071

0.6325

"

#

$
$
$

%

&

'
'
'

 

 The relationship between eigenvectors and mode shapes is 

     u = M
!1/ 2v  

 The mode shapes are: 

  

  

u
1

=

!0.1581

!0.5

!0.6325

"

#

$
$
$

%

&

'
'
'

, u
2

=

0.4472

0

!0.4472

"

#

$
$
$

%

&

'
'
'

, u
3

=

0.1581

!0.5

0.6325

"

#

$
$
$

%

&

'
'
'

 

 The normalized mode shapes are 

 

                           

   

û
1

=
u

1

u
1

T u
1

=

0.192

0.609

0.77

!

"

#
#
#

$

%

&
&
&

, û
2

=

0.707

0

'0.707

!

"

#
#
#

$

%

&
&
&

, û
3

=

0.192

'0.609

0.77

!

"

#
#
#

$

%

&
&
&

.



4.46 The vibration is the vertical direction of an airplane and its wings can be 

modeled as a three-degree-of-freedom system with one mass corresponding to the 

right wing, one mass for the left wing, and one mass for the fuselage.  The 

stiffness connecting the three masses corresponds to that of the wing and is a 

function of the modulus E of the wing.  The equation of motion is 

 

  

   

m

1 0 0

0 4 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x
1

!!x
2

!!x
3

!

"

#
#
#

$

%

&
&
&

+
EI

l
3

3 '3 0

'3 6 '3

0 '3 3

!

"

#
#
#

$

%

&
&
&

x
1

x
2

x
3

!

"

#
#
#

$

%

&
&
&

=

0

0

0

!

"

#
#
#

$

%

&
&
&

 

 

 The model is given in Figure P4.46.  Calculate the natural frequencies and mode 

shapes.  Plot the mode shapes and interpret them according to the airplane's 

deflection. 

 

Solution:  Given the equation of motion indicated above, the mass-normalized 

stiffness matrix is calculated to be 

   

M
! 1

2 =
1

m

1 0 0

0 0.5 0

0 0 1

"

#

$
$
$

%

&

'
'
'

,   !K = M
! 1

2 KM
! 1

2 =
EI

m"
3

3 !1.5 0

!1.5 1.5 !1.5

0 !1.5 3

"

#

$
$
$

%

&

'
'
'

 

Computing the matrix eigenvalue by factoring out the constant 

   

EI

m!
3

 yields 

   
det( !K ! "I ) = 0 #"

1
= 0,    "

2
= 3

EI

m"
3

,    "
3

= 4.5
EI

m"
3

 

and eigenvectors: 

  

v
1

=

0.4082

0.8165

0.4082

!

"

#
#
#

$

%

&
&
&

     v
2

=

'0.7071

0

0.7071

!

"

#
#
#

$

%

&
&
&

   v
3

=

0.5774

'0.5774

0.5774

!

"

#
#
#

$

%

&
&
&

 



The natural frequencies are ω1 = 0, ω2 = 1.7321

   

EI

m!
3

 rad/s, and ω3 = 

2.1213

   

EI

m!
3

 rad/s. 

 

The relationship between the mode shapes and eigenvectors u is just u = M-1/2
v.  

The fist mode shape is the rigid body mode.  The second mode shape corresponds 

to one wing up and one down the third mode shape corresponds to the wings 

moving up and down together with the body moving opposite.  Normalizing the 

mode shapes yields (calculations in Mathcad): 

 

These are plotted: 

 



4.47 Solve for the free response of the system of Problem 4.46.  Where E = 6.9 × 10
9
 

N/m
2
, l = 2 m, m = 3000 kg, and I = 5.2 × 10

-6
m

4
.  Let the initial displacement 

correspond to a gust of wind that causes an initial condition of 
   
!x 0( ) = 0,  x(0) = 

[0.2   0   0]
T
 m.  Discuss your solution. 

 

Solution: From problem 4.43 and the given data 

    

3000 0 0

0 12,000 0

0 0 3,000

!

"

#
#
#

$

%

&
&
&

!!x +

1.346 '1.346 0

'1.346 2.691 '1.346

0 '1.346 1.346

!

"

#
#
#

$

%

&
&
&

(10
4 x = 0

x 0( ) = 0.2 0 0!" $%
T

m

!x 0( ) = 0

 

 

 Convert to q: 

 

    

I!!q +

4.485 !2.242 0

!2.242 2.242 !2.242

0 !2.242 4.485

"

#

$
$
$

%

&

'
'
'

q = 0  

 

 Calculate eigenvalues and eigenvectors: 

 

   

det !K ! "I( ) = 0 #

                   

"
2

= 0 $
1

= 0 rad/s

"
2

= 4.485 $
2

= 2.118 rad/s

"
3

= 6.727 $
3

= 2.594 rad/s

 

 

  

v
1

=

0.4082

0.8165

0.4082

!

"

#
#
#

$

%

&
&
&

v
2

=

'0.7071

0

0.7071

!

"

#
#
#

$

%

&
&
&

v
3

=

0.5774

'0.5774

0.5774

!

"

#
#
#

$

%

&
&
&

 

 

 The solution is given by 

 

   
q t( ) = c

1
+ c

4
t( )v

1
+ c

2
sin !

2
t + "

2
( )v

2
+ c

3
sin !

3
t + "

3
( )v

3
 

 

 where 



    

!
i
= tan

"1
#

i
v

i

Tq 0( )

v
i

T
!q 0( )

$

%
&

'

(
) i = 2,3

c
i
=

v
i

Tq 0( )

sin!
i

i = 2,3

 

 

 Thus, 

  
!

2
= !

3
=
"

2
,c

2
= #7.7459,   and c

3
= 6.3251 

 So, 

    

q 0( ) = c
1
v

1
+ c

i
sin!

i
v

i

i=2

3

"

!q 0( ) = c
4
v

i
+ #

i
c

i
cos!

i
v

i

i=2

3

"
 

 Premultiply by
  v i

T
: 

    

v
i

Tq 0( ) = 4.4716 = c
1

v
i

T
!q 0( ) = 0 = c

4

 

 So, 
   
q t( ) = 4.4716v

1
! 7.7459cos 2.118t( )v

2
+ 6.3251cos 2.594t( )v

3
 

 Convert to physical coordinates: 

 

   

x t( ) = M
!1/ 2q t( )"

x t( ) =

0.0333

0.0333

0.0333

#

$

%
%
%

&

'

(
(
(

+

0.1

0

!0.1

#

$

%
%
%

&

'

(
(
(

cos2.118t +

0.0667

!0.0333

0.0667

#

$

%
%
%

&

'

(
(
(

cos2.594t  m
 

 

 The first term is a rigid body mode, which represents (in this case) a fixed 

displacement around which the three masses oscillate. Mode two has the highest 

amplitude (0.1 m). 

 



4.48 Consider the two-mass system of Figure P4.48.  This system is free to move in the 

  
x

1
! x

2
 plane.  Hence each mass has two degrees of freedom.  Derive the linear 

equations of motion, write them in matrix form, and calculate the eigenvalues and 

eigenvectors for m = 10 kg and k = 100 N/m. 

 

 Solution: Given: 
  m = 10kg,k = 100 N/m  

 Mass 1 

   

x
1
! direction:   m!!x

1
= !4kx

1
+ k x

3
! x

1
( ) = !5kx

1
+ kx

3

x
2
! direction:   m!!x

2
= !3kx

2
! kx

2
= !4kx

2

 

 Mass 2 

  

   

x
3
! direction:   m!!x

3
= !4kx

3
! k x

3
! x

1
( ) = !kx

1
! 5kx

3

x
4
! direction:   m!!x

4
= !4kx

4
! 2kx

4
= !6kx

4

 

 In matrix form with the values given: 

  

    

10 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10

!

"

#
#
#
#

$

%

&
&
&
&

!!x +

500 0 '100 0

0 400 0 0

'100 0 500 0

0 0 0 600

!

"

#
#
#
#

$

%

&
&
&
&

x = 0

"K = M
'1/ 2

KM
'1/ 2

=

50 0 '10 0

0 40 0 0

'10 0 50 0

0 0 0 60

!

"

#
#
#
#

$

%

&
&
&
&

 

  

   

det !K ! "I( ) = "
4
! 200"

3
+ 14,800"

2
! 480,000" + 5,760,000 = 0

           #"
1

= 40,   "
2

= 40,   "
3

= 60,   "
4

= 60

 

 The corresponding eigenvectors are found from solving 
    (
!K ! "

i
)v

i
= 0  for each 

value of the index and normalizing: 

  

  

v
1

=

0

1

0

0

!

"

#
#
#
#

$

%

&
&
&
&

v
2

=

0.7071

0

0.7071

0

!

"

#
#
#
#

$

%

&
&
&
&

v
3

=

0.7071

0

'0.7071

0

!

"

#
#
#
#

$

%

&
&
&
&

v
4

=

0

0

0

1

!

"

#
#
#
#

$

%

&
&
&
&

 

 These are not unique. 

 



 
 
4.49   Consider again the system discussed in Problem 4.48.  Use modal analysis to 

calculate the solution if the mass on the left is raised along the x2 direction exactly 0.01 m 

and let go. 

 

 Solution: From Problem 4.48: 

 

  

    

10 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10

!

"

#
#
#
#

$

%

&
&
&
&

!!x +

500 0 '100 0

0 400 0 0

'100 0 500 0

0 0 0 600

!

"

#
#
#
#

$

%

&
&
&
&

x = 0

M
'1/ 2

= 0.3162

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

!

"

#
#
#
#

$

%

&
&
&
&

 

 

  

   

!K = M
!1/ 2

KM
!1/ 2

=

50 0 !10 0

0 40 0 0

!10 0 50 0

0 0 0 60

"

#

$
$
$
$

%

&

'
'
'
'

(
1

= 40 )
1

= 6.3246 rad/s

(
2

= 40 )
2

= 6.3246 rad/s

(
3

= 60 )
3

= 7.7460 rad/s

(
4

= 60 )
4

= 7.7460 rad/s

 

 

  

  

v
1

=

0

1

0

0

!

"

#
#
#
#

$

%

&
&
&
&

v
2

=

0.7071

0

0.7071

0

!

"

#
#
#
#

$

%

&
&
&
&

v
3

=

0.7071

0

'0.7071

0

!

"

#
#
#
#

$

%

&
&
&
&

v
4

=

0

0

0

1

!

"

#
#
#
#

$

%

&
&
&
&

 

 

 Also, x(0)=[0   0.01   0   0]
T
 m and 

   
!x 0( ) = 0  

 

 Use the mode summation method to find the solution. 

 Transform the initial conditions: 

 



  

    

q 0( ) = M
1/ 2x 0( ) = 0 0.003162 0 0!" #$

T

!q 0( ) = M
1/ 2
!x 0( ) = 0

 

 

 The solution is given by Eq. (4.103), 

 

  

   
x t( ) = d

i
sin !

i
t + "

i( )u
i

i=1

4

#  

 where 

  

    

!
i
= tan

"1
#

i
v

i

Tq 0( )

v
i

T
!q 0( )

$

%
&

'

(
) i = 1,2,3,4 (Eq.(4.97))

d
i
=

v
i

Tq 0( )

sin!
i

i = 1,2,3,4 Eq. 4.98( )( )

u
i
= M

"1/ 2v
i

 

 

 Substituting known values yields 

 

  

  

!
1

= !
2

= !
3

= !
4

=
"

2
 rad

d
1

= 0.003162

d
2

= d
3

= d
4

= 0

 

 

  

  

u
1

=

0

0.3162

0

0

!

"

#
#
#
#

$

%

&
&
&
&

u
2

=

0.2236

0

0.2236

0

!

"

#
#
#
#

$

%

&
&
&
&

u
3

=

0.2236

0

'0.2236

0

!

"

#
#
#
#

$

%

&
&
&
&

u
4

=

0

0

0

0.3162

!

"

#
#
#
#

$

%

&
&
&
&

 

 

 The solution is 

 

  

   

x t( ) =

0

0.001cos6.3246t

0

0

!

"

#
#
#
#

$

%

&
&
&
&

 

 

 

 



4.50 The vibration of a floor in a building containing heavy machine parts is modeled 

in Figure P4.50.  Each mass is assumed to be evenly spaced and significantly 

larger than the mass of the floor.  The equation of motion then becomes 

  
m

1
= m

2
= m

3
= m( ) . 

 

  

    

mI!!x +
EI

l
3

9

64

1

6

13

192

1

6

1

3

1

6

13

192

1

6

9

64

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x
1

x
2

x
3

!

"

#
#
#

$

%

&
&
&

= 0  

 

 Calculate the natural frequencies and mode shapes.  Assume that in placing box 

m2 on the floor (slowly) the resulting vibration is calculated by assuming that the 

initial displacement at m2 is 0.05 m.  If l = 2 m, m = 200 kg, E = 0.6 × 10
9
 N/m

2
, I 

= 4.17 × 10
-5 

m
4
.  Calculate the response and plot your results. 

 

 Solution: 
The equations of motion can be written as 

 

   

m

1 0 0

0 1 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x
1

!!x
2

!!x
3

'

(
)

*
)

+

,
)

-
)

+
EI

l
3

9

64

1

6

13

192

1

6

1

3

1

6

13

192

1

6

9

64

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x
1

x
2

x
2

!

"

#
#
#

$

%

&
&
&

= 0  

 

or    mI!!x + Kx = 0  where I is the 3x3 identity matrix. 

 

The natural frequencies of the system are obtained using the characteristic equation 

 

  
K !"

2
M = 0  

 

Using the given mass and stiffness matrices yields the following characteristic equation 

 



  
m

3
!

6
"

59EI m
3

96l
3

!
4

+
41 EI( )

2

m

768l
6

!
2
"

7 EI( )
3

6912l
9

= 0  

 

Substituting for E, I, m, and l yields the following answers for the natural frequency 

 

  

!
1

= ±

13" 137( ) EI

ml
3

, 

  

!
2

= ±
7EI

96ml
3

, 

  

!
3

= ±

13+ 137( ) EI

48ml
3

 

 

The plus minus sign shown above will cause the exponential terms to change to 

trigonometric terms using Euler’s formula. Hence, the natural frequencies of the system 

are 0.65 rad/sec, 1.068 rad/sec and 2.837 rad/sec. 

 

Let the mode shapes of the system be u1, u2 and u3. The mode shapes should satisfy the 

following equation 

 

  

K !"
1

2
M#

$
%
&

u
i1

u
i2

u
i3

'

(
)

*
)

+

,
)

-
)

= 0,i = 1,2,3  

 

Notice that the system above does not have a unique solution for u1 since 
  

K !"
1

2
M#

$
%
&  

had to be singular in order to solve for the natural frequency! . Solving the above 

equation yields the following relations 

 

  

u
i2

u
i3

=
1

3

96m!
i

2
l

3
" 7EI

13m!
i

2
l

3
+ EI

,i = 1,2,3  

and 
  
u

i1
= u

i3
,i = 1,3  but for the second mode shape this is different 

  
u

21
= u

23
 

 

Substituting the values given yields 

 

  

u
12

u
13

=
1

3

96m!
1

2
l

3
" 7EI

13m!
1

2
l

3
+ EI

= "1.088  

 

  

u
22

u
23

=
1

3

96m!
2

2
l

3
" 7EI

13m!
2

2
l

3
+ EI

= 0  

 

  

u
32

u
33

=
1

3

96m!
3

2
l

3
" 7EI

13m!
3

2
l

3
+ EI

= 1.838  

 



If we let
  
u

i3
= 1,i = 1,2,3 , then 

 

  

u
1

=

1

!1.088

1

"

#
$

%
$

&

'
$

(
$

,u
2

=

!1

0

1

"

#
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%
$
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'
$

(
$

,u
3

=
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1.838

1

"

#
$

%
$

&

'
$

(
$

 

 

These mode shapes can be normalized to yield 

 

  

u
1

=

0.5604

!0.6098

0.5604

"

#
$

%
$

&

'
$

(
$

,u
2

=

!0.7071

0

0.7071

"

#
$

%
$

&

'
$

(
$

,u
3

=

0.4312

0.7926

0.4312

"

#
$

%
$

&

'
$

(
$

 

 

This solution is the same if obtained using MATLAB 

 

  

u
1

=

!0.5604

0.6098

!0.5604

"

#
$

%
$

&

'
$

(
$

, 

  

u
2

=

!0.7071

0.0000

0.7071

"

#
$

%
$

&

'
$

(
$

, 

  

u
3

=

0.4312

0.7926

0.4312

!

"
#

$
#

%

&
#

'
#

 

 

The second box, m2, is placed slowly on the floor; hence, the initial velocity can be safely 

assumed zero. The initial displacement at m2 is given to be 0.05 m. 

 

Hence, the initial conditions in vector form are given as 

 

  

x 0( ) =

0

!0.05

0

"

#
$

%
$

&

'
$

(
$

and 

   

!x 0( ) =

0

0

0

!

"
#

$
#

%

&
#

'
#

 

 

The equations of motion given by 
   
M!!x t( ) + Kx t( ) = 0  can be transformed into the modal 

coordinates by applying the following transformation 

 

   
x t( ) = Sr t( ) = M

!
1

2 Pr t( ) where P is the basis formed by the mode shapes of the system, 

given by 

 

  
P = u

1
u

2
u

3
!" #$  

 

Hence, the transformation S is given by 

 



  

S =

!0.04 !0.05 0.03

0.043 0 0.056

!0.04 0.05 0.03

"

#

$
$
$

%

&

'
'
'

 

 

The initial conditions will be also transformed 

 

   

r 0( ) = S
!1x 0( ) =

!0.431

0

!0.56

"

#
$

%
$

&

'
$

(
$

 

 

Hence, the modal equations are 

 

with the above initial conditions. 

 

The solution will then be 

 

r t( ) =

0.431cos 0.65t( )

0

0.56cos 2.837t( )

!

"
#

$
#

%

&
#

'
#

 

 

The solution can then be determined by 

 

x t( ) =

0.0172cos 0.65t( ) ! 0.0168cos 2.837t( )

!0.0185cos 0.65t( ) ! 0.0313cos 2.837t( )

0.0172cos 0.65t( ) ! 0.0168cos 2.837t( )

"

#
$

%
$

&

'
$

(
$

 

 

The equations of motion can be also be solved using MATLAB to yield the following 

response.  

 



 
Figure 1 Numerical response due to initial deflection at m2 

 

 
Figure 2 Numerical vs. Analytical Response (shown for x1 and x2 only) 

 

The MATLAB code is attached below 

 

% Set the values of the physical parameters 

% 

************************************************************************

* 

 

% Declare global variables to be used in the differential equation file 

global M K 



 

% Define the mass of the each box 

m=200; 

 

% Define the distance l 

l=2; 

 

% Define the area moment of inertia 

I=4.17*10^-5; 

 

% Define the modulus of elasticity 

E=0.6*10^9; 

 

% Define the flexural rigidity 

EI=E*I; 

 

% Define the system matrices 

% 

************************************************************************

* 

 

% Define the mass matrix 

M=m*eye(3,3); 

 

% Define the stiffness matrix 

K=EI/l^3*[9/64 1/6 13/192;1/6 1/3 1/6;13/192 1/6 9/64]; 

 

% Solve the eigen value problem 

[u,lambda]=eig(M\K); 

 

% Simulate the response of the system to the given initial conditions 

% The states are arranges as: [x1;x2;x3;x1_dot;x2_dot;x3_dot] 

[t,xn]=ode45('sys4p47',[0 10],[0 ; -0.05 ; 0 ; 0 ; 0 ; 0]); 

 

% Plot the results 

plot(t,xn(:,1),t,xn(:,2),'--',t,xn(:,3),'-.'); 

set(gcf,'Color','White'); 

xlabel('Time(sec)'); 

ylabel('Displacement(m)'); 

legend('x_1','x_2','x_3'); 

 

% Analytical solution 

 

for i=1:length(t) 

    xa(:,i)=[0.0172*cos(0.65*t(i))-0.0168*cos(2.837*t(i)); 

             -0.0185*cos(0.65*t(i))-0.0313*cos(2.837*t(i)) ; 



             0.0172*cos(0.65*t(i))-0.0168*cos(2.837*t(i))]; 

end; 

 

% Camparison 

figure; 

plot(t,xn(:,1),t,xa(1,:),'--',t,xn(:,2),t,xa(2,:),'--'); 

set(gcf,'Color','White'); 

xlabel('Time(sec)'); 

ylabel('Displacement(m)'); 

legend('x_1 Numerical','x_1 Analytical','x_2 Numerical','x_2 Analytical'); 

  
 
 
 
4.51 Recalculate the solution to Problem 4.50 for the case that m2 is increased in mass 

to 2000 kg.  Compare your results to those of Problem 4.50.  Do you think it 

makes a difference where the heavy mass is placed? 

 

Solution: Given the data indicated the equation of motion becomes:  

    

200 0 0

0 2000 0

0 0 200

!

"

#
#
#

$

%

&
&
&

!!x + 3.197 '10
(4

9 / 64 1 / 6 13 / 192

1 / 6 1 / 3 1 / 6

13 / 192 1 / 6 9 / 64

!

"

#
#
#

$

%

&
&
&

x = 0

x(0) = [0 0.05 0]
T

, !x(0) = 0

 

 Calculate eigenvalues and eigenvectors:  

 

  

   

M
!1/ 2

=

0.07071 0 0

0 0.02246 0

0 0 0.07071

"

#

$
$
$

%

&

'
'
'

!K = M
!1/ 2

KM
!1/ 2

=

2.2482 0.8246 1.0825

0.8246 0.5329 0.8246

1.0825 0.8246 2.2482

"

#

$
$
$

%

&

'
'
'

(10
!7

 

 

  

   

det !K ! "I( ) = "
3
! 9.8255#10

!7
"

2
+ 1.3645#10

!14
" ! 4.1382 #10

!22
= 0

"
1

= 4.3142 #10
!9

$
1

= 2.0771#10
!5

 rad/s

"
2

= 1.1657 #10
!7

$
2

= 3.4143#10
!4

 rad/s

"
3

= 8.2283#10
!7

$
3

= 9.0710 #10
!4

 rad/s

 

 



  

  

v
1

=

0.2443

!0.9384

0.2443

"

#

$
$
$

%

&

'
'
'

v
2

=

0.7071

0

!0.7071

"

#

$
$
$
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&

'
'
'

v
3

=

0.6636

0.3455

0.6636

"

#

$
$
$

%

&

'
'
'

 

 

 Use the mode summation method to find the solution. Transform the initial 

conditions: 

 

  

    

q 0( ) = M
1/ 2x 0( ) = 0 2.2361 0!" #$

T

!q 0( ) = M
1/ 2
!x 0( ) = 0

 

 

 The solution is given by Eq. (4.103), 

  

   
x t( ) = d

i
sin !

i
t + "

i( )u
i

i=1

4

#  

 

 where 

 

  

    

!
i
= tan

"1
#

i
v

i

Tq 0( )

v
i

T
!q 0( )

$

%
&

'

(
) i = 1,2,3 Eq. 4.97( )( )

d
i
=

v
i

Tq 0( )

sin!
i

i = 1,2,3 Eq. 4.98( )( )

u
i
= M

"1/ 2v
i

 

 

 Substituting known values yields 

 

  

  

!
1

= !
2

= !
3

=
"

2
 rad

d
1

= #2.0984

d
2

= 0

d
3

= 0.7726

 

 

  

  

u
1

=

0.0178

!0.02098

0.01728

"

#

$
$
$

%

&

'
'
'

u
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=

0.05

0

!0.05
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$
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&

'
'
'

u
3

=

0.04692

0.007728
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$
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&

'
'
'

 

 

 The solution is 

 



  

   

x t( ) =

!0.03625

0.04403

!0.03625

"

#

$
$
$

%

&

'
'
'

cos 9.7044 (10
!5

t( ) +

0.03625

0.005969

0.0325

"

#

$
$
$

%

&

'
'
'

cos 6.1395(10
!4

t( )  m  

 

 The results are very similar to Problem 50.  The responses of mass 1 and 3 are the 

same for both problems, except the amplitudes and frequencies are changed due 

to the increase in mass 2.  There would have been a greater change if the heavy 

mass was placed at mass 1 or 3. 

 



4.52 Repeat Problem 4.46 for the case that the airplane body is 10 m instead of 4 m as 

indicated in the figure.  What effect does this have on the response, and which 

design (4m or 10 m) do you think is better as to vibration? 

 

 Solution: Given: 

  

    

m

1 0 0

0 10 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x +
EI

l
3

3 '3 '

'3 6 '3

0 '3 3

!

"

#
#
#
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%

&
&
&

x = 0  

 

 Calculate eigenvalues and eigenvectors: 

 

  

   

M
!1/ 2

= m
!1/ 2

1 0 0

0 0.3612 0

0 0 1

"

#

$
$
$

%

&

'
'
'

!K = M
!1/ 2

KM
!1/ 2

=
EI
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3

3 !0.9487 0

!0.9487 0.6 !0.9487

0 !0.9487 3

"

#

$
$
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%

&

'
'
'

 

 Again choose the parameters so that the coefficient is 1 and compute the 

eigenvalues: 

  

    

det !K ! "I( ) = "3 ! 6.6"2
+ 10.8" = 0

"
1

= 0

"
2

= 3

"
3

= 3.6

v
1

=

!0.2887
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(

v
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=

0.7071

0

!0.7071
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$

%
%
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v
3

=

0.6455

!0.4082

0.6455

#

$

%
%
%

&

'

(
(
(

 

 

 The natural frequencies are 

 

  

 

!
1

= 0 rad/s

!
2

= 1.7321  rad/s

!
3

= 1.8974 rad/s

 

 The relationship between eigenvectors and mode shapes is 

  

   

u = M
!1/ 2v

u
1

= m
!1/ 2

!0.2887

!0.2887

!0.2887

"

#

$
$
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&

'
'
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u
2

= m
!1/ 2

0.7071

0

!0.7071

"

#

$
$
$

%

&

'
'
'

u
3

=

0.6455

!0.1291

0.6455

"

#

$
$
$

%

&

'
'
'

 



 

 It appears that the mode shapes contain less "amplitude" for the wing masses.  

This seems to be a better design from a vibration standpoint. 



4.53 Often in the design of a car, certain parts cannot be reduced in mass.  For 

example, consider the drive train model illustrated in Figure P4.44.  The mass of 

the torque converter and transmission are relatively the same from car to car.  

However, the mass of the car could change as much as 1000 kg (e.g., a two-seater 

sports car versus a family sedan).  With this in mind, resolve Problem 4.44 for the 

case that the vehicle inertia is reduced to 2000 kg.  Which case has the smallest 

amplitude of vibration? 

 

 Solution: Let k1 = hub stiffness and k2 = axle and suspension stiffness. From 

Problem 4.44, the equation of motion becomes 

  

    

75 0 0

0 100 0

0 0 2000

!

"

#
#
#

$

%

&
&
&

!!x + 10,000

1 '1 0

'1 3 '2

0 '2 2

!

"

#
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$

%

&
&
&

x = 0

x 0( ) = 0 and !x 0( ) = 0 0 1!" $%
T

 m/s.

 

 Calculate eigenvalues and eigenvectors. 

 

  

   

M
!1/ 2

=

0.1155 0 0

0 0.1 0

0 0 0.0224

"

#

$
$
$

%

&

'
'
'

!K = M
!1/ 2

KM
!1/ 2

=

133.33 !115.47 0

!115.47 300 !44.721

0 !44.721 10

"
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$
$
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&

'
'
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det !K ! "I( ) = "3 ! 443.33"2
+ 29,000" = 0

"
1

= 0 #
1

= 0 rad/s

"
2

= 70.765 #
2

= 8.9311 rad/s

"
3

= 363.57 #
3

= 19.067 rad/s

v
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=

!0.1857

!0.2144

!0.9589
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&
&
&

'

(

)
)
)

v
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=
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!0.2065
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&
&
&

'

(

)
)
)

v
3

=

0.4455

!0.8882

0.1123

$

%

&
&
&

'

(

)
)
)

 

 

 Use the mode summation method to find the solution.  Transform the initial 

conditions: 

  

    

q 0( ) = M
1/ 2x 0( ) = 0

!q 0( ) = M
1/ 2
!x 0( ) = 0 0 44.7214!" #$

T
 



 

 The solution is given by 

 

  
   
q t( ) = c

1
+ c

4
t( )v

1
+ c

2
sin !

2
t + "

2
( )v

2
+ c

3
sin !

3
t + "

3
( )v

3
 

where  

    

!
i
= tan

"1
#

i
v

i

Tq(0)

v
i

T
!q(0)

$

%
&

'

(
) ,    i = 2,3

c
i
=

v
i

Tq(0)

#
i
cos!

i

,    i = 2,3

 

Thus φ2 = φ3 =0, c2 = -1.3042 and c3 = 0.2635.  Next apply the initial conditions: 

    
q(0) = c

1
v

1
+ c

i

i=2

3

! sin"
i
v

i
  and  !q(0) = c

4
v

1
+ c

i

i=2

3

! sin"
i
v

i
 

 Pre multiply each of these by v1

T
 to get: 

    c1
= 0 = v

1

Tq(0)  and  c
4

= !42.8845 = v
1

T
!q(0)  

 So 

   q(t) = !42.8845tv
1
!1.3042sin(8.9311t)v

2
+ 0.2635sin(19.067t)v

3
 

 Next convert back to the physical coordinates by 

   

x(t) = M
! 1

2q(t)

       = 0.9195t

1

1

1

"

#

$
$
$

%

&

'
'
'

+

!0.1319

!0.05299

0.007596

"

#

$
$
$

%

&

'
'
'

sin8.9311t +

0.01355

!0.02340

0.0006620

"

#

$
$
$

%

&

'
'
'

sin19.067t  m
 

Comparing this solution to problem 4.44, the car will vibrate at a slightly higher 

amplitude when the mass is reduced to 2000 kg. 

 

 

4.54 Use mode summation method to compute the analytical solution for the response 

of the 2-degree-of-freedom system of Figure P4.28 with the values where m1 = 1 

kg, m2 = 4 kg, k1 =  240 N/m and k2=300 N/m,  to the initial conditions of 

 

x
0

=
0

0.01

!

"
#

$

%
&,    !x

0
=

0

0

!

"
#

$

%
& . 

Solution: Following the development of equations (4.97) through (4.103) for the mode 

summation for the free response and using the values of computed in problem 1, compute 

the initial conditions for the “q” coordinate system: 

M
1/2

=
1 0

0 2

!

"
#

$

%
& ' q 0( ) =

1 0

0 2

!

"
#

$

%
&

0
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!

"
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$

%
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0
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!

"
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$

%
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0 2
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"
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!

"
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0

0

!

"
#

$

%
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From equation (4.97): 

!
1

= tan
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x

0

#
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&
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x
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#
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&
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=
)
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From equation (4.98): 



d
1

=
v

1

T
q 0( )

sin !
2( )

= v
1

T
q 0( ),d

2
=

v
2

T
q 0( )

sin !
2( )

= v
2

T
q 0( )  

Next compute q t( ) from (4.92) and multiply by M
1/2

 to get x t( )  or use (4.103) directly 

to get 

q t( ) = d
1
cos !

1
t( )v1

+ d
2
cos !

2
t( )v2

= cos !
1
t( )v1

T
q 0( )v

1
+ cos !

2
t( )v1

T
q 0( )v

1

= cos 5.551t( )
0.0054

0.0184

"

#
$

%

&
' + cos 24.170t( )

(0.0054

0.0016

"

#
$

%

&
'

 

Note that as a check, substitute t = 0  in this last line to recover the correct initial 

condition q 0( ) . Next transform the solution back to the physical coordinates 

x t( ) = M
!1/2

q t( ) = cos 5.551t( )
0.0054

0.0092

"

#
$

%

&
' + cos 24.170t( )

!0.0054

0.0008

"

#
$

%

&
'  m 

 

4.55 For a zero value of an eigenvalue and hence frequency, what is the corresponding 

time response?  Or asked another way, the form of the modal solution for a non-

zero frequency is 

� 

Asin(!nt + ") , what is the form of the modal solution that 

corresponds to a zero frequency?   Evaluate the constants of integration if the 

modal initial conditions are: 01.0)0(  and ,1.0)0( 11 == rr ! . 

 

 Solution: A zero eigenvalue corresponds to the modal equation:  

btatrtr +=!= )(0)( 11
!!  

Applying the given initial conditions: 

ttr

br

abar

01.01.0)(

01.0)0(

1.01.0)0()0(

1

1

1

+=!

==

=!=+=

!  

 



Problems and Solutions for Section 4.5 (4.56 through 4.66) 
 
4.56 Consider the example of the automobile drive train system discussed in Problem 4.44.  

Add 10% modal damping to each coordinate, calculate and plot the system response. 

 

 Solution: Let k1 = hub stiffness and k2 = axle and suspension stiffness. From Problem 

4.44, the equation of motion with damping is 

  

    

75 0 0

0 100 0

0 0 3000

!

"

#
#
#

$

%

&
&
&

!!x + 10,000

1 '1 0

'1 3 '2

0 '2 2

!

"

#
#
#

$

%

&
&
&

x = 0

x 0( ) = 0 and !x 0( ) = 0 0 1!" $%
T

 m/s

 

 Other calculations from Problem 4.44 yield: 

  

  

!
1

= 0 "
1

= 0  rad/s

!
2

= 77.951 "
2

= 8.8290 rad/s

!
3

= 362.05 "
3

= 19.028 rad/s

v
1

=

0.1537

0.1775

0.9721

#

$

%
%
%

&

'

(
(
(

v
2

=

)0.8803

)0.4222

0.2163

#

$

%
%
%

&

'

(
(
(

v
3

=

0.4488

)0.8890

0.0913

#

$

%
%
%

&

'

(
(
(

 

 Use the summation method to find the solution. Transform the initial conditions: 

  

    

q 0( ) = M
1/ 2x 0( ) = 0

!q 0( ) = M
1/ 2
!x 0( ) = 0 0 54.7723!" #$

T
 

 Also, 
 
!

1
= !

2
= !

3
= 0.1.  

  

  

!
d 2

= 8.7848  rad/s

!
d 3

= 18.932  rad/s
 

 The solution is given by 

  

   
q t( ) = c

1
+ c

2
t( )v

1
+ d

i
e
!"

i
#

i
t
sin #

di
t + $

i( )v
i

2

3

%  

 where

    
!

i
= tan

"1
#

di
v

i

Tq 0( )

v
i

T
!q 0( ) +$

i
#

i
v

i

Tq 0( )

%

&
'

(

)
* i = 2,3  Eq. (4.114) 

            

    
d

i
=

v
i

T
!q 0( )

!
di

cos"
i
#$

i
!

i
sin"

i

i = 2,3 

 Thus, 

  

  

!
2

= !
3

= 0

d
2

= 1.3485

d
3

= 0.2642

 



 Now, 

  

    

q 0( ) = c
1
v

1
+ d

i
sin!

i
v

i

i=2

3

"

!q 0( ) = c
2
v

1
+ #$

i
%

i
d

i
sin!

i
+%

di
d

i
cos!

i
&' ()

i=2

3

" v
i

 

 Pre-multiply by
   v1

T
: 

  

    

v
1

Tq 0( ) = 0 = c
1

v
1

T
!q 0( ) = 53.2414 = c

2

 

 So, 

  
   
q t( ) = 53.2414v

1
!1.3485e

!0.8829t
sin 8.7848t( )v

2
+ 0.2648te

!1.9028t
sin 18.932t( )v

3
 

 The solution is given by 

 

   

x t( ) = M
!1/ 2q t( )

x t( ) = 0.9449t

1

1

1

"

#

$
$
$

%

&

'
'
'

!

!0.1371

!0.05693

0.005325

"

#

$
$
$

%

&

'
'
'

e
!0.8829t

sin 8.7848t( )+

0.01369

!0.002349

0.0004407

"

#

$
$
$

%

&

'
'
'

e
!1.9028t

sin 18.932t( )  m

 

 The following Mathcad session illustrates the solution without the rigid body mode 

(except for x1 which shows both with and without the rigid mode) 

 

        The read solid line is the first mode with the rigid body mode included. 

 

 

 

 



4.57     Consider the model of an airplane discussed in problem 4.47, Figure P4.46.  (a) Resolve 

the problem assuming that the damping provided by the wing rotation is ζi = 0.01 in each 

mode and recalculate the response.  (b) If the aircraft is in flight, the damping forces may 

increase dramatically to ζi = 0.1.  Recalculate the response and compare it to the more 

lightly damped case of part (a). 

 

 Solution: 
 

 From Problem 4.47, with damping 

 

  

    

3000 0 0

0 12,000 0

0 0 3,000

!

"

#
#
#

$

%

&
&
&

!!x + C !x +

13455 '13455 0

'13,455 26910 '13,455

0 '13,455 13,455

!

"

#
#
#

$

%

&
&
&

x = 0  

    

    

x 0( ) = 0.02 0 0!" #$
T

 m

!x 0( ) = 0

%
1

= 0 &
1

= 0 rad/s

%
2

= 4.485 &
2

= 2.118 rad/s

%
3

= 6.727 &
3

= 2.594 rad/s

 

  

  

v
1

=

!0.4082

!0.8165

!0.4082

"

#

$
$
$

%

&

'
'
'

v
2

=

0.7071

0

!0.7071

"

#

$
$
$

%

&

'
'
'

v
3

=

0.5774

!0.5774

0.5774

"

#

$
$
$

%

&

'
'
'

 

 

 The solution is given by 

  

   
q t( ) = c

1
+ c

2
t( )v

1
+ d

i
e
!"

i
#

i
t
sin #

di
t + $

i( )v
i

i=2

3

%  

 where 

  

    

!
i
= tan

"1
#

di
v

i

Tq 0( )

v
i

T
!q 0( ) +$

i
#

i
v

i

Tq 0( )

%

&
'

(

)
* i = 2,3

d
i
=

v
i

Tq 0( )

sin!
i

i = 2,3

 (Eq. (4.114)) 

 

 Now, 

  

    

q 0( ) = c
1
v

1
+ d

i
sin!

i
v

i

i=2

3

"

!q 0( ) = c
2
v

1
+ #$

i
%

i
d

i
sin!

i
+%

di
d

i
cos!

i
&' ()v

i

i=2

3

"
 

 Premultiply by
   v1

T
: 



  

    

v
1

Tq 0( ) = 4.4721 = c
1

v
1

T
!q 0( ) = 0 = c

2

 

 (a) 
 
!

1
= !

2
= !

3
= 0.01 

  

  

!
d 2

= 2.1177 rad/s,    !
d 3

= 2.593 rad/s

"
2

= #1.5808 rad,        "
3

= 1.5608 rad

d
2

= 7.7464,                 d
3

= 6.3249

 

 Mode shapes: 

  

   

u
i
= M

!1/ 2v
i

u
1

=

!0.007454

!0.007454

!0.007454

"

#

$
$
$

%

&

'
'
'

u
2

=

0.01291

0

!0.01291

"

#

$
$
$

%

&

'
'
'

u
3

=

0.01054

!0.005270

0.01054

"

#

$
$
$

%

&

'
'
'

 

 The solution is given by 

  

   
x t( ) = c

1
+ c

2
t( )u

1
+ d

i
e
!"

i
#

i
t
sin #

di
t + $

i( )u
i

i=2

3

%  

  

( ) ( )

( )5608.15937.2sin

0677.0

0333.0

0667.0

5808.11178.2sin

100.0

0

100.0

1

1

1

0333.0

0259.0

0212.0

+

!
!
!

"

#

$
$
$

%

&

'+

'

!
!
!

"

#

$
$
$

%

&

+

!
!
!

"

#

$
$
$

%

&

=

'

'

te

tetx

t

t

 

 

b) 1.0
321

=== !!!  

 

Same thing as part (a), but now the following values are obtained 

 

  

!
d 2

= 2.1072 rad/sec        !
d 3

= 2.5807 rad/sec

"
2

= #1.6710 rad              "
3

= 1.4706rad

d
2

= 7.7850                      d
3

= 6.3564

  

 

Notice that the rigid mode is not effected by changing the damping ratio, and hence 

 

4721.4=c  

 

Consequently, the solution becomes 

 



  

x t( ) = 0.0333

1

1

1

!

"

#
#
#

$

%

&
&
&

+

'0.1005

0

0.1005

!

"

#
#
#

$

%

&
&
&

e
'0.2118t

sin 2.1072t '1.6710( )

                                            +

0.0670

'0.0335

0.0670

!

"

#
#
#

$

%

&
&
&

e
'0.2594t

sin 2.5807t + 1.4706( )

 

 

Below is the plot of the displacement of the left wing 

 

 

 

 

 



4.58 Repeat the floor vibration problem of Problem 4.50 using modal damping ratios of 

 

  
 
!

1
= 0.01 !

2
= 0.1 !

3
= 0.2  

 

 Solution: The equation of motion will be of the form: 

 

  

    

200!!x + C !x + 3.197 !10
"4

9 / 64 1 / 6 13 / 192

1 / 6 1 / 3 1 / 6

13 / 192 1 / 6 9 / 64

#

$

%
%
%

&

'

(
(
(

x = 0

x 0( ) = 0 0.05 0#$ &'
T

 m and !x 0( ) = 0.

 

 

  

   

M
!1/ 2

= 0.7071

!K = M
!1/ 2

KM
!1/ 2

=

2.2482 2.6645 1.0825

2.6645 5.3291 2.6645

1.0825 2.6645 2.2482

"

#

$
$
$

%

&

'
'
'

(10
!7

det !K ! )I( ) = )3 ! 9.8255(10
!7)2

+ 1.3645(10
!13) ! 4.1382 (10

!21
= 0

)
1

= 4.3142 (10
!8 *

1
= 2.0771(10

!4
 rad/s

)
2

= 1.1657 (10
!7 *

2
= 3.34143(10

!4
 rad/s

)
3

= 8.2283(10
!7 *

3
= 9.0710 (10

!4
 rad/s

 

 

  

  

v
1

=

0.5604

!0.6098

0.5604

"

#

$
$
$

%

&

'
'
'

v
2

=

!0.7071

0

0.7071

"

#

$
$
$

%

&

'
'
'

v
3

=

0.4312

0.7926

0.4312

"

#

$
$
$

%

&

'
'
'

 

 

 Use the mode summation method to find the solution. First transform the initial 

conditions: 

  

    

q 0( ) = M
1/ 2x 0( ) = 0 0.7071 0!" #$

T

!q 0( ) = M
1/ 2
!x 0( ) = 0

 

 The solution is given by Eq. (4.115): 

  

   
x t( ) =

i=1

3

! d
i
e
"#

i
$

i
t
sin $

di
t + %

i( )u
i
 

 where 

    
!

i
= tan

"1
#

di
v

i

Tq 0( )

v
i

T
!q 0( ) +$

i
#

i
v

i

Tq 0( )

%

&
'

(

)
* i = 1,2,3 



   

d
i
=

v
i

Tq ' 0( )

sin!
i

i = 1,2,3,    u
i
= M

"1/ 2v
i

#
1

= 0.01,    #
2

= 0.1,       #
3

= 0.2

 

 

 Substituting 

  

  

!
d1

= 2.0770 "10
#4

 rad/s, !
d2

= 3.3972 "10
#4

 rad/s  !
d3

= 8.8877 "10
#4

 rad/s

$
1

= 1.5808 rad,   $
2

= 1.6710 rad,   $
3

= 1.3694 rad

d
1

= 0.4312,    d
2

= 0,        d
3

= 0.5720

 

 The mode shapes are 

  

u
1

=

0.03963

!0.04312

0.03963

"

#

$
$
$

%

&

'
'
'

u
2

=

!0.05

0

0.05

"

#

$
$
$

%

&

'
'
'

u
3

=

0.03049

0.05604

0.03049

"

#

$
$
$

%

&

'
'
'

 

 The solution is 

  

   

x t( ) =

0.01709

!0.01859

0.01709

"

#

$
$
$

%

&

'
'
'

e
!2.0771(10

!4
t
sin 2.0770 (10

!4
t !1.5808( )

                           +

0.01744

0.03206

0.01744

"

#

$
$
$

%

&

'
'
'

e
!2.0771(10

!4
t
sin 8.8877 (10

!4
t + 1.3694( )m

 

 

 

 

 



4.59 Repeat Problem 4.58 with constant modal damping of 
 
!

1
,  !

2
,  !

3
 = 0.1 and compare this 

with the solution of Problem 4.58. 

 

 Solution: Use the equations of motion and initial conditions from Problem 4.58.  The 

mode shapes, natural frequencies and transformed initial conditions remain the same.  

However the constants of integration are effected by the damping ratio so the solution 

  

   
x t( ) = d

i
e
!"

i
#

i
t
sin #

di
t + $

i( )u
i

i=1

3

%  

 has new constants determined by

    
!

i
= tan

"1
#

di
v

i

Tq 0( )

v
i

T
!q 0( ) +$

i
#

i
v

i

Tq 0( )

%

&
'

(

)
* i = 1,2,3 

  

   

d
i
=

v
i

Tq ' 0( )

sin!
i

i = 1,2,3

u
i
= M

"1/ 2v
i

#
1

= #
2

= #
3

= 0.1

 

 Substituting yields 

 

  
  
!

d1
= 2.0667 "10

#4
 rad/s,  !

d2
= 3.3972 "10

#4
 rad/s,   !

d3
= 9.0255"10

#4
 rad/s  

 

  

  

!
1

= "1.6710  rad,  !
2

= "1.6710  rad,  !
3

= 1.4706 rad

d
1

= 0.4334,    d
2

= 0.0,      d
3

= 0.5633
 

 

 Mode shapes: 

 

  

  

u
1

=

0.03963

!0.04312

0.03963

"

#

$
$
$

%

&

'
'
'

u
2

=

!0.05

0

0.05

"

#

$
$
$

%

&

'
'
'

u
3

=

0.03049

0.05604

0.03049

"

#

$
$
$

%

&

'
'
'

 

 The solution is 

 

  

   

x t( ) =

0.01717

!0.01869

0.01717

"

#

$
$
$

%

&

'
'
'

e
!2.0771(10

!4
t
sin 2.0667 (10

!4
t !1.6710( )

                    +

0.01717

0.03157

0.01717

"

#

$
$
$

%

&

'
'
'

e
!9.0710(10

!4
t
sin 9.0255(10

!4
t + 1.4706( )m

 

 

 The primary difference between problems 4.58 and 4.59 is the settling time; the 

responses in Problem 4.59 decay faster than those of Problem 4.58. 



4.60 Consider the damped system of Figure P4.1.  Determine the damping matrix and use the 

formula of Eq. (4.119) to determine values of the damping coefficient cI for which this 

system would be proportionally damped. 

 

 Solution: 
 

 From Fig. 4.29, 

 

  

    

m
1

0

0 m
2

!

"
#
#

$

%
&
&
!!x +

c
1
+ c

2
'c

2

'c
2

c
2

+ c
3

!

"
#
#

$

%
&
&
!x +

k
1
+ k

2
'k

2

'k
2

k
2

+ k
3

!

"
#
#

$

%
&
&
x = 0  

 

 From Eq. (4.119) 

 

  

  

C = !M + "K

c
1
+ c

2
#c

2

#c
2

c
2

+ c
3

$

%
&
&

'

(
)
)

=

!m
1
+ " k

1
+ k

2
( ) #"k

2

#"k
2

!m
1
+ " k

2
+ k

3
( )

$

%
&
&

'

(
)
)

 

 

 To be proportionally damped, 

 

  

  

c
2

= !k
2

c
1

= "m
1
+ !k

1

c
3

= "m
2

+ !k
3

 

Alternately, compute KM
-1

C symbolically and show that the condition for symmetry: 

 

Requiring the off diagonal elements to be equal enforces symmetry.  This requires 

  
m

1
k

2
c

3
= m

2
k

2
c

1
+ (m

2
k

1
! m

1
k

3
)c

2
 

 

 

 

 

 

 

 

 



4.61 Let k3 = 0 in Problem 4.60.  Also let 
  
m

1
= 1,m

2
= 4,k

1
= 2,k

2
= 1 and calculate c1, c2 and 

c3 such that ζ1 = 0.01 and ζ2 = 0.1. 

 

 Solution: 
 

 From Figure P4.1 the equation of motion is, 

  

    

1 0

0 4

!

"
#

$

%
& !!x +

c
1
+ c

2
'c

2

'c
2

c
2

+ c
3

!

"
#
#

$

%
&
&
!x +

3 '1

'1 1

!

"
#

$

%
&x = 0  

 Calculate natural frequencies: 

  

   

!K = M
!1/ 2

KM
!1/ 2

=
3 !0.5

!0.5 0.25

"

#
$

%

&
'

det !K ! (I( ) = (2 ! 3.25( + 0.5 = 0

 

  

 

!
1

= 0.1619 "
1

= 0.4024 rad/s

!
2

= 3.0881 "
2

= 1.7573 rad/s
 

 From Eq. (4.124) 

  

  

!
i
=

"

2#
i

+
$#

2
 

 So, 

 

0.01 =
!

2 0.4024( )
+
" 0.4024( )

2
 

 and 

 

0.1 =
!

2 1.7573( )
+
" 1.7573( )

2
 

 Solving for α and β yields 

  

 

! = "0.01096

# = 0.1174
 

 From Eq. (4.119), 

  

  

C =
c

1
+ c

2
!c

2

!c
2

c
2

+ c
3

"

#
$
$

%

&
'
'

= (M + )K =
0.3411 !0.1174

!0.1174 0.07354

"

#
$

%

&
'  

 

 Thus, 

  

c
1

= 0.2238

c
2

= 0.1174

c
3

= !0.04382

 

Since negative damping is not usually possible, this design would not work. 

 

 

 

 

 



4.62 Calculate the constants α and β for the two-degree-of-freedom system of Problem 4.29 

such that the system has modal damping of 
 
!

1
= !

2
= 0.3. 

 

 Solution: 
 

 From Problem 4.29 with proportional damping added, 

 

  

    

1 0

0 4

!

"
#

$

%
& !!x + 'M + (K( ) !x +

3 )1

)1 1

!

"
#

$

%
&x = 0  

 

 Calculate natural frequencies: 

 

  

   

!K = M
!1/ 2

KM
!1/ 2

=
3 !0.5

!0.5 0.25

"

#
$

%

&
'

det !K ! (I( ) = (2 ! 3.25( + 0.5 = 0

 

 

  

 

!
1

= 0.1619 "
1

= 0.4024 rad/s

!
2

= 3.0881 "
2

= 1.7573 rad/s
 

 From Eq. (4.124) 

 

  

  

!
i
=

"

2#
i

+
$#

i

2
 

 

 So, 

 

0.3 =
!

2 0.4024( )
+
" 0.4024( )

2
 

 

 and 

 

0.3 =
!

2 1,7573( )
+
" 1.7573( )

2
 

 

 Solving for α and β yields 

 

  

 

! = 0.1966

" = 0.2778
 



4.63 Equation (4.124) represents n equations in only two unknowns and hence cannot be used 

to specify all the modal damping ratios for a system with n > 2.  If the floor vibration 

system of Problem 4.51 has measured damping of ζ1 = 0.01 and ζ2 = 0.05, determine ζ3. 

 

 Solution: 
 

 From Problem 4.51 

 

  

   

det !K ! "I( ) = "
3
! 9.8255#10

!7
"

2
+ 1.3645#10

!14
" ! 4.1382 #10

!22
= 0

"
1

= 4.3142 #10
!9

$
1

= 2.0771#10
!5

 rad/s

"
2

= 1.1657 #10
!7

$
2

= 3.4143#10
!4

 rad/s

"
3

= 8.2283#10
!7

$
3

= 9.0710 #10
!4

 rad/s

 

 

 Eq. (4.124) 

 

  

  

!
i
=

"

2#
i

+
$#

i

2
 

 

 

Since the problem contains three modes only, and since the first and second modal 

damping ratios are give as 01.0
1

=!  and 05.0
2

=!  then the following linear system can 

be set up 

 

 

!

2 2.0771"10
#5

( )
+

$ 2.0771"10
#5

( )
2

= 0.01

!

2 3.4143"10
#4

( )
+

$ 3.4143"10
#4

( )
2

= 0.05

 

 

which can be solve to yield  ! = 2.9 "10
#7

 and 
 
! = 290.397 . Hence, the modal damping 

of the third mode can be obtained using 4.124 

 

 

!
3

=
"

2#
3

+
$#

3

2
= 0.132  

 

   

 

  

 



4.64 Does the following system decouple?  If so, calculate the mode shapes and write the 

equation in decoupled form. 

 

  

   

1 0

0 1

!

"
#

$

%
& !!x +

5 '3

'3 3

!

"
#

$

%
& !x +

5 '1

'1 1

!

"
#

$

%
&x = 0  

 

 Solution: 
 

 The system will decouple if 

 

  

  

C = !M + "K

5 #3

#3 3

$

%
&

'

(
) =

! + 5" #"

#" ! + "

$

%
&

'

(
)

 

 

 Clearly the off-diagonal terms require 

 

  
 
! = 3  

 

 Therefore, the diagonal terms require 

 

  

 

5 = ! + 15

3 = ! + 3
 

 

 These yield different values of α, so the system does not decouple. An easier approach is 

to compute CM
-1

K to see if it is symmetric: 

CM
!1

K =
5 !3

!3 3

"

#
$

%

&
'

1 0

0 1

"

#
$

%

&
'

5 !1

!1 1

"

#
$

%

&
' =

9 !2

!12 6

"

#
$

%

&
'  

 Since this is not symmetric, the system cannot be decoupled. 

 



4.65 Calculate the damping matrix for the system of Problem 4.63.  What are the units of the 

elements of the damping matrix? 

 

 Solution: 
 

 From Problem 4.58, 

 

  

 

! = "8.8925#10
"7

$ = 3.0052 #10
2

 

 

 From Problem 4.48 

 

  

  

M =

200 0 0

0 2000 0

0 0 200

!

"

#
#
#

$

%

&
&
&

K = 3.197 '10
(4

9 / 64 1 / 6 13 / 192

1 / 6 1 / 3 1 / 6

13 / 192 1 / 6 9 / 64

!

"

#
#
#

$

%

&
&
&

 

 

 So, 

  

  

C = !M + "K

C =

0.01334 0.01602 0.006506

0.01602 0.03025 0.01602

0.006506 0.01602 0.01334

#

$

%
%
%

&

'

(
(
(

 

 

 The units are kg/s 

 

4.66 Show that if the damping matrix satisfies  C = !M + "K , then the matrix   CM
!1

K is 

symmetric and hence that   CM
!1

K = KM
!1

C . 

 

 Solution:  Compute the product  CM
!1

K  where C has the form:  C = !M + "K . 

  

CM
!1

= ("M + #K )M
!1

= " I + #KM
!1 $ CM

!1
K = "K + #KM

!1
K

KM
!1

C = KM
!1

("M + #K ) = "K + #KM
!1

K

                                             $ KM
!1

C = CM
!1

K

 



Problems and Solutions for Section 4.6 (4.67 through 4.76) 
 

4.67 Calculate the response of the system of Figure 4.16 discussed in Example 4.6.1 if 

F1(t) = δ(t) and the initial conditions are set to zero.  This might correspond to a 

two-degree-of-freedom model of a car hitting a bump. 

 

 Solution: From example 4.6.1, with F1(t) = δ(t), the modal equations are 

  

   

!!r
1
+ 0.2 !r

1
+ 2r

1
= 0.7071! (t)

!!r
2

+ 0.4 !r
2

+ 4r
2

= 0.7071! (t)
 

 Also from the example, 

  

  

!
n1

= 2   rad/s        "
1

= 0.07071             !
d1

= 1.4106  rad/s

!
n2

= 2  rad/s          "
2

= 0.1                     !
d2

= 1.9899  rad/s

 

The solution to an impulse is given by equations (3.7) and (3.8): 

 

  

  

r
i
(t) =

F̂

m
i
!

di

e
"#

i
!

ni
t
sin!

di
t  

 This yields 

  

   
r(t) =

0.5012e
!0.1t

sin1.4106t

0.3553e
!0.2t

sin1.9899t

"

#
$

%

&
'  

 The solution in physical coordinates is 

  

   

x(t) = M
!1/ 2

Pr(t) =
.2357 !.2357

.7071 .7071

"

#
$

%

&
'

0.167e
!0.1t

sin1.4106t

!0.118e
!.02t

sin1.9899t

"

#
$

%

&
'

x(t) =
0.0394e

!0.1t
sin1.4106t + 0.0279e

!0.2t
sin1.9899t

0.118e
!0.1t

sin1.4106t ! 0.0834e
!0.2t

sin1.9899t

"

#
$

%

&
'

 

 



4.68 For an undamped two-degree-of-freedom system, show that resonance occurs at 

one or both of the system’s natural frequencies. 

 

 Solution: 
 

 Undamped two-degree-of-freedom system: 

 

  
    M!!x + Kx = F(t)  

 

 Let 

   
F(t) =

F
1
(t)

0

!

"
#

$

%
&  

 

 Note: placing F1 on mass 1 is one way to do this.  A second force could be placed 

on mass 2 with or without F1. 

 

 Proceeding through modal analysis, 

 

  
    I!!r + !r = P

T
M

"1/ 2F(t)  

 

 Or, 

 

  

   

!!r
1
+!

1

2
r
1

= b
1
F

1
(t)

!!r
2

+!
2

2
r

2
= b

2
F

1
(t)

 

 

 where b1 and b2 are constants from the matrix P
T
M

-1/2
. 

 

 If F1(t) = a cos ωt and ω = ω1 then the solution for r1 is (from Section 2.1), 

 

  

   

r
1
(t) =

!r
10

!
1

sin!
1
t + r

10
cos!

1
t +

b
1
a

2!
1

t sin!
1
t  

 

 The solution for r2 is 

 

  

   

r
2
(t) =

!r
20

!
2

sin!
2
t + r

20
"

b
2
a

!
2

2 "!
1

2

#

$
%

&

'
( cos!

2
t +

b
2
a

!
2

2 "!
1

2
t sin!

1
t  

 

 If the initial conditions are zero, 

 



  

  

r
1
(t) =

b
1
a

2!
1

t sin!
1
t

r
2
(t) =

b
2
a

!
2

2
"!

1

2
cos!

1
t " cos!

2
t( )

 

 

 Converting to physical coordinates X(t) = M
-1/2

Pr(t) yields 

 

  

  

x
1
(t) = c

1
r
1
(t) + c

2
r

2
(t)

x
2
(t) = c

3
r
1
(t) + c

4
r

2
(t)

 

 

 where ci is a constant from M
-1/2

P. 

 

 So, if the driving force contains just one natural frequency, both masses will be 

excited at resonance.  The driving force could contain the other natural frequency 

(ω = ωn2), which would cause r1 and r2 to be 

 

  

  

r
1
(t) =

b
1
a

!
1

2
"!

2

2
cos!

2
t " cos!

1
t( )

r
2
(t) =

b
2
a

2!
2

t sin!
2
t

 

 

 and 

 

  

  

x
1
(t) = c

1
r
1
(t) + c

2
r

2
(t)

x
2
(t) = c

3
r
1
(t) + c

4
r

2
(t)

 

 

 so both masses still oscillate at resonance. 

 

 Also, if F1(t) = a1 cos ω1t + a2 cos ω2t where ω1 = ωn1 and ω2 = ωn2, then both r1 

and r2 would be at resonance, so x1(t) and x2(t) would also be at resonance. 

 



4.69 Use modal analysis to calculate the response of the drive train system of Problem 

4.44 to a unit impulse on the car body (i.e., and location q3).  Use the modal 

damping of Problem 4.56.  Calculate the solution in terms of physical coordinates, 

and after subtracting the rigid-body modes, compare the responses of each part. 

 

 Solution: 
 

 Let k1 = hub stiffness and k2 = axle and suspension stiffness. 

 

 From Problems 41 and 51, 

 

  

    

75 0 0

0 100 0

0 0 3000

!

"

#
#
#

$

%

&
&
&

!!q + 10,000

1 '1 0

'1 3 '2

0 '2 2

!

"

#
#
#

$

%

&
&
&

q = 0

M
'1/ 2

=

.1155 0 0

0 .1 0

0 0 .0183

!

"

#
#
#

$

%

&
&
&

P =

.1537 '.8803 .4488

.1775 '.4222 '.88910

.9721 .2163 .0913

!

"

#
#
#

$

%

&
&
&

(
1

= 0                      )
n1

= 0 rad/s

(
2

= 77.951             )
n2

= 8.8290 rad/s

(
3

= 362.05             )
n3

= 19.028 rad/s

 

 

 The initial conditions are 0. 

 

 Also 

 

  

  

!
1

= !
2

= !
3

= .1

"
d1

= 8.7848 rad/s

"
d 2

= 18.932 rad/s

 

 

 From equation (4.129): 

 

  
    !!r + diag(2!

i
"

ni
)!r + #r = P

T
M

$1/ 2F(t)  

 

 Modal force vector: 

 



  

   

P
T

M
!1/ 2F(t) =

.01775

.003949

.001668

"

#

$
$
$

%

&

'
'
'

( (t)  

 

 The modal equations are 

 

  

   

!!r
1

= .01775! (t)

!!r
2

+ 1.7658 !r
2

+ 77.951r
2

= .003949! (t)

!!r
3
+ 3.8055!r

3
+ 362.05r

3
= .001668! (t)

 

 

 The solution for r1 is 

 

  
  
r
1
(t) = .01775t  

 

 The solutions for r2 and r3 are given by equations 3.7 and (3.8) 

 

  

  

r
i
(t) =

F̂

m
i
!

di

e
"#

i
!

i
t
sin!

di
t  

 

 This yields 

 

  

  

r
2
(t) = 4.4949 !10

"4
e
".8829t

sin8.7848t

r
3
(t) = 8.8083!10

"5
e
"1.9028t

sin18.932t
 

 

 The solution in physical coordinates is 

 

  

   

q(t) = M
!1/ 2

Pr(t)

q(t) = 3.1496 "10
!4

t

1

1

1

#

$

%
%
%

&

'

(
(
(

+

!4.5691"10
!5

!1.8978 "10
!5

1.7749 "10
!6

#

$

%
%
%

&

'

(
(
(

e
!.8829t

sin8.7848t

          +

4.5647 "10
!6

!7.8301"10
!6

1.4689 "10
!7

#

$

%
%
%

&

'

(
(
(

e
!1.9028t

sin18.932t   m

 

 

 The magnitude of the components is much smaller than that in problem 51, but 

they do oscillate at the same frequencies. 

 



4.70 Consider the machine tool of Figure 4.28.  Resolve Ex. 4.8.3 if the floor mass m = 

1000 kg, is subject to a force of 10 sint (in Newtons).  Calculate the response.  

How much does this floor vibration affect the machine’s toolhead? 

 

 Solution: 
 

 From example 4.8.3, with F3(t) = 10 sint N and m3 = 1000 kg. 

 

  

    

10
3

( )

.4 0 0

0 2 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x + 10
4

( )

30 '30 0

'30 38 '8

0 '8 88

!

"

#
#
#

$

%

&
&
&

x =

0

0

10sin t

!

"

#
#
#

$

%

&
&
&

 

 

 Calculating the eigenvalues and eigenvectors yields 

 

  

 

!
1

= 29.980               "
1

= 5.4761  rad/s

!
2

= 868.2743           "
2

= 29.4665  rad/s

!
3

= 921.7378           "
3

= 30.3601  rad/s

 

 

 And 

 

  

  

P =

!.4215 .4989 .7573

!.9048 !.1759 !.3877

!.0602 !.8486 .5255

"

#

$
$
$

%

&

'
'
'

 

 

 Modal force vector: 

 

  

   

P
T

M
!1/ 2F(t) =

!.01904

!.2684

.1662

"

#

$
$
$

%

&

'
'
'

sin t  

 

 Undamped modal equations: 

 

  

   

!!r
1
+ 29.9880r

1
= !.01904sin t

!!r
2

+ 868.2743r
2

= !.2684sin t

!!r
3
+ 921.7378r

3
= .1662sin t

 

 

 Inserting the damping terms, 

 



  

   

!
1

= .1           2!
1
"

1
= 1.0952

!
2

= .01           2!
2
"

2
= .5893

!
3

= .05           2!
3
"

3
= 3.0360

!!r
1
+ 1.0952 !r

1
+ 29.9880r

1
= #.01904sin t

!!r
2

+ .5893!r
2

+ 868.2734r
2

= #.2684sin t

!!r
3
+ 3.0360 !r

3
+ 921.7378r

3
= .1662sin t

 

 

 The damped natural frequencies are 

 

  

  

!
d1

= !
n1

1"#
1

2
= 5.4487 rad/s

!
d 2

= !
n2

1"#
2

2
= 29.4650 rad/s

!
d 3

= !
n3

1"#
3

2
= 30.3222 rad/s

 

 

 The general solution is 

 

  
  
r

i
(t) = A

i
e
!"

i
#

ni
t
sin(#

di
t !$

i
) + A

0i
sin(#t !%

i
)  

 

 where 

 

  

  

A
0i

=
f

0i

!
ni

2 "! 2

( )
2

+ 2#
i
!

ni
!( )

2

  and  $
i
= tan

"1
2#

i
!

ni
!

!
ni

2 "!

%

&
'

(

)
*  

 

 Inserting values, 

 

  

  

A
01

= !6.5643"10
!4

 m                 #
1

= 3.7764 "10
!2

  rad

A
02

= !3.0943"10
!4

 m                #
2

= 6.7952 "10
!4

  rad

A
03

= 1.8049 "10
!4

 m                  #
3

= 3.2974 "10
!3

  rad

 

 

 So, 

 

  

  

r
1
(t) = A

1
e
!.5476t

sin(5.4487t !"
1
) ! 6.543#10

!4
sin(t ! 3.7764 #10

!2
)

r
2
(t) = A

2
e
!.2947t

sin(29.4650t !"
2
) ! 3.0943#10

!4
sin(t ! 6.7952 #10

!4
)

r
3
(t) = A

3
e
!1.5180t

sin(30.3222t !"
3
) + 1.8049 #10

!4
sin(t ! 3.2974 #10

!3
)

 

 

 With zero initial conditions: 

 



  

  

A
1

= 1.2047 !10
"4

  m                      #
1

= .2072  rad

A
2

= 1.0502 !10
"5

  m                     #
2

= .02002  rad

A
3

= "5.9524 !10
"6

  m                  #
3

= .1002  rad

 

 

 Now, 

 

  

r
1
(t) = 1.2047 !10

"4
e
".5476t

sin(5.4487t " .2027) " 6.543!10
"4

sin(t " 3.7764 !10
"2

)

r
2
(t) = 1.0502 !10

"5
e
".2947t

sin(29.4650t " .02002) " 3.0943!10
"4

sin(t " 6.7952 !10
"4

)

r
3
(t) = "5.9524 !10

"6
e
"1.5180t

sin(30.3222t " .1002) + 1.8049 !10
"4

sin(t " 3.2974 !10
"3

)

 

 

 Convert to physical coordinates: 

 

  

   

x(t) = M
!1/ 2

Pr(t) =

!.02108 .02494 .03786

!.02023 !.003993 !.008670

!.001904 !.02684 .01662

"

#

$
$
$

%

&

'
'
'

r(t)  

 

 Therefore 

 

  

  

x
1
(t) = !.02108r

1
+ .02494r

2
+ .03786r

3

x
2
(t) = !.02023r

1
! .003933r

2
! .008670r

3

x
3
(t) = !.001904r

1
! .02684r

2
+ .01662r

3

 

 



4.71 Consider the airplane of Figure P4.46 with damping as described in Problem 4.57 

with ζ1 = 0.1.  Suppose that the airplane hits a gust of wind, which applies an 

impulse of 3δ(t) at the end of the left wing and δ(t) at the end of the right wing.  

Calculate the resulting vibration of the cabin [x2(t)]. 

 

 Solution: From Problems 4.46 and 4.57 

 

  

  

M
!1/ 2

=

.01826 0 0

0 .009129 0

0 0 .01826

"

#

$
$
$

%

&

'
'
'

P =

0.4082 !0.7071 0.5774

0.8165 0 !0.5774

0.4082 0.7071 0.5774

"

#

$
$
$

%

&

'
'
'

(
1

= 0                      )
n1

= 0 rad/s

(
2

= 4.485               )
n2

= 2.118 rad/s

(
3

= 6.727               )
n3

= 2.594 rad/s

 

 

 Also: 

  

   

!
1

= !
2

= !
3

= 0.1

F(t) =

3

0

1

"

#

$
$
$

%

&

'
'
'
( (t)

)
d1

= 0 rad/s,  )
d 2

= 2.1072 rad/s, )
d 3

= 2.5807 rad/s

 

 From equation (4.129): 

  
    !!r + diag(2!

i
"

ni
)!r + #r = P

T
M

$1/ 2F(t)  

 Modal force vector: 

   

P
T

M
!1/ 2F(t) =

!0.0298

0.0258

0.0422

"

#

$
$
$

%

&

'
'
'

( (t)  

 The modal equations are 

   

!!r
1

= !0.02981" (t)

!!r
2

+ 0.424 !r
2

+ 4.485r
2

= 0.0258" (t)

!!r
3
+ 0.519 !r

3
+ 6.727r

3
= 0.0422" (t)

 

 

 The solution for r1 is 

  
  
r
1
(t) = !0.02981t  

 The solutions for r2 and r3 are given by equations (3.7) and (3.8) 



 

  

  

r
i
(t) =

F̂

m
i
!

di

e
"#

i
!

i
t
sin!

di
t  

 This yields 

  

r
2
(t) = 1.2253!10

"2
e
"0.212t

sin2.107t

r
3
(t) = 1.6338 !10

"2
e
"0.259t

sin2.581t
 

 The solution in physical coordinates is 

 

  
   x(t) = M

!1/ 2
Pr(t)  

 

 For x2: 

  
  
x

2
(t) = 2.221!10

"4
t + 8.06 !10

"5
e
"0.259t

sin2.581t  



4.72 Consider again the airplane of Figure P4.46 with the modal damping model of 

Problem 4.57 (ζi = 0.1).  Suppose that this is a propeller-driven airplane with an 

internal combustion engine mounted in the nose.  At a cruising speed the engine 

mounts transmit an applied force to the cabin mass (4m at x2) which is harmonic 

of the form 50 sin 10t.  Calculate the effect of this harmonic disturbance at the 

nose and on the wind tips after subtracting out the translational or rigid motion. 

 

 Solution:  From Problems 4.47 and 4.57 

 

  

  

M
!1/ 2

=

.01826 0 0

0 .009129 0

0 0 .01826

"

#

$
$
$

%

&

'
'
'

,     P =

!.4082 .7071 .5774

!.8165 0 !.5774

!.4082 !.7071 .5774

"

#

$
$
$

%

&

'
'
'

(
1

= 0                      )
n1

= 0 rad/s

(
2

= 17.94               )
n2

= 4.2356 rad/s

(
3

= 26.91               )
n3

= 5.1875 rad/s

 

 Also, 

   

!
1

= !
2

= !
3

= 0.1,"#
d1

= 0 rad/s,  #
d 2

= 4.2143 rad/s,   #
d 3

= 5.1615 rad/s

F(t) =

0

50sin10t

0

$

%

&
&
&

'

(

)
)
)

 

 

 The initial conditions are 0.   From equation (4.129): 

 

  
    !!r + diag(2!

i
"

ni
)!r + #r = P

T
M

$1/ 2F(t)  

 

 Modal force vector: 

 

  

   

P
T

M
!1/ 2F(t) =

!.3727

0

!.2635

"

#

$
$
$

%

&

'
'
'

sin10t  

 

 The modal equations are 

 

  

   

!!r
1

= !.3727sin10t

!!r
2

+ .8471!r
2

+ 17.94r
2

= 0

!!r
3
+ 1.0375!r

3
+ 26.91r

3
= !.2635sin10t

 

 

 The solutions are 

 



  

  

r
1
(t) = .003727sin10

r
2
(t) = 0

r
3
(t) = !.006915e

!.5188t
sin(5.1615t + .0726) + .003569sin(10t + .141)

 

 

 The solutions in physical coordinates is 

 

  
   x(t) = M

!1/ 2
Pr(t)  

 

 The wing tips are x1 and x3, so 

 

 

  

x
1
(t) = x

3
(t) = 2.7780 !10

"5
sin10t " 7.2891!10

"5
e
".5188t

sin(5.1615t + .0726)

                        + 3.7621!10
"5

sin(10t + .141)

 

 



4.73 Consider the automobile model of Problem 4.14 illustrated in Figure P4.14.  Add 

modal damping to this model of ζ1 = 0.01 and ζ2 = 0.2 and calculate the response 

of the body [x2(t)] to a harmonic input at the second mass of 10 sin3t N. 

 

 Solution: From problem 4.14 

 

 

  

M =
2000 0

0 50

!

"
#

$

%
& ,   K =

1000 '1000

'1000 11000

!

"
#

$

%
& ,   P =

.9999 '.1044

.1044 .9999

!

"
#

$

%
&

(
1

= 0.4545        )
1
 = 0.6741  rad/s, and  (

2
= 220.05       )

2
= 14.834  rad/s

 

 Also, 

  

   

!
1

= .01,   !
2

= 0.2,    "
d1

= 0.6741 rad/s,   "
d 2

= 14.534 rad/s

                                   F(t) =
0

10sin3t

#

$
%

&

'
(

 

 

 The initial conditions are all 0. From equation (4.129): 

  
    !!r + diag(2!

i
"

ni
)!r + #r = P

T
M

$1/ 2F(t)  

 Modal force vector: 

  

   
P

T
M

!1/ 2F(t) =
0.02036

1.4141

"

#
$

%

&
'sin3t  

 The modal equations are 

  

   

!!r
1
+ 0.01348 !r

1
+ 0.454r

1
= 0.02036sin3t

!!r
2

+ 5.9336 !r
2

+ 220.046r
2

= 1.4141sin3t
 

 The solutions are 

 

  

r
1
(t) = !0.1088e

!0.006741t
sin(0.6741t + 1.0914 "10

!4
) + .002445sin(3t ! .004857)

r
2
(t) = !0.07500e

!2.9668t
sin(14.534t + 1.3087) + .07586sin(3t + 1.26947)

 

 The solutions in physical coordinates is 

  
   x(t) = M

!1/ 2
Pr(t)  

 The response of the body is 

  

  

x
1
(t) = !.002433e

!0.006741t
sin(.6471t !1.0914 "10

!4
)

            + 5.4665"10
!5

sin(3t ! .004857)

            + 2.4153"10
!5

e
!2.9668t

sin(14.534t !1.3087)

            ! 2.4430 "10
!5

sin(3t + 1.2694)

 

 

 

 

 

 

 



4.74 Determine the modal equations for the following system and comment on 

whether or not the system will experience resonance. 

    

 

!!x +
2 !1

!1 1

"

#
$

%

&
'x =

1

0

"

#
$

%

&
'sin(0.618t)  

 

Solution: Here M = I so that the eigenvectors and mode shapes are the same.  

Computing the natural frequencies fromdet(!"
2
I + K ) = 0   yields:  

ω1 = 0.618 rad/s  and ω2 =1.681 rad/s 

Next solve for the mode shapes and normalize them to get  

P =
0.526 !0.851

0.851 0.526

"

#
$

%

&
',    so that P

T
1

0

"

#
$

%

&
' =

0.526

!0.851

"

#
$

%

&
'  

The modal equations then become: 

 

!!r
1
+ (0.618)

2
r
1

= !!r
1
+ 0.3819r

1
= 0.526sin(0.618t)

!!r
2

+ (1.618)
2
r
2

= !!r
2

+ 2.6179r
2

= !0.851sin(0.618t)
 

The driving frequency is equal to the natural frequency of mode one so the system 

exhibits resonance. 

 

4.75 Consider the following system and compute the solution using the mode 

summation method. 

 

 

M =
9 0

0 1

!

"
#

$

%
&,   K =

27 '3

'3 3

!

"
#

$

%
&,   x(0) =

1

0

!

"
#

$

%
&,   !x(0) =

0

0

!

"
#

$

%
&  

 
Solution: From Example 4.2.4 

 M
1

2 =
3 0

0 1

!

"
#

$

%
&, M

' 1

2 =

1
3 0

0 1

!

"
#

$

%
&  and V =

1

2

1 1

1 '1

!

"
#

$

%
&.  Also (

1
= 2,(

2
= 2 rad/s  

 

 

Appropriate IC are q
0
=M

1

2 x
0
=

3

0

!

"
#

$

%
&,  !q

0
=M

1

2 v
0
=

0

0

!

"
#

$

%
&  

 

!i = tan
"1
# i v i

T
q(0)

 v i

T
!q(0)

= tan
"1
# i v i

T
q(0)

 0
$

!
1

!
2

%

&
'

(

)
* =

+
2

+
2

%

&

'
'
'
'

(

)

*
*
*
*

 

di =
v i

T
q(0)

sin!i

"
d

1

d
2

#

$
%

&

'
( =

3 2
2

3 2
2

#

$

%
%
%

&

'

(
(
(

 

q
1
(t)

q
2
(t)

!

"
#

$

%
& =

3 2

2
sin 2t +

'
2

(
)*

+
,-

1

2

1

1

!

"
#
$

%
& +

3 2

2
sin 2t +

'
2

(
)*

+
,-

1

2

1

.1

!

"
#

$

%
&  

 



q
1
(t)

q
2
(t)

!

"
#

$

%
& =

3

2
cos 2t( )

1

1

!

"
#
$

%
& +

3

2
cos 2t( )

1

'1

!

"
#

$

%
&

x(t) = M
'1/2

q(t) =
3

2
cos 2t( )

1
3 0

0 1

!

"
#

$

%
&

1

1

!

"
#
$

%
& +

3

2
cos 2t( )

1
3 0

0 1

!

"
#

$

%
&

1

'1

!

"
#

$

%
&

 

 

x(t) =
3

2
cos 2t( )

1 / 3

1

!

"
#

$

%
& +

3

2
cos 2t( )

1 / 3

'1

!

"
#

$

%
&  

x(t) =

1

2
cos 2t( ) +

1

2
cos(2t)

3

2
cos 2t( ) !

3

2
cos 2t( )

"

#

$
$
$
$

%

&

'
'
'
'

 

 

 

 



Problems and Solutions for Section 4.7 (4.76 through 4.79) 
 

4.76 Use Lagrange's equation to derive the equations of motion of the lathe of Fig. 4.21 for the 

undamped case. 

 

 Solution: Let the generalized coordinates be
 
!

1
,!

2
 and !

3
. 

 The kinetic energy is 

  

   
T =

1

2
J

1

!!
1

2
+

1

2
J

2

!!
2

2
+

1

2
J

3

!!
3

2
 

 The potential energy is 

  

  
U =

1

2
k

1
!

2
"!

2
( )

2

+
1

2
k

2
!

3
"!

2
( )

2

 

 There is a nonconservative moment M(t) on inertia 3. The Lagrangian is 

  

   
L = T !U =

1

2
J

1

!"
1

2
+

1

2
J

2

!"
2

2
+

1

2
J

3

!"
3

2
!

1

2
k

1
"

2
!"

1
( )

2

!
1

2
k

2
"

3
!"

2
( )

2

 

 Calculate the derivatives from Eq. (4.136): 

  

   

!L

! !"
1

= J
1

!"
1

d

dt

!L

! !"
1

#

$%
&

'(
= J

1

!!"
1

!L

! !"
2

= J
2

!"
2

d

dt

!L

! !"
2

#

$%
&

'(
= J

2

!!"
2

!L

! !"
3

= J
3

!"
3

d

dt

!L

! !"
3

#

$%
&

'(
= J

3

!!"
3

!L

!"
1

= )k
1
"

1
+ k

1
"

2

!L

!"
2

= )k
1
"

1
) k

1
+ k

2
( )"

2
+ k

2
"

3

!L

!"
3

= )k
2
"

2
) k

2
"

3

 

 Using Eq. (4.136) yields 

  

   

J
1

!!!
1
+ k

1
!

1
" k

2
!

2
= 0

J
2

!!!
2
" k

1
!

1
+ k

1
+ k

2
( )!

2
" k

2
!

3
= 0

J
3

!!!
3
" k

2
!

2
+ k

2
!

3
= M t( )

 

 

 In matrix form this yields 



  

   

J
1

0 0

0 J
2

0

0 0 J
3

!

"

#
#
#

$

%

&
&
&

!!' +

k
1

(k
1

0

(k
1

k
1
+ k

2
(k

2

0 (k
2

k
2

!

"

#
#
#

$

%

&
&
&
' =

0

0

M t( )

!

"

#
#
#

$

%

&
&
&

 

 



4.77 Use Lagrange's equations to rederive the equations of motion for the automobile of 

Example 4.8.2 illustrated in Figure 4.25 for the case
  
c

1
= c

2
= 0 . 

 

 Solution:  Let the generalized coordinates be x and θ. 

 The kinetic energy is 

  

   
T =

1

2
m!x

2
+

1

2
J !!

2
 

 The potential energy is (ignoring gravity) 

  

  
U =

1

2
k

1
x ! l

1
"( )

2

+
1

2
k

2
x + l

2
"( )

2

 

 The Lagrangian is 

  

   
L = T !U =

1

2
m!x

2
+

1

2
J !"

2
!

1

2
k

1
x ! l

1
"( )

2

!
1

2
k

2
x + l

2
"( )

2

 

 Calculate the derivatives from Eq. (4.136): 

  

   

!L

!!x
= m!x

d

dt

!L

!!x
"
#$

%
&'

= m!!x

!L

! !(
= J !(

d

dt

!L

! !(
"
#$

%
&'

= J !!(

!L

!x
= ) k

1
+ k

2
( )x + k

1
l
1
) k

1
l
2

( )(

!L

!(
= k

1
l
1
) k

2
l
2

( )x ) k
1
l
2

2

( )(

 

 Using Eq. (4.136) yields 

  

   

m!!x + k
1
+ k

2
( )x + k

1
l
1
! k

2
l
2

( )" = 0

J !!" + k
1
l
2
! k

1
l
1

( )x ! k
1
l
1

2
+ k

2
l
2

2

( )" = 0

 

 In matrix form this yields 

 

  

    

m 0

0 J

!

"
#

$

%
&
!!x

!!'

!

"
#

$

%
& +

k
1
+ k

2
k

2
l
2
( k

1
l
1

k
2
l
2
( k

1
l
1

k
1
l
1

2
+ k

2
l
2

2

!

"
#
#

$

%
&
&

x

'

!

"
#

$

%
& = 0  

 



4.78 Use Lagrange's equations to rederive the equations of motion for the building model 

presented in Fig. 4.9 of Ex. 4.4.3 for the undamped case. 

 

 Solution: 
 

 Let the generalized coordinates be x1, x2, x3 and x4. 

 The kinetic energy is 

 

  

   
T =

1

2
m

1
!x
1

2
+

1

2
m

2
!x

2

2
+

1

2
m

3
!x

3

2
+

1

2
m

4
!x

4

2
 

 

 The potential energy is (ignoring gravity) 

 

  

  
U =

1

2
k

1
x

1

2
+

1

2
k

2
x

2
! x

1
( )

2

+
1

2
k

3
x

3
! x

2
( )

2

+
1

2
k

4
x

4
! x

3
( )

2

 

 

 The Lagrangian is 

 

  

   

L = T !U =
1

2
m!x

1

2
+

1

2
m!x

2

2
+

1

2
m!x

3

2
+

1

2
m!x

4

2

!
1

2
k

1
x

1

2
!

1

2
k

2
x

2
! x

1
( )

2 1

2
k

3
x

3
! x

2
( )

2

!
1

2
k

4
x

4
! x

3
( )

2

 

 

 Calculate the derivatives from Eq. (4.136): 

 

  

   

!L

!!x
1

= m
1
!x
1

d

dt

!L

!!x
1

"

#$
%

&'
= m

1
!!x

1

!L

!!x
1

= m
2
!x

2

d

dt

!L

!!x
1

"

#$
%

&'
= m

2
!!x

2

!L

!!x
1

= m
3
!x

3

d

dt

!L

!!x
1

"

#$
%

&'
= m

3
!!x

3

!L

!!x
1

= m
4
!x

4

d

dt

!L

!!x
1

"

#$
%

&'
= m

4
!!x

4

 

 

  



  

!L

!x
1

= " k
1
+ k

2
( )x

1
+ k

2
x

2

!L

!x
2

= k
2
x

1
" k

2
+ k

3
( )x

2
+ k

3
x

3

!L

!x
3

= k
2
x

2
" k

2
+ k

4
( )x

3
" k

4
x

4

!L

!x
4

= k
4
x

3
" k

4
x

4

 

 

Using Eq. (4.136) yields 

 

  

   

m
1
!!x

1
+ k

1
+ k

2
( )x

1
! k

2
x

2
= 0

m
2
!!x

2
! k

2
x

1
+ k

2
+ k

3
( )x

2
! k

3
x

3
= 0

m
3
!!x

3
! k

3
x

2
+ k

3
+ k

4
( )x

3
! k

4
x

4
= 0

m
4
!!x

4
! k

4
x

3
+ k

4
x

4
= 0

 

 

In matrix form this yields 

 

  

    

m
1

0 0 0

0 m
2

0 0

0 0 m
3

0

0 0 0 m
4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

!!x +

k
1
+ k

2
'k

2
0 0

'k
2

k
2

+ k
3

'k
3

0

0 'k
3

k
3
+ k

4
'k

4

0 0 'k
4

k
4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

x = 0  



4.79 Consider again the model of the vibration of an automobile of Fig. 4.25.  In this case 

include the tire dynamics as indicated in Fig. P4.79.  Derive the equations of motion 

using Lagrange formulation for the undamped case. Let m3 denote the mass of the car 

acting at c.g. 

 

 Solution: 
 

 Let the generalized coordinates be
  
x

1
,x

2
,x

3
 and ! .  The kinetic energy is 

 

  

   
T =

1

2
m

1
!x
1

2
+

1

2
m

2
!x

2

2
+

1

2
m

3
!x

3

2
+

1

2
J !!

2
 

 

 The potential energy is (ignoring gravity) 

   
U =

1

2
k

1
x

3
! !

1
" ! x

1
( )

2

+
1

2
k

2
(x

3
! !

2
" ! x

2
)

2
+

1

2
k

3
x

1

2
+

1

2
k

4
x

2

2
 

 The Lagrangian is thus: 

  

   

L = T !U =
1

2
m

1
!x

1

2
+

1

2
m

2
!x

2

2
+

1

2
m

3
!x

3

2
+

1

2
J !"

2
!

1

2
k

1
x

3
! l

1
" ! x

1
( )

2

!
1

2
k

2
x

3
+ l

2
" ! x

2
( )

2

!
1

2
k

3
x

1

2
!

1

2
k

4
x

2

2

 

 

 Calculate the derivatives indicated in Eq. (4.146): 

 

  

   

!L

!!x
1

= m
1
!x

1

d

dt

!L

!!x
1

"

#$
%

&'
= m

1
!!x

1

!L

!!x
2

= m
2
!x

2

d

dt

!L

!!x
2

"

#$
%

&'
= m

1
!!x

2

!L

!!x
3

= m
3
!x

3

d

dt

!L

!!x
3

"

#$
%

&'
= m

3
!!x

3

!L

!(
= J !(

d

dt

!L

! !!(
"
#$

%
&'

= J !!(

 

 



  

!L

!x
1

= " k
1
+ k

3( )x
1
+ k

1
x

3
" k

1
l
1
#

!L

!x
2

= " k
2

+ k
4( )x

2
+ k

2
x

3
" k

2
l
2
#

!L

!x
3

= k
1
x

1
+ k

2
x

2
" k

1
+ k

2( )x
3
+ k

1
l
1
+ k

2
l
2( )#

!L

!#
= "k

1
l
1
x

1
" k

2
l
2
x

2
+ k

1
l
1
+ k

2
l
2( )x

3
" k

1
l
1

2
+ k

2
l
2

2

( )#

 

 

 Using Eq. (4.146) yields 

 

 

 

 

m
1
!!x

1
+ k

3
+ k

1( )x
1
! k

1
x

3
+ k

1
l
1
" = 0

m
2
!!x

2
+ k

4
+ k

2( )x
2
! k

2
x

3
! k

2
l
2
" = 0

m
3
!!x

3
! k

1
x

1
! k

2
x

2
+ k

1
+ k

2( )x
3
! k

1
l
1
! k

2
l
2( )" = 0

J !!" + k
1
l
1
x

1
! k

2
l
2
x

2
! k

1
l
1
! k

2
l
2( )x

3
+ k

1
l
1

2
+ k

2
l
2

2

( ) = 0

 

 

in matrix form 

 

 

m
1

0 0 0

0 m
2

0 0

0 0 m
3

0

0 0 0 J

!

"

#
#
#
#

$

%

&
&
&
&

!!x
1

!!x
2

!!x
3

!!'

(

)

*
*

+

*
*

,

-

*
*

.

*
*

+

k
3
+ k

1( ) 0 /k
1

k
1
l
1

0 k
4

+ k
2( ) /k

2
k

2
l
2

/k
1

/k
2

k
1
+ k

2( ) / k
2
l
2

+ k
1
l
1( )

k
1
l
1

k
2
l
2

/ k
2
l
2

+ k
1
l
1( ) k

1
l
1

2
+ k

2
l
2

2

( )

!

"

#
#
#
#
#

$

%

&
&
&
&
&

x
1

x
2

x
3

'

(

)

*
*

+

*
*

,

-

*
*

.

*
*

= 0  

 



Problems and Solutions for Section 4.9 (4.80 through 4.90) 
 

4.80 Consider the mass matrix 

   

  

M =
10 !1

!1 1

"

#
$

%

&
'  

 and calculate M
-1

, M
-1/2

, and the Cholesky factor of M.  Show that 

   

  

LL
T

= M

M
!1/ 2

M
!1/ 2

= I

M
1/ 2

M
1/ 2

= M

 

 

 Solution: Given  

  

M =
10 !1

!1 1

"

#
$

%

&
'  

 The matrix, P, of eigenvectors is 

  

  

P =
!0.1091 !0.9940

!0.9940 0.1091

"

#
$

%

&
'  

 The eigenvalues of M are 

  

 

!
1

= 0.8902

!
2

= 10.1098
 

 From Equation  

  

  

M
!1

= Pdiag
1

"
1

,
1

"
2

#

$
%

&

'
(P

T
,    M

!1
=

0.1111 0.1111

0.1111 1.1111

#

$
%

&

'
(  

 From Equation 

  

  

M
!1/ 2

= Vdiag "
1

!1/ 2
,"

2

!1/ 2#
$

%
&V

T

M
!1/ 2

=
0.3234 0.0808

0.0808 1.0510

#

$
'

%

&
(

 

 The following Mathcad session computes the Cholesky decomposition. 

 

  



4.81 Consider the matrix and vector 

   

  

A =
1 !"

!" "

#

$
%

&

'
(       b =

10

10

#

$
%

&

'
(  

 use a code to solve Ax = b for ε = 0.1, 0.01, 0.001, 10
-6

, and 1. 

 

 Solution: 
 

 The equation is 

 

  

  

1 !"

!" "

#

$
%

&

'
(x =

10

10

#

$
%

&

'
(  

 

 The following Mathcad session illustrates the effect of ε on the solution, a 

entire integer difference.  Note that no solution exists for the case ε = 1. 

 

 

 So the solution to this problem is very sensitive, and ill conditioned, because 

of the inverse. 

 

 



4.82 Calculate the natural frequencies and mode shapes of the system of 

Example 4.8.3.  Use the undamped equation and the form given by equation 

(4.161). 

 

 Solution: 
 

 The following MATLAB program will calculate the natural frequencies and 

mode shapes for Example 4.8.3 using Equation (4.161). 

 

 m=[0.4 0 0;0 2 0;0 0 8]*1e3; 
 k=[30 –30 0;-30 38 –8;0 –8 88]1e4; 
 [u, d]=eig(k,m); 
 w=sqrt (d); 
 

 The matrix d contains the square of the natural frequencies, and the matrix u 

contains the corresponding mode shapes. 



4.83 Compute the natural frequencies and mode shapes of the undamped 

version of the system of Example 4.8.3 using the formulation of equation 

(4.164) and (4.168).  Compare your answers. 

 

 Solution: 
 

 The following MATLAB program will calculate the natural frequencies and 

mode shapes for Example 4.8.3 using Equation (4.161). 

 

 m=[0.4 0 0;0 2 0;0 0 8]*1e3; 
 k=[30 –30 0;-30 38 –8;0 –8 88]1e4; 
 mi=inv(m); 
kt=mi*k; 
 [u, d]=eig(k,m); 
 w=sqrt (d); 
 

 The number of floating point operations needed is 439. 

 The matrix d contains the square of the natural frequencies, and the matrix u 

contains the corresponding mode shapes. 

 

 

 The following MATLAB program will calculate the natural frequencies and 

mode shapes for Example 4.8.3 using Equation (4.168). 

 

 m=[0.4 0 0;0 2 0;0 0 8]*1e3; 
 k=[30 –30 0;-30 38 –8;0 –8 88]1e4; 
 msi=inv(sqrt(m)); 
kt=msi*k*msi; 
 [p, d]=eig(kt); 
 w=sqrt (d); 
 u=msi*p; 
 

 The number of floating point operations needed is 461. 

 The matrix d contains the square of the natural frequencies, and the matrix u 

contains the corresponding mode shapes. 

 

 The method of Equation (4.161) is faster. 



4.84 Use a code to solve for the modal information of Example 4.1.5. 

 

 Solution: See Toolbox or use the following Mathcad code: 

 



4.85 Write a program to perform the normalization of Example 4.4.2 (i.e., 

calculate α such that the vector αv1 is normal). 

 

 Solution: 
 

 The following MATLAB program will perform the normalization of 

Example 4.4.2. 

 
 x=[.4450 .8019 1]; 

mag=sqrt(sum(x.^2)); 
xnorm=x/mag; 

 

 The variable mag is the same as α, and xnorm is the normalized vector.  

The original vector x can be any length. 



4.86 Use a code to calculate the natural frequencies and mode shapes obtained 

for the system of Example 4.2.5 and Figure 4.4. 

 

 Solution: See Toolbox or use the following Mathcad code: 

 



4.87 Following the modal analysis solution of Window 4.4, write a program to 

compute the time response of the system of Example 4.3.2. 

 

 Solution: The following MATLAB program will compute and plot the time 

response of the system of Example 4.3.2. 

 
 t=(0:.1:10)’; 
 
 m=[1 0;0 4]; 
 k=[12 –2;-2 12]; 
n=max(size(m)); 
 
 x0=[1 1]’; 
xd0=[0 0]’; 
 
 msi=inv(sqrtm(m)); 
 kt=msi*k*msi; 
 
 [p, w]=eig(kt); 
 for i=1: n-1 
  for j=1: n-I 
   if w(j,j)>w(j+1,j+1) 
    dummy=w(j,j); 
    w(j,j)=w(j+1,j+1); 
    w(j+1,j+1)=dummy; 
    dummy=p(:,j); 
    p(:,j)=p(:,j+1); 
    p(:,j+1)=dummy; 
   end 
  end 
 end 
 pt=p’; 
 s=msi*p; 
 si=pt*sqrtm(m); 
 
 r0=si*x0; 
 rd0=si*xd0; 
 r=[]; 
 for i=1: n, 
  wi=sqrt(w(i,i)); 
  rcol=(swrt((wi*r0(i))^2+rd0(i)^2/wi)*… 
   sin(wi*t+atan2(wi*r0(i),rd0(i))); 
  r(:,i)=rcol; 
 end 
 x=s*r; 
 plot(t,x); 
 end 



4.88 Use a code to solve the damped vibration problem of Example 4.6.1 by 

calculating the natural frequencies, damping ratios, and mode shapes. 

 

 Solution: See Toolbox or use the following Mathcad code (all will do this) 

 



4.89 Consider the vibration of the airplane of Problems 4.46 and 4.47 as given 

in Figure P4.46.  The mass and stiffness matrices are given as 
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 where m = 3000 kg, l = 2 m, I = 5.2 × 10
-6

 m
4
, E = 6.9 × 10

9
 N/m

2
, and the 

damping matrix C is taken to be C = (0.002)K.  Calculate the natural 

frequencies, normalized mode shapes, and damping ratios. 

 

 Solution: Use the Toolbox or use a code directly such as the following 

Mathcad session: 

 



 

The normalized mode shapes are 

 



4.90 Consider the proportionally damped, dynamically coupled system given 

by 
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 and calculate the mode shapes, natural frequencies, and damping ratios. 

 

 Solution: Use the Toolbox or any of the codes.  A Mathcad solution is 

shown: 

 
 



 



Problems and Solutions Section 4.10 (4.91 through 4.98) 

 

4.91* Solve the system of Example 1.7.3 for the vertical suspension system of a car with 

m = 1361 kg, k =  2.668 x 10
5
 N/m, and c = 3.81 x 10

4
 kg/s subject to the initial 

conditions of x(0) = 0 and v(0) = 0.01 m/s
2
. 

 

 Solution: Use a Runge Kutta routine such as the one given in Mathcad here or 

use the toolbox: 

 



 

 

4.92* Solve for the time response of Example 4.4.3 (i.e., the four-story building of 

Figure 4.9).  Compare the solutions obtained with using a modal analysis 

approach to a solution obtained by numerical integration. 

 

 Solution: The following code provides the numerical solution. 

 

 which compares very well with the plots given in Figure 4.11 obtained by plotting 

the modal equations.  One could also plot the modal response and numerical 

response on the same graph to see a more rigorous comparison. 

 



4.93* Reproduce the plots of Figure 4.13 for the two-degree of freedom system of 

Example 4.5.1 using a code. 

 

 Solution: Use any of the codes.  The trick here is to construct the damping matrix 

from the given modal information by first creating it in modal form and then 

transforming it back to physical coordinates as indicated in the following Mathcad 

session: 

 

 



4.94*. Consider example 4.8.3 and a) using the damping ratios given, compute a 

damping matrix in physical coordinates, b) use numerical integration to compute 

the response and plot it, and c) use the numerical code to design the system so that 

all 3 physical coordinates die out within 5 seconds (i.e., change the damping 

matrix until the desired response results). 

  

Solution: A Mathcad solution is presented.  The damping matrix is found, as in 

the previous problem, by keeping track of the various transformations.  Using the 

notation of the text, the damping matrix is constructed from: 
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1
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as computed using the code that follows.  With this form of the matrix the 

damping ratios are adjusted until the desired criteria are met: 

 

 

In changing the damping ratios it is best to start with the rubber component which 

is the first mode-damping ratio.  Doubling it nails the first two coordinates but 

does not affect the third coordinate enough.  Hence the second mode-damping 

ratio must be changed (doubled here) to attack this mode.  This could be 

accomplished by adding a viscoelastic strip as described in Chapter 5 to the metal.  

Thus the ratios given in the code above do the trick as the following plots show.  

Note also how much the damping matrix changes. 



 

 

 



4.95*. Compute and plot the time response of the system (Newtons): 
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subject to the initial conditions: 
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Solution:  The following Mathcad session illustrates the numerical solution of 

this problem using a Runge Kutta solver.  

 

 



4.96* Consider the following system excited by a pulse of duration 0.1 s (in Newtons): 
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Compute and plot the response of the system.  Here Φ indicates the Heaviside 

Step Function introduced in Section 3.2. 

 

Solution: The following Mathcad solution (see example4.10.3 for the other 

codes) gives the solution: 

 



It is also interesting to examine the first 20 seconds more closely to see the effect 

of the impact: 

 

Note that the impact has much more of an effect on the response than does the 

initial condition. 

 



4.97.* Compute and plot the time response of the system (Newtons): 
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 Solution:  Following the codes of Example 4.10.2 yields the solution directly.   

 



4.98.* Compute and plot the time response of the system (Newtons): 
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subject to the initial conditions: 
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Solution: Again follow Example 4.10.2 for the various codes. Mathcad is given. 
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Problems and Solutions Section 5.1 (5.1 through 5.5) 
 

5.1 Using the nomograph of Figure 5.1, determine the frequency range of vibration for which 

a machine oscillation remains at a satisfactory level under rms acceleration of 1g. 

 

 Solution: 
 

 An rms acceleration of 1 g is about 9.81 m/s
2
.  From Figure 5.1, a satisfactory level 

would occur at frequencies above 650 Hz. 

 

 

5.2 Using the nomograph of Figure 5.1, determine the frequency range of vibration for which 

a structure's rms acceleration will not cause wall damage if vibrating with an rms 

displacement of 1 mm or less. 

 

 Solution: 
 

 From Figure 5.1, an rms displacement of 1 mm (1000 µm) would not cause wall damage 

at frequencies below 3.2 Hz. 

 

 

5.3 What natural frequency must a hand drill have if its vibration must be limited to a 

minimum rms displacement of 10 µm and rms acceleration of 0.1 m/s
2
?  What rms 

velocity will the drill have? 

 

 Solution: 
 

 From Figure 5.1, the natural frequency would be about 15.8 Hz or 99.6 rad/s.  The rms 

velocity would be 1 mm/s. 

 

 

5.4 A machine of mass 500 kg is mounted on a support of stiffness 197,392,000 N/m.  Is the 

vibration of this machine acceptable (Figure 5.1) for an rms amplitude of 10 µm?  If not, 

suggest a way to make it acceptable. 

 

 Solution: 
 

 The frequency is 

 

!
n

=
k

m
=  628.3 rad/s = 100 Hz. 

 For an rms displacement of 10 µm the vibration is unsatisfactory.  To make the vibration 

satisfactory, the frequency should be reduced to 31.6 Hz.  This can be accomplished by 

reducing the stiffness and/or increasing the mass of the machine. 
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5.5 Using the expression for the amplitude of the displacement, velocity and acceleration of 

an undamped single-degree-of-freedom system, calculate the velocity and acceleration 

amplitude of a system with a maximum displacement of 10 cm and a natural frequency of 

10 Hz.  If this corresponds to the vibration of the wall of a building under a wind load, is 

it an acceptable level? 

 

 Solution: 
 

 The velocity amplitude is 

 

  

  

v(t) = A!
n

= 0.1 m( )
10

2"
#
$%

&
'(

= 0.159 m /s 

 

 The acceleration amplitude is 

 

  

  

a t( ) = A!
n

2
= 0.1 m( )

10

2"
#
$%

&
'(

2

= 0.253 m /s
2
 

 

 The rms displacement is 

  

A

2

=
0.1

2

= 0.0707 m = 70,700 µm (from equation (1.21)).  At 

10 Hz and 70,700 µm , this could be destructive to a building. 
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Problems and Solutions Section 5.1 (5.6 through 5.26) 
 

5.6 A 100-kg machine is supported on an isolator of stiffness 700 × 10
3
 N/m.  The machine 

causes a vertical disturbance force of 350 N at a revolution of 3000 rpm.  The damping 

ratio of the isolator is ζ = 0.2.  Calculate (a) the amplitude of motion caused by the 

unbalanced force, (b) the transmissibility ratio, and (c) the magnitude of the force 

transmitted to ground through the isolator. 

 

 Solution: 
 

 (a) From Window 5.2, the amplitude at steady-state is 
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 Since 

 

!
n

=
k

m
 = 83.67 rad/s and 
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= 314.2 rad/s, 

 

 (b) From equation (5.7), the transmissibility ratio is 
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 Since 
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!
n

 = 3.755, this becomes 
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 (c) The magnitude is 
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5.7 Plot the T.R. of Problem 5.6 for the cases ζ = 0.001, ζ = 0.025, and ζ = 1.1. 

 

 Solution: 
 

  T.R.=

  

1+ 2!r( )
2

1" r
2

( )
2

+ 2!r( )
2

  

 

 A plot of this is given for ζ = 0.001, ζ = 0.025, and ζ = 1.1. The plot is given here from 

Mathcad: 
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5.8 A simplified model of a washing machine is illustrated in Figure P5.8.  A bundle of wet 

clothes forms a mass of 10 kg (mb) in the machine and causes a rotating unbalance.  The 

rotating mass is 20 kg (including mb) and the diameter of the washer basket (2e) is 50 

cm.  Assume that the spin cycle rotates at 300 rpm.  Let k be 1000 N/m and ζ = 0.01.  

Calculate the force transmitted to the sides of the washing machine.  Discuss the 

assumptions made in your analysis in view of what you might know about washing 

machines. 

 

 Solution: The transmitted force is given by 
  
F

T
= k

2
+ c

2
!

r

2
 where 

  

c = 2!"
n
,   "

n
=

k

m
= 7.071  rad/s, "

r
= 300

2#

60
=31.42 rad/s,  

 and X is given by equation (2.84) as 

  

X =
m

0
e

m

r
2

1! r
2

( )
2

+ 2"r( )
2

 

 Since

  

r =
!

r

!
n

= 4.443 , then X = 0.1317 m and 

  
F

T
= (0.1317) (1000)

2
+ [2(0.01)(20)(7.071)]

2
(31.42)

2
= 132.2 N  

 Two important assumptions have been made: 

i) The out-of-balance mass is concentrated at a point and 

ii) The mass is constant and distributed evenly (keep in mind that water enters and 

leaves) so that the mass actually changes. 
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5.9 Referring to Problem 5.8, let the spring constant and damping rate become variable.  The 

quantities m, mb, e and ω are all fixed by the previous design of the washing machine.  

Design the isolation system (i.e., decide on which value of k and c to use) so that the 

force transmitted to the side of the washing machine (considered as ground) is less than 

100N. 

 

 Solution: 
 

 The force produced by the unbalance is Fr = mba where a is given by the magnitude of 

equation (2.81): 

 

  

   

F
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= 2467.4 N  

 

 Since FT < 100 N, 

 

  

  

T.R. =
F

T

F
r

=
100

2467.4
= 0.0405 

 

 If the damping ratio is kept at 0.01, this becomes 
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 Solving for r yields r = 5.079. 

 

 Since 

  

r =
!

r

k / m
,  
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r
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r
2
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2

= 765 N/m  

 and 

  
  
c = 2! km = 2 0.01( ) 765( ) 20( ) = 2.47  kg/s  
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5.10 A harmonic force of maximum value of 25 N and frequency of 180 cycles/min acts on a 

machine of 25 kg mass.  Design a support system for the machine (i.e., choose c, k) so 

that only 10% of the force applied to the machine is transmitted to the base supporting the 

machine. 

 

 Solution: From equation (5.7), 

 

  T.R.

  

= 0.1 =
1+ 2!r( )

2

1" r
2

( )
2

+ 2!r( )
2

  (1) 

 If we choose ζ = 0.1, then solving the equation (1) numerically yields r = 3.656.  Since r 

=

  

!

k / m
 then: 
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r
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2

= 665 N/m  

 and 

  
  
c = 2! km = 2 0.1( ) 665( ) 25( ) = 25.8 kg/s  
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5.11 Consider a machine of mass 70 kg mounted to ground through an isolation system of 

total stiffness 30,000 N/m, with a measured damping ratio of 0.2.  The machine produces 

a harmonic force of 450 N at 13 rad/s during steady-state operating conditions.  

Determine (a) the amplitude of motion of the machine, (b) the phase shift of the motion 

(with respect to a zero phase exciting force), (c) the transmissibility ratio, (d) the 

maximum dynamic force transmitted to the floor, and (e) the maximum velocity of the 

machine. 

 

 Solution: 
 

 (a) The amplitude of motion can be found from Window 5.2: 
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F

0
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 where 

 

!
n

=
k

m
 = 20.7 rad/s.  So, 

 

    X = 0.0229 m  

 

 (b) The phase can also be found from Window 5.2: 

 

  

   

! = tan
"1

2#$
n
$

$
n

2 "$ 2
= 22.5

!

= 0.393 rad  

 

 (c) From Eq. 5.7, with r = 

 

!

!
n

=0.628 

 

  

  

T.R. =
1+ 2!r( )

2

1" r
2

( )
2
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2

= 1.57  

 

 (d) The magnitude of the force transmitted to the ground is 

 

  
  
F

T
= T.R.( ) F

0
= 450( ) 1.57( ) = 707.6 N  

 

 (e) The maximum velocity would be 

 

  
  
! A

0
= 13( ) 0.0229( ) = 0.298 m/s  
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5.12 A small compressor weighs about 70 lb and runs at 900 rpm.  The compressor is mounted 

on four supports made of metal with negligible damping. 

 (a) Design the stiffness of these supports so that only 15% of the harmonic force 

produced by the compressor is transmitted to the foundation. 

 (b) Design a metal spring that provides the appropriate stiffness using Section 1.5 (refer 

to Table 1.2 for material properties). 

 

 Solution: 
 

 (a)  From Figure 5.9, the lines of 85% reduction and 900 rpm meet at a static deflection 

of 0.35 in.  The spring stiffness is then 

 

  

  

k =
mg

!
s

=
70 lb

0.35 in
= 200 lb/in  

 

 The stiffness of each support should be k/4 = 50 lb/in. 

 

 (b) Try a helical spring given by equation (1.67): 

 

  

  
k = 50 lb/in = 8756 N/m =

Gd
4

64nR
3

 

 

 Using R = 0.1 m, n = 10, and G = 8.0 × 10
10

 N/m
2
 (for steel) yields 

 

  

  

d =
64 8756( ) 10( ) 0.1( )

3

8.0 !10
10

"
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%

&

'
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1/ 4

= 0.0163 m =  1.63 cm  
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5.13 Typically, in designing an isolation system, one cannot choose any continuous value of k 

and c but rather, works from a parts catalog wherein manufacturers list isolators available 

and their properties (and costs, details of which are ignored here).  Table 5.3 lists several 

made up examples of available parts.  Using this table, design an isolator for a 500-kg 

compressor running in steady state at 1500 rev/min.  Keep in mind that as a rule of thumb 

compressors usually require a frequency ratio of r =3. 

 

 Solution: 
 

 Since 

  

r =
!

k / m
,  then 

 

  

  
k =

m! 2

r
2

=

500 1500
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3
2

= 1371/10
3
 N/m  

 

 Choose isolator R-3 from Table 5.3.  So, k = 1000 × 10
3
 N/m and c = 1500 N⋅s/m. 

 

 Check the value of r: 

 

  

  

r =

1500
2!
60

"
#$

%
&'

1000 (10
3

/ 500

= 3.51 

 

 This is reasonably close to r = 3. 
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5.14 An electric motor of mass 10 kg is mounted on four identical springs as indicated in 

Figure P5.14.  The motor operates at a steady-state speed of 1750 rpm.  The radius of 

gyration (see Example 1.4.6 for a definition) is 100 mm.  Assume that the springs are 

undamped and choose a design (i.e., pick k) such that the transmissibility ratio in the 

vertical direction is 0.0194.  With this value of k, determine the transmissibility ratio for 

the torsional vibration (i.e., using θ rather than x as the displacement coordinates). 

 

 Solution: 
 TABLE 5.3  Catalog values of stiffness and damping properties of various off-the-shelf 

isolators 

  

Part No.
a
 R-1 R-2 R-3 R-4 R-5 M-1 M-2 M-3 M-4 M-5 

k(10
3
N/m) 250 500 1000 1800 2500 75 150 250 500 750 

c(N⋅s/m) 2000 1800 1500 1000 500 110 115 140 160 200 

 

 
a
The "R" in the part number designates that the isolator is made of rubber, and the "M" 

designates metal.  In general, metal isolators are more expensive than rubber isolators. 

 

 With no damping, the transmissibility ratio is 

 

  

  
T.R. =  

1

r
2
!1

 

 

 where 

 

  

  

r =
!

4k / m
=

1750
2"
60

#
$%

&
'(

4k / 10

=
579.5

4k

0.0194 =
1

579.5( )
2

4k
)1

4k = 6391 N/m

 

 

 For each spring, k = 1598 N/m. 

 

 For torsional vibration, the equation of motion is 
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I !!! = "
mg

2
+ 2kr!

#

$
%

&

'
(r " 2kr! "

mg

2

#

$
%

&

'
(r  

 

 where 

  
r =

0.250 m

2
 = 0.125 m and from the definition of the radius of gyration and the 

center of percussion (see Example 1.4.6): 

 

  
  
I = mk

0

2
= 10( ) 0.1( )

2

= 0.1kg⋅m2
 

 

 So, 

  

  

0.1!!! + 4 1598( ) 0.125( )
2

! = 0

!!! + 998.6! = 0

 

 

 The frequency ratio, r, is now 

 

  

  

r =

1750
2!
60

"
#$

%
&'

998.6

= 5.80

T.R. =
1

r
2 (1

= 0.0306
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5.15 A large industrial exhaust fan is mounted on a steel frame in a factory.  The plant 

manager has decided to mount a storage bin on the same platform.  Adding mass to a 

system can change its dynamics substantially and the plant manager wants to know if this 

is a safe change to make.  The original design of the fan support system is not available.  

Hence measurements of the floor amplitude (horizontal motion) are made at several 

different motor speeds in an attempt to measure the system dynamics.  No resonance is 

observed in running the fan from zero to 500 rpm.  Deflection measurements are made 

and it is found that the amplitude is 10 mm at 500 rpm and 4.5 mm at 400 rpm.  The mass 

of the fan is 50 kg and the plant manager would like to store up to 50 kg on the same 

platform.  The best operating speed for the exhaust fan is between 400 and 500 rpm 

depending on environmental conditions in the plant. 

 

 Solution: 
 

 A steel frame would be very lightly damped, so 

 

 

  

X

Y
=

1

1! r
2

 

Since no resonance is observed between 0 and 500 rpm, r < 1. 

When 

 

! = 500
2"
60

#
$%

&
'(

= 52.36  rad/s, X = 10 mm, so 

 

 

  

10 =
Y

1!
52.36

"
n

#

$%
&

'(

2
 

 

Also, at 

 

! = 400
2"
60

#
$%

&
'(

= 41.89  rad/s, X = 4.5 mm, so 

 

 

  

4.5 =
Y

1!
41.89

"
n

#

$%
&

'(

2
 

 

Solving for ωn  and Y yields 

 

ωn = 59.57 rad/s 

Y = 2.275 mm 

The stiffness is k = mωn
2
 = (50)(59.57)

2
 = 177,453 N/m. If an additional 50 kg is added 

so that m = 100 kg, the natural frequency becomes 

 

  

!
n

=
177,453

100
= 42.13 rad/s = 402.3 rpm 
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This would not be advisable because the normal operating range is 400 rpm to 

500 rpm, and resonance would occur at 402.3 rpm. 
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5.16  A 350-kg rotating machine operates at 800 cycles/min.  It is desired to reduce the 

transmissibility ratio by one-fourth of its current value by adding a rubber vibration 

isolation pad.  How much static deflection must the pad be able to withstand? 

 

 Solution: 
 

 From equation (5.12), with R = 0.25: 

 

  

  

r =
2 ! 0.25

1! 0.25
= 1.528 =

"

k / m
=

800
2#
60

$
%&

'
()

k / 350

k = 1.053*10
6
 N/m

 

 

 The static deflection is 

 

  

  

!
s

=
mg

k
=

350( ) 9.81( )

1.053"10
6

= 3.26 mm  

 

5.17 A 68-kg electric motor is mounted on an isolator of mass 1200 kg.  The natural frequency 

of the entire system is 160 cycles/min and has a measured damping ratio of ζ = 1.  

Determine the amplitude of vibration and the force transmitted to the floor if the out-of-

balance force produced by the motor is F(t) = 100 sin (31.4t) in newtons. 

 

 Solution: 
 

 The amplitude of vibration is given in Window 5.2 as 

 

  

  

A
0

=
F

0
/ m

!
n

2 "! 2

( )
2

+ 2#!
n
!( )

2$
%&

'
()

1/ 2
 

 

 where F0 = 100 N, m = 1268 kg, ω = 31.4 rad/s, and 

  

!
n

= 160
2"
60

#
$%

&
'(

= 16.76  rad/s.  So, 

 

    X = 6.226 !10
"5

 m  

 

 The transmitted force is given by Eq. (5.6), with 

  
r =

31.4

16.76
= 1.874  
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F
T

= F
0

1+ 2!r( )
2

1" r
2

( )
2

+ 2!r( )
2

= 85.97 N  



5- 17 

5.18 The force exerted by an eccentric (e = 0.22 mm) flywheel of 1000 kg, is 600 cos(52.4t) in 

newtons.  Design a mounting to reduce the amplitude of the force exerted on the floor to 

1% of the force generated.  Use this choice of damping to ensure that the maximum force 

transmitted is never greater than twice the generated force. 

 

 Solution: 
 

 Two conditions are given.  The first is that T.R. = 2 at resonance (r = 1), and the second 

is that T.R. = 0.01 at the driving frequency.  Use the first condition to solve for ζ.  From 

equation (5.7), 

  

  

T .R. = 2 =
1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

! = 0.2887

 

 

 At the frequency, 

  

r =
52.4

k / 1000

, so 

 

  

  

T .R. = 0.01 =

1+ 2 0.2887( )r!
"

#
$

2

1% r
2

( )
2

+ 2 0.2887( )r!
"

#
$

2

!

"

&
&
&

#

$

'
'
'

r = 57.78 =
52.4

k / 1000

k = 822.6 N/m

 

 

 Also, 

 

  
  c = 2! km = 523.6 kg/s  
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5.19 A rotating machine weighing 4000 lb has an operating speed of 2000 rpm.  It is desired to 

reduce the amplitude of the transmitted force by 80% using isolation pads.  Calculate the 

stiffness required of the isolation pads to accomplish this design goal. 

 

 Solution: 
 

 Using Figure 5.9, the lines of 2000 rpm and 80% reduction meet at 
 
!

s
= 0.053 in.  The 

spring stiffness should be 

 

  

  

k =
mg

!
s

=
4000 lb

0.053 in
= 75,472 lb/in  
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5.20 The mass of a system may be changed to improve the vibration isolation characteristics.  

Such isolation systems often occur when mounting heavy compressors on factory floors.  

This is illustrated in Figure P5.20.  In this case the soil provides the stiffness of the 

isolation system (damping is neglected) and the design problem becomes that of choosing 

the value of the mass of the concrete block/compressor system.  Assume that the stiffness 

of the soil is about k = 2.0 × 10
7
 N/m and design the size of the concrete block (i.e., 

choose m) such that the isolation system reduces the transmitted force by 75%.  Assume 

that the density of concrete is ρ = 23,000 N/m
3
.  The surface area of the cement block is 4 

m
2
.  The steady-state operating speed of the compressor is 1800 rpm. 

 

 Solution: 
 

 Using Figure 5.9, the lines of 75% reduction and 1800 rpm cross at δs = 0.053 in = 

0.1346 cm.  Thus the weight of the block should be 

 

  
  
W

T
= m + M( )g = k!

s
= 2.0 "10

7
0.1346 "10

#2

( ) = 26,924 N  

 

 The compressor weights mg = (2000 lb)(4.448222 N/lb) = 8896.4 N. The concrete block 

should weight W = WT – 8896.4 = 18,028 N.  The volume of the block needs to be 

 

  

  

V =
W

!
=

18,028

23,000
= 0.7838 m

2
 

 

 Assume the surface area is part exposed to the surface.  Let the top be a meters on each 

side (square) and b meters deep.  The volume and surface area equations are 

 

  

  

A = 4m
2

= a
2

V = 0.7838 m
3

= a
2
b

 

 

 Solving for a and b yields 

 

  

  

a = 2 m

b = 0.196 m
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5.21 The instrument board of an aircraft is mounted on an isolation pad to protect the panel 

from vibration of the aircraft frame.  The dominant vibration in the aircraft is measured to 

be at 2000 rpm.  Because of size limitation in the aircraft's cabin, the isolators are only 

allowed to deflect 1/8 in.  Find the percent of motion transmitted to the instrument pane if 

it weights 50 lb. 

 

 Solution: 
 

 From equation (2.71), with negligible damping, 

 

  

  

X

Y
=

1

1! r
2

( )
2

 

 

 This is the same as the equation that yields Figure 5.9.  The lines of 2000 rpm and δs = 

0.125 in meet at 93%.  So only 7% of the plane's motion is transmitted to the instrument 

panel. 

 

 

5.22 Design a base isolation system for an electronic module of mass 5 kg so that only 10% of 

the displacement of the base is transmitted into displacement of the module at 50 Hz.  

What will the transmissibility be if the frequency of the base motion changes to 100 Hz?  

What if it reduces to 25 Hz? 

 

 Solution: Using Figure 5.9, the lines of 90% reduction and ω = (50 Hz)(60) = 3000 rpm 

meet at δs = 0.042 in = 0.1067 cm.  The spring stiffness is then 

 

  

  

k =
mg

!
s

=
5( ) 9.81( )

0.001067
= 45,979 N/m  

 

 The natural frequency is   ! = k / m  = 95.89 rad/s. 

 At ω = 100 Hz, 

  
r =

100 2!( )

95.89
= 6.552, so the transmissibility ratio is 

 

  

  
T .R. =

1

r
2
!1

= 0.0238  

 

 At ω = 25 Hz, 

  
r =

100 2!( )

95.89
= 1.638, so the transmissibility ratio is 

 

  

  
T .R. =

1

r
2
!1

= 0.594  
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5.23 Redesign the system of Problem 5.22 such that the smallest transmissibility ratio possible 

is obtained over the range 50 to 75 Hz. 

 

 Solution: 
 

 If the deflection is limited, say 0.1 in, then the smallest transmissibility ratio in the 

frequency range of 50 to 75 Hz (3000 to 4500 rpm) would be 0.04 (96% reduction).  The 

stiffness would be 

 

  

  

k =
mg

!
s

=
5( ) 9.81( )

0.1( ) 2.54( ) 0.01( )
= 19,311 N/m  

 

 

 

 

5.24 A 2-kg printed circuit board for a computer is to be isolated from external vibration of 

frequency 3 rad/s at a maximum amplitude of 1 mm, as illustrated in Figure P5.24.  

Design an undamped isolator such that the transmitted displacement is 10% of the base 

motion.  Also calculate the range of transmitted force. 

 

 Solution: 
 

 Using Figure 5.9, the lines of 90% reduction and ω = 3(2π)(60)=1131 rpm meet at δs = 

0.3 in = 0.762 cm.  The stiffness is 

 

  

  

k =
mg

!
s

=
(2)(9.81)

0.00762
= 2574.8 N/m  

 

 From Window 5.1, the transmitted force would be 

 

  

  

F
T

= kYr
2

1

1! r
2

"
#$

%
&'

 

 

 Since Y = 0.001 m and r = 

 

3

2574.8 / 2

= 0.08361 

 

  
  
F

T
= 0.0181 N  
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5.25 Change the design of the isolator of Problem 5.24 by using a damping material with 

damping value ζ chosen such that the maximum T.R. at resonance is 2. 

 

 Solution: 
 

 At resonance, r = 1 and T.R. = 2, so 

 

  

 

2 =
1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

 

 

 Solving for ζ yields ζ = 0.2887.  Also T.R. = 0.01 at ω = 3 rad/s, so 

 

  

  

0.01 =
1+ 0.3333r

2

1! r
2

( )
2

+ 0.3333r
2

"

#

$
$
$

%

&

'
'
'

r = 6.134

 

 

 Solving for k, 

 

  

  

k =
m!

2

r
2

=
2( ) 3( )

2

6.134
2

= 0478 N/m  

 

 The damping constant is 

 

  
  c = 2! km = 0.565 kg/s  

 

 

5.26 Calculate the damping ratio required to limit the displacement transmissibility to 4 at 

resonance for any damped isolation system. 

 

 Solution: 
 

 At resonance r = 1, so 

 

  

  

T .R. = 4 =
1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

! = 0.129
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Problems and Solutions Section 5.3 (5.27 through 5.36) 
 
5.27 A motor is mounted on a platform that is observed to vibrate excessively at an operating 

speed of 6000 rpm producing a 250-N force.  Design a vibration absorber (undamped) to 

add to the platform.  Note that in this case the absorber mass will only be allowed to 

move 2 mm because of geometric and size constraints. 

 

 Solution: 
 

 The amplitude of the absorber mass can be found from equation (5.22) and used to solve 

for ka: 

 

  

  

X
a

= 0.002 m =
F

0

k
a

=
250

k
a

k
a

= 125,000 N/m

 

 

 From equation (5.21), 

 

  

  

! 2
=

k
a

m
a

m
a

=
k

a

! 2
=

125,000

6000
2"
60

#
$%

&
'(

)

*
+

,

-
.

2
= 0.317 kg
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5.28 Consider an undamped vibration absorber with β = 1 and µ = 0.2.  Determine the 

operating range of frequencies for which 
  
Xk / F

0
! 0.5. 

 

 Solution: 
 

 From equation (5.24), with β = 

  

!
a

!
p

= 1(i.e., !
a

= !
p
) and µ = 0.2,  

 

  

  

Xk

F
0

=

1!
"
"

a

#

$%
&

'(

1+ 0.2 1( )
2

!
"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
1!

"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
! 0.2 1( )

2

=

1!
"
"

a

#

$%
&

'(

2

"
"

a

#

$%
&

'(

4

! 2.2
"
"

a

#

$%
&

'(

2

+ 1

 

 

 For 

  

Xk

F
0

 = 0.5, this yields 

 

  

  

0.5
!
!

a

"

#$
%

&'

4

( 0.1
!
!

a

"

#$
%

&'

2

( 0.5 = 0  

 

 Solving for the physical solution gives 

 

  

  

!
!

a

"

#$
%

&'
= 1.051 

 

 Solving for 

 

!
!

a

"

#$
%

&'
 gives 

 

  

  

!
!

a

"

#$
%

&'
= 0.955,  1.813 
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 Comparing this to the sketch in Figure 5.15, the values for which 

  

Xk

F
0

! 5 are 

  
  
0.955!

a
"! " 1.051!

a
  and  ! # 1.813!

a
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5.29 Consider an internal combustion engine that is modeled as a lumped inertia attached to 

ground through a spring.  Assuming that the system has a measured resonance of 100 

rad/s, design an absorber so that the amplitude is 0.01 m for a (measured) force input of 

10
2 
N. 

 

 Solution: 
 

 The amplitude of the absorber mass can be found from equation (5.22) and used to solve 

for ka: 

 

  

  

X
a

= 0.01m =
F

0

k
a

=
100

k
a

k
a

= 10,000 N/m

 

 

 Choose ω = 2ωn = 200 rad/s.  From equation (5.21), 

 

  

  

m
a

=
k

a

!
2

=
10,000

200
2

= 0.25 kg  

 

 

5.30 A small rotating machine weighing 50 lb runs at a constant speed of 6000 rpm.  The 

machine was installed in a building and it was discovered that the system was operating 

at resonance.  Design a retrofit undamped absorber such that the nearest resonance is at 

least 20% away from the driving frequency. 

 

 Solution: 
 

 By observing Figure 5.15, the values of µ = 0.25 and β = 1 result in the combined 

system's natural frequencies being 28.1% above the driving frequency and 21.8% below 

the driving frequency (since 

 

! =
"

a

"
p

 = 1 and ω = ωp).  So the absorber should weigh 

 

  
  
m

a
= µm = 0.25( ) 50 lb( ) = 12.5 lb  

 

 and have stiffness 

 

  

  

k
a

= m
a
!

a

2
= m

a
! 2

= 12.5 lb( ) 4.448222 N/lb( )
1

9.81

"
#$

%
&'

6000( )
2 2(

60

"
#$

%
&'

2

k
a

= 2.24 )10
6
 N/m = 12,800 lb/in
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5.31  A 3000-kg machine tool exhibits a large resonance at 120 Hz.  The plant manager 

attaches an absorber to the machine of 600 kg tuned to 120 Hz.  Calculate the range of 

frequencies at which the amplitude of the machine vibration is less with the absorber 

fitted than without the absorber. 

 

 Solution: 
 

 For 

  

Xk

F
0

 = 1, equation (5.24) yields 

 

  

  

1+ µ
!

a

!
p

"

#
$

%

&
'

2

(
!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
1(

!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
( µ

!
a

!
p

"

#
$

%

&
'

2

= 1(
!
!

a

"

#$
%

&'

2

 

 

 Since 

  
µ =

m
a

m
=

600

3000
= 0.2,  this becomes 

  

!
!

a

"

#$
%

&'
= 0,  1.0954. 

 

 For 

  

Xk

F
0

 = -1, equation (5.24) yields 

 

  

  

1+ µ
!

a

!
p

"

#
$

%

&
'

2

(
!
!

p

"

#
$

%

&
'

2)

*

+
+

,

-

.

.
1(

!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
( µ

!
a

!
p

"

#
$

%

&
'

2

=
!
!

a

"

#$
%

&'

2

(1

!
a

!
p

"

#
$

%

&
'

2

!
!

a

"

#$
%

&'

4

( 2 + µ + 1( )
!

a

!
p

"

#
$

%

&
'

2)

*

+
+

,

-

.

.
!
!

a

"

#$
%

&'

2

+ 2 = 0

 

 

 Since 
  
!

a
= !

p
,  

  

  

!
!

a

"

#$
%

&'

4

( 3.2
!
!

a

"

#$
%

&'

2

+ 2 = 0

!
!

a

"

#$
%

&'
= 0.9229,1.5324

 

 

 The range of frequencies at which 

  

Xk

F
0

 > 1 is 

  
  
0 <! < 0.9229!

a
 and 1.0954!

a
<! < 1.5324!

a
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 Since ωa = ωp, 

  0 < ω < 695.8 rad/s and 825.9 < ω < 1155.4 rad/s 
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5.32 A motor-generator set is designed with steady-state operating speed between 2000 and 

4000 rpm.  Unfortunately, due to an imbalance in the machine, a large violent vibration 

occurs at around 3000 rpm.  An initial absorber design is implemented with a mass of 2 

kg tuned to 3000 rpm.  This, however, causes the combined system natural frequencies 

that occur at 2500 and 3000 rpm.  Redesign the absorber so that ω1 < 2000 rpm and ω2 > 

4000 rpm, rendering the system safe for operation. 

 

 Solution: The mass of the primary system can be computed from equation (5.25).  Since 

 

! =
"

a

"
p

 = 1 and 

  

!
1

!
a

"

#$
%

&'

2

=
2500

3000

"
#$

%
&'

2

= 0.6944,  then 

 

  

  

1( )
2

0.6944( )
2

! 1+ 1( )
2

1+ µ( )"
#$

%
&'

0.6944( ) + 1 = 0

µ = 0.1344

m =
m

a

µ
=

2

0.1344
= 14.876 kg

 

 

 By increasing µ to 0.55 and decreasing β to 0.89, the design goal can be achieved.  The 

mass and stiffness of the absorber should be 

 

  

  

m
a

= µm = 0.55( ) 14.876( ) = 8.18 kg

k
a

= m
a
!

a

2
= m

a
" 2!

p

2
= 8.18( ) 0.89( )

2

3000
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 639,600 N/m

 

 

5.33 A rotating machine is mounted on the floor of a building.  Together, the mass of the 

machines and the floor is 2000 lb.  The machine operates in steady state at 600 rpm and 

causes the floor of the building to shake.  The floor-machine system can be modeled as a 

spring-mass system similar to the optical table of Figure 5.14.  Design an undamped 

absorber system to correct this problem.  Make sure you consider the bandwidth. 

 

 Solution: To minimize the transmitted force, let ωa = ω = 600 rpm.  Also, since the floor 

shakes at 600 rpm, it is assumed that ωp = 600 rpm so that β = 1.  Using equation (5.26) 

with µ = 0.1 yields 

 

  

  

!
n

!
a

= 0.8543,  1.1705  

 

 So the natural frequencies of the combined system are ω1 = 512.6 rpm and ω2 = 702.3 

rpm.  These are sufficiently enough away from 600 rpm to avoid problems.  Therefore 

the mass and stiffness of the absorber are 
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m
a

= µm = 0.1( ) 2000 lbm( ) = 200 lbm

k
a

= m
a
!

a

2
= 200 lbm( )

slug

32.1174 lbm

"
#$

%
&'

600
2(
60

"
#$

%
&'

)

*
+

,

-
.

2

= 25,541 lb/ft
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5.34 A pipe carrying steam through a section of a factory vibrates violently when the driving 

pump hits a speed of 300 rpm (see Figure P5.34).  In an attempt to design an absorber, a 

trial 9-kg absorber tuned to 300 rpm was attached.  By changing the pump speed it was 

found that the pipe-absorber system has a resonance at 207 rpm.  Redesign the absorber 

so that the natural frequencies are 40% away from the driving frequency. 

 

 Solution: 
 

 The driving frequency is 300 rpm.  40% above and below this frequency is 180 rpm and 

420 rpm.  This is the design goal. 

 

 The mass of the primary system can be computed from equation (5.25).  Since 

 

! =
"

a

"
p

= 1 and 

  

!
1

!
a

"

#$
%

&'

2

=
207

300

"
#$

%
&'

2

= 0.4761,  then 

 

  

  

1( )
2

0.4761( )
2

! 1+ 1( )
2

1+ µ( )"
#$

%
&'

0.4761( ) + 1 = 0

µ = 0.5765

m =
m

a

µ
=

9

0.5765
= 15.611 kg

 

 

 By increasing µ to 0.9 and decreasing β to 0.85, the design goal can be achieved.  The 

mass and stiffness of the absorber should be 

 

  

  

m
a

= µm = 0.9( ) 15.611( ) = 14.05 kg

k
a

= m
a
!

a

2
= m

a
" 2!

p

2
= 14.05( ) 0.85( )

2

300
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 10,020 N/m

 

 

 Note that µ is very large, which means a poor design. 
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5.35 A machine sorts bolts according to their size by moving a screen back and forth using a 

primary system of 2500 kg with a natural frequency of 400 cycle/min.  Design a vibration 

absorber so that the machine-absorber system has natural frequencies below 160 

cycles/min and above 320 rpm.  The machine is illustrated in Figure P5.35. 

 

 Solution: 
 

 Using Equation (5.26), and choose (by trial and error) β = 0.4 and µ = 0.01, the design 

goal of ω1 < 160 rpm and ω2 > 320 rpm can be achieved.  The actual values are ω1 = 

159.8 rpm and ω2 = 400.4 rpm.  The mass and stiffness of the absorber should be 

 

  

  

m
a

= µm = 0.01( ) 2500( ) = 25 kg

k
a

= m
a
!

a

2
= m

a
" 2!

[

2
= 25( ) 0.2( )

2

400
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 1754.6 N/m
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5.36 A dynamic absorber is designed with µ = 1/4 and ωa = ωp.  Calculate the frequency range 

for which the ratio
  
Xk / F

0
< 1. 

 

 Solution: 
 

 From Equation (5.24), with β = 

 

!
a

!
p

 = 1 and µ = 0.25, 

 

  

  

Xk

F
0

=

1!
"
"

a

#

$%
&

'(

2

1+ 0.25 1
2

( ) !
"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
1!

"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
! 0.25 1( )

2

=

1!
"
"

a

#

$%
&

'(

2

"
"

a

#

$%
&

'(

4

! 2.25
"
"

a

#

$%
&

'(

2

+ 1

 

 

 For

  

Xk

F
0

= 1, this yields 

 

  

  

!
!

a

"

#$
%

&'

4

(1.25
!
!

a

"

#$
%

&'

2

= 0

!
!

a

"

#$
%

&'
= 0,  1.118

 

 

 For 

  

Xk

F
0

 = 1, this yields 

  

  

!
"
"

a

#

$%
&

'(

4

+ 3.25
"
"

a

#

$%
&

'(

2

! 2 = 0

"
"

a

= 0.9081,  1.557
#

$%
&

'(

 

 

 Comparing this to the sketch in Figure 5.15, the values for which 

  

Xk

F
0

< 1 are 



5- 34 

  
  
0.9081!

a
<! < 1.118!

a
 and ! > 1.557!

a
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Problems and Solutions Section 5.4 (5.37 through 5.52) 
 

5.37 A machine, largely made of aluminum, is modeled as a simple mass (of 100 kg) attached 

to ground through a spring of 2000 N/m.  The machine is subjected to a 100-N harmonic 

force at 20 rad/s.  Design an undamped tuned absorber system (i.e., calculate ma and ka) 

so that the machine is stationary at steady state.  Aluminum, of course, is not completely 

undamped and has internal damping that gives rise to a damping ratio of about ζ = 0.001.  

Similarly, the steel spring for the absorber gives rise to internal damping of about ζa = 

0.0015.  Calculate how much this spoils the absorber design by determining the 

magnitude X using equation (5.32). 

 

 Solution: 
 

 From equation (5.21), the steady-state vibration will be zero when 

 

  

  

!
2

=
k

a

m
a

 

 

 Choosing µ = 0.2 yields 

 

  

  

m
a

= µm = 0.2( ) 100( ) = 20 kg

k
a

 
= m

a
!

a

2
= 20( ) 20( )

2

= 8000 N/m

 

 

 With damping of ζ = 0.001 and ζa = 0.0015, the values of c and ca are 

 

  

  

c = 2! km = 2 0.001( ) 2000( ) 100( ) = 0.894 kg/s

c
a

= 2!
a

k
a
m

a
= 2 0.0015( ) 8000( ) 20( ) = 1.2 kg/s

 

 

 From equation (5.32), 

 

  

  

X =

k
a
! m

a
"

2

( ) F
0

+ c
a
"F

0
j

det K !"
2
M +" jC( )

 

 

 Since 

 

  

  

M =
100 0

0 20

!

"
#

$

%
& C =

2.0944 '1.2

'1.2 1.2

!

"
#

$

%
& K =

10,000 '8000

'8000 8000

!

"
#

$

%
&  

 

 the denominator is –6.4×10
7
-1.104×10

6
j, so the value of X is 
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X =

k
a
m

a
!

2

( ) F
0

+ c
a
!F

0
j( )

det K "!
2
M +! jC( )

 

 

 Using Window 5.4, the magnitude is 

 

  
  
X = 3.75!10

"5
 m  

 

 This is a very small displacement, so the addition of internal damping will not affect the 

design very much. 

 

 

 

5.38 Plot the magnitude of the primary system calculated in Problem 5.37 with and without 

the internal damping.  Discuss how the damping affects the bandwidth and performance 

of the absorber designed without knowledge of internal damping. 

 

 Solution: From Problem 5.37, the values are 

 

  

  

m = 100 kg m
a

= 20 kg

c = 0.8944 kg/s c
a

= 1.2 kg/s

k = 2000 N/m k
a

= 8000 N/m

F
0

= 100 N ! = 20 rad/s

 

 

 Using Equation (5.32), the magnitude of X is plotted versus ω with and without the 

internal damping (c).  Note that X is reduced when X < F0/k = 0.05 m and magnified 

when X > 0.05 m. The plots of the two values of X show that there is no observable 

difference when internal damping is added.  In this case, knowledge of internal damping 

is not necessary. 
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5.39 Derive Equation (5.35) for the damped absorber from Eqs. (5.34) and (5.32) along with 

Window 5.4.  Also derive the nondimensional form of Equation (5.37) from Equation 

(5.35).  Note the definition of ζ given in Equation (5.36) is not the same as the ζ values 

used in Problems 5.37 and 5.38. 

 

 Solution: 
 

 Substituting Equation (5.34) into the denominator of Equation (5.32) yields 

 

  

  

X

F
0

=

k
a
! m

a
" 2

( ) + c
a
" j

!m" 2
+ k( ) !m

a
" 2

+ k
a( )#

$
%
& + k ! m + m

a( )"
2

( )c
a
"#

$
%
&

j
 

 

 Referring to Window 5.4, the value of 

  

X

F
0

 can be found by noting that 

 

 

  

A
1

= k
a
! m

a
"

B
1

= c
a
"

A
2

= !m"
2

+ k( ) !m
a
"

2
+ k

a( ) ! m
a
k

a
"

2

B
2

= k ! m + m
a( )"

2

( )c
a
"

 

 

 Since 

 

  

  

X

F
0

=
A

1

2
+ B

1

2

A
2

2
+ B

2

2
 

 

 then 

 

  

  

X
2

F
0

2
=

k
a
! m

a
" 2

( )
2

+ c
a

2" 2

!m" 2
+ k( ) !m

a
" 2

+ k
a( ) ! m

a
k

a
" 2#

$
%
&

2

+ k ! m + m
a( )"

2#
$

%
&

2

c
a

2"2

 

 

 which is Equation (5.35) 

 

 To derive Equation (5.37), substitute 
  
c

a
= 2!m

a
"

p
,k

a
= m

a
"

a

2
,  and m

a
= µm,  then 

multiply by k
2
 to get 
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X
2
k

2

F
0

2
=

k
2 !

a

2 "! 2

( )
2

+ 4# 2!
p

2!
dr

2
k

2

k " m! 2

( ) !
a

2 "! 2

( ) " µm
a

2! 2$
%

&
'

2

+ k " 1" µ( )m! 2$% &'
2

4( )# 2!
p

2! 2

 

 

 Substituting 
  
k = m!

p

2
,! = r!

p
,  and !

a
= "!

p
 yields 

 

  

X
2
k

2

F
0

2
=

m
2!

p

4 " 2!
p

2 # r
2!

p

2( ) + 4$ !
p

2!
dr

2
k

2

!
p

2 # r
2!

p

2( ) " 2!
p

2 # r
2!

p

2( )m # µm" 2
r

2!
p

4%
&

'
(

2

+ m!
p

2 # 1# µ( )mr
2!

p

2%
&

'
(

2

4( )$ 2
r

2!
p

2

 

 

 Canceling m
2
 and 

  
!

p

8
 yields 

 

  

  

X
2
k

2

F
0

2
=

! 2 " r
2

( )
2

+ 2#r( )
2

1" r
2

( ) ! 2 " r
2

( ) " µr
2! 2$

%
&
'

2

+ 2#r( )
2

1" r
2 " µr

2

( )
2

 

 

 Rearranging and taking the square root gives the form of Equation (5.37): 

 

  

  

Xk

F
0

=

2!r( )
2

+ r
2 " # 2

( )
2

2!r( )
2

r
2 "1+ µr

2

( )
2

+ µr
2# 2 " r

2 "1( ) r
2 " # 2

( )$
%

&
'

2
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5.40 (Project)  If you have a three-dimensional graphics routine available, plot Equation (5.37) 

[i.e., plot (X/Δ) versus both r and ζ for 0 < ζ < 1 and 0 < r < 3, and a fixed µ and β.]  

Discuss the nature of your results.  Does this plot indicate any obvious design choices?  

How does it compare to the information obtained by the series of plots given in Figures 

5.19 to 5.21?  (Three-dimensional plots such as these are becoming commonplace and 

have not yet been taken advantage of fully in vibration absorber design.) 

 Solution: To compare to Figure 5.18, the values µ = 0.25 and β = 0.8 in Equation (5.37) 

yield 

 

  

  

X

!
=

2"r( )
2

+ r
2 # 0.64( )

2

2"r( )
2

1.25r
2 #1( )

2

+ 0.16r
2 # r

2 #1( ) r
2 # 0.64( )$

%
&
'

2
 

 

 This is plotted for 0.5 < r < 2 and 0.5 < ζ < 1.  A Mathcad plot is given. 

 

 



5- 41 

 This supplies much more information than two-dimensional plots. 
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5.41 Repeat Problem 5.40 by plotting 
  
X / !  versus r and β for a fixed ζ and µ. 

 

 Solution:  Using Equation (5.37) with µ = 0.25 and ζ 0.1 yields 

 

  

  

X

!
=

0.04r
2

+ r
2 " # 2

( )
2

0.04r
2

1.25r
2 "1( )

2

+ 0.25r
2# 2 " r

2 "1( ) r
2 " # 2

( )$
%

&
'

2
 

 

 This is plotted for 0.5 < r < 1.25 and 0 < β < 3. 
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5.42 (Project) The full damped vibration absorber equations (5.32) and (5.33) have not 

historically been used in absorber design because of the complicated nature of the 

complex arithmetic involved.  However, if you have a symbolic manipulation code 

available to you, calculate an expression for the magnitude X by using the code to 

calculate the magnitude and phase of Equation (5.32).  Apply your results to the absorber 

design indicated in Problem 5.37 by using ma, ka and ζa as design variables (i.e., design 

the absorber). 

 

 Solution: 
 

 Equation (5.32): 

 

  

  

X =

k
a
! m

a
"

2

( ) F
0

+ c
a
"F

0

det K !"
2
M +" jC( )

 

 

 where M, C and K are defined above Equation (5.32). 

 

 Using Equation (5.34) for the denominator, then calculating the magnitude yields 

 

  

X =

k
a
! m

a
" 2

( ) F
0

2
+ c

a

2" 2
F

0

2

k ! m" 2

( ) k
a
! m

a
" 2

( ) ! m
a
k

a
+ c

a
c( )"

2#
$

%
&

2

+ k
a
c + kc

a
! c

a
m + m

a( ) + cm
a( )"

2#
$

%
&

2

" 2

 

 

 The phase is 

  

 

! = tan
"1

Im

Re

#
$%

&
'(

 

 where the imaginary part, denoted Im, is 

  
  
Im = !ck

a

2
l + 2k

a
m

a
! 2k

a
km

a
! k

a

2
m

a( )"
2
 

 and the real part, denoted Re, is 

  

  

Re = k
a

2
k + c

a

2
! k

a

2
m ! 2k

a
km

a
! k

a

2
m

a( )"
2

+ k + k
a( )m

a

2
+ 2k

a
mm

a
! c

a

2
m + m

a( )( )"
4
! mm

a

2
"

6
 

 From Problem 5.37 and its solution, the values are 

m = 100 kg ma = 20 kg 

c = 0.8944 kg/s ca = 1.2 kg/s 

k = 2000 N/m ka = 8000 N/m 

F0 = 100 N ω = 20 rad/s 

 

 Substituting these values into the magnitude equation yields 

  
  
X = 3.75!10

"5
 m  

 

 This is the same result as given in Problem 5.37. 
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5.43 A machine of mass 200 kg is driven harmonically by a 100-N force at 10 rad/s.  The 

stiffness of the machine is 20,000 N/m.  Design a broadband vibration absorber [i.e., 

Equation (5.37)] to limit the machine's motion as much as possible over the frequency 

range 8 to 12 rad/s.  Note that other physical constraints limit the added absorber mass to 

be at most 50 kg. 

 

 Solution: 
 

 Since 

 

!
p

=
k

m
 = 10 rad/s, then r ranges from 

 

  

  

8

10
! r !

12

10

0.8 ! r ! 1.2

 

 

 By observing Figure 5.21, the values of µ = 0.25, β = 0.8, and ζ = 0.27 yield a reasonable 

solution for the required range of r.  So the values of ma, ca, and ka are 

 

 ma = µm = (0.25)(200) = 50 kg 

 ca = 2ζmaωa = 2(0.27)(50)(10) = 270 kg/s 

 ka = ma!a"
2! p

2
= (50)(10)(0.8)

2
(10)

2
= 32000 N/m  

 

 Note that an extensive optimization could have been used to solve for µ, β, and ζ, but this 

is not covered until section 5.5. 
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5.44 Often absorber designs are afterthoughts such as indicated in example 5.3.1.  Add a 

damper to the absorber design of Figure 5.17 to increase the useful bandwidth of 

operation of the absorber system in the event the driving frequency drifts beyond the 

range indicated in Example 5.3.2. 

 

 Solution: 
 

 From Examples 5.3.1 and 5.3.2, 

 

  

  

m = 73.16 kg m
a

= 18.29 kg

k = 2600 N/m k
a

= 6500 N/m

7.4059 <! < 21.0821 rad/s

 

 

 The values µ and β are 

 

  

  

µ =
m

a

m
= 0.25

! =
"

a

"
p

=
k

a
/ m

a

k / m
= 3.1623

 

 

 Choosing ζ = 0.2 (by trial and error) will allow ω to go beyond 21.0821 rad/s without 

  

X
k

F
0

 going above 1.  However, it will not prevent 

  

Xk

F
0

 from going above 1 when ω < 

7.4089 rad/s.  The value of ca is 

 

  

  

c
a

= 2!m
a
"

p
= 2(0.2)(18.29)

2600

73.16
= 43.61 kg/s  
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5.45 Again consider the absorber design of Example 5.3.1.  If the absorber spring is made of 

aluminum and introduces a damping ratio of ζ = 0.001, calculate the effect of this on the 

deflection of the saw (primary system) with the design given in Example 5.3.1. 

 

 Solution: 
 

 From Examples 5.3.1 and 5.3.2, 

 

  

  

X =

k
a
! m

a
"

2

( ) F
0

+ c
a
"F

0
j

det K !"
2
M +" jC( )

 

 

 where 
  
c

a
= 2! k

a
m

a
= 2 0.001( ) 6500( ) 18.29( ) = 0.6896 kg/s  

 

 Since 

 

 

  

M =
73.16 0

0 18.29

!

"
#

$

%
& C =

0.6896 '0.6896

'0.6896 0.6896

!

"
#

$

%
& K =

9100 '6500

'6500 6500

!

"
#

$

%
&  

 

 The denominator is -1.4131×10
7
-12,363j when ω = 7.4089 rad/s, 

 

  
  
X

1
= 0.00499 m  

 

 and when ω = 21.0821 rad/s, 

 

  
  
X

2
= 0.00512 m  

 

 The nondimensional values become 

 

  

  

X
j
k

F
0

= 0.999

X
2
k

F
0

= 1.023

 

 

 There is very little effect on the saw deflection since the values of 

  

Xk

F
0

 are still 

approximately 1 at the endpoints of the driving frequency range. 
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5.46 Consider the undamped primary system with a viscous absorber as modeled in Figure 

5.22 and the rotational counterpart of Figure 5.23.  Calculate the magnification factor 

  
Xk / M

O
 for a 400 kg compressor having a natural frequency of 16.2 Hz if driven at 

resonance, for an absorber system defined by µ = 0.133 and ζ = 0.025. 

 

 Solution: 
 

 From Eqs. (5.39), with µ = 0.133, ζ = 0.025, and r = 1: 

 

  

  

Xk

M
0

=
4! 2

+ r
2

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2
= 150.6  

 

 The design with ζ = 0.1 produces the smallest displacement. 

 

 

 

 

 

 

5.47 Recalculate the magnification factor 
  
Xk / M

O
 for the compressor of Problem 5.46 if the 

damping factor is changed to ζ = 0.1.  Which absorber design produces the smallest 

displacement of the primary system ζ = 0.025 or ζ = 0.1? 

 

 Solution: 
 

 From Equation (5.39), with µ = 0.133, ζ = 0.1, and r = 1: 

 

  

  

Xk

M
0

=
4! 2

+ r
2

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2
= 38.34  

 

 The design with ζ = 0.1 produces the smallest displacement. 
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5.48 Consider a one-degree-of-freedom model of the nose of an aircraft (A-10) as illustrated in 

Figure P5.48.  The nose cracked under fatigue during battle conditions.  This problem has 

been fixed by adding a viscoelastic material to the inside of the skin to act as a damped 

vibration absorber as illustrated in Figure P5.48.  This fixed the problem and the vibration 

fatigue cracking disappeared in the A-10's after they were retrofitted with viscoelastic 

damping treatments.  While the actual values remain classified, use the following data to 

calculate the required damping ratio given M = 100 kg, fa = 3 Hz, and k = 3.533 × 10
6
 

N/m, such that the maximum response is less than 0.25 mm.  Note that since mass always 

needs to be limited in an aircraft, use µ = 0.1 in your design. 

 

 Solution: 
 

 From Equation (5.39), with µ = 0.1, and r = 

  

30(2! )

k / m
 = 1.885, and M0 replaced by F0, 

 

  

  

Xk

F
0

=
4! 2

+ 1.885( )
2

4! 2
1.1( ) 1.885( )

2

"1
#
$%

&
'(

2

1.885( )
2

"1
#
$%

&
'(

2

1.885( )
2

=
4! 2

+ 3.553

33.834! + 23.159

 

 

 With no damping

  

Xk

F
0

= 0.392 .  This value must be reduced.  Choose a "high" damping 

ratio of ζ = 0.7 so that 

 

  

  

Xk

F
0

= 0.372  

 The value of ca is 

 

  

  

c
a

= 2!µm
k

m
= 2 0.7( ) 0.1( ) 100( )

10
6

100
= 1400 kg/s  
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5.49 Plot an amplification curve such as Figure 5.24 by using Equation (5.39) for ζ = 0.02 

after several values of µ (µ = 0.1, 0.25, 0.5, and 1).  Can you form any conclusions about 

the effect of the mass ratio on the response of the primary system?  Note that as µ gets 

large 
  
Xk / M

O
 gets very small.  What is wrong with using very large µ in absorber 

design? 

 

 Solution: 
 

 From Equation (5.39), with ζ = 0.1: 

 

  

  

Xk

M
0

=
0.0016 + r

2

0.0016 r
2

+ µr
2
!1( )

2

+ r
2
!1( )

2

r
2

 

 

 The following plot shows amplitude curves for µ = 0.1, 0.25, 0.5, and 1. 

 

 Note that as the mass ratio, µ, increases, the response of the primary system decreases, 

particularly in the region near resonance.  A higher mass ratio, however, indicates a poor 

design (and can be quite expensive). 
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5.50 A Houdaille damper is to be designed for an automobile engine.  Choose a value for ζ 

and µ if the magnification 
  
Xk / M

O
 is to be limited to 4 at resonance.  (One solution is 

µ = 1, ζ = 0.129.) 

 

 Solution: 
 

 From Equation (5.39), with r = 1: 

 

  

  

Xk

M
0

=
4! 2

+ 1

4! 2
µ

2
 

 

 For 

  

Xk

M
0

 = 4, 

 

 

  
 
64! 2

µ
2

= 4! 2
+ 1 

 

 If µ is limited to 0.3, then the value of ζ is 

  

 

64! 2
0.3( )

2

= 4! 2
+ 1

! = 0.754

 

 

 

 

5.51 Determine the amplitude of vibration for the various dampers of Problem 5.46 if ζ = 0.1, 

and F0 = 100 N. 

 

 Solution: 
 

 From Problem 5.46, 

 

  
  
k = m!

n

2
= 400( ) 16.2( ) 2"( )#

$
%
&

2

= 4.144 '10
6
N/m  

 

 Also, µ = 0.1, r = 1, and F0 = 100 N.  So, from Equation (5.39), with M0 replaced by F0, 

 

  

  

X =
F

0

k

4! 2
+ r

2

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2

= 0.00123 m  
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5.52 (Project) Use your knowledge of absorbers and isolation to design a device that will 

protect a mass from both shock inputs and harmonic inputs.  It may help to have a 

particular device in mind such as the module discussed in Figure 5.6. 

 

 Solution: 
 

 One way to approach this problem would be to design an isolator to protect the mass 

from shock inputs, and an absorber to protect the mass from harmonic disturbances.  An 

absorber would be particularly useful if the frequency of the harmonic disturbance(s) is 

well known. 

 

 This is a very general approach to such a problem, and solutions will vary greatly 

depending on the particular parameters involved in an actual system. 



5- 53 

Problems and Solutions Section 5.5 (5.53 through 5.66) 
 

5.53 Design a Houdaille damper for an engine modeled as having an inertia of 1.5 kg
.
m

2
 and a 

natural frequency of 33 Hz.  Choose a design such that the maximum dynamic 

magnification is less than 6: 

 

  

  

Xk

M
0

< 6  

 

 The design consists of choosing J2 and ca, the required optimal damping. 

 

 Solution: 
 

 From Equation (5.50), 

 

  

  

Xk

M
0

!

"#
$

%&
max

= 1+
2

µ
 

 

 Since 

  

Xk

M
0

< 6,  then 

  

 

6 > 1+
2

µ

µ > 0.4

 

 

 Choose µ = 0.4.  From Equation (5.49), the optimal damping is 

 

  

  

!
op

=
1

2 µ + 1( ) µ + 2( )
= 0.3858  

 

 The values of J2 and ca are 

 

  

  

J
2

= µJ
1

= 0.4( ) 1.5 kg !m2
/ rad( ) = 0.6 kg !m2

/ rad

c
a

= 2"
op

J
2
#

p
= 2 0.3858( ) 0.6( ) 33( ) 2$( )  = 95.98 N !m ! s/rad
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5.54 Consider the damped vibration absorber of equation (5.37) with β fixed at β = 1/2 and µ 

fixed at µ = 0.25.  Calculate the value of !  that minimizes
  
X / ! .  Plot this function for 

several values of 0 < !  < 1 to check your design.  If you cannot solve this analytically, 

consider using a three-dimensional plot of 
  
X / !  versus r and !  to determine your 

design. 

 

 Solution: 
 

 From equation (5.37), with β = 0.5 and µ = 0.25, let 

 

  

  

f r,!( ) =
X

"

4! 2
r

2
+ r

2 # 0.25( )
2

4! 2
r

2
1.25r

2 #1( )
2

+ 0.065r
2 # r

2 #1( ) r
2 # 0.25( )$

%
&
'

2
 

 

 From equataions (5.44) and (5.45), with 

  
f =

A
1/ 2

B
1/ 2

,  

 

  

  

!f

!"
= 0  

 becomes 

   BdA! AdB  

 

 Since 
  
B = 4! 2

r
2

1.25r "1( )
2

+ 0.0625r
2 " r

2 "1( ) r
2 " 0.25( )#

$
%
&

2

 and 

  
A = 4! 2

r
2

+ r
2 " 0.25( )

2

,  then 

 

  

  

dA =
!A

!"
= 8"r

2

dB =
!B

!"
= 8"r

2
1.25r

2 #1( )
2

 

 

 So, 

 

  

  

4! 2
r

2
1.25r

2 "1( )
2

+ 0.0625r
2 " 4

2 "1( ) r
2 " 0.25( )#

$
%
&

2

{ } 8!r
2

( )

= 4! 2
r

2
+ r

2 " 0.25( )
2

{ } 8!r
2

( ) 1.25r
2 "1( )

2

0.0625r
2 " r

2 "1( ) r
2 " 0.25( )

2#
$'

%
&(

= r
2 " 0.25( )

2

1.25r
2 "1( )

2
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 Taking the square root yields 

 

  
  
0.625r

2
! r

2
!1( ) r

2
! 0.25( ) = ± r

2
! 0.25( ) 1.25r

2
!1( )  

 

 Solving for r yields 

 

    r = 0.4896,  0.9628  

 

 Now take the derivative 

 

  

  

!f

!r
= 0  

 

 becomes 

 

   BdA = AdB  

 

 Since 
  
B = 4! 2

r
2

1.25r
2 "1( )

2

+ 0.0625r
2 " r

2 "1( ) r
2 " 0.25( )#

$
%
&

2

 and 

  
A = 4! 2

r
2

+ r
2 " 0.25( )

2

,  then 

 

  

  

dA !
"A

"#
= 8# 2

r + 2 r
2 $ 0.25( ) 2r( )

dB !
"B

"#
= 8# 2

r 1.25r
2 $1( )

2

+ 8# 2
r

2
1.25r

2 $ 2r( )( ) 2.5r( )

+2 0.0625r
2 $ 4

2 $1( ) r
2 $ 0.25( )%

&
'
( 0.125r $ 2r( ) r

2 $ 0.25( ) $ r
2 $1( ) 2r( )%

&
'
(

 

 

 Solving B dA = A dB for ζ yields 

 

  

  

r = 0.4896!" = 0.1145!
X

#
st

= 1.4279

r = 0.9628!" = 0.3197 !
X

#
st

= 6.3029

 

 

 To determine the optimal damping ratio, make a plot of
  
X / !   versus r for ζ = 0.01, 

0.1145, 0.3197, and 0.7. 
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 The value of ζ = 0.3197 yields the best overall response (i.e., the lowest maximum). 
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5.55 For a Houdaille damper with mass ratio µ = 0.25, calculate the optimum damping ratio 

and the frequency at which the damper is most effective at reducing the amplitude of 

vibration of the primary system. 

 

 Solution: 
 

 From equation (5.49), with µ = 0.25, 

 

  

  

!
op

=
1

2 µ + 1( ) µ + 2( )
= 0.422  

 

 From equation (5.48), 

 

  

  

r =
2

2 + µ
= 0.943 

 

 The damper would be most effective at
  
! = r!

n
= 0.943!

n
, i.e., where the amplitude is 

greatest: 
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5.56 Consider again the system of Problem 5.53.  If the damping ratio is changed to ζ = 0.1, 

what happens to
  
Xk / M

0
? 

 

 Solution: 
 

 If ζop = 0.1, the value of µ becomes 

 

  

 

0.1 =
1

2 µ + 1( ) µ + 2( )

0.02µ
2

+ 0.06µ = 0.96 = 0

µ = !8.589,  5.589

 

 

 Clearly µ = 5.589 is the physical solution.  The maximum value of 

  

Xk

M
0

 would be 

 

  

  

Xk

M
0

!

"#
$

%&
max

= 1+
2

µ
= 1.358  

 

 which is less than 6 (the requirement of Problem 5.53).  Note that the value of µ is 

extremely large. 
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5.57 Derive Equation (5.42) from Equation (5.35) and derive Equation (5.49) for the optimal 

damping ratio. 

 

 Solution: 
 

 Equation (5.37) is derived from Equation (5.35) in Problem 5.39. 

 

 Start with Equation (5.37): 

 

  

  

Xk

F
0

=

2!r( )
2

+ r
2 " # 2

( )
2

2!r( )
2

r
2 "1+ µr

2

( )
2

+ µr
2# 2 " r

2 "1( ) r
2 " # 2

( )$
%

&
'

2
 

 

 To derive Equation (5.42), which is the same as Equation (5.39), note that 

  
c = k

a
= !

a
= 0,  which also means β = 0.  Since this is a moment equation, F0 is replaced 

by M0.  Therefore, 

 

  

  

Xk

F
0

=
2!r( )

2

+ r
4

2!r( )
2

r
2 "1+ µr

2

( )
2

+ r
2 "1( )

2

r
4

=
4! 2

+ r
4

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2

 

 

 which is Equation (5.42) after canceling r
2
. 

 

 To derive Equation (5.49), first let Equation (5.42) be f(r,ζ).  Since

  
f =

A
1/ 2

B
1/ 2

, where 

  A = 4! 2
+ r

2
 and 

  
B = 4! 2

r
2

+ µr
2 "1( )

2

+ r
2 "1( )

2

r
2
,  then 

 

  

  

!f

!"
= 0  

 

 becomes 

   BdA = AdB  

 

 where 

  

  

dA !
"A

"#
= 8#

dB !
"B

"#
= 8# r

2
+ µr

2 $1( )
2

 

 So, 
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4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2{ } 8!( ) = 4! 2

+ r
2

{ } 8!( ) r
2

+ µr
2 "1( )

2

r
2 "1( )

2

= r
2

+ µr
2 "1( )

2

r
2 "1( ) = ± r

2
+ µr

2 "1( )

 

 

 Taking the minus sign (the plus sign yields r = 0). 

 

  

  

2 + µ( )r
2
! 2 = 0

r =
2

2 + µ( )

 

 

 Now take the other partial derivative

  

!f

!r
= 0 , which becomes 

 

  

  

BdA = AdB

dA !
"A

"r
= 2r

dB !
"B

"r
= 16# 2

r 1+ µ( ) r
2

+ µr
2 $1( ) + 4r

3
r

2 $1( ) + 2r r
2 $1( )

2

 

 

 So, 

  

  

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2{ } 2r( )

= 4! 2
+ r

2

{ } 16! 2
r 1+ µ( ) r

2
+ µr

2 "1( ) + 4r
3
(r

2 "1) + 2r r
2 "1( )

2#
$%

&
'(

 

 

 Substituting 

  

r =
2

2 + µ( )
 yields, after rearranging 

 

 

 

4! 2
2

2 + µ
+

2µ

2 + µ
"1

#

$
%

&

'
(

2

+
2

2 + µ
"1

#

$
%

&

'
(

2

2

2 + µ

)
*+

,
-.

= 4! 2
+

2

2 + µ

#

$
%

&

'
( 8! 2

1" µ( )
2

2 + µ
+

2µ

2 + µ
"1

)
*+

,
-.

+ 2
2

2 + µ

)
*+

,
-.

2

2 + µ
"1

)
*+

,
-.

+
2

2 + µ
"1

)
*+

,
-.

2#

$
%
%

&

'
(
(

 

 

 Expanding and canceling terms yields 
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4! 4
1+ µ( ) 2 + µ( ) + 2! 2

µ "
2

2 + µ
= 0  

 

 The physical solution for ζ is 

 

  

 

! =
1

2 1+ µ( ) 2 + µ( )
 

 which is Equation (5.49). 
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5.58 Consider the design suggested in Example 5.5.1.  Calculate the percent change in the 

maximum deflection if the damping constant changes 10% from an optimal value.  If the 

optimal damping is fixed but the mass of the absorber changes by 10%, what percent 

change in 
  
Xk / M

0 max
 results?  Is the optimal absorber design more sensitive to changes 

in ca or ma? 

 

 Solution: 
 

 From Problems 5.51 and 5.46, F0 = 100 N, k = 4.144 × 10
6
 N/m, and µ = 0.133.  The 

optimal damping is 

 

  

  

!
op

=
1

2 1+ µ( ) 2 + µ( )
= 0.4549  

 

 The deflection is given by Equation (5.42), and M0 replaced by F0, 

 

  

  

X =
F

0

k

4! 2
+ r

2

4! 2
r

2
+ µr

2 "1( )
2

+ r
2 "1( )

2

r
2

 

 

 Also, the maximum displacement will occur at 

  

r =
2

2 + µ( )
 = 0.9683.  If the damping 

constant changes by 10%, ζ will also change by 10% since

  

! =
c

a

2m"
p

.  The value of X 

for 0.9 
  
!

op
,!

op
,  and 1.1 !

op
 is  

 

  

  

! = 0.9!
op

" X = 3.870 #10
$4

 m

! = !
op

" X = 3.870 #10
$4

 m

! = 1.1!
op

" X = 3.870 #10
$4

 m

 

 

 There  is no change in X with a 10% change in ζop. 

 

 If ma changes by 10%, µ will also change by 10% since

 
µ =

m
a

m
.  The value of 

  

Xk

F
0

!

"#
$

%&
max

 

for 0.9µ, µ, and 1.1µ is 
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0.9µ ! r = 0.9714 !
Xk

F
0

"

#$
%

&'
max

= 17.708(+10.4%)

µ ! r = 0.9683 !
Xk

F
0

"

#$
%

&'
max

= 16.038

1.1µ ! r = 0.9318 !
Xk

F
0

"

#$
%

&'
max

= 14.671 (8.5%( )

 

 

 The displacement is more sensitive to changes in ma than ca. 
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5.59 Consider the elastic isolation problem described in Figure 5.26.  Derive equations (5.57) 

and (5.58) from equation (5.53). 

 

 Solution: 
 

 Rewrite equation (5.53) in matrix form as 

 

  

  

k
1
! m" 2

+ jc" ! jc"

! jc" ! k
2

+ jc"( )

#

$
%
%

&

'
(
(

X
1

X
2

#

$
%
%

&

'
(
(

=
F

0

0

#

$
%

&

'
(  

 

 The inverse of the matrix on the left is 

 

  

  

1

!k
2

k
1
! m" 2

( ) ! jc" k
1
+ k

2
m" 2

( )

! k
2

+ jc"( ) jc"

jc" k
1
m" 2

+ jc"

#

$
%
%

&

'
(
(

 

 

 Solving for X1 and X2 yields 

 

  

  

X
1

=
k

2
+ jc!( ) F

0

k
2

k
1
" m!

2

( ) + jc! k
1
+ k

2
" m!

dr

2

( )

X
2

=
c!

dr
F

0
j

k
2

k
1
" m!

2

( ) + jc! k
1
+ k

2
" m!

dr

2

( )

 

 

 which are equations (5.54) and (5.55). 
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5.60 Use the derivative calculation for finding maximum and minimum to derive equations 

(5.57) and (5.58) for the elastic damper system. 

 

 Solution: 
 

 From equation (5.56) 

 

  

  

T .R. =

1+ 4 1+ !( )
2

" 2
r

2

1# r
2

( )
2

+ 4" 2
r

2
1+ ! # r

2!( )
2

 

 

 Equation (5.45) is applicable here, so that 

 

   BdA = AdB  

 

 where 
  
A = 1+ 4 1+ !( )

2

" 2
r

2
 and 

  
B = 1! r

2

( )
2

+ 4" 2
r

2
1+ # ! r

2#( )
2

 differentiating with 

respect to ζ yields 

 

  

  

dA !
"A

"#
= 8 1+ $( )

2

#r
2

dB !
"B

"#
= 8#r

2
1+ $ % r

2$( )
2

 

 

 So, 

 

  

  

1! r
2

( )
2

+ 4" 2
r

2
1+ # ! r

2#( )
2

{ } 8( ) 1+ #( )
2

"r
2

= 1+ 4 1+ #( )
2

" 2
r

2{ } 8"r
2

( ) 1+ # ! r
2#( )

2

1! r
2

( )
2

1+ #( )
2

= 1+ # ! r
2#( )

2

1! r
2

( ) 1+ #( ) = ± 1+ # ! r
2#( )

 

 

 The minus sign yields the physical result 

 

  

  

r
2

2! + 1( ) = 2 1+ !( )

r =
2 1+ !( )

1+ 2!

 

 

 which is equation (5.57) 
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 Differentiating with respect to r yields 

 

  

  

dA !
"A

"r
= 8 1+ #( )

2

$ 2
r

dB !
"B

"r
= 2 1% r

2

( ) %2r( ) + 8$ 2
r 1+ # % r

2#( )
2

+ 8$ 2
r

2
1+ # % r

2#( ) %2r#( )

 

 

 So, 

  

  

1! r
2

( )
2

+ 4" 2
r

2
1+ # ! r

2#( )
2

{ } 8" 2
r( ) 1+ #( )

2

= 1+ 4 1+ #( )
2

" 2
r

2{ } !4r 1! r
2

( ) + 8" 2
r 1+ # ! r

2#( )
2

!16#" 2
r

3
1+ # ! r

2#( )$
%&

'
()

 

 

 Substituting for r and manipulating yields 

 

 

 

64! 1+ !( )
5 1

1+ 2!
"
#$

%
&'

(

)
*

+

,
-.

4
+ 8 ! 1+ !( )

2

+ 1+ !( )
3

1+ 2!( ) / 2 1+ !( )
4(

)*
+
,-
. 2 / 1+ 2!( ) = 0  

 

 Solving for ζ yields the physical result 

 

  

 

! =

2 1+ 2"( ) / "

4 1+ "( )
 

 

 which is Equation (5.58). 
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5.61 A 1000-kg mass is suspended from ground by a 40,000-N/m spring.  A viscoelastic 

damper is added, as indicated in Figure 5.26.  Design the isolator (choose k2 and c) such 

that when a 70-N sinusoidal force is applied to the mass, no more than 100 N is 

transmitted to ground. 

 

 Solution: 
 

 From equation (5.59), 

 

  

  

T .R.( )
max

= 1+ 2!

F
T

F
0

=
100

70
= 1.429 = 1+ 2!

! = 0.2143

 

 

 The isolator stiffness should be 

 

  
  
k

2
= ! k

1
= 0.2143( ) 40,000( ) = 8571N/m  

 

 From equation (5.58), 

 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.7518  

 

 The isolator damping should be 

 

  

  

c = 2!
op

k
1

m
= 2 0.7518( )

40,000

1000
= 9.51kg/s  
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5.62 Consider the isolation design of Example 5.5.2.  If the value of the damping coefficient 

changes 10% from the optimal value (of 188.56 kg/s), what percent change occurs in 

(T.R.)max?  If c remains at its optimal value and k2 changes by 10%, what percent change 

occurs in (T.R.)max?  Is the design of this type of isolation more sensitive to changes in 

damping or stiffness? 

 

 Solution: 
 

 From Example 5.5.2, c = 188.56 kg/s and k2 = 200 N/m.  If the value of c changes by 

10%, the value of T.R. becomes (with r = 5 and γ = 0.5), 

 

  

  

0.9c ! "
op

= 0.4243 ! T .R. = 0.1228(#1.78%)

c ! "
op

= 0.4714 ! T .R. = 0.1250

1.1c ! "
op

= 0.5185 ! T .R. = 0.1267 +1.39%( )

 

 

 If the value of k2 changes by 10%, the value of T.R. becomes (with r = 5 and ζ = 0.4714), 

 

  

  

0.9k
2

! " = 0.45 ! T .R. = 0.1327 +6.17%( )

k
2

! " = 0.5 ! T .R. = 0.1250

1.1k
2

! " = 0.55 ! T .R. = 0.1183 #5.31%( )

 

 

 This design is more sensitive to changes in stiffness. 
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5.63 A 3000-kg machine is mounted on an isolator with an elastically coupled viscous damper 

such as indicated in Figure 5.26.  The machine stiffness (k1) is 2.943 × 10
6
 N/m, γ = 0.5, 

and c = 56.4 × 10
3
 N⋅s/m.  The machine, a large compressor, develops a harmonic force 

of 1000 N at 7 Hz.  Determine the amplitude of vibration of the machine. 

 

 Solution: 
 

 The amplitude of vibration is given by Equation (5.54) as 

 

  

  

X
1

=
k

2
+ jc!( ) F

0

k
2

k
1
" m!

2

( ) + jc! k
1
+ k

2
" m!

dr

2

( )
 

 

 Since F0 = 1000 N, ω = 7(2π) = 43.98 rad/s, m = 3000 kg, c = 56.4 × 10
3
 N⋅s/m, k1 = 

2.943 × 10
6
 N/m, and k2 = γk1 = 1.4715× 10

6
 N/m, then 

 

  
  
X

1
= !4.982 "10

!4
!1.816 "10

!4
j  

 

 The magnitude is 

 

  
  
X

1
= 5.303!10

"4
 m  
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5.64 Again consider the compressor isolation design given in Problem 5.63.  If the isolation 

material is changed so that the damping in the isolator is changed to ζ = 0.15, what is the 

force transmitted?  Next determine the optimal value for the damping ratio and calculate 

the resulting transmitted force. 

 

 Solution: 
 

 From Problem 5.63, γ = 0.5, F0 = 1000 N, and 

  

r =
!

k
1

/ m
=

7 2"( )

2.943#10
6

/ 3000

 = 

1.404.  Since ζ = 0.15, the transmitted force is [from Equation (5.56)], 

 

  

  

F
T

= F
0

1+ 4 1+ !( )
2

" 2
r

2

1# r
2

( )
2

+ 4" 2
r

2
1+ ! # r

2!( )
2

= 1188 N  

 

 The optimal value for the damping ratio is found from equation (5.58): 

 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.4714  

 

 The transmitted force is then 

 

  
  
F

T
= 1874 N  
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5.65 Consider the optimal vibration isolation design of Problem 5.64.  Calculate the optimal 

design if the compressor's steady-state driving frequency changes to 24.7 Hz.  If the 

wrong optimal point is used (i.e., if the optimal damping for the 7-Hz driving frequency 

is used), what happens to the transmissibility ratio? 

 

 Solution: 
 

 From Problems 5.63 and 5.64, γ = 0.5, F0 = 1000 N, k1 = 2.943 × 10
6
 N, and m = 3000 

kg. 

 

 The optimal damping is 

 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.4714  

 

 The value of c and k2 would be 

 

  

  

c = 2!
op

k
1
m = 88.589 kg/s

k
2

= " k
1

= 1.472 #10
6
 N/m

 

 

 The isolation design is independent of the driving frequency in this problem, so the 

transmissibility ratio would not change. 
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5.66 Recall the optimal vibration absorber of Problem 5.53.  This design is based on a steady-

state response.  Calculate the response of the primary system to an impulse of magnitude 

M0 applied to the primary inertia J1.  How does the maximum amplitude of the transient 

compare to that in steady state? 

 

 Solution: 
 

 The response of the system given in Problem 5.53 cannot be solved by the means of 

modal analysis given in Chapter 4 because the system is not proportionally damped.  

However, the steady-state response of a damped system to an impulse is simply zero.  

Therefore, the maximum amplitude of the transient will be of interest.  For a sinusoidal 

input, a numerical simulation might be necessary to determine the effects of the transient 

response. 
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Problems and Solutions Section 5.6 (5.67 through 5.73) 
 
5.67 Compare the resonant amplitude at steady state (assume a driving frequency of 100 Hz) 

of a piece of nitrite rubber at 50°F versus the value at 75°F.  Use the values for η from 

Table 5.2. 

 

 Solution: 
 

 From equation (5.63), 

 

  

  

X =
F

0

k 1+! j( ) " m#
2

 

 

 At resonance 

 

! =
k

m
 so 

 

  

  

X =
F

0

k 1!" j( ) !1
=

F
0

k" j
 

 

 The magnitude is 

 

  

  

X =
1

!
F

0

k

"

#$
%

&'
 

 

 At 50°, η = 0.5 and at 75°, η = 0.28, so 

 

  

   

X
50
!

=
2F

0

k

X
75
!

=
3.57F

0

k
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5.68 Using Equation (5.67), calculate the new modulus of a 0.05 × 0.01 × 1, piece of pinned-

pinned aluminum covered with a 1-cm-thick piece of nitrite rubber at 75°F driven at 100 

Hz. 

 

 Solution: 
 

 From Table 1.2, E1 = 7.1 × 10
10

 N/m
2
 for aluminum.  From Table 5.2, 

  
E

2
= 2.758 !10

7
N/m

2
for nitrate rubber, Also, 

 

  

  

I = I
1

=
1

3
0.05( ) 1( )

3

= 0.01667 m
4

e
2

=
E

2

E
1

=
2.758 !10

7

7.1!10
10

= 3.885!10
"4

h
2

=
H

2

H
1

=
0.01

0.01
= 1

 

 

 From Equation (5.67), 

 

  

  

E =
E

1
I

1

I
1+ e

2
h

2

2
+ 3 1+ h

2
( )

2 e
2
h

2

1+ e
2

j
2

!

"
#

$

%
& = 7.136 '10

10
 N/m

2
 

 

5.69 Calculate Problem 5.68 again at 50°F.  What percent effect does this change in 

temperature have on the modulus of the layered material? 

 

 Solution: 
 

 From Problem 5.68, with 
  
E

2
= 4.137 !10

7
 N/m

2
, 

 

  

  

I = I
1

= 0.01667 m
4

e
2

=
E

2

E
1

=
4.137 !10

7

7.1!10
10

= 5.827 !10
"4

h
2

=
H

2

H
1

=
0.01

0.01
= 1

 

 

 From Equation (5.67), 
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E =
E

1
I

1

I
1+ e

2
h

2

2
+ 3 1+ h

2
( )

2 e
2
h

2

1+ e
2
h

2

!

"
#

$

%
& = 7.154 '10

10
 N/m

2
 

 

 This is an increase of 0.25% of the layered material's modulus. 
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5.70 Repeat the design of Example 5.6.1 by 

 (a)  changing the operating frequency to 1000 Hz, and 

 (b)  changing the operating temperature to 50°F. 

 Discuss which of these designs yields the most favorable system. 

 

 Solution: 
 

 From Ex. 5.6.1, 
  
E

1
= 7.1!10

10
N/m

2
 and h2 = 1. 

 

 (a)  75°, 1000 Hz 

 

  

  

!
2

= 0.55

E
2

= 4.826 "10
7
N/m

2

e
2

=
E

2

E
1

= 6.797 "10
#4

 

 

 From Equation (5.68), 

 

  

  

! =

e
2
h

2
3+ 6h

2
+ 4h

2

2
+ 2e

2
h

2

2
+ e

2

2
h

2

4

( )

1+ e
2
h

2
( ) 1+ 4e

2
h

2
+ 6e

2
h

2

2
+ 4e

2
h

2

3
+ e

2

2
h

2

4

( )
!

2
= 0.00481 

 

 (b)  50°, 1000 Hz 

 

  

  

!
2

= 0.5

E
2

= 4.137 "10
7
 N/m

2

e
2

=
E

2

E
1

=
4.137 "10

7

7.1"10
10

= 5.827 "10
#4

 

 

 From Equation (5.68), 

 

  
 
! = 0.00375 

 

 Increasing the driving frequency results in a higher loss factor compared to the effects of 

lowering the temperature. 
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5.71 Reconsider Example 5.6.2.  Make a plot of thickness of the damping treatment versus 

loss factor. 

 

 Solution: 
 

 From Ex. 5.6.2, η2 = 0.261, e2 = 0.01, and H1 = 1 cm.  So, from Equation (5.69), 

 

  

  

! = 14e
2

H
2

2

H
1

2
!

2
= 0.03654H

2

2
H

2
 in cm( )  

 

 
A plot of η versus H2 in centimeters 
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5.72 Calculate the maximum transmissibility coefficient of the center of the shelf of Example 

5.6.1.  Make a plot of the maximum transmissibility ratio for this system frequency, using 

Table 5.2 for each temperature. 

 

 Solution: If the system is modeled as shown in Figure 5.18, then the maximum 

transmissibility occurs at (from Equation (5.50)), 

  

  

Xk

F
0

!

"#
$

%&
max

= 1+
2

µ
 

 where µ is found from Equation (5.49) as the solution to 

  

 

! =
1

2 µ + 1( ) µ + 2( )
 

 The value of ζ is 

 

!

2
 at resonance.  So, at 75° and 100 Hz, 

  

  

! =
"

2
=

0.00151

2
= 0.000755 =

1

2 µ + 1( ) µ + 2( )

                             # µ = 935

Xk

F
0

= 1+
2

935
= 1.002

 

 For 50° and 100 Hz, η = 0.00375 (from Problem 5.70), so 

  

  

! =
"

2
=

0.00375

2
= 0.001875 =

1

2 µ + 1( ) µ + 2( )

µ = 375.6

Xk

F
0

= 1+
2

375.6
= 1.005
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This gives some idea of  the 

relationship, but not a very 

good one as it includes only 

two points 
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5.73 The damping ratio associated with steel is about ζ = 0.001.  Does it make any difference 

whether the shelf in Example 5.6.1 is made out of aluminum or steel?  What percent 

improvement in damping ratio at resonance does the rubber layer provide the steel shelf? 

 

 Solution: 
 

 If the shelf in Ex. 5.6.1 is made out of steel, E1 = 2.0 × 10
11

 N/m
2
.  Therefore, 

 

  

  

e
2

=
E

2

E
1

=
2.758 !10

7

2.0 !10
11

= 0.0001379  

 

 Also, η2 = 0.55 and h2 = 1.  From Equation (5.68), 

 

  

  

! =

e
2
h

2
3+ 6h

2
+ 4h

2

2
+ 2e

2
h

2

2
+ e

2

2
H

2

4

( )

1+ e
2
h

2
( ) 1+ 4e

2
h

2
+ 6e

2
h

2

3
+ 4e

2
h

2

3
+ e

2
h

2

4

( )
!

2
= 0.0005  

 

 At resonance, 

 

! =
"

2
= 0.00025. The rubber actually reduced the damping of the steel 

shelf by 75%. 
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Problems and Solution Section 5.7 (5.74 through 5.80) 
 
5.74 A 100-kg compressor rotor has a shaft stiffness of 1.4 × 10

7
 N/m.  The compressor is 

designed to operate at a speed of 6000 rpm.  The internal damping of the rotor shaft 

system is measured to be ζ = 0.01. 

 (a)  If the rotor has an eccentric radius of 1 cm, what is the rotor system's critical speed? 

 (b) Calculate the whirl amplitude at critical speed.  Compare your results to those of 

Example 5.7.1. 

 

 Solution: 
 (a)  The critical speed is the rotor's natural frequency, so 

 

  

  

!
c

=
k

m
=

1.4 "10
7

100
= 374.2 rad/s =  3573 rpm  

 

 (b)  At critical speed, r = 1, so from Equation (5.81), 

 

  

  

X =
!

2"
=

0.01

2 0.01( )
= 0.5 m  

 

 So a system with higher eccentricity and lower damping has a greater whirl amplitude 

(see Example 5.7.1). 

 

 
5.75 Redesign the rotor system of Problem 5.74 such that the whirl amplitude at critical speed 

is less than 1 cm by changing the mass of the rotor. 

 

 Solution: From Problem 5.74, k = 1.4 × 10
7
 N/m, m = 100 kg, ζ = 0.01, and α = 0.01m.  

Since the whirl amplitude at critical speed must be less than 0.01 m, the value of ζ that 

would satisfy this is, from equation (5.81), 

  

X =
!

2"

" =
!

2X
=

0.01

2 0.01( )
= 0.5

 

 The original damping ratio was 0.01, so the value of c is 

  

  

c = 2!m" = 2 0.01( ) 100( )
1.4 #10

7

100
= 784.33 kg/s  

 So, the new mass should be, with ζ = 0.5, 
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748.33 = 2 0.5( )m
k

m
= km = 1.4 !10

7
m

                                  " m = 0.04 kg

 

 This is not practical. 
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5.76 Determine the effect of the rotor system's damping ratio on the design of the whirl 

amplitude at critical speed for the system of Example 5.7.1 by plotting X at r = 1 for ζ 

between 0 < ζ < 1. 

 

 Solution: 
 

 From Example 5.7.1, with r = 1 and α = 0.001 m, 

 

  

  

X =
0.001

2!
=

0.0005

!
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5.77 The flywheel of an automobile engine has a mass of about 50 kg and an eccentricity of 

about 1 cm.  The operating speed ranges from 1200 rpm (idle) to 5000 rpm (red line).  

Choose the remaining parameters so that whirling amplitude is never more than 1 mm. 

 

 Solution: 
 

 From Equation (5.81), 

 

  

  

X = 0.001 =
0.01r

2

1! r
2

( )
2

+ 2"r( )
2

 

 

 Choosing ζ = 0.1, the physical solution is 

 

    r = 0.3018  

 

 By observing Figure 5.34, r = 0.3018 is the maximum value of r.  So at 
  
!

r( )
max

 = 500 

rpm, the stiffness must be 

 

  

  

r = 0.3018 =

5000
2!
60

"
#$

%
&'

k / 50

k = 1.505(10
8
 N/m
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5.78 Consider the design of the compressor rotor system of Example 5.7.1.  The amplitude of 

the whirling motion depends on the parameters α, ζ, m, k and the driving frequency.  

Which parameter has the greatest effect on the amplitude?  Discuss your results. 

 

 Solution: 
 

 From Example 5.7.1, α = 0.001 m, ζ = 0.05, m = 55 kg, ωr = 6000 rpm, and k = 1.4 × 10
7
 

N/m.  To find out what effect each parameter has on this system, each value will be 

varied by 10%. 

 

 The original system has r = 1.2454 and X = 0.002746 m. 

 

  

  

0.9a = 0.009m ! r = 1.2454 ! X = 0.002471 m (-10.0%)

1.1a = 0.0011 m ! r = 1.2454 ! X = 0.003020 m +10.0%( )

1.9" = 0.045 ! r = 1.2454 ! X = 0.002759 m +0.465%( )

1.1" = 0.055 ! r = 1.2454 ! X = 0.002732 m -0.507%( )

0.9m = 49.5 kg ! r = 1.1815 ! X = 0.003379 m +23.1%( )

1.1m = 60.5 kg ! r = 1.3062 ! X = 0.002376 m -13.5%( )

0.9k = 1.26 #10
7
 N/m ! r = 1.3127 ! X = 0.002344 m -14.6%( )

1.1k = 1.54 #10
7
 N/m ! r = 1.1874 ! X = 0.003304 m +20.3%( )

 

 

 The mass and stiffness values have the greatest effect on the amplitude, while the 

damping ratio has the smallest effect. 
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5.79 At critical speed the amplitude is determined entirely by the damping ratio and the 

eccentricity.  If a rotor has an eccentricity of 1 cm, what value of damping ratio is 

required to limit the deflection to 1 cm? 

 

 Solution: 
 

 Since X = 0.01 m, a = 0.01 m, and at critical speed r = 1, then from Equation (5.81), 

 

  

  

X = 0.01 m =
a

2!
=

0.01

2!

! = 0.5

 

 

  

 

 

 

5.80 A rotor system has damping limited by ζ < 0.05.  What is the maximum value of 

eccentricity allowable in the rotor design if the maximum amplitude at critical speed must 

be less than 1 cm? 

 

 Solution: 
 

 Since X = 0.01 m, ζ < 0.05, and at critical speed r = 1, then from Equation (5.81), 

 

  

  

X = 0.01 m =
a

2!
=

a

2 0.05( )

a = 0.001 m =  1 mm
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Problems and Solutions Section 5.8 (5.81 through 5.85) 
 
5.81 Recall the definitions of settling time, time to peak, and overshoot given in Example 3.2.1 

and illustrated in Figure 3.6.  Consider a single-degree-of-freedom system with mass m = 

2 kg, damping coefficient c = 0.8 N⋅s/m, and stiffness 8 N/m.  Design a PD controller 

such that the settling time of the closed-loop system is less than 10 s. 

 

 Solution: The settling time is 

  

  

t
s

=
3

!"
 

 Since ts = 10 s, 

  
 
!" = 0.3 

 

 The equation of motion with a PD controller is 

 

  
   
m!!x + c + g

2
( ) !x + k + g

1
( )x = 0  

 

 So, 

 

  

  

! =
k + g

1

m
=

8 + g
1

2

" =
c + g

2

2m!
=

0.8 + g
2

2 2( )!

 

 

 Therefore, 

 

  

  

!" =
0.8 + g

2

4"
#

$%
&

'(
" = 0.3

g
2

= 0.4 N ) s/m

 

 

 The gain g1 can take on any value (including 0). 

 

 
5.82 Redesign the control system given in Example 5.8.1 if the available internal damping is 

reduced to 50 N⋅s/m. 

 

 Solution:  If the value of c is limited to 50 N⋅s/m, then g2 becomes 

 

  
  
g

2
= 180 ! c = 180 ! 50 = 130 N " s/m  
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5.83 Consider the compressor rotor-shaft system discussed in Problem 5.74.  Modern 

designers have considered using electromagnetic bearings in such rotor systems to 

improve their design.  Use a derivative feedback control law on the design of this 

compressor to increase the effective damping ratio to ζ = 0.5.  Calculate the required 

gain.  How does this affect the answer to parts (a) and (b) of Problem 5.74? 

 

 Solution: From Problem 5.74, m = 100 kg, k = 1.4 × 10
7
 N/m, a = 0.01, ζold = 0.01.  The 

value of c is 

  
  
c = 2!

old
km = 2 0.01( ) 1.4 "10

7

( ) 100( ) = 748.3 kg/s  

 With derivative feedback, the coefficient of   !x  in the equation of motion is c + g2.  For ζ 

= 0.5, 

  

  

c + g
2

= 748.3+ g
2

= 2 0.5( ) 1.4 !10
7

( ) 100( ) = 37,416.6

g
2

= 36,668.2 kg/s

 

 (a)  The rotor's critical speed remains the same because it is only dependent upon the 

mass stiffness. 

 (b)  The whirl amplitude becomes 

  

  

X =
a

2!
=

0.01

2 0.5( )
= 0.01 m  

 It is reduced by 80% because of the increased damping. 

 

 

5.84 Calculate the magnitude of the force required of the actuator used in the feedback control 

system of Example 5.8.1.  See if you can find a device that provides this much force. 

 

 Solution: The magnitude of the actuator force would be 

 

  
   
F = g

2
!x = g

2
!

n
X  

 

 where X is, from Equation (2.26), at steady-state, 

 

  

  

X =
F

0
/ m

!
n

2 "! 2

( )
2

+ 2#!
n
!( )

2

 

 

 A large value of X would occur at resonance, for example, where ω = ωdr = 10 rad/s, so 

 

  

  

F = 80( ) 10( )
F

0
/ 10

2 0.9( ) 10( ) 10( )
= 0.444F

0
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5.85 In some cases the force actuator used in a control system also introduces dynamics.  In 

this case a system of the form given in Equation (5.27) may result where ma, ca and ka are 

values associated with the actuator (rather than an absorber).  In this case the absorber 

system indicated in Figure 5.18 can be considered as the control system and the motion of 

the mass m is the object of the control system.  Let m = 10 kg, k = 100 N/m, and c = 0.  

Choose the feedback control law to be 

 

  
   
u = !g

1
x ! g

2
!x  

 

 and assume that ca = 20 N⋅s/m, ka = 100 N/m and ma = 1 kg.  Calculate g1 and g2 so that x 

is as small as possible for a driving frequency of 5 rad/s.  [Hint:  Replace k with k + g, 

and c with c + g in Equation (5.27)] 

 

 Solution: 
 

 Let the control law be called position feedback, applied to the mass m.  The equation of 

motion then becomes Equation (5.27) with k replaced by k + g1.  Then the amplitude X 

can be expressed as Equation (5.35) with k replaced by k + g1 and given values of m, ma, 

ka and ca.  This yields 

 

  

  

X
2

F
0

2
=

100 ! 25( )
2

+ 25( ) 400( )

100 + g
1
! 10( ) 25( )"

#
$
% 100 ! 25"# $% ! 2500{ }

2

+ 100 ! 11( ) 25( )"
#

$
%

2

25( ) 400( )

X
2

F
0

2
=

2.78

g
1

2 ! 366.7g
1
+ 88,055.6

 

 

 Clearly X is a minimum if 
  
g

1

2
 -366.7g1 + 88,055.6 is a minimum.  Thus consider the 

derivatives of the quadratic form with respect to g1 to find the max value per the 

discussion on the top of page 265. 

 

  

  

d

dg
1

g
1
! 366.7g

1
+ 88,055.6( ) = 2g

1
! 366.7 = 0  

 

 so that 
  
g

1
= 183.35  

 

 Note that 
  
d

2
/ dg

1

2
= 2 > 0  so that this is a maximum and X is a minimum for this gain. 
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Problems Section 5.9 (5.86 through 5.88) 

 

5.86 Reconsider Example 5.2.1, which describes the design of a vibration isolator to 

protect an electronic module.  Recalculate the solution to this example using 

equation (5.92). 

 

Solution:  If data sheets are not available use G’ω =G’/2.  One of many possible 

designs is given. From the example we have T.R. = 0.5, m = 3 kg and ω = 35 rad/s 

= 5.57 Hz.  From equation (5.92): 

T.R. =
1 +!2

1" r2 # G 

# G $

% 

& 

' 
( 

) 

* 

2

+ !2

 = 0.5 

From Table 5.2 for 75°F and frequency of 10 Hz (the closest value listed), the 

value of E and η are: 

E = 2.068 x 10
7
 N/m

2
  and η = 0.21 

Thus G’ = E/3 = 6.89 x 10
9 
N/m

2
 using the approximation suggested after 

equation (5.86).   They dynamic shear modulus is estimated from plots such as 

Figure 5.38 to be G’ω =G’/2.  Thus equation 5.92 becomes 

0.5
2

=
1 + (0.21)

2

1 ! r 2
" G 

" G 
2

# 

$ 

% 

& 

' 

( 

2

+ (0.21)
2

 

 This is solved numerically in the following Mathcad session: 
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From the plot, any value of r greater then about 2.5 will do the trick.  Choosing r 

=  2.5 yields !n =
!

3.5
=

35

3.5
"

k

m
=10 " k =100(3) = 300 N/m
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5.87 A machine part is driven at 40 Hz at room temperature.  The machine has a mass 

of 100 kg.  Use Figure 5.42 to determine an appropriate isolator so that the 

transmissibility is less than 1. 

 

Solution: Given f = 40 Hz, m = 100 kg or about 220 lbs. and T.R. <1.  The 

maximum static load per mount is 3 lbs.  Therefore the system would require a 

minimum of 73 mounts.  Assume then that 75 mounts are used.  Thus 

220#

75
= 2.9#  per mount  

For the isolator, fn <0.5 f = 0.5(40) = 20 Hz.  Therefore the fn of the isolator must 

be less then 20 Hz.  Referring to the performance characteristics of the table in 

Figure 5.42 yields 4 possible isolator choices: 

AM 001-2,3,17,18 

 

5.88 Make a comparison between the transmissibility ratio of Window 5.1 and that of 

equation (5.92). 

 

Solution: Comparing equation (5.92) with Window 5.1 yields: 

 

Window 5.1:  T.R. =
1+ (2!r)2

(1 " r2
)

2
+ (2!r)

2
 

Equation (5.92): T.R. =
1 +!2

1" r2 # G 

# G $

% 

& 

' 
( 

) 

* 

2

+!2

 

Comparing the two equations yields 

! = 2"r   and    
# G 

# G $
%1 
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Chapter 6 
 
Problems and Solutions Section 6.2 (6.1 through 6.7) 
 

6.1 Prove the orthogonality condition of equation (6.28). 

 

 Solution: 
 
 Calculate the integrals directly.  For n = n, let u = nx/l so that du = (n/l)dx and 

the integral becomes 

 

  

  

l
n

sin
2 udu 

l
n

1

2
u  1

4
sin2u






0

n


0

n

      
l

n
1

2
n 

1

4
sin4n






 0 

l
2

 

 

 where the first step used a table of integrals.  For n  m let u = x/l so that du = 

(/l)dx and  

 

  

  
sin

nx
l

sin
mx

l
dx  l


sin mu sin nudu

0

l


0

l

  

 

 which upon consulting a table of integrals is 

 

  

  

l


sin(m  n)
2(m  n)


sin(n  m)

2(n  m)








 0 . 
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6.2 Calculate the orthogonality of the modes in Example 6.2.3. 

 

 Solution: 

 One needs to show that
  

X n (x) Xm(x)dx  0 for m  n,  where X m(t)  an sin nx.
0

1

   

But each mode Xn(x) must satisfy equation (6.14), i.e. 

 

  
  X n   n

2 X n        (1) 

 

 Likewise 

 

  
  Xm  m

2 Xm        (2) 

 

 Multiply (1) by Xm and integrate from 0 to l.  Then multiply (2) by Xn(x) and 

integrate from 0 to l.  This yields 

 

  

  

X n Xmdx   n
2 X n Xmdx

0

l


0

l


X m X ndx  m

2 Xm X ndx
0

l


0

l


 

 

 Subtracting these two equations yields 

 

  
  

X n X m  Xm X n dx   n
2  m

2  X n(x)Xm (x)dx
0

l


0

l

  

 

 Integrate by parts on the left side to get 

 

  

  

X n Xmdx  Xm X ndx  X n
0

l


0

l

 Xm 0

l
 Xm X n 0

l

       Xm(l)kX n(l)  X n(l)kXm (l)  0

 

 

 from the boundary condition given by eq. (6.50).  Thus 

 

  
  
 n

2  m
2  X n Xmdx  0.

0

l

  

 

 But from fig. 6.4, 
   n  m  for m  n so that 

 

  
  

X n Xmdx  an
2

sin nxsinmxdx  0
0

l


0

l

  

 

 and the modes are orthogonal. 
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6.3. Plot the first four modes of Example 6.2.3, for the case l = 1 m, k = 800 N/m and 

= 800 N/m. 

 

 Solution: 
 
 The mode shapes are given as sinnx where n satisfies eq. (6.51).  To solve this 

numerically values of l, k and  must be given.  For example chose l = 1 m, k = 

800 N/m, and  = 800 N/m the equation (6.51) becomes 

 

  tan  = - 

 

 Solving using MATLAB for the first 4 values yields 

 

   = 2.029,  = 4.913,  = 7.979,  = 11.0855 

 

 So that the mode shapes are sin(2.029)x, sin(4.913)x, sin(7.979)x and 

sin(11.0855)x.  These are plotted below using Mathcad. 
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6.4 Consider a cable that has one end fixed and one end free.  The free end cannot 

support a transverse force, so that wx(l,t) = 0.  Calculate the natural frequencies 

and mode shapes. 

 

 Solution: 
 
 The cable equation results in (6.17).  The boundary conditions are 

 

  
  w(x,t)  X (x)T (t)  0 at x = 0 (fixed end) 

 

 so that X(0) = 0 and 

 

  
  wx (x,t)  X (x)T (t)  0 at x = l (free end) 

 

 so that X(l) = 0.  Applying these to equation (6.17) yields 

 

  
  0  a

1
sin(0)  a

2
cos(0) so that a2 = 0 

  0= a1cos(l) 
 

 so that cos l = 0 or l = n for odd n and the natural frequency

  
 n 

n
2l

, n = 1, 3, 

5… or

  
 n 

2n 1
2l

, n = 1, 2, 3…Since a2 = 0, and a1 is arbitrary the mode 

shapes are 

 

  

  
an sin

2n 1  x
2l









 ,   n  1,2,3...  

 

 the natural frequencies are from (6.15) and (6.24): 

 

  

  
 n   n

2c2  c n 
(2n 1)c

2l


(2n 1)
2l

 /   
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6.5 Calculate the coefficients cn and dn of equation (6.27) for the system of a 

clamped-clamped string to the initial displacement given in Figure P6.5 and an 

initial velocity of wt(x,0) = 0. 

 

 Solution: 
 
 For the clamped-clamped string the solution is given by eq. (6.27) as 

 

  

  
w(x,t)  (cn sin nx sin nct  dn sin nx cos nct)

i1



  

 

 Series wt(x,0) = 0, equation (6.33) yields that cn = 0 for all n.  The coefficients dn 

are given by eq. (6.31) as 

 

  

  
dn 

2

l


0
(x)sin

mx
l

dx   m  1,2,...
0

l

  

 

 From fig. 6.16 

  


0
(x) 

    2x / l            0  x  l / 2

2(l  x) / l       l / 2  x  l




 cm. Calculation yields 

 

  

  

dn 
2

l
2x
l

sin
nx

l
dx  2

l
(l  x)sin

nx
l

dx
l / 2

l

0

l / 2










      
8

 2n2
sin

n
2

    n  1,3,5...

 

 

 and dn is zero for even values of n. 
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6.6 Plot the response of the string in Problem 6.5 for the piano string of Example 

6.2.2 (l = 1.4 m, m = 110 g,  =11.1x10
4
 N) at x = l/4 and x = l/2, using 3, 5, and 

10 terms in the solution. 

 

 Solution: 
 
 For the piano string of example 6.22, l = 1.4m and c = 11.89.  From problem 6.5 

the solution has the form 

 

  

  
w(x,t)  8

 2

1

m2
sin

m
2

sin
m x

l
cos

mc
l

t
m,odd1















 

 

 For 3 terms at x = l/4 = 3.5, this series becomes 

 

 
  w3

(3.5,t)  0.81 0.24cos26.68t  0.07858cos80.04t  0.02828cos133.40t  

 

 for 5 terms this becomes 

 

 
  w5

(3.5,t)  w
3
 0.01442cos182t  0.00873cos240.13t  

 

 The next terms have coefficients 0.00584, 0.00418, 0.00314, 0.00244 and 0.00195 

respectively.  Any of the codes can be used to easily plot these.  Plot of w3 and w5 

at l/4 are given below in Mathcad: 
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6.7 Consider the clamped string of Problem 6.5.  Calculate the response of the string 

to the initial condition 

 

  
w(x,0)  sin

3x
l

   wt (x,0)  0  

 

 Plot the response at x = l/2 and x = l/4, for the parameters of Example 6.2.2. 

 

 Solution: 
 
 Since wt = 0 each if the coefficients cn is zero in equation (6.33).  Thus the 

solution is of the form 

 

  

  
w(x,t)  dn sin

nx
l

cos
nc

l
t

i1



  

 

 as given in problem 6.5.  Equation (6.31) for the initial position yields 

 

  

  
dn 

2

l
sin

3 x
l

sin
m x

l
dx    m  1,2,...

0

l

  

 

 Because of the orthogonality all the dn = 0 except d3 and from the above integral 

d3 = 1.  Hence the solution collapses to the single term 

 

  

  
w(x,t)  sin

3x
l

sin
3c

l
t  

 

 At x = l/2 this becomes 

 

  
3 3 3

, sin cos cos
2 2

l c cw t t t
l l

       
 

 

 

 At x = l/4 

 

  

  
w l

4
,t






 sin

3
4

cos
3c

l
t  0.707cos

3c
l

t  

 

 Using the values for the piano string (l = 1.4, c = 1188 m/s) w(l/4,t) is simply a 

cosine of frequency 8000 rad/s and amplitude 0.707. 
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Problems and Solutions Section 6.3 (6.8 through 6.29) 
 

6.8 Calculate the natural frequencies and mode shapes for a free-free bar.  Calculate 

the temporal solution of the first mode. 

 

 Solution: 
 
 Following example 6.31 (with different B.C.’s), the spatial response of the bar 

will be 

 

  X(x)  a sinx  b cosx  

 

 The boundary conditions are .0)()0(  lXX   The expression for 

xbxaxXX  sincos)( is   so at 0: 

 

  0  a a  0 

 

 at l 
 

  0  bsinl,   b  0  

 

 so that l = n or  = n/l where n starts a zero. Hence the mode shapes are of the 

form 

 

  
X n(x)  bn cos

nx
l

 for n = 1, 2, 3, … and for n = 0, 

  
X

0
(x)  b

0
cos

0
l

x





 b

0
 a constant. 

 The temporal solution is given by eq. (6.15) to be 

 

  
2

2
)(

)(


tTc
tT

n

n


 

 

 so that the temporal solution of the first mode: 

           
  

&&T
0
(t)  0c2T

0
(t)  0  &&T

0
(t) T

0
(t)  b ct  
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6.9 Calculate the natural frequencies and mode shapes of a clamped-clamped bar. 

 

 Solution: The calculation of the natural frequencies and mode shapes of a 

clamped-clamped bar is identical to that of the fixed-fixed string since the 

equations of motion are mathematically the same.  The solution of this problem is 

thus given at the beginning of section 6.2, but is repeated here: Applying 

separation of variable to eq. (6.56) yields that the spatial variable must satisfy eq. 

(6.59) of example 6.3.1, i.e., xbxaxX  cossin)(   where a and b are 

constants to be determined.  The clamped boundary conditions require that X(0) = 

X(l) =  or 

  0 = b  or  X = asinx 

  0 = asinl  or   = n/l 
 Hence the mode shapes will be of the form 

  Xn = ansinnx 

 Where  = n/l.  The frequencies are determined from the temporal solution and 

become 

  n   nc 
n
l

E


,   n 1,2,3,... 

 
6.10 It is desired to design a 4.5 m, clamped-free bar such that the first natural 

frequency is 1878 Hz.  Of what material should it be made? 

 

Solution:  First change the frequency into radians: 

1878 Hz =1878x2 rad/s=11800 rad/s 

The first natural frequency is given computed in Example 6.3.1, Equation (6.63) 

as 

  


1


2
l

E



E



1

2
4l 2

 2
 (11800)

2
4l 2

 2

                                    
E

 7.14310

7

 

in Nm/kg.  Examining the ratios from Table 2.1 for the values given yields that 

for Steel: 

  

E



2  10
11

2.8 10
3
 7.14310

7
 Nm/kg  

Thus a steel bar with a length 4.5 meters will have a first natural frequency of 

1878 Hz.  This is something like a truck chassis.  
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6.11 Compare the natural frequencies of a clamped-free 1-m aluminum bar to that of a 

1-m bar made of steel, a carbon composite, and a piece of wood. 

 

 Solution: 
 
 For a clamped-free bar the natural frequencies are given by eq. (6.6.3) as 

 

  

  
 n 

(2n  1)
2l

E


 

 

 Referring to values of r and E from table 1.2 yields (for 1): 

 Steel 

 

  

 


(2)(1)

2.0 10
11

7.8 10
3
 7,954  rad/s (1266Hz) 

 

 Aluminum 

 

  

 


(2)(1)

7.110
10

2.7  10
3
 8,055  rad/s (1282 Hz) 

 

 Wood 

 

  

 


(2)(1)

5.4 10
9

6.0  10
2
 4,712  rad/s (750 Hz) 

 

 Carbon composite (student must hunt for E/ and guess a little) from Vinson and 

Sierakowski’s book on composites /E  = 3118 and 

 

  4897)3118(
2




 rad/s (780 Hz) 

 
 
6.12 Derive the boundary conditions for a clamped-free bar with a solid lumped mass, 

of mass M attached to free end. 

 

 Solution: At the clamped end, x = 0, the boundary condition is w(0,t) = 0 or X(x) 

= 0.  At the end x = l the tensile force in the bar must be equal to the inertia force 

of the attached mass.  For an attached mass of value M, this becomes 

 

  EAw(x, t)
x x l

 M  2w(x, t)
t2

x l
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6.13 Calculate the mode shapes and natural frequencies of the bar of Problem 6.12.  

State how the lumped mass affects the natural frequencies and the mode shapes. 

 

 Solution: Via separation of variables [i.e., w(x,t) = X(x)T(t)], the spatial equation 

becomes (following example 6.3.1 for instance) 

  X(x) = asinx+bcosx 

 Applying the boundary condition at x = 0 yields 

  
  X (0)  0  asin(0)  bcos(0)  b  0 0 = b 

 so the spatial solution reduces to X(x) = asinx.  Now the second boundary 

condition (see 6.12) involves time deviates so that w(x,t) = X(x)T(t) substituted 

into the boundary condition EAWx = -Mwtt(l,t) becomes: 

 

    EA X (l)T (t)  MX (l) &&T (t) 
EA X (l)
MX(l)

 
Ý Ý T (t)
T (t)

 

 From equation (6.15) Ý Ý T / T   2c2
, so this boundary condition becomes 

  
EA
M


X (l)

X(l)
  2c2

    (1) 

 Substitution of X(x) = asinx and X (x)  a cosx  into (1) yields 

  
EA
M

a cosl
asinl

  2c2
 

 or 

  cotl  c2M
EA

 

 

 which describes multiple values of  = n, n = 1, 2, 3,…  The frequency of 

oscillation is related to n by n = nc, where c  E /  .  Let Al = m be the 

mass of the beam and rewrite cot(l) as  

cotl  cot
 nl

c






 E /  M

EA
  

 nl / c 
Al

M 
 nl

c
M
m

.   

This can be rewritten as  

 

   cot  = 
 

 where  = m/M and  = nl/c.  As the mass ratio  increases (tip mass increases) 

the frequency increases.  The mode shapes are proportional to sin nx, where n is 

calculated numerically from cot (l) = (M/m)l, similar to the calculation 

showing in Figure 6.4.  This is illustrated in the following Mathcad session. 
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6.14 Calculate and plot the first three mode shapes of a clamed-free bar. 

 

 Solution: The second entry of Table 6.1 yields the solution  


Xn (x)  sin

(2n  1)

2
x   

which is calculated following the procedures out lined in Example 6.3.1. The plot 

is given in Mathcad for the case  = 1m. 
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6.15 Calculate and plot the first three mode shapes of a clamed-clamped bar and 

compare them to the plots of Problem 6.14. 

 

 Solution: As in problem 6.14 the solution is given in table 6.1.  The important 

item here is to notice the difference between mode shapes from the plots of 

sin x
l

n
2

)12( 
 and sin (nx/l).  In particular notice the difference at the free end. 

 

6.16 Calculate and compare the eigenvalues of the free-free, clamped-free, and the 

clamped-clamed bar.  Are the related?  What does this state about the system’s 

natural frequencies? 

 

 Solution: 
 
 Students can calculate these or just use the results listed in table 6.1.  Note for l = 

1 

 

  free-free 0, c, 2c… 

  clamped-free ...
2

5
,

2

3
,

2

ccc 
 

  clamped-clamped c, 2c, 3c… 

 

so that the free-free and clamped-clamped values are a  shift from one another 

with the clamped-free values falling in between: as the number of constraints 

increases, the frequency increases. 
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6.17 Consider the nonuniform bar of Figure P6.17, which changes cross-sectional area 

as indicated in the figure.  In the figure A1, E1, 1, and l1 are the cross-sectional 

area, modulus, density and length of the first segment, respectively, and A2, E2, 2, 

and l2 are the corresponding physical parameters of the second segment. 

Determine the characteristic equation. 

 

Solution: Let the subscript 1 denote the first part of the beam and 2 the second 

part of the beam.  The bar equation must be satisfied in each part so that equation 

of motion is in two parts: 



E
1

 2w
1
(x, t)

x 2
 

1

2 w
1
(x,t)

t2
  0  x  

1

E
2

 2w
2
(x, t)

x2
 

2

 2w
2
(x,t)

t2
  

1
 x  

1
 

2
 

 

The boundary conditions are the two from the clamped-free configuration then 

there are two more conditions expressing force and displacement continuity at the 

point where the two beams join (x = 1). Follow the procedure of separation of 

variables but this time keep the constant c in the spatial equation so that we may 

write: w1(x,t) = X1(x)T(t) and w2(x,t) = X2(x)T(t) where the function of time is 

common to both beams.   Then denoting 2
 as the separation constant and 

substituting the separated forms into the equation of motion yields: 

  

c
1

2 X
1
(x)

X
1
(x)


&&T (t)
T (t)

  2
  0  x  l

1
  and c

1


E
1


1

  (1)

c
2

2 X
2
(x)

X
2
(x)


&&T (t)
T (t)

  2
  l

1
 x  l   and c

2


E
2


2

  (2)

 

In this way the temporal equation for both parts is the same ( does not depend on 

which part of the beam and will show up in the characteristic equation).  Solving 

the two spatial equations yields: 



(1) X
1
 a

1
sin


c

1

x  a
2

cos

c

1

x   0  x  
1

(2)  X
2
 a

3
sin


c

2

x  a
4

cos

c

2

x   
1
 x  

 

 There are now 4 boundary conditions (one at each end and two in the middle) 

which will yield 4 equations in the 4 coefficients ai.  This set of equations must be 

singular yielding the characteristic equation for . 

 From the clamped end:  

X
1
(0)  0  a

1
sin(0)  a

2
cos(0)  0     (3) 

From the free end: 


X 
2
()  0 


c

2

a
3

cos

c

2



c

2

a
4

sin

c

2

 0    (4) 

 From the middle and enforcing displacement continuity at x = 1: 

 


a

1
sin


c

1


1
 a

2
cos


c

1


1
 a

3
sin


c

2


1
 a

4
cos


c

2


1
    (5) 
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From the middle and enforcing force, equation (6.54) continuity at x = 1: 



E
1
A

1
X 
1
(

1
)  E

2
A

2
X (

1
)

 E
1
A

1


c

1

(a
1
cos


1

c
1

 a
2
sin


1

c
1

)  E
2
A

2


c

2

(a
3

cos


1

c
2



c

2

a
4

sin


1

c
2

)
 (6) 

Equations (3) through (6) are 4 equations in the 4 unknowns ai.  Writing these in 

matrix form as a homogeneous algebraic equation yields: 

  

0 1 0 0

0 0 cos
 l
c

2

 sin
 l
c

2

sin

c

1

l
1

cos

c

1

l
1

sin

c

2

l
1

cos

c

2

l
1

E
1
A

1

c
1

cos
 l

1

c
1


E

1
A

1

c
1

sin
 l

1

c
1


E

2
A

2

c
2

cos
 l

1

c
2

E
2
A

2

c
2

sin
 l

1

c
2





























a
1

a
2

a
3

a
4























0

0

0

0



















 

In order for the vector a to be nonzero, the determinant of the matrix coefficient 

must be zero (recall chapter 4). This yields the characteristic equation (computed 

using Mathcad): 



E
2
A

2
c

1
sin

 l
1

c
1

sin
 l
c

2

cos
 l

1

c
2

 sin
 l

1

c
2

cos
 l
c

2











             =E
1
A

1
c

2
cos

 l
1

c
1

sin
 l

1

c
2

sin
 l
c

2

 cos
 l

1

c
2

cos
 l
c

2













  (7) 



E
2
A

2
c

1

E
1
A

1
c

2

tan
 l

1

c
1

sin
 l
c

2

cos
 l

1

c
2

 cos
 l
c

2

sin
 l

1

c
2











                                          sin
 l
c

2

sin
 l

1

c
2

 cos
 l
c

2

cos
 l

1

c
2

 (8) 

 

Further simplifying yields 

  

E
2
A

2
c

1

E
1
A

1
c

2

tan
 l

1

c
1

sin
 (l  l

1
)

c
2

 cos
 (l  l

1
)

c
2

                                      
E

2
A

2
c

1

E
1
A

1
c

2

tan
 l

1

c
1

tan
 (l  l

1
)

c
2

 1

 

 

 

Given the parameter values, equation (9) must be solved numerically for , 

yielding the natural frequencies. 
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6.18 Show that the solution obtained to Problem 6.17 is consistent with that of a 

uniform bar. 

 

 Solution: 
 
 If the bar is the same, then E1 = E2 = E, 1 = 2 =  etc. and the characteristic 

equation from (1) in the solution to Problem 6.17 becomes (l = l1) 

 



sin

c

sin

c

cos

c
 sin


c

cos

c






 cos


c

sin

c

sin

c
 cos


c

cos

c







 sin

c

0   cos

c

sin
2 

c
 cos

2 
c







 0  cos

c

(1)

c


2n1

2


 

 

 so that n = n = 
(2n 1)

2l
E


 which according to table 6.1 entry 2 is the 

frequency of a clamped-free bar of length l . 
 

 

 

 

 

6.19 Calculate the first three natural frequencies for the cable and spring system of 

Example 6.2.3 for l = 1, k = 100,  = 100 (SI units). 

 

 Solution: 
 
 For l = 1, k = 100 and  = 100 the frequency equation (6.51) becomes 

 

  tan  = -
 

 Using MATLAB the first 3 solutions are 

 

  1 = 0, 2 =2.029, 3 = 4.913.  But zero is not allowed because of the 

boundary conditions. 



6- 18

6.20 Calculate the first three natural frequencies of a clamped-free cable with a mass of 

value m attached to the free end.  Compare these to the frequencies obtained in 

Problem 6.17. 

 

 Solution: 
 
 Recall example 6.1.1.  The force balance at the boundary x = l yields 

 

  wx (x, t) x l  mwtt (l,t)  

 

 The boundary condition at x = 3 remains w(0,t) = 0.  The equation of motion is 

(6.8) or 

 

  c2wxx (x, t)  wtt(x,t)  

 

 Again, separation of variable w(x,t) = X(x)T(t) yields eq. (6.12) or 

 

  
X (x)

X(x)


Ý Ý T (t)
c2T( t)

  2
 

 

 The spatial equation is 

 

  X   2 X(x)  0  

 

 which has solution X(x) = a1 sin x +a2 cos x.  Applying the boundary 

conditions yields X(0) = 0 or a2 = 0.  Substitution of X(x) = a1 sin 2x into the 

boundary condition at x = l yields 

 

  [a
1
 cost]T (t)  mÝ Ý T (t)a

1
sinl  

 

 But Ý Ý T (t)/ T(t)   2c2
 so this becomes 

 

   cosl  m 2c2
 

 

 or that 

 

  tanl  
mc2

   (or cotl  n


)  

 

is the characteristic equation (see also table 6.1) with mode shape sin nx.  A plot 

of their characteristic equation cos(l)  mc2

lr
l  m

lp
(l)  yields the value of the 

frequencies relative to those of problem 6.16. 
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6.21 Calculate the boundary conditions of a bar fixed at x = 0 and connected to ground 

through a mass and a spring as illustrated in Figure P6.21. 

 

 Solution: 
 
 A free body diagram of the boundary is shown in Figure 1. 

 

 

Figure 1 

 

Consider first the end of the rod, the force is related to the axial extension of the 

rod though 

 

   
lx

lx x
txwEAtlF


 




,
,   

 

On the other hand, applying Newton’s second law to the mass yields 

 

     
lx

lx t
txwmtxkwtlF


 




2

,
,,  

 

Hence, this yields the following boundary condition 

 

     
lx

lxlx

txkw
x

txwEA
t

txwm













,
,,

2
 

 
 
 
6.22 Calculate the natural frequency equation for the system of Problem 6.21. 

 

 Solution: 
 
 The boundary condition at x = 0 is just w(x,t)|x=0 = 0.  Again from separation of 

variables 

 

  Ý Ý T (t)/ T(t)  c2 2
,   X(x)  asinx  b cosx  

 

 Applying the boundary condition at 0 yields X(0) = 0 =  b, so the spatial solution 

will be of the form X(x) = a sin x.  Substitution of the separated form w(x,t) = 

X(x)T(t) into the boundary condition at l yields (from problem 6.21) 
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    mX (l) &&T (t)  kX (l)T (t)  EA X (l)T (t)  

 

 Dividing by T(t), and substitution of Ý Ý T / T   2c2
 and X = a sin l yields 

 

  -
  EA cos l  (m 2c2  k)sin l   or  

  
tan l  

EA
k  m 2c2

 is the 

frequency or characteristic equation.  Note that this reduces to the values given in 

Table 6.1 for the special case m = 0  and for the case k = 0. 
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6.23 Estimate the natural frequencies of an automobile frame for vibration in its 

longitudinal direction (i.e., along the length of the car) by modeling the frame as a 

(one-dimensional) steel bar. 

 

 Solution: 
 
 Note: The fundamental frequency of an automobile is of primary importance in 

assuming the quality of an automobile.  While an automobile certainly has 

numerous modes, its fundamental frequency apparently has a large correlation 

with the occupants perception of quality.  The fundamental frequency of a 

Mercedes 300 series is 25 Hz.  Infinity and Lexus have frequencies in the low 

twenties.  This problem has no straightforward answer.  Students should think 

about their own cars or that of their family.  For steel  = 7.8  10
3
 kg/m

2
, E = 2.0 

 10
11

 N/m.  For a Ford Taurus l = 4.5 m and assume the width to be 1 meter.  

The frequency equation in Hertz of a free-free beam is (excluding the rigid body 

mode) 

 

  fn 
n

2

l

E


562 Hz, 1125Hz… 

 

where n = 1,2,… The frequency measured by auto engineers is from a 3 

dimensional finite element model and modal test data.  The frequency most felt is 

probably a transverse frequency. 
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6.24 Consider the first natural frequency of the bar of Problem 6.21 with k = 0 and 

Table 6.2, which is fixed at one end and has a lumped-mass, M, attached at the 

free end.  Compare this to the natural frequency of the same system modeled as a 

single-degree-of-freedom spring-mass system given in Figure 1.21.  What 

happens to the comparison as M becomes small and goes to zero? 

 

 Solution: 
 
 From figure 1.21, k = EA/l is the stiffness of a cantilevered bar.  Hence the 

frequency is 

  

  
 n  k / m 

EA
lm

 

 for the bar with tip mass m modeled as a single degree of freedom system.  Now 

consider the first natural frequency of the distributed mass model of the same 

structure given in the last entry of table 6.1. 

 

  

  


1



1
c

l



1

l
E


 

 

 where  satisfies cot 
1


m
Al



 




1
.  This last expression can be written as 


1
tan

1

cl
m





 since 1 = 1l/c, 

 

  


1
l

c
tan


1
l

c




 

Al
m

 

 

 Now for small, or negligible beam mass, c becomes very large 
  
c  E /   and 

1l/c becomes small so that tan  can be approximated as .  Then this last 

expression becomes 

 

  


1
l

c






2


Al
m

, or 
1


EA
lm

 

 

 in agreement with the single degree of freedom values of figure 1.21.  As the tip 

mass goes to zero, the equation for figure 1.21 does not appear to make sense.  

The equation for 1 however reduces to that of a cantilevered beam, i.e., 1 = 

c/2l since the frequency equation returns to 1(l/c) = 0. 
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6.25 Following the line of thought suggested in Problem 6.24, model the system of 

Problem 6.21 as a lumped-mass single-degree-of-freedom system and compare 

this frequency to the first natural frequency obtained in Problem 6.22. 

 

 Solution: Note that the system of figure P6.21 is a mass connected to two springs 

in parallel if the bar is modeled as spring.  The stiffness of a bar is given in 

Chapter 1 to be 


k

bar


EA


 

 The equivalent stiffness is just the sum, so that the equation of motion is 


mÝ Ý x  EA


 k



x  0 

 Thus the natural frequency of the bar and spring of figure P6.21 modeled 

as a single degree of freedom system is just 


n 

EA
m


k
m

 

The first natural frequency of the system treated as a distributed mass systems is 

given by the characteristic equation given in the solution to problem 6.22.  To 

make a comparison, chose some specific values.  For a 4 m aluminum beam 

connected to 1000 kg mass through a 100,000 N/m spring the value is given in the 

following Mathcad session:  

 

 

  

Note for the 

parameter 

values chose 

the frequency 

of the lumped 

mass model is a 

little less then 

the actual value. 
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6.26 Calculate the response of a clamped-free bar to an initial displacement 1 cm at the 

free end and a zero initial velocity.  Assume that  = 7.   kg/m
3
, A = 0.001 

m
2
, E=10

10
 N/m

2
, and l = 0.5 m.  Plot the response at x = l and x = l/2 using the 

first three modes. 

 

 Solution: 
 
 The initial conditions are w(x,t) = 0.01(x-l) and wt(x,0) = 0 and the boundary 

conditions are w(0,t) = 0 and wx(l,t) = 0.  From example 6.3.1 the mode shapes are 

sin
2n 1

2l




x  and the natural frequencies are 

 

  n 
2n 1

2l






E

 (2n1)(1132.38)  

 

 The solution is given in example 6.3.2 as 

 

  w(x, t)  (cn sinnt  dn cos nt )sin
2n1

2l




x  

 

 so that the velocity is 

 

  wt (x, t)  (ncn cosnt  dnn sin nt)sin
2n1

2l




x

n 1



  

 

 Using wt(x,0) = 0 then yields cn = 0 for n = 1, 2, …, so that 

 

  0.01(x  l)  dn cosntsin
2n 1

2l
x  

 

 Multiplying by sin x
l

m


2

12 
 and integrating from 0 to l yields 

 

  0.01 (x  l)sin
2m  1

2l




xdx  cm sin

2 2m  1

2l




0

l

0

l

 xdx  

 

 using the orthogonality of sin nx.. 

 

  0.01sin
2m 1

2
  cm

l
2

, m  1,2,3...  

 

 so that 
11

)1)(004(./)1)(02(.
  mm

m lc  and the solution is 
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  w(x, t)  (.004)(1)
n1

sin[(2n 1)(1132.28)t]sin(2n1)x
n1



  

 

 For n = 3 and x = 0.5, 

 

  ]33968sin028.1132)[sin004(.),5.0( tttw   

 

 For n = 3 and x = l/2 = 0.25 

 

  w(.25,t)  (.004)[.707sin1132.28  sin2264.56t  .707sin 339684t]  

 

 These are plotted below using Mathcad: 
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6.27 Repeat the plots of Problem 6.26 for 5 modes, 10 modes, 15 modes, and so on, to 

answer the question of how many modes are needed in the summation of equation 

(6.27) in order to yield an accurate plot of the response for this system. 

 

 Solution: The following plots in Mathcad illustrate that it takes 10 modes to 

capture the behavior of this series, by plotting the formula of 6.26. 
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6.28 A moving bar is traveling along the x axis with constant velocity and is suddenly 

stopped at the end at x = 0, so that the initial conditions are (x,0) = 0 and w(x,0) = 

v.  Calculate the vibration response. 

 

 Solution: 
 
 Model the bar as a free-free bar.  Then from Table 6.2 the natural frequencies are 

nc/l and the mode shapes are cos(nx/l).  Thus the solution is of the form 

 

  w(x, t)  (An sinnt  Bn
n1



 cosnt)cos(nx / l)  

 

 Using the initial condition w(x,t) = 0 yields that Bn = 0 for n = 1, 2, 3,…, i.e. 

 

  w(x,0)  0  Bn cos(nx / l)  

 

 which is multiplied by cos(nx/l) and integrated over (0,l) using orthogonality to 

get Bn = 0.  Next differentiate 

 

  w(x, t)  An sinnt cosnx / l  

 

 to get wz(x,t), then set t = 0 to use the second initial condition. 

 

  wt (x,0)  Ann cos(0) cos(nx / l)  

 

 Modeling the initial velocity as v(x), multiplying by cos mx/l and integrating 

yields 

 

  (x)v cos(nx / l)dx  n
l
2





An

0

l

 ,    or   An 
V
ln

 

 

 so that 

 

  w(x, t)  2v
c

1

n



sin

nct
l





sin

nx
l







n 1



  

 

Note that Thomson uses a form of this problem as example 3 of section 5.3, but 

he models the moving beam as having a clamped free rather than free-free 

boundary.   What do you think? 
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6.29 Calculate the response of the clamped-clamped string of Section 6.2 to a zero 

initial velocity and an initial displacement of w0(x) = sin(2x/l).  Plot the response 

at x = l/2. 

 

 Solution: 
 
 The clamped-clamped string has eigenfunction sin nx/l and solution given by 

equation (6.27) where the unknown coefficients cn and dn are given by equation 

(6.31) and (6.33) respectively.  Since 0
0
w , equation 6.33 yields cn = 0, n = 

1,2,3.. with w0 = sin(2x/l), 
 

  dn 
2

l
sin(2x / l)sin( nx / l)dx

0

l

  

 

 which is zero for each n except n =2, in which case dn = 1.  Hence 

 

  )/2sin()/2sin(),( lxlcttxw   

 

 For x = l/2 
 

  )/2sin(),2/( lcttlw   

 

which has a well known plot given in the following Mathcad session using the 

values for a piano wire. 
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Problems and Solutions Section 6.4 (6.30 through 6.39) 
 

6.30 Calculate the first three natural frequencies of torsional vibration of a shaft of 

Figure 6.7 clamped at x = 0, if a disk of inertia J0 = 10 kg m
2
/rad is attached to the 

end of the shaft at x = l.  Assume that l = 0.5 m, J = 5 m
4
, G = 2.5  10

9
 Pa,  = 

2700 kg/m
3
. 

Solution:The equation of motion is

 
&& 

G


 .  Assume separation of variables: 

    ( X )q(t) to get 

  
&&q 

G


 q or 

G

&&q
q





  2
 so that 

  
&&q  G


 2q  0 and    2  0  

where 

  
 2 

G

 2

.   The clamped-inertia boundary condition is (0,t) = 0, and   

  GJ  (l,t)  J
0

&&(l,t).   This yields that (0) = 0 and 

  

  
GJ  (l)q(t)  J

0
(l)&&q(t)  J

0
(l) G


 2q(t)  

 or 

  
J  (l)  J

0

 2


(l)  

 The solution of the spatial equation is of the form 

 

  
  (x)  Asin x  Bcos x  

 

 but the clamped boundary condition yields B = 0.  The inertia boundary condition 

yields  

  

JA cos l  J
0

 2


Asin l

tan l  J
J

0

l
 l


1

 l
5 m

4

10kg m
2







      (2700kg/m

3
)(0.5m)

 

 So the frequency equation is 

  

  
tan l  675

 l
 

 Using the MATLAB function fsolve; this has the solutions 

  

  


1
l  1.5685


2
l  4.7054


3
l  7.8424









  or  


1
 3.1369


2
 9.4108


3
 15.6847









 

 Thus  1 = 3018.5 rad/s   f1 = 480.4 Hz 

   2 =9055.6 rad/s   f2 = 1441.2 Hz 

   3 = 15092.6 rad/s   f3 = 2402.1 Hz 
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6.31 Compare the frequencies calculated in the previous problem to the frequencies of 

the lumped-mass single-degree-of-freedom approximation of the same system. 

 

 Solution: 
 
 First calculate the equivalent torsional stiffness of the rod. 

 

  

  

k 
GJ
l


(2.510

9
)(5)

0.5
 2.5 10

10

J
0

&&  k
J

0

&&  k  0

10&&  2.510
10  0  or  &&  2.510

9  0

 

 

 so that 2
 = 2.5  10

9
,  = 5  10

5
 rad/s or about 80,000 Hz, far from the 482 Hz 

of problem 6.30. 
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6.32 Calculate the natural frequencies and mode shapes of a shaft in torsion of shear 

modulus G, length l, polar inertia J, and density  that is free at x = 0 and 

connected to a disk of inertia J0 at x = l. 
 

 Solution: 
 
 Assume zero initial conditions, i.e. (x,0) =   &(x,0) = 0.  From equation 6.66 

 

  

  

2(x,t)
t2


G







2(x,t)
x2

      (1) 

 

 The boundary condition at x = l and at x = 0 is 

 

  

  
GJ (l,t)

x
 J

0

2(l,t)
t2

         
(0,t)
x

 0  

 

 Using separation of variable in (1) of form (x,t) = (x)T(t) yields: 

 

  

  

 (x)

(x)


1

c2

&&T (t)
T (t)

  2
      (2) 

 

 where 

  
c2 

G


 and  2
 is a separation constant.  (2) can now be rewritten as 2 

equations 

 

  

  

 (x)  2(x)  0

&&T (t)  c2 2T (t)  0     
G


 

 

 from the boundary condition at x = l 
 

  

  

GJ  (l)T (t)  J
0
(l) &&T (t)


GJ
J

0

 (l)
(l)


&&T (t)
T (t)

 c2 2

 (l) 
J

0

GJ
G

 2 

J
0
 2

J
(l)

 

 

 The boundary condition at x = 0 yields simply 
 
 (0)  0.   The general solution is 

of the form 

 



6- 30

  
   x  a

1
sin x  a

2
cos x   so that   x  a

1
 cos x  a

2
 sin x  

 

 The boundary conditions applied to these solutions yield: 

 

  

  

 l  a
1
 cos l  a

2
 sin l 

J
0
 2

J
[a

1
sin l  a

2
cos l]

a
1

cos l 
J

0
 2

J
sin l












 a

2
sin l 

J
0


J
cos l











 0  a
1
  0 a

1
 0

a
2

sin l 
J

0


J
cos l









  0

 

 

 For the non-trivial solution of this last expression, the coefficients of a2 must 

vanish, which yields 

 

  

  
tan l  

J
0

J
  

 

 This must be solved numerically for  (except for the rigid body case of  = 0) 

and the frequency is calculated from

 
  

G


.  The mode shapes are (x) = a2 

cos x.  Note the solution for  is illustrated in figure 6.4 page 479 of the text. 
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6.33 Consider the lumped-mass model of Figure 4.21 and the corresponding three-

degree-of-freedom model of Example 4.8.1.  Let J1 = k1 = 0 in this model and 

collapse it to a two-degree-of-freedom model.  Comparing this to Example 6.4.1, 

it is seen that they are a lumped-mass model and a distributed mass model of the 

same physical device.  Referring to Chapter 1 for the effects of lumped stiffness 

on a rod in torsion (k2), compare the frequencies of the lumped-mass two-degree-

of-freedom model with those of Example 6.4.1. 

 

 Solution: From Mathcad: 
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6.34 The modulus and density of a 1-m aluminum rod are E = 7.1  10
10

 N/m
2
, G = 2.7 

 10
10

 N/m
2
, and  = 2.7  10

3
 kg/m

2
.  Compare the torsional natural frequencies 

with the longitudinal natural frequencies for a free-clamped rod. 

 

 Solution: 
 
 The appropriate boundary conditions are: 

   (0,t)  0 and (l,t)  0 for the rod and 

  w (0,t)  0  w(l,t)  for the bar.  The separated equations are 

 

  

  

&& 
G








  and &&q 
G








 q

&&q  G








 2q  0 and   2  0

 

 

 Solutions are 

 

  
  qn  An sin nt  Bn cos nt   and  n  Cn sin nx  Dn cos nx  

 

 where 

  
 n

2 
G

 n

2
.   But 

 
 (0)  0  so that Cn = 0.  The other boundary condition 

yields n(l) = Dncos nl = 0 so that 

 

  

  
 nl 

(2n 1)
2

,     n  1,2,...  

 

 Thus the torsional frequencies are 

 

  

 
 n 

G

 n  

 

 and the longitudinal frequencies are 

  

 
 n 

E

 n  

 where 

  

  
 n 

(2n 1)
2l

 

 From the values given 

 

G


= 3162 m/s and 

 

E


= 5128 m/s.  Thus the natural 

frequencies of the longitudinal vibration are 1.6 times larger than the torsional 

vibrations. 
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6.35 Consider the aluminum shaft of Problem 6.32.  Add a disk of inertia J0 to the free 

end of the shaft.  Plot the torsional natural frequencies versus increasing the tip 

inertia J0 of a single-degree-of-freedom model and for the first natural frequency 

of the distributed-parameter model in the same plot.  Are there any values of J0 

for which the single-degree–of-freedom model gives the same frequency as the 

full distributed model? 

 

 Solution: 
 
 Refer to problem 6.32 of the rod clamped at x = 0 with inertia J0 at x = l.  The sdof 

model of the frequency is given in example 1.5.1 as 

 

  

  
 

GJ
lJ

0

 

 

 where G = torsional rigidity, J = polar moment of inertia of the rod of length l and 

J0 is the disc inertia.  The first natural frequency according to distributed 

parameter theory is given in problem 6.30 as the solution of 

 

  

  
tan / 2  


 J

0

,      
G


 

 

 which will have a solution for a given value of J0 equivalent to that of the sdof 
system. 
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6.36 Calculate the mode shapes and natural frequencies of a bar with circular cross 

section in torsional vibration with free-free boundary conditions.  Express your 

answer in terms of G, l, and . 

 

 Solution: 
 

 The separated equations are 

  
&&q  G


 2







q  0 and   2  0  

where

 
 n 

G

 n .  Thus 

 

  
  qn  An sin nt  Bn cos nt   and  n  Cn sin nx  Dn cos nx  

 

 The boundary conditions are 

 

  

  

n(0)  0

n(l)  0
 

 

 But 
  n  Cn n cos nx  Dn n sin nx  so that 

  n(0)  0 Cn  0  and the 

frequency equation becomes 
  n(l)  0  Dn n sin n0.   This has the solution 

  
 nl  n   or   n 

n
l

.   Hence 

 

  

 
 n 

G


n
l

   and 

  
n(x)  cos

nx
l

. 
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6.37 Calculate the mode shapes and natural frequencies of a bar with circular cross 

section in torsional vibration with fixed boundary conditions.  Express you answer 

in terms of G, l, and , 

 

 Solution: From equation 6.66 

  

  

2(x,t)
t2


G







2(x,t)
x2

 

 Assume a solution of the form (x,t) = (x)T(t) so that 

  

  
(x) &&T (t)  G


 (x)T (t)  

 Separate where 2
 is the separation constant and 

  
c2 

G


 

 

  

  

 (x)

(x)


1

c2

&&T (t)
T (t)

  2
 

 

 or 

  
 (x)  2(x)  0  and  &&T (t)   2c2T (t)  0  where   

G

 .  The 

boundary conditions for a fixed-fixed rod are (0) = 0 and (l) = 0 from the 

solution of the spatial equations 

 

  

  

 0  a
2
 0

 l  a
1
sin l  0.  

.

 

 

 For the non-trivial solution 

 

  

  

sin l  0

 
n
l

,    n  0,1,2,..
 

 

 natural frequency 

 

  

  
 

G


n
l

,    n  1,2,...  

 

 mode shape 

 

  

  
 x  a

1
sin

n
l

x,    n  0,1,2,...  



6- 37

6.38 Calculate the eigenfunctions of Example 6.4.1. 

 

 Solution: 
 
 From example 6.4.1 the eigenfunctions are 

 

  

  
n(x)  a

1
sin nx  a

2
cos nx   or n(x)   An 

 J
1

J
sin nx  cos nx







 

 

 where n are determined by equation 6.8.4. 

 
 
 
 
 
6.39 Show that the eigenfunctions of Problem 6.38 are orthogonal. 

 

 Solution: 
 

 Orthogonality requires 
  
n(x)m(x)dx  0,    m  n.

0

l

   From direct calculation 

 

  

  


 J

1

J
sin nx  cos nx






0

l

 
 J

1

J
sinmx  cosmx







dx

        
 J

1

J







2

sinmx sin nxdx
0

l



        
 J

1

J
sin nx sinmxdx

0

l

 
 J

1

J
sinmx sin nxdx

0

l



         cos nxcosmxdx
0

l



 

 

 where each integral vanishes.  Also one can use the same calculation as problem 

6.3 since the natural frequencies have distinct values. 
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Problems and Solutions Section 6.5 (6.40 through 6.47) 
 

6.40 Calculate the natural frequencies and mode shapes of a clamped-free beam.  

Express your solution in terms of E, I, , and l.  This is called the cantilevered 

beam problem. 

 

 Solution: 
 
 Clamped-free boundary conditions are 

 

  
  w(0,t)  wx (0,t)  0  and  wxx (l,t)  wxxx (l,t)  0  

 

 assume E, I, , l constant.  The equation of motion is 

 

  

  

2w
t2


EI
A






4w
x4

 0  

 

 assume separation of variables 
  w(x,t)  (x)q(t) to get 

 

  

  

EI
A










 
&&q
q
 2

 

 

 The spatial equation becomes 

 

  

  
 

A
EI






 2  0  

 

 define 

  
 4 

A 2

EI
  so that     4  0  which has the solution: 

  

  
    C

1
sinx C

2
cosx C

3
sinhx  C

4
coshx  

 

 Applying the boundary conditions 

  w(0,t)  wx (0,t)  0  and  wxx (l,t)  wxxx (l,t)  0   

  
  (0)   (0)  0  and   (l)   (l)  0  

 Substitution of the expression for  into these yields: 

  C2 +C4 = 0 

  C1 + C3 = 0 

 
  

C
1
sinl  C

2
cosl  C

3
sinhl C

4
coshl  0

C
1
cosl C

2
sinl  C

3
coshl  C

4
sinhl  0

 

 Writing these four equations in four unknowns in matrix form yields: 



6- 38

  

  

0 1 0 1

1 0 1 0

sinl cosl sinhl coshl
cosl sinl coshl sinhl



















c
1

c
2

c
3

c
4





















 0  

 

 

 For a nonzero solution, the determinant must be zero to that (after expansion) 

 

 

  

sinl  sinhl cosl  cosh
cosl  cosh sinl  sinh



                   ( sinl  sinhl)(sinl  sinhl) 
                                                          (cosl  coshl)(cosl  coshl)  0

 

 

 Thus the frequency equation is cos l cosh l = -1 or 

  
cosnl  

1

coshnl
 and 

frequencies are

  
 n 

n
4 EI
A

.  The mode shapes are 

 

  
  n  C

1n sinnx C
2n cosnx  C

3n sinhnx  C
4n coshnx  

 

 Using the boundary condition information that 
  C4

 C
2
  and  C

3
 C

1
 yields 

 

  

  

C
1
sinl  C

2
cosl  C

1
sinhl C

2
coshl

C
1
(sinl  sinhl)  C

2
(cosl  coshl)

 

 

 so that 

 

  

  
C

1
 C

2

cosl  coshl
sinl  sinhl







 

 

 and the mode shapes can be expressed as: 

 

  

  

n  C
2n 

cosnl  coshnl
sinnl  sinhnl







sinnx  cosnx







                  

 

                              

  
            

cosnl  coshnl
sinnl  sinhnl







sinhnx  coshnx






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6.41 Plot the first three mode shapes calculated in Problem 6.40.  Next calculate the 

strain mode shape [i.e.,
  X (x) ], and plot these next to the displacement mode 

shapes X(x).  Where is the strain the largest? 

 

 Solution: The following Mathcad session yields the plots using the values of  

taken from Table 6.4. 

 
 The strain is largest at the free end. 
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6.42 Derive the general solution to a fourth-order ordinary differential equation with 

constant coefficients of equation (6.100) given by equation (6.102). 

 

 Solution: 
 
 From equation (6.100) with

  
4  A 2

/ EI , the problem is to solve 

  X   4 X  0.   Following the procedure for the second order equations 

suggested in example 6.2.1 let X(x) = Aet
 which yields 

 

  
  

4   4 Aex  0  or   4   4
 

 

 This characteristic equation in  has 4 roots 

 

  
    ,, j,  and  j  

 

 each of which corresponds to a solution, namely A1e-x
, A2ex

, A3e-jx
 and A4ejx

.  

The most general solution is the sum of each of these or 

 

  
  X (x)  A

1
ex  A

2
ex  A

3
e jx  A

4
e jx

    (a) 

 

 Now recall equation (A.19), i.e., 
  e
 x  cosx  j sinx , and add equations (A.21) 

to yield 
  e
 jx  sinhx  coshx.  Substitution of these two expressions into (a) 

yields 

 

  
  X (x)  Asinx  Bcosx  C sinhx  Dcoshx  

 

 where A, B, C, and D are combinations of the constants A1, A2, A3 and A4 and may 

be complex valued. 
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6.43 Derive the natural frequencies and mode shapes of a pinned-pinned beam in 

transverse vibration.  Calculate the solution for w0(x) = sin 2x/l min and 

  &w0
(x)  0. 

 
 Solution: Use w(x,t) = (x)q(t) in equation (6.29) with   &w(x,0)  0 or &q(0)  0.   

Then the temporal solution q = A sin t + B cos t with   &q(0)  0 yields A = 0.  

The spatial solution is  = C1 sin x + C2 cos x + C3 sinh x + C4 cosh x where 

  
 4 

A 2

EI
.  The boundary conditions become 

  
  (0)   (0)  (l)   (l)  0  

 Applied to (x) these yield the matrix equation 

 

  

  

0 1 0 1

0 1 0 1

sinl cosl sinhl coshl
sinl cosl sinhl coshl



















C
1

C
2

C
3

C
4





















 0  

 

 But 
  C2

C
4
 0 and -C

2
C

4
 0 so C

2
 C

4
 0and this reduces to 

 

  

  

sinl sinh
sin sinh










C
1

C
3












 0  

 

 or sin l sinh l + sin l sinh l = 0, 

  
C

3
 

C
1
sinl

sinhl
,  and 

  C
1
sinl  C

1
sinl  0  so that the frequency equation 

becomes sin l = 0 and thus nl = n, n = 1,2,3,… and n =
 
n
l

, n = 1,2,3,…so 

that C3 = 0 and the frequencies are 

  
 n 

n
l







2

EI
A

 with mode shapes n(x) = 

C1n sin nx.  The total solution is the series 
  w(x,t)  n cos nt sinnx .

n1

  

Applying the second initial condition yields 

  
w(x,0)  sin

2x
l

 n sin
nx

ln1

  

and therefore 

 

  

  

Bn 
0   n  1

    n  3,4,...

1   n  2








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 so that 

  
w(x,t)  cos

2
t sin

2 x
l
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6.44 Derive the natural frequencies and mode shapes of a fixed-fixed beam in 

transverse vibration. 

 

 Solution: Follow example 6.5.1 to get the solution in the 5
th

 entry of table 6.4.  

The spatial equation for the transverse vibration of a beam has solution of the 

form (6.102) 

  
  X (x)  a

1
sinx  a

2
cosx  a

3
sinhx  a

4
coshx  

 where
  

4  A 2
/ EI .  The clamped boundary conditions are given by equation 

(6.94) as 
  X (0)  X (0)  X (l)  X (l)  0.   Applying these boundary conditions 

to the solution yields 

  
  X (0)  0  a

1
(0)  a

2
(1)  a

3
(0)  a

4
(1)     (1) 

  
  X (0)  0  a

1
(1)  a

2
(0)  a

3
(1)  a

4
(0)    (2) 

  
  X (l)  0  a

1
sinl  a

2
cosl  a

3
sinhl  a

4
coshl   (3) 

  
  X (l)  0  a

1
cosl  a

2
sinl  a

3
coshl  a

4
sinhl  

 (4) 

 dividing (2) and (3) by 
 
  0  and writing in matrix form yields 

  

  

0 1 0 1

1 0 1 0

sinl cosl sinhl coshl
cosl sinl coshl sinhl



















a
1

a
2

a
3

a
4























0

0

0

0



















 

 The coefficient matrix must have zero determinant for a nonzero solution for the 

an.  Taking the determinant yields (expanding by minors across the top row). 

  

  

sinh
2 l  cosh

2 l  sinl sinhl  cosl coshl 
                      coslcoshl sinl sinhl  sin

2 l  cos
2 l  0

 

 which reduces to 

  
  1 2cosl coshl 1 0  or  cosl coshl  1  

 since sinh
2
 l – cosh

2
 l = -1 and sin

2
 x + cos

2
 x = 1.  The solutions of this 

characteristic equation are given in table 6.4.  Next from equation (1) a2 = -a4 and 

from equation (2) a1 = -a3 so equation (3) can be written as 

  
  a

3
sinl  a

4
cosl  a

3
sinhl  a

4
coshl  4  

 Solving this for a3 yields 

  

  
a

3
 a

4

cosl  coshl
sinhl  sinl







 

 Recall also that a1 = -a3.  Substitution into the solution X(x) and factoring out a4 

yields 

  

  
X (x)  a

4
coshx  coshx  cosl  coshl

sinl  sinhl






sinhx  sinx  
in agreement with table 6.4.  Note that a4 is arbitrary as it should be. 
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6.45 Show that the eigenfunctions or mode shapes of Example 6.5.1 are 

orthogonal.  Make them normal. 

 

 Solution: 
 
 The easiest way to show the orthogonality is to use the fact that the eigenvalues 

are not repeated and follow the solution to problem 6.2.  The eigenfunctions are 

(table 6.4 or example 6.5). 

 

  
  
X n(x)  an coshnx  cosnx  n sinhnx  sinnx   

 

 Note that the constant an is arbitrary (a constant times a mode shape is still a mode 

shape) and normalizing involves choosing the constant an so that 
  X n X ndx  1. 

Calculating this integral yields: 

 

  
  
an

2
cosh

2 nx  2cosnxcoshnx  cos
2 nx

0

l

  

  
           2 n sinhnx  sinnx  coshnx  cosnx  

  
  
         n

2
sinh

2 nx  2sinnx sinhnx  sin
2 nx dx  

 

 so 

 

  

  

1 an
2

1

n

sinh2nl  sin 2nl
4







 nl













       
1

n

sinhnl sinnl  cosnl coshnl   n

n

cos
2 nl  cosh 2nl

      sinhnl sinnl  cosnl  coshnl cosn  sinnl 
      

 n
2

n

sinh
2 nl  sin2nl

4
1 sinnl sinhnl  coshnl cosnl













 

 

 So denoting the term in [ ] as n and solving for an = 1/  n  yields the 

normalization constant. 



6- 45

6.46 Derive equation (6.109) from equations (6.107) and (6.108). 

 

 Solution: 
 
 Using subscript notation for the partial derivatives, equation (6.108) with f = 0 

yields an expression for   x  i.e. 

 

 
   x  ( AGWxx  Awtt ) / 2 AG      (a) 

 

 Equation (6.107) can be differentiated once with respect to x to yield a middle 

term identical to the first term of equation (6.108).  Substitution yields 

 

   EI xx  Awtt  I xtt       (b) 

 

 Equation (a) can be differentiated twice with respect to time to get an expression 

for  I xx  in terms of w(x,t) which when substituted into (b) yields 

 

  
  EI xxx  Awtt  Iwxxtt  2I / 2G wtttt  

 

 The first term  EI xxx  can be eliminated by differentiating (a) twice with respect 

to x to yield 

 

  
  EI  2 AGwxxxx  Awttxx  Awtt  

2 AGwxxtt  AEIwtttt  

 

 when substituted into (c).  This is an expression in w(x,t) only.  Rearranging terms 

and dividing by 2AG yields equation (6.109). 

 

 
6.47 Show that if shear deformation and rotary inertia are neglected, the Timoshenko 

equation reduces to the Euler-Bernoulli equation and the boundary conditions for 

each model become the same. 

 

 Solution: 
 
 This is a bit of a discussion problem.  Since I is the inertia of the beam in 

rotation about   the term Iwxxxtt represents rotary inertia.  The term 

(IE/2G)wtttt is the shear distortion and the term (2I/2G)wxxtt is a combination 

of shear distortion and rotary inertia.  Removing these terms from equation 

(6.109) results in equation (6.92). 



6- 45

Problems and Solutions Section 6.6 (6.48 through 6.52) 
 

6.48 Calculate the natural frequencies of the membrane of Example 6.6.1 for the case 

that one edge x = 1 is free. 

 

 Solution: 
 
 The equation for a square membrane is 

 

  

 
wtt  wyy 




wtt







 

 

 with boundary condition given by w(0,y) = 0, wx(l,y) = 0, w(x,0) = 0, w(x,l) = 0.  

Assume separation of variables w = X(x)Y(y)q(t) which yields 

 

  

  

X
X


Y

Y


1

c2

&&q
q
  2

  where  c   /   

 

 Then 

 

    &&q  c2 2q  0  

 

 is the temporal equation and 

 

  

  
X

X
  2 

Y
Y

  2
 

 

 yields 

 

  

  

X  2 X  0

Y   2Y  0

 

 

 as the spatial equation where 2
 = 2

 – 2
 and 2

 = 2
 + 2

.  The separated 

boundary conditions are X(0) = 0, 
  X (l)  0 and Y(0) = Y(l) = 0.  These yield 

 

  

  

X  Asinx  Bcosx
B  0

Acosl  0

 nl 
(2n 1)

2

 n 
(2n  1)

2l
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 Next Y = C sin y + D cos y with boundary conditions which yield D = 0 and C 

sin l = 0.  Thus 

 

    m  m l  

 

 and for l = 1 we get an = 

  
(2n 1)

2
,  for m = m n,m = 1, 2, 3,… 

 

  

  

 nm
2   n

2   m
2 

(2n 1)
2 2

4
 m2 2 

(2n  1)
2  4m2

4











2

c2 nm
2  c2

(2n 1)
2  4m2

4











2

 

 

 So that 

 

  

  
 nm  (2n 1)

2  4m2 c
2

 

 

 are the natural frequencies. 
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6.49 Repeat Example 6.6.1 for a rectangular membrane of size a by b.  What is the 

effect of a and b on the natural frequencies? 

 
 Solution: 
 

 The solution of the rectangular membrane of size a  b is the same as given in 

example 6.6.1 for a unit membrane until equation 6.13.1.  The boundary condition 

along x = a becomes 

 

  
  A1

sina sin y  A
2
sinacos y  0  

 

 or 

 

  
  sina( A

1
 sin y  A

2
cos y)  0  

 

 Thus sin a = 0 and a = n or = n/a, n = 1, 2,… Similarly, the boundary 

conditions along y = b yields that 

 

  

  
 

n
b

   n=1,2,3,... 

 

 Thus the natural frequency becomes 

 

  
   nm   a2n2  b2m2

   n,m  1,2,3,...  

 

 Note that nm are no longer repeated, i.e., 
 


12


21
, etc. 
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6.50 Plot the first three mode shapes of Example 6.6.1. 

 

 Solution: A three mesh routine from any of the programs can be used.  Mathcad 

results follow for the 11, 12, 21 and 31 modes: 
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6.51 The lateral vibrations of a circular membrane are given by 

  

  

 2(r,,t)
r 2


1

r
(r,,t)

r


1

r 2

 2(r,,t)
r




 2(r,,t)

t2
 

 where r is the distance form the center point of the membrane along a radius and 

 is the angle around the center.  Calculate the natural frequencies if the 

membrane is clamped around its boundary at r = R. 

 

 Solution: 
 
 This is a tough problem.  Assign it only if you want to introduce Bessel functions.  

The differential equation of a circular membrane is: 

 

  

  

 2W (r,)

r 2


1

r
W (r,)

r


1

r 2

 2W (r,)

2
  2W (r,)  0

 2 

c







2

   c  T


 

 

 Assume: 

 

  
  W (r,)  F(r)G()  

 

 The differential equation separates into: 

 

  

  

d 2G
d2

 m2G  0

d 2F
dr 2


1

r
dF

1

dr
  2 

m2

r 2







F  0

 

 

 Since the solution in  must be continuous, m must be an integer.  Therefore 

 

  
  Gm ()  B

1m sin m  B
2m cos m  

 

 The equation in r is a Bessel equation and has the solution 

 

  
  Fm (r)  B

3mJm(r)  B
4mYm(r)  

 

 Where Jm(r) + Ym(r) are the mth
 order Bessel functions of the first and second 

kind, respectively.  Writing the general solution F(r)G() as 

 

  

  

Wm(r,)  A
1mJm(r)sin m  A

2m Jm (r)cos m
              A

3mYm(r)sin m  A
4mYm(r)cos m
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 Enforcing the boundary condition 

 

  
  Wm(R,)  0   m  0,1,2,...  

 

 Since every interior point must be finite and Ym(r) tends to infinity as r   0, A3m 

= A4m = 0.  At r = R 
 

  
  Wm(R,)  A

1m Jm (R)sin m  A
2mJm(R)cos m  0  

 

 This can only be satisfied if 

 

  
  Jm(R)  0   m  1,2,...  

 

 For each m, Jm(R) = 0 has an infinite number of solutions.  Denote mn as the nth 

root of the mth order Bessel function of the first kind, normalized by R.  Then the 

natural frequencies are: 

 

   mn  cmn  

 
 
6.52 Discuss the orthogonality condition for Example 6.6.1. 

 

 Solution: 
 
 The eigenfuncitons of example 6.6.1 are given as 

 

  
  X n(x)Yn( y)  Anm sin m x sin n y  

 

 Orthogonality in this case is generalized to two dimensions and becomes 

 

  
  

Anm Apq sin m xsin n ysin p ysin q ydxdy  0
0

1


0

1

    mn  pq  

 

 Integrating yields 

 

 

 

  

Anm Apq sin nx sin pxdx sin mg sin gydy
0

1


0

1


       Anm Apq

sin(n  p)x
2(n  p)


sin(n  p)x

2(m  p)











sin(m 1)x
2(m q)


sin(m p) x

2(m  p)










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 Evaluating at x = 0 and x = 1 this expression is zero.  The expression is also zero 

provided n = p and n   q illustrating that the modes are in fact orthogonal. 
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Problems and Solutions Section 6.7 (6.53 through 6.63) 
 

6.53 Calculate the response of Example 6.7.1 for l = 1 m, E = 2.6  10
10

 N/m
2
 and  = 

8.5  10
3
 kg/m

3
.  Plot the response using the first three modes at x = l/2, l/4, and 

3l/4.  How many modes are needed to represent accurately the response at the 

point x = l/2? 

 

 Solution: 
 

  

  
w(x,t)  0.02

l2 n
2

(1)
n1









 e0.01n t

cos
2nt sin nx

n1



  

 

 Where 

 

  

  

 n 
(2n  1)

2l

 n   n

E


 dn  0.9999 n

  

 

 For l = 1 m 

 

  

  

E  2.6 10
10

 N/m
2

  8.510
3
 kg/m

3
 

 

 Response using first three modes at 

  
x  l

2
,
l
4

,
3l
4

 plotted below. 

 

 Three modes accurately represents the response at

  
x  l

2
.  The error between a 

three and higher mode approximation is less than 0.2%. 
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6.54 Repeat Example 6.7.1 for a modal damping ratio of n = 0.01. 

 

Solution:  Using n = 0.01 and the frequency given in the example 

  
 dn  n 1 n

2  0.995 n ,    n 
2n  1

2l
E

  n

E


 

The time response is then 
  Tn(t)  Ane

0.1n t
sin( dnt n )  and the total solution is: 

  
w(x,t)  Ane

0.1n t
sin( dnt n )

n1



 sin
(2n  1)

2l
x  

The initial conditions are: 

  
w(x,0)  0.01

x
l

 m  and  wt (x,0)  0  

Therefore: 

  
0.01

x
l
 An sinn sin nx  

Multiply by sinmx and integrate over the length of the bar to get 

  
0.01

(1)
m1

l m
2

 Am sinm

l
2

   m  1,2,3,... 

From the velocity initial condition 

  
wt (x,0)  0  An 0.1 n sinn  dn cosn 

n1



 sin nx  

Again, multiply by sinmx and integrate over the length of the bar to get 

  
Am (0.1 n sinn  dn cosn )

l
2
 0  

Since Am is not zero this yields: 

  
tann 

sinn

cosn


1 n

3

0.1
 9.9499 n  1.4706 rad  84.3  

Substitution into the equation from the displacement initial condition yields: 

  
Am 

0.01

l 2m
2

(1)
m1

1

sinn


0.0201

l 2m
2

(1)
m1

 

The solution is then 

  
w(x,t)  0.01

l 2m
2

(1)
m1e0.1n t

sin( dnt  n )

n1



 sin
(2n 1)

2l
 x  
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6.55 Repeat Problem 6.53 for the case of Problem 6.54.  Does it take more or fewer 

modes to accurately represent the response at l/2? 

 

 Solution: Use the result given in 6.54 and 

 

  

l  1 m

E  2.6 10
10

 N/m
2

  8.5 10
3
 kg/m

3

 

 

 The response is plotted below at

  
x  l

4
,
l
2

,
3l
4

.  An accurate representation of the 

response is obtained with three modes.  The error between a three mode and a 

higher mode representation is always less than 0.2%.  The results here are from 

Mathcad: 
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6.56 Calculate the form of modal damping ratios for the clamped string of equation 

(6.151) and the clamped membrane of equation (6.152). 

 

 Solution: 
 
 (a) For the string: 

 

  

  

wtt   wt  wxx  0

&&q  &q    q  0




&&q
q




&q
q





  2

&&q  








&q  







 2q  0

 

 

 
 
  2  0 which has the solution

    Asin x  Bcos x .  The boundary 

conditions 
  (0)  (l)  0 yield 

  
 n 

n
l

,   n  1,2,3,...  

 

  

  

 n
2 









 n

2 



n
l







2

2n n 



 n 

2




n
l







 n 


2 

n
l







 

 

 (b) For the membrane 

 

  

  




wtt 



wt  wxx  wyy










XY&&q  








XY&q  X Yq  X Y q










&&q
q











&q
q


X
X


Y

Y
  2

&&q  








&q  







 2q  0
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X

X
 

Y
Y

  2   2
.The boundary conditions are X(0) = X(l) = 0 and Y(0) = 

Y(l) = 0.  The two spatial solutions become 

 

  

  

        X  2  0

X  Asinx  Bcosx
            B  0

   n 
n
l

  n  1,2,3,...

 

  

       Y   2Y  0

Y  C sin x  Dcos x
            D  0

 m 
n
l

  m  1,2,3,...

 

 

 Thus 

 

  

  

mn
2  n2  m2  

l







2

mn
2 




n2  m2  
l







2

2mnmn  


mn 


2mn



2

1




n2  m2 
l


mn 
 l

2  n2  m2 

 

 
 
6.57 Calculate the units on  and  in equation (6.153). 

 

 Solution:  The units are found from 

 

  

 

mg

m
3

m
2 m

s
2
 

m

s

kg

s
2

s

m
 

 
kg

m  s
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6.58 Assume that E, I, and  are constant in equations (6.153) and (6.154) and 

calculate the form of the modal damping ratio n. 

 

 Solution: 
 
 If E, I, and  are constant in equation 6.153 and 6.154.  Then separation of 

variables works and the mode shapes become those given in table 6.4, which can 

be normalized so that
  

X n X m dx  nm
0

l

 .  Substitution of w(x,t) = an(t)Xn(x) into 

equation (6.153) multiplying by Xm(x) and integrating over x yield the mth modal 

equation: 

 

  

  
A&&an(t)   &an(t)   I

 n
2

c2









 &an(t)  EI

 n
2

c2
an(t)  0  

 

 where equation (6.93) has been used to evaluate  X  and
  c

2  EI / A .  Dividing 

by A yields 

 

  

  
&&an (t)  

A


E
 n

2






&an(t)  n
2an(t)  0  

 

 which is the sdof form of windows 6.4.  Thus the coefficients of   must be   

and hence 

 

  

  
2n n 


A



E
 n

2
 

 

 and 

 

  

  

 n  n
2

EI
A

n 


2A n



E
 n

 

 

 where n are given in table 6.4. 
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6.59 Calculate the form of the solution w(x,t) for the system of Problem 6.58. 

 

 Solution: 
 
 The form of the solution of the m time equation is just 

 

  
  Ane

nn t
sin  dnt  n  

 

 where n and n are as given in problem 6.58, 
   dn  n 1 n

2
, and An and n are 

constants determined by initial conditions.  The total solution is of the form 

 

  

  
w(x,t)  Ane

nn t
sin  dnt  n 

n1



 X n(x)  

 

 where Xn(t) are the eigenfunctions given in table 6.4. 
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6.60 For a given cantilevered composite beam, the following values have been 

measured for bending vibration: 

 

   E = 2.71x10
10

 N/m
2
   = 1710 kg/m

3
 

   A = 0.597x10
-3

 m
2
  l = 1 m 

   I = 1.64x10
-9

 m
4
   = 1.75 N s/m

2
 

    = 20,500 Ns/m
2 

 

 Calculate the solution for the beam to an initial displacement of wt(x,0) = 0 and 

w(x,0) = 3sin x. 

 

 Solution: 
 
 Using the values given and the formulas for an(t) from problem 6.58 the temporal 

equation becomes 

 

  
  
&&an  1.714  .00000075G n

2 &an  n
2an  0  

 

 from problem 6.59, 

 

  
  
wt (x,t)

t0
 0  An  n n sinn  dn cosn

  X n(x)  

 

 and 

 

  
  w(x,0)  3sin x  An sinn Xn(x)  

 

 Multiplying by Xn(x) and integrating yields that 

 

  

  
 n n sinn  dn cosn   or  tann 

 dn

 n n

 

 

 and 
  
3 sinxX n (x)dx  An sinn

0

l

 so that 

  
An 

3 sin xX n(x)dx
0

l


sinn

  


3

1n
2

sin xX n(x)dx
0

l

   

where Xn(x) is given in table 6.4. 
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6.61 Plot the solution of Example 6.7.2 for the case wt(x,0) = 0, w(x,0)=sin(nx/), =10 

Ns/m
2
, =10

4
 N, =1 m and  =0.01 kg/m

3
. 

 

Solution: From equation (6.156) and the values given, 1 =0.159/n or nn = 500 

and
   dn  1 0.159

2
, so that: 

  
w(x,t)  Ane

500t

n1



 sin( dnt n )sin nx  

Applying the initial conditions yields 

  
sin n xsin mx

0

l

 dx  An
n1



 sin(n ) sin m x
0

l

 sin n xdx  

So that Ansinn =0 for all n except n = 1, and A1sin1 = 1. So either n =0 or An = 0 

for n not zero. The other initial condition yields that 

  
n  tan

1
(
 1 n

2

 n

)  so that 

An = 0 for n not zero. Thus the system is only  excited in the first mode.  Then  

  

w(x,t)  A
1
e500t

sin(
1

1 n
2 t  n )sinx

            1.001e500t
sin(3137.7t 1.50)sinx

 

This is plotted in Mathcad below: 
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6.62 Calculate the orthogonality condition for the system of Example 6.7.2.  Then 

calculate the form of the temporal solution. 

 

 Solution: Problem is to fill in the details of example 6.7.2 by checking the 

coefficients.  Equation (6.155) by performing the integration. 

 
6.63 Calculate the form of modal damping for the longitudinal vibration of the beam of 

Figure 6.14 with boundary conditions specified by equation (6.157). 

 

 Solution: This is a discussion problem.  The boundary condition given in 

equation (6.157) 

  

  

AEwx (0,t)  kw(0,t)  c w(0,t)
t

AEwx (l,t)  kw(l,t)  c w(l,t)
t

 

 Do not conform readily to separation of variables and lead to time dependent 

boundary conditions.  However one approach is to treat the damper as applied 

forces of the bar cwt(0,t) and –cwt(l,t).  Following this approach the boundary 

conditions become 

  
  AE X (0)  kX (0) and AE X (l)  kX (l)  

 The general solution of the spatial equation of a bar has the form 

  
  X (x)  asin( x  b)  

 Where  is the usual separation constant and a and b are constants.  The first 

boundary condition yields that
    tan

1
( AE / k) .  The second boundary condition 

yields the characteristic equation 

  
  ( AE / k) n  tan( nl  )  

 Which can be solved for n numerically.  Note that n are distinct so that from 

problem 6.39 the eigenfunctions are orthogonal, i.e. an can be calculated such that 

  
  X n(x)  an sin( nx )  

 Are orthonormal.  Following the procedure of example 6.8.11, the temporal 

solution for the forced response is 

  

  

&&Tn(t)  n
2  cwt (0,t)  cw(l,t)  X r (x)dx

0

l


                cX n(0)  cX n(l)  X n(x)dx

0

l

 &Tn(t)
 

 Bring the  
&Tn  term to the left side and comparing its coefficient to 

  2n n yields 

  

  
2n n  c X n(l)  X n(0)  X n(x)

0

l

 dx  

 The form of the modal damping ratio is thus 

  

  
n 

can
2

2 n n

cos  nl   cos   
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Where 
  an

2
 is the normalization factor, n are the eigenvalues 

   n
2  c2 n

2
 

and
  tan

1
( AE / k) . 
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Problems and Solutions Section 6.8 (6.64 through 6.68) 
 

6.64 Calculate the response of the damped string of Example 6.8.1 to a disturbance 

force of f(x,t) = (sin x/l) sin10t. 
 

 Solution: 
 

 

  
f (x,t)  sin

 x
l







sin10t.Assume a solution of the form: 

 

  
  wn(x,t)  Tn (t)X n(x)  

 

 where 

 

  

  
X n(x)  sin

n x
l

 

 

 Substitute into (6.158) 

 

  

  

&&Tn   &Tn   
n
l







2










Tn












sin

n x
l

 sin
x
l







sin10t  

 

 Multiply by 

  
sin

nx
l

 and integrate over the length of the string: 

 

  

  
&&Tn   &Tn  

n
l







2

Tn













l
2


  0     for n =1

   sin10t     for n  1





 

 

 Only the particular solution is of interest since we are looking for the response to 

the disturbance force.  Therefore, dropping the subscripts: 

 

  

  

&&T   &T  

l








2

T  sin10t

&&T 









&T 
c
l







2

T 
sin10t


 where c  


 

 

 Solution is 

 

  
  T  Asin(20t )  
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 where 

  

  

A 
1


c2 2

l2
100








2

 100
 2

2


l2

2 c2 2 100l2 2 100 2l4

  tan
1

10



c2 2

l2
 100



















 tan
1

10 l2

c2 2 100l2











w(x,t)  Asin(10t )sin
 x
l

 

 

 where A and  are given above. 
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6.65 Consider the clamped-free bar of Example 6.3.2.  The bar can be used to model a 

truck bed frame.  If the truck hits an object (at the free end) causing an impulsive 

force of 100 N, calculate the resulting vibration of the frame.  Note here that the 

truck cab is so massive compared to the bed frame that the end with the cab is 

modeled as clamped.  This is illustrated in Figure P6.65. 

 

 Solution: Assume constant area and constant material properties.  Equation of 

motion: 

  
  Awtt  EAwxx  f (x,t)  100 (x  l) (t)  

 Mode shapes (eigenvalues) of a fixed-free bar are (Table 6.1) 

  

  
X n(x)  sin

(2n 1)x
2l

 

 Assume a solution of the form:
  wn(x,t)  X n(x)Tn(t) .  Substitute into the equation 

of motion: 

  

  

&&Tn  
(2n  1)

2l






2











c2Tn












sin

(2n 1) x
2l

 
100

A
 (x  l) (t)dx

&&Tn  n
2Tn sin

(2n 1) x
2l

 
100

A
 (x  l) (t)

 

 where

  
c2 

E


 and  n 
(2n  1)c

2l
.  Multiply by 

  
sin

(2n 1)x
2l

 and integrate 

over the length of the rod: 

  

  

&&Tn  n
2Tn  

2

l
100

A
sin

(2n  1)x
2l






 (x  l

0

l

 ) (t)

                
200

Al
sin

(2n 1)
2







 (t)

 

 which has the solution: 

  

  
Tn(t)  

200

Al n

sin
(2n 1)

2







sin nt  

 The total solution is: 

  

  
wn(x,t)   400

A(2n 1)c








sin

(2n  1)
2











n1



  

  

  
                                           sin

(2n  1)ct
2l







sin
(2n  1)x

2l










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6.66 A rotating machine sits on the second floor of a building just above a support 

column as indicated in Figure P6.66.  Calculate the response of the column in 

terms of E, A, and  of the column modeled as a bar. 

 

 Solution: Referring to equation (6.55) for the equation of a bar and summing 

forces to get the effect of the applied force yields 

  Awtt  EAwxx   (x  l)F
0
sint  

 subject to the boundary conditions 
  w(0,t)  wx (0,t)  0 .  Following the method of 

example 6.8.1, use separation of variables where the spatial function is the 

clamped-free mode shapes used in example 6.3.1: 

  
w(x,t)  X n(x)Tn (t)  (an sin nx)Tn(t),     n 

2n 1

2l
  

 Substitution into the equation of motion yields 

  
  A &&Tn(t)  EA n

2Tn(t) an sin nx   (x  l)F
0
sint  

 (the minus sign in front of EA goes away because of the second derivative of sine 

being negative). Next, let an = 1 (recalling that eigenvectors have arbitrary 

magnitude) and multiply by sin nx and integrate over the length of the beam to 

get: 

  
A &&Tn(t)  EA n

2Tn(t) l
2
 F

0
sint  (x  l)

0

l

 sin nxdx  

 The integral on the right is a bit tricky as the delta function acts at the end of the 

interval. The details are below, however integrating yields 

  
A &&Tn(t)  EA n

2Tn(t) l
2


1

2
F

0
sint

sin nl
2

 (1)
n1

F
0

2
sint  

 Dividing by the appropriate constants this simplifies to  

  
&&Tn(t)  E


 n

2Tn(t) 
(1)

n1 F
0

A
sint  

 

 This has particular solution 

  

  
Tnp (t)  (1)

n1

A
F

0

 n
2  2









 sint   where  n 

E


(2n  1)
2l

 

 Combined with the homogenous solution, the total temporal solution is 

  
Tn(t)  C

1n sin nt C
2n cos nt 

(1)
n1

A
F

0

 n
2  2









 sint  

 So the total solution is 

 

 

 

  
w(x,t)  C

1n sin nt C
2n cos nt 

(1)
n1

A
F

0

 n
2  2









 sint











n1



 sin
(2n 1)x

2l





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The following it the evaluation of the Dirac integral used about (courtesy of Jamil 

Renno) 

Start with the integral at hand 

 

  
 x  l sin mx dx

0

l

  lim
0

d x  l sin mx dx
0

l














 

 

where 

  

d x  l 
1

2
l    x  l  

0 x  l   or x  l  






 is the pulse over the 

interval
  l   , l    . 

 

Hence, the integral can be subdivided over two intervals 

 

  

 x  l sin mx dx
0

l

  lim
0

d x  l sin mx dx
0

l

  d x  l sin mx dx
l

l














 lim
0

0sin mx dx
0

l

 
1

2
sin mx dx

l

l













 lim

0

1

2
sin mx dx

l

l














 lim
0

1

2
1

m

cos mx  l

l







  lim

0

cos m l      cos ml 
2m


L'Hopital's Rule

lim
0

d
d

cos m l      cos ml  
d
d

2m 

 lim
0

1

m







sin m l     

2m


sin ml 

2
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6.67 Recall Example 6.8.2, which models the vibration of a building due to a 

rotating machine imbalance on the second floor.  Suppose that the floor is 

constructed so that the beam is clamped at one end and pinned at the other, and 

recalculate the response (recall Example 6.5.1).  Compare your solution and that 

of Example 6.8.2, and discuss the difference. 

 

 Solution: 
 

 Clamped-pinned beam conditions yield mode shapes (eigenfunctions) of the form: 

 

  
  X n(x)  an coshnx  cosnx  n (sinhnx  sinnx)   

 

 where 
  tannl  tanhnl and 

 

  

  
 n 

1.0008   for n  1

1            for n  1





 

 

 Normalize the mode shape as follows: 

 

  

  

X n
2dx  1

0

l

 

an
2

[coshnx  cosnx  n (sinhnx  sinnx)]
2

0

l

 dx  1

 

 

 From Mathematica 

 

  
  an

2  4n / 4 nl  2 n cos 2nl  2 n cosh 2nl  4cosh nl sin nl  

  

  

       4 n
2
cosh nl sin nl  sin 2nl   n

2
sin 2nl 

       4cos nl sinh nl  4 n
2
cos nl sinh nl 

       8 n sin nl sinh nl  sinh 2nl  n
2
sinh 2nl 

 

 

 The equation of motion for the system is: (constant properties) 

 

  

  
Awtt  EIwxxxx  f (x,t)  100sin3t x  l

2







 

 

 Assume a solution of the form: 
  wn(x,t)  X n(x)Tn(t)  

 

  

  
&&Tn X n 

EI
A

Tn X n 
100

A
sin3t x  l

2






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 Using the mode shapes given above: 

 

  

  
X n  n

4 X n 
 n

2

c2
X n  

 

 where 

 

  

  
n

4 
A
EI

 n
2
,   c2 

EI
A

 

 

 The equation of motion reduces to: 

 

  

  
&&Tn  n

2 X n 
100

A
sin3t x  l

2







 

 

 Multiply by Xn and integrate over the length of the beam: 

 

  

  

&&Tn  n
2Tn 

100

A
sin3t X n(x) x  l

2







dx
0

l



              
100

A
sin3tX n

l
2







 

 

  

  
               

100an

A
sin3t cosh

nl
2

 cos
nl
2

 n sinh
nl
2

 sin
nl
2



















 

 

 or: 

 

  

  

Tn(t) 
100X n

l
2







A  n
2  9 



















sin3t  

 

 The solution is then: 

 

  

  
w(x,t)  an coshnx  cosnx  n sinhnx  sinnx  

n1



  

  

  

                  
100

A  n
2  9 













X n

l
2












sin3t  
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 where an, n, and n are given above.  The free time response is stiffer for the 

clamped case as the frequencies are higher (See Table 6.4). 

 

The comparison of the solution between the two models (one with a pinned end 

and one with a fixed or clamped end) had two purposes: design and modeling.   

From the design point of view it is important to know how to construct the floor 

for a minimum value of response.  From the modeling point of view it is 

important to know how much the solution is effected by the choice of boundary 

conditions as part of the modeling. 

 

Here the comparison can be made by calculating the response and then evaluating 

it and plotting it using a truncated solution (say 3 modes, as given in Equation 

6.181) at a given point of interest (i.e. for a particular value of x).  This gives an 

accurate comparison. 

 

Next you can compare the differences in the details.  For instance the clamped-

pinned natural frequencies are lower then the clamped-clamped frequencies (just 

look at Table 6.4) because the clamped-clamped system is stiffer.  Next, one of 

these sets of frequencies is going to have a natural frequency that is closer to the 

driving frequency, and hence produce a larger response.  To make such 

comparisons, pick a value for the physical parameters (let omega = beta squared 

for instance) and check.  In this case the clamped-pinned frequency is about 3.9 

rad/s, which is much closer to the driving frequency of 3 rad/s then the clamped-

clamped first natural frequency of 4.7 rad/s.  Thus the first term in the series 

solution for the example will be larger then the corresponding term in the series 

solution for the clamped-clamped case. 
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6.68 Use the modal analysis procedure suggested at the end of Section 6.8 to calculate 

the response of a clamped free beam with a sinusoidal loading F0sint at its free 

end. 

 

 Solution: 
 
 The equation of motion is: 

 

  
  Awtt  EIwxxxx  f (x,t)  F

0
 (x  l)sint  

 

 Assume a solution of the form 
  wn(x,t)  X n(x)Tn(t)  

 

  

  
&&Tn X n 

EI
A

Tn X n 
F

0

A
 (x,l)sint  

 

 The mode shapes are given in Table 6.4 for a fixed-free beam: 

 

  
  
X n(x)  an coshnx  cosnx  n sinhnx  sinnx    

 

 Where 

 

  

  

 n 
sinhnl  sinnl
coshnl  cosnl

n
4 

A
EI

 n
2

 

 

 And 

 

  
  cosnl coshnl  1  

 

 From the unforced vibration problem: 

 

  

  

&&Tn X n 
EI
A

Tn X n  0

&&Tn

Tn

 
EI
A







X n

X n

  n
2

 

 

 Therefore 
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X n 

A
EI

 n
2 X n  n

4 X n  

 

 Substitute into the equation of motion and rearrange: 

  

  
&&Tn  n

2Tn X n 
F

0

A
 (x  l)sint  

 

 Normalize the mode shapes as follows: 

 

  

  

X n
2dx  1

0

l


an

2
coshnx  cosnx  n sinhnx  sinnx  

2

dx  1
0

l


an

2  4n / 4 nl  2 n cos 2nl  2 n cosh 2nl  4cosh nl sin nl 
 

  

  

       4 n
2
cosh nl  sin 2nl   n

2
sin 2nl 

       4cos nl sinh nl  4 n
2
cos nl sinh nl 

       8 n sin nl sinh nl  sinh 2nl  n
2
sinh 2nl 

 

 

 Multiply the equation of motion Xn(x) and integrate over the length of the beam: 

 

  

  

&&Tn  n
2Tn 

F
0

A
X n(x) (x  l)dx sint

0

l




F

0

A
X n(l)sint

 

 

 Solving: 

 

  

  
Tn(t) 

F
0

A






X n(l)

 n
2  2









 sint  

 

 The total solution is: 

 

  

  

w(x,t)  an coshnx  cosnx  n sinhnx  sinnx  
n1





                    
F

0

A






X n(l)

 n
2  2


















sint

 

 

 Where n, wn are given above and cos nl cosh nl = -1. 



Problems and Solutions Section 7.2 (7.1-7.5) 
 

7.1 A low-frequency signal is to be measured by using an accelerometer.  The signal 

is physically a displacement of the form 5 sin (0.2t).  The noise floor of the 

accelerometer (i.e. the smallest magnitude signal it can detect) is 0.4 volt/g.  The 

accelerometer is calibrated at 1 volt/g.  Can the accelerometer measure this 

signal? 

 

Solution: 
 

From the problem statement: 

 

  x(t) = 0.5sin(0.2t) m 

  x (t) = 0.1cos(0.2t) m
s

 

  x (t) = -0.02sin(0.2t) m

s
2  

The peak acceleration is: 

 

  0.2 m

s
2

1g
9.8 m

s
2









 0.0204g  

 

Accelerometer calibration is g
V1 , therefore the peak output of the accelerometer 

is: 

 

  0.0204g
1V

g





 0.0204V  

 

Since the noise floor on the accelerometer is 0.4 V, then this acceleration cannot 

be measured. 

   



7.2 Referring to Chapter 2, calculate the response of a single-degree-of-freedom 

system to a unit impulse and then to a unit triangle input lasting T second.  

Compare the two responses.  The differences correspond to the differences 

between a "perfect" hammer hit and a more realistic hammer hit, as indicated in 

Figure 7.2.  Use   = 0.01 and   = 4 rad/s for your model. 

 

Solution: 
 

System: Ý Ý x  2n Ý x n
2 x  f (t)   (Letting m = 1) 

 

(i) )()( ttf  , a unit impulse 

 x(t)  e nt
sin(d t)   d n 1 2

 

 

(ii) f (t)  t
T

u(t)  2

T
(t  T )u(t  T) 

1

T
( t  2T )u(t  2T)  

 u(t-a) = unit step at t = a. 
 x(t)  1

T
r(t)  2r(t  T )  r(t  2T)  

 
From table of Laplace transforms: 

 

 r(t) 
1

n
2

t 
2
n


1

 d

e n t
sin(dt )








u(t)  12cos

2    

 x(t) 
1

Tn
3

nt  2  en t
sin(dt u(t)  

  2 n (t  T )  2  e n ( tT )
sin(d (t  T)) u(t  T )  

   n (t  2T )  2  en ( t 2T )
sin( d (t  2T )) u(t  2T )  

 since n d  and   /2   

 



7.3 Compare the Laplace transform of (t) with the Laplace transform of the triangle 

input of Figure 7.2 and Problem 7.2. 

 

Solution: 
 

(i) f(t) = (t), unit impulse 

F(s) = 1 

 

(ii) f(t) = 
t
T

u(t)  2

T
(t  T )u(t  T) 

1

T
( t  2T )u(t  2T) , unit triangle with 

period T. 

F(s) = 
1

T
te stdt  2 (t  T)e stdt  (t  2T )e st dt

2T




T




0












 

  F(s) = 
1

Ts2
1 esT  es2T  

 

 



7.4 Plot the error in measuring the natural frequency of a single-degree-of-freedom 

system of mass 10 kg and stiffness 350 N/m if the mass of the excitation device 

(shaker) is included and varies from 0.5 to 5 kg.   

 

Solution: 
 

m = 10 kg 

k = 350 N/m 

0.5  sm 5.0 kg 

Error = 

 

k
m  ms


k
m

 

 

 



 

7.5 Calculate the Fourier transform of f(t) = 3 sin 2t – 2 sin t – cos t and plot the 

spectral coefficients. 

 

Solution: 
 

F(t) = 3 sin(2t) - 2sin(t) - cos(t) 
T = 1 rad/sec 

1
a  = -1 

1
b = -2  

2
b = 3 

na  = 0, n = 2, 3, …. nb  = 0, n = 3, 4, 5, ….. 

 

 

 

 



Problems and Solutions Section 7.3 (7.6-7.9) 
 

7.6 Represent 5 sin 3t as a digital signal by sampling the signal at /3, /6 and /12 

seconds.  Compare these three digital representations. 

 

Solution: Four plots are shown.  The one at the top far right is the exact wave 

form.  The one on the top left is sampled at /3 seconds. 

 

 

 

 

 

The next plot is sampled at /6 seconds. 

 

 

 

 



 

The next plot is sampled at /12 seconds. 

 

None of the plots give the shape of a sine wave.  However if the s3 is 

connected by lines, the wave shape is close.



7.7 Compute the Fourier coefficient of the signal |1120 sin (120 t)|. 
 

Solution: 
 

f(t) = |120sin(120t)| (absolute value of the sine wave) 

 

To calculate the Fourier series: 

 

 T = 1/120 sec  T = 240  rad/sec 

ao  240 120sin(120t)dt
0

1
120

  

 


480oa  

 

an  240 120sin(120t)cos(240nt)dt
0

1
120

  

 

)41(

480

2n
an 




 

 

bn  240 120sin(120t )sin( 240nt)dt
0

1
120

  

 

0nb  

 

f (t) 
240


1

2

1 4n2
cos(240n)t

n1











 



7.8 Consider the periodic function 

 

    x(t) = 
5 0    t    
5     t    2





 

 

and x(t) = (t + 2).  Calculate the Fourier coefficients.  Next plot x(t): x(t) 
represented by the first term in the Fourier series, x(t) represented by the first two 

terms of the series, and x(t) represented by the first three terms of the series.  

Discuss your results.   

 

Solution: For the Fourier Series: T = 2  T  = 1 

0
0
a  

an 
2

2
5cos(nt)dt  5cos(nt)dt



2


0












 

                   an  0  

bn 
2

2
5sin(nt)dt 5sin( nt)dt



2


0











  

bn 
5

n
[1 2cos(n )  cos(2n )] 

 

x(t)   5


1

n
1 2 cos(n )  cos(2n sin(nt)

n1



  

 

 



7.9 Consider a signal x(t) with maximum frequency of 500 Hz.  Discuss the choice of 

record length and sampling interval. 

 

Solution: 
 

For a signal with maximum frequency of 500 Hz, the sampling rate, sf , should be 

 

    sf  > 2(500) = 1000 Hz 

 

Due to Shannon’s sampling theorem.  A better choice would be 

 

    sf  = 2.5(500) = 1250 Hz 

 

Thus, the minimum sampling rate is 0.001 sec. and the suggested rate is 0.0008 

sec.   

Lower sampling rates will produce aliasing. 

 

The record length N is usually a power of 2, such as 512, 1024, 2048, etc. 

Windowing is performed to reduce leakage.  

 

 



Problems and Solutions for Section 7.4 (7.10-7.19) 
 

7.10 Consider the magnitude plot of Figure P7.10.  How many natural frequencies does 

this system have, and what are their approximate values? 

 

Solution: 
 

The system looks to have 8 modes with approximate natural frequencies of 2, 4, 

10, 15, 22, 29, 36, and 47 Hz. 



7.11 Consider the experimental transfer function plot of Figure P7.11.  Use the 

methods of Example 7.4.1 to determine i  and i . 

 

Solution: 
 

For each mode: 

   

i

aibi
i 




2


  

where bi  and ai  are the frequencies where the magnitude is 
2

1  of the 

resonant magnitude.  All values given in the following table are approximate.   

 

 

Mode 

 

 

i  (Hz) 

 

)( iH   

 

2

)( iH 
 

 

ai  (Hz) 

 

bi  (Hz) 

 

i  

1 4.80 0.089 0.063 4.56 5.04 0.049 

2 15.20 1.050 0.742 14.76 15.48 0.024 

3 30.95 1.800 1.270 30.47 31.19 0.012 

4 52.62 2.000 1.414 52.14 52.85 0.007 

5 80.00 2.100 1.480 79.05 80.48 0.009 

 

 

 



7.12 Consider a two-degree-of-freedom system with frequencies 
1

  = 10 rad/s, 
2

  = 

15 rad/s, and damping ratios 
1

 = 
2

  = 0.01.  With modal s = 
1

2

1 1

1 1







, 

calculate the transfer function of this system for an input at 
1

x  and a response 

measurement at 
2

x . 

 

Solution: 
 

Since the natural frequencies, damping ratios and mode shapes are given, the 

system can be expressed in modal coordinates as 

 

1 0

0 1






Ý Ý r 

2(.01)10 0

0 2(.01)15







Ý r 
10

2
0

0 15
2







r 

1

2

1 1

1 1







1

0








f (t) 
1

2

1

1









f (t)

 

 

     y 
1

2
0 1 

1 1

1 1






r 

1

2
1 1 r  

 

This is the representation of the system in modal coordinates, if proportional 

damping is assumed.  The transfer function is: 

 

     Y (s) 
1

2
1 1 R(s)  

where 

 

     R(s) 
1

2

1

s 2  0.2s 100

1

s 2  0.3s  225














F(s)  

 

Combining the previous two expressions yields 
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7.13 Plot the magnitude and phase of the transfer function of Problem 7.12 and see if 

you can reconstruct the modal data (
1

 , 
2

 , 
1

 , and 
2

 ) from your plot.   

 

Solution: 
 

For each mode: 

 

     

i

aibi
i 




2


  

 

where bi  and ai  are the frequencies where the magnitude is 
2

1  of the 

resonant magnitude.  All values in the following table are approximate.   

 

 

Mode 

 

 

i  (rad/s) 

 

)( iH   

 

2

)( iH 
 

 

ai  (rad/s) 

 

bi  (rad/s) 

 

i  

1 10 0.50 0.354 9.89 10.07 0.009 

2 15 0.22 0.156 14.83 15.16 0.011 

 

 

 



 



7.14 Consider equation (7.14) for determining the damping ratio of a single 

mode.  If the measurement in frequency varies by 1%, how much will the value of 

 change? 

 

Solution: 
 

    

d

ab





2


  

 

If )01.01(  dod   where do  is the measured natural frequency, then the 

damping ratio is  

 

     
b  a

2 do

1

1 0.01



 o

1

1  0.01




 

 

If d  is 0.99 do , then  = 1.01 o  

 

If d  is 1.01 do , then  = 0.99 o  

 

Thus, 1 percent changes in the measured natural frequency produce similar 

changes in the measured damping ratio. 

 

 
 
 
 
 
 
 

7.15 Discuss the problems of using equation (7.14) if the natural frequencies of the 

structure are very close together.  

 

Solution: 
 

Equation (7.14) assumes that the response at resonance is due to a single degree 

of freedom system.  If the natural frequencies are very close together, this 

assumption is not valid.  This will introduce error into the damping ratio 

calculation since the peak response at each resonant frequency will be due to a 

combination of responses from each of the closely spaced modes.  

 

 



7.16 Discuss the limitation of using equation (7.15) if  is very small.  What happens if 

 is very large? 

 

Solution:  When  is very small (<0.01), it is difficult to determine where R() is 

the largest since equation (7.15) is changing very rapidly in the vicinity of 

resonance.  When  is very large (>0.707), the frequency response near resonance 

is very flat, again making it difficult to determine the damped natural frequency.  

In either case, experimentally determined damping ratios will contain error since 

they depend on an accurate determination of the resonant frequency.  Problem 

7.18 contains plots that illustrate these ideas. 

 

 

7.17 Consider the two-degree-of-freedom system described by  

 

1 0

0 1







Ý Ý x 
1

Ý Ý x 
2








0 0

0 c






Ý x 
1

Ý x 
2








2 1

1 2







x
1

x
2








f
0
sint
0







 

 

and calculate the transfer function |X/F| as a function of the damping parameter c. 

 

Solution: 
 

The equations of motion for the system are: 

 

  
1 0

0 1






Ý Ý x 

0 0

0 c





Ý x 

2 1

1 2






x 

fo

0









f (t)  

 

Taking the Laplace transform yields 

 

  
s 2  2 1

1 s 2  cs  2







X(s) 

fo

0









F(s)  

 

Inverting the matrix on the left hand side leads to an expression for X(s): 

 

  X(s) 
1

(s2  2)(s2  cs  2) 1

s 2  cs  2 1

1 s2  2







fo
0









F(s)  

 

Performing the multiplication leads to  
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7.18 Plot the transfer function of Problem 7.17 for the four cases:  c = 0.01, c = 0.2, c = 

1, and c = 10.  Discuss the difficulty in using these plots to measure i  and i  for 

each value of c. 

 

Solution: 
 

For c = 0.01, the resonant peaks are very sharp, making an accurate determination 

of i  difficult.  In the case c = 0.2, i  and i  could be determined fairly easily 

using the techniques of section 7.4.  Increasing c to 1.0 makes the frequency 

response very flat, which again makes finding i  and i  difficult.  Finally, when 

c = 10, it almost looks as if there is one resonant peak, which would lead to a 

completely erroneous result. 

 

 



7.19 Use a numerical procedure to calculate the natural frequencies and damping ratios 

of the system of Problem 7.18.  Label these on your plots from Problem 7.18 and 

discuss the possibility of measuring these values using the methods of Section 7.4 

 

Solution: 
 

For the case where c = 0.01 

 

 

Mode 

 

 

i  (rad/s) 

 

)( iH   

 

2

)( iH 
 

 

ai  (rad/s) 

 

bi  (rad/s) 

 

i  

1 1.0 59 41.72 0.99 1.02 0.015 

2 1.7 48 33.94 1.71 1.69 0.006 

Actual values:  
1

  = 1.00 
1

  = 0.003 

    
2

  = 1.73 
2

  = 0.001 

 

The actual values are calculated directly from the equations. 

 

For the case where c = 0.2 

 

 

Mode 

 

 

i  (rad/s) 

 

)( iH   

 

2

)( iH 
 

 

ai  (rad/s) 

 

bi  (rad/s) 

 

i  

1 1.0 5.1 3.61 0.93 1.06 0.064 

2 1.7 2.9 2.05 1.69 1.79 0.030 

 

Actual values:  
1

  = 1.00 
1

  = 0.050 

    
2

  = 1.73 
2

  = 0.029 

 

For the case c = 0.01, there is more error in the measured parameters than for the 

case c = 0.2 due to the sharpness of the resonant peak.   

 



 

 

 



Problems and Solutions Section 7.5 (7.20-7.24) 
 

7.20 Using the definition of the mobility transfer function of Window 7.4, calculate the 

Re and Im parts of the frequency response function and hence verify equations 

(7.15) and (7.16). 

 

Solution: 
 

From Window 7.4: 
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The previous expression can be separated into real and imaginary parts: 

 

Re  ( )   2c
(k 2 m)

2  (c)
2

  Im  
222

2

)()(

)(
)(

cmk
mk








  



7.21 Using equations (7.15) and (7.16), verify that the Nyquist plot of the mobility 

frequency response function does in fact form a circle.   

 

Solution: 
 

Define  A 
 2c

(k 2 m)
2  (c)

2


1

2c
Re( ) 

1

2c
 

 

  B 
(k -2 m)

(k  2m)
2  (c)

2
 Im( )  

 

Show that 

 

    A2  B2 
1

2c






2

 

which is a circle of radius 
c2

1
 with center at Re() = 

c2

1
, Im() = 0. 

 

A2  B2 
 2c

(k  2m)
2
(c)

2


1

2c






2


(k  2m)

(k  2m)
2  (c)

2







2

 

 

A2  B2 
( 2c)

2

(k   2m)
2  (c)

2 2


 2
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2
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2 2

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2  (c)

2


1

2c
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 2
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2
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

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
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A2  B2 
1

2c






2

 

Which is the equation of a circle.



7.22 Consider a single-degree-of-freedom system of mass 10 kg, stiffness 1000 

N/m, and damping ratio of 0.01.  Pick five values of  between 0 and 20 rad/s and 

plot five points of the Nyquist circle using equations (7.15) and (7.16).  Do these 

form a circle? 

 

Solution: 
 

SDOF oscillator: 

 

     0 kxxcxm   

 

    m = 10 kg  k = 1000 N/m   = 0.01 

 

 First, calculate the damping constant c. 

 100
2 

m
k

n  

 c  2 nm  2(0.01)(10)(10)  2 Ns
m

 

 

 Re   22

(1000 10 2
)

2  (2)
2

 

 

 Im   (100010 2
)

(1000 10 2
)

2  (2)
2

 

 

    

 Re() Im() 

9.90 0.2487 0.2500 

9.95 0.3996 0.2003 

10.00 0.5000 0.0000 

10.05 0.4004 -0.1997 

10.10 0.2512 0.2500 

 

The following plot displays the 5 points listed in the table, as well as the same 

plot with a fine discretization of the driving frequency . 

 



 

 





7.23 Derive equation (7.20) for the damping ratio from equations (7.18) and 

(7.19).  Then verify that equation (7.20) reduces to equation (7.21) at the half-

power points. 

 

Solution: Begin with equations (7.18) and (7.19) 

  tan 
2 

a


3







2

1

2
3
a


3

 

  tan 
2 

b


3







2

1

2
3
b


3

 

Multiplying the right hand side of each expression by 
2

3

2

3




 yields 

  tan 
2  a

2 
3

2

2
3
a3

 

  tan 
2  

3

2 b
2

2
3
b3

 

 

After a suitable multiplication, these expressions are: 

 

  (2
3
 a3

)tan 
2  a

2  
3

2

 

  (2
3
 b3

) tan 
2 3

2  b
2

 

 

Adding the previous two equations results in: 

 

  2
3
( a b ) tan 

2 a
2  b

2

 

 

Which can be manipulated to yield equation (7.20) 

 

  
3


a
2 b

2

2
3
a tan 

2  b tan 
2   

 

At the half-power points,  = 90° and tan 
2 = 1, so (7.20) reduces to: 

 

  

3

3

2


 ba   

 



7.24 Consider the experimental curve fit Nyquist circle of Figure P7.24.  Determine the 

modal damping ratio for this mode 

 

Solution: 
 

From Figure 7.18, 

 

      45  

    
3
 9Hz 

    10b Hz 

    8a Hz 

 

Using (7.20) 

   
3


10
2  8

2

2(9) 8tan 45
2  10tan 45

2   
 

   27.0
3
  

 

 



Chapter 8 
Problems and Solutions Section 8.1 (8.1 through 8.7) 
 
8.1 Consider the one-element model of a bar discussed in Section 8.1.  Calculate the 

finite element of the bar for the case that it is free at both ends rather than clamped. 

 

Solution: The finite element for a rod is derived in section 8.1.  Since u1 is not 

restrained equations (8.7) and (8.11) are the finite element matrices. 

 

8.2 Calculate the natural frequencies of the free-free bar of Problem 8.1.  To what 

does the first natural frequency correspond?  How do these values compare with 

the exact values obtained from methods of Chapter 6? 

 
Solution: 

 

 

K 
EA
l

1 1

1 1






        M 

Al
6

2 1

1 2







M1K 
6E
l2

1 1

1 1







 

 

 

 


1,2

 0,
12E
l2

 and the corresponding eigenvectors are

x
1
 1 1 T / 2 and x

2
 1 1 T / 2

 

 

 Therefore, 
1
 0, 

2


12E
l2

 

 

 The first natural frequency corresponds to the rigid body mode, or pure 

translation. 

 

 From the solution to problem 6.8, 

 

 
1
 0, 

2


 2E
l 2

 

 

 The first natural frequency is predicted exactly while the second is 10.2% high.  A 

point of interest is that, due to symmetry, the first mode of a clamped-free rod of 

length l/2 has the same natural frequency as the second mode of a free-free  rod of 

length l. 



8.3 Consider the system of Figure P8.3, consisting of a spring connected to a clamped-

free bar.  Calculate the finite element model and discuss the accuracy of the 

frequency prediction of this model by comparing it with the method of Chapter 6. 

 
Solution: 

 

 The finite element for the clamped-free rod is given by (8.14) as 

 

 
Al
3

Ý Ý u 
2
(t)  EA

l
u

2
(t)  0  

 

 The spring has the effect of adding stiffness K at u2.  Thus, 

 

 
Al
3

Ý Ý u 
2
(t)  EA

l
K



u2

(t)  0  

 

 From (1.16) 

 

  
3(Kl  EA)

Al
 

 

 Next consider the first natural frequency as predicted from the distributed 

parameter approach of chapter 6.  In particular Table 6.1 gives the frequency 

equation for this system as ncotn = -(Kl/EA) where n = nl/c, c2
 = E/.  

Approximating cotx = 1/x - x/3 the frequency equation of Table 6.1 becomes 

 

 n (1/n-n/3) = -(kl/EA)  or for n=1   2l2
/c2

=3(1+kl/EA) 

 

 which upon solving for  is identical to the one element FEM frequency derived 

above. 



8.4 Consider a clamped-free bar with a force f(t) applied in the axial direction at the 

free end as illustrated in Figure P8.4.  Calculate the equations of motion using a 

single-element finite element model. 

 
Solution: 

 

 The finite element equation of motion for an unforced clamped-free bar is given by 

equation (8.14).  Using (8.13) it can be seen that the forced equation is 

 

 
Al
3

Ý Ý u 
2
(t)  EA

l
u

2
(t)  f (t)  



8.5 Compare the solution of a cantilevered bar modeled as a single finite element with 

that of the distributed-parameter method summarized in Figure 8.1 truncated at 

three modes by calculating (a) u(x,t) and (b) u(l/2,t) for a 1-m aluminum beam at t 
= 0.1, 1, and 10s using both methods.  Use the initial condition u(x,0) = 0.1x m 

and ut (x,0) = 0. 

 
Solution:  (8.5, 8.6) 

 

 For the finite element of the bar 

 

  = 2700 kg/m
3
,  E = 7 10

10
 N/m

2
 

 

 The unforced equation of motion is then 

 

 Ý Ý u 
2
(t)  7.78 10

7u
2
(t)  0 


 From window 8.2 

 

 u2(t)=.1cos(8.81910
3t) 

 

 Using the shape functions for the bar 

 

 u(x,t) = u2(t)x=.1xcos(8.81910
3t) 

 
 For the continuous model truncated at 3 modes, (see example6.3.1) 

 

 1,2,3 = 8000 rad/s, 24000 rad/s, 40000 rad/s and the mode shapes are 

 

 

X
1
(x)  sin


2

x
l





    ,  X4

(x)  sin
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2

x
l


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


X
2
(x)  sin

3
2

x
l





  ,  X

5
(x)  sin

9
2

x
l





 

X
3
(x)  sin

5
2

x
l







 

 

 The solution is given by (6.27) as 

 

 u(x,t )  (cn sinn t  dn cosn t)Xn(x)
n1


  

 

 Since we are given Ý (x, t)  0,  cn  0  

 

 u(x,t )  an cos(n t)Xn(x)
n1


  



 

 Considering the initial condition u(x,0) = .1x 

 

 u(x,0)  an sin
(2n 1)

2

x
ln1



  .1x  

 

 Multiplying by sin
(2m 1)

2

x
l

 and integrating from x = 0 to x = l, 

 

 

.1x sin
(2m 1)

2

x
l







0

l
 dx  an sin

(2n 1)
2

x
l







0

l
 sin

(2m 1)
2

x
l





dx

.1x sin
(2m 1)

2

x
l







0

l
 dx  an

l2

2




 




an 
2

l2
.1x sin

(2n 1)
2

x
l







0

l
 dx

 

 

 a1=.08106, a2=-.009006, a3=.003242, a4=0.001654, a5=.001001 

 

 from (6.63) 

 

 

n 
(2n1)

2

E


,  
1
 

2

E

 7998rad/s,  

2
 3

2

E

 23994rad/s,


3


5
2

E

 39990rad/s, 

4


7
2

E

 55987rad/s


5


9
2

E

 71982rad/s

 

 

 Substitution into 6.27 yields 

 

 

(x, t)  .08106 cos(7998t)sin

2

x
l





 .00901cos(23994t)sin

3
2

x
l







             + .00324cos(39990t)sin
5
2

x
l





 .00165cos(55987t)sin

7
2

x
l







             + .001001cos(71982t)sin
9
2

x
l







 

 

 Note that for problem 8.5 the last two terms are neglected. 

 

 

8.5 
 



 

u(x,t ) t .1
 .021205sin

x
2





 .00643sin

3x
2





 .00314

5x
2







u(x,t ) t 1
 .07133sin

x
2





 .00077sin

3x
2





 .00255

5x
2







u(x,t ) t 10
 .01900sin

x
2





  .00587sin

3x
2





 .003

5x
2







u(x,t ) t .1, x.5
 .01732

u(x,t ) t 1, x.5
 .05169

u(x,t ) t 10, x.5
 .01546

 

 



8.6 Repeat Problem 8.5 using a five-mode model.  Can you draw any conclusions? 

 

Solution: 
 

 

u(x,t ) t .1
 .0212sin

x
2





 .00643sin

3x
2





 .00314

5x
2







                  .00153sin
7x

2





 .00069sin

9x
2







u(x,t ) t 1
 .07133sin

x
2





 .0077sin

3x
2





 .00255

5x
2







                  .00129sin
7x

2





 .00026sin

9x
2







u(x,t ) t 10
 .01900sin

x
2





  .00587sin

3x
2





 .00300

5x
2







                  .00146sin
7x

2





 .00085sin

9x
2







u(x,t ) t .1, x.5
 .01672

u(x,t ) t 1, x.5
 .05060

u(x,t ) t 10, x.5
 .01709

 

 

 For the finite element solution from (8.17) 

 

 

u(x,t )  .1x cos(8819.2t)
u(x,t ) t .1

 .06445x          u(x, t) t .1, x .5
 .03222     

u(x,t ) t1
 .07515x           u(x, t) t1,x .5

 .03758

u(x,t ) t10
 .06047x            u(x,t) t 10,x .5

 .03024

 

 

 Conclusion:  Not nearly enough elements were used to accurately determine the 1
st
  

natural frequency.  Since the 1
st
 mode dominates the response (this can be seen by 

comparing the coefficients, an), it must be determined well in order to predict the 

rod’s response. 



8.7 Repeat Problem 8.5 using only the first mode in the series solution and the initial 

condition u(x,0) = 0.1sin(x/2l), ut(x,0) = 0.  For this initial condition, the first 

mode is exact.  Why? 

 
Solution: 

 

 Using the same procedure as in problem 8.5, the solution is 

 

 

u(x,t )  .1sin
x
2





cos(7998t)

u(x,t ) t.1
 .02616sin

x
2





          u(x,t) t.1, x .5

 .01850     

u(x,t ) t1
 .08800sin

x
2





             u(x,t) t1,x .5

 .06223

u(x,t ) t10
 .02344sin

x
2





           u(x, t) t10,x .5

 .01657

 

 

 The finite element solution is unchanged.  Again there is horrible agreement 

between the finite element model and the distributed parameter model. 

 

 The fist mode is exact because the initial condition is in the first mode.  All 

coefficients, an, for modes other than the first mode are zero. 

 



Problems and Solutions Section 8.2 (8.8 through 8.20) 
 
8.8 Consider the bar of Figure P8.3 and model the bar with two elements.  Calculate 

the frequencies and compare them with the solution obtained in Problem 8.3.  

Assume material properties of aluminum, a cross-sectional area of 1 m, and a 

spring stiffness of 1  10
6
 N/m.  

 
Solution: The finite element model for the two-element bar is 

MÝ Ý u ( t) Ku(t)  0  

 where u(t)  u
1

u
2 T  

u1          u2

 

 

 M 
Al
12

4 1

1 2






   K 

2EA
l

2 1

1 1







 

 

 As in problem 8.3, the spring adds a stiffness K to degree of freedom 2.  The 

equation of motion is then 

 

 
Al
12

4 1

1 2






Ý Ý u (t)  2EA

l

2 1

1 1
Kl

2EA









u(t)  0  

 

 The natural frequencies can be found by eigenanalysis.  Using the material 

properties of aluminum 

 

 = 2700kg/m
3
 , E = 7  10

10
Pa 

 

 1 = 129.0 rad/s 

 

 2 = 368.4 rad/s 

 

 The solution obtained in problem 8.4 is 1 = 149.1 rad/s. 



8.9 Repeat Problem 8.8 with a three-element model.  Calculate the frequencies and 

compare them with those of Problem 8.8. 

 
Solution: 

 

 The finite element model of the 3 element rod for equal length elements is (from 

equation (8.25)) 

 

 
Al
18

4 1 0

1 4 1

0 1 2














Ý Ý u  3EA

l

2 1 0

1 2 1

0 1 1














u  0  

 

 With the spring stiffness included, the global stiffness becomes 

 

 K 
3EA

l

2 1 0

1 2 1

0 1 1 
Kl

3EA

















 

 

 Solving for the natural frequencies gives 1 = 125.85 rad/s, 2=333.1 rad/s, and 3 

= 591.7 rad/s 

 

 The natural frequencies predicted in 8.9 should be better than those predicted in 

8.8.  You can compare them to the results of 2 element model by using VTB8_2 

and loading the file p8_3_10.con. 

 



8.10 Consider Example 8.2.2.  Repeat this example with node 2 moved to /2 so that 

the mesh is uniform.  Calculate the natural frequencies and compare them to those 

obtained in the example.  What happens to the mass matrix? 

 
Solution: (8.10, 8.11) 

 

 The equation of motion can be shown to be 

 

 

Al
12

4 1

1 2






Ý Ý u  2EA

l
2 1

1 1






u  0


1


1.16114

l
E

 8204.8 rad/s


2


5.6293

l
E

 28663 rad/s

 

 

 The first natural frequency is slightly improved (closer to the distributed parameter 

‘true’ value) while the second natural frequency has become worse. 

 

  

 Truth Example 8.22 Problem 8.10 Example 8.2.1 

1 

1.571
1

l
E


 1.643
1

l
E


 1.611
1

l
E


 1.579
1

l
E


 

2 
4.712

1

l
E


 5.196
1

l
E


 5.629
1

l
E


 5.167
1

l
E


 

 

 The natural frequencies found using the 3 element model are much better than the 

2 element model. 

 

 

8.11 Compare the frequencies obtained in Problem 8.10 with those obtained in Section 

8.2 using three elements. 

 
Solution: 

 

 See the solution for problem 8.10. 



8.12 As mentioned in the text, the usefulness of the finite element method rests in 

problems that cannot readily be solved in closed form.  To this end, consider a 

section of an air frame sketched in Figure P8.13 and calculate a two-element finite 

model of this structure (i.e., find M and K) for a bar with 

 
Solution: 

 

 A(x) 

4

h
1

2 
h

2
 h

1

l






2

x2  2h
1

h
2
 h

1

l




x







 

 

 Two methods exist for creating a finite element model for this wing.  The first is to 

assume each element has a constant cross section.  The second is to derive 

elements based on the variable cross section.  If enough elements are used, 

constant cross section elements can yield acceptable results.  However, since in 

this example only two elements are used, it is better to use a variable cross section 

element.  Both solutions are given. 

 

 A:  Variable cross section elements 

 

 Following the procedure of section 8.1, the shape function of the first element is 

given by 

 

 u(x,t )  1
2x
l





u1

(t)  2x
l

u
2

(t)  

 

 The strain energy for element 1 is given by 

 

 

V
1
(t)  EA(x)

u
1
(x, t)
x





0

l / 2


2

dx

       
E
48l

[(7h
1

2  4h
1
h

2
 h

2

2
)u

1

2
(t)  (14h

1

2  8h
1
h

2
 2h

2

2
)u

1
(t)u

2
(t)

                                                (7h
1

2  4h
1
h

2
 h

2

2
)u

2

2
(t)]

 

 

 However, since u1(t) = 0, 

 

 V
1
(t)  E

48l
(7h

1

2  4h
1
h

2
 h

2

2
)u

2

2
(t)  

 

 For element 2, the shape function is 

 

 u
2
(x,t)  2 1

x
l





u2

(t)  2x
l
1





u3

(t )  

 

 The strain energy for element 2 is then given by 



 

 

V
2
(t)  1

2
EA(x)

u
2
(x, t)
x





l / 2

l


2

dx

       
E
48l

h
1

2  4h
1
h

2
 7h

2

2 u
2

2
(t)  2u

2
(t)u

3
(t)  u

3

2
(t) 

 

 

 The total strain energy is then 

 

 V(t)  E
48l

( f
1
 f

2
)u

2

2
(t)  2 f

2
u

2
(t)u

3
(t)  f

2
u

3

2
(t)  

 

 where f
1
 7h

1

2  4h
1
h

2
 h

2

2
  and  f

2
 h

1

2  4h
1
h

2
 7h

2

2
 

 

 In matrix form this is 

 

 

V(t)  1

2
u

2
(t) u

3
(t) K u

2
(t) u

3
(t) T

where

K  E
24l

f
1
 f

2
 f

2

 f
2

f
2








 

 

 The kinetic energy of element 1 is given by 

 

 

T
1
( t)  A(x) u

1
(x,t)
x





0

l /2


2

dx

       
l

1920
(16h

1

2 18h
1
h

2
 6h

2

2
) Ý u 

2

2
(t)

 

 

 (since Ý u 
1
(t)  0 , terms including Ý u 

1
(t)  have been dropped) 

 

 Similarly, the kinetic energy of element 2 is 

 

 
T

2
(t)  A(x)

u
2
(x, t)
x





l / 2

l


2

dx  l
1920

[(6h
1

2 18h
1
h

2
16h

2

2
) Ý u 

2

2

        (3h
1

2  8h
1
h

2
 31h

2

2
) Ý u 

2
Ý u 
3
 (h

1

2  8h
1
h

2
31h

2

2
)Ý u 

3

2
]

 

 

 The total kinetic energy can be written 

 



 

T (t)  l
1920

[(22h
1

2  36h
1
h

2
 22h

2

2
)Ý u 

2

2  (3h
1

2 14h
1
h

2
 23h

2

2
)Ý u 

2
Ý u 
3

        (h
1

2  8h
1
h

2
 31h

2

2
) Ý u 

3

2
]  1

2
Ý u 
2

Ý u 
3 M Ý u 

2
Ý u 
3 T

where

M 
l

1920

44h
1

2  72h
1
h

2
 44h

2

2
3h

1

2 14h
1
h

2
 23h

2

2

3h
1

2  14h
1
h

2
 23h

2

2
2h

1

2 16h
1
h

2
 62h

2

2








 

 

 B:  Constant cross section elements 

 

 The average cross section area of element 1 is 

 

 A
1



48

(7h
1

2  4h
1
h

2
 h

2

2
)  

 

 and the average cross section area of element 2 is 

 

 A
2


48

(h
1

2  4h
1
h

2
 7h

2

2
)  

 

 Finding the potential energy again yields the same global stiffness matrix as for the 

variable cross section model. 

 

 The kinetic energy can then be found by 

 

 

T (t)  1

2
A

1
 u

1
(x,t)
x





0

l / 2


2

dx  1

2
A

2
 u

2
(x, t)
x





l /2

l


2

dx

      
1

2
Ý u 

2
Ý u 
3 M Ý u 

2
Ý u 

3 T

where

M 
l
12

2(A
1
 A

2
) A

2

A
2

2A
2








 

 

 which is not identical to the mass matrix derived using variable cross section 

elements. 



8.13 Let the bar in Figure P8.13 be made of aluminum 1 m in length with h1 = 20 cm 

and h2 = 10 cm.  Calculate the natural frequencies using the finite element model 

of Problem 8.12. 

 
Solution: 

 

 E = 7 10
10

Pa, = 2700 kg/m
3
 

 
 h1 = .2m, h2 = .1m, l = 1m 

 
 Using the variable cross section elements 

 

 

K  2.566 10
9 8.705 10

8

8.705 10
8

8.70510
8








and

M 
16.081 2.783

2.783 4.506







 

 

 The natural frequencies are then 1 = 7414 rad/s and 2 = 20368 rad/s 

 

 The constant cross sectional area mass matrix is 

 

 M 
16.493 2.798

2.798 5.596







 

 

 which give 1 = 7092 rad/s, 2 = 18636 rad/s 



8.14 Repeat Problems 8.12 and 8.13 using a three-element four-node finite element 

model. 

 
Solution: 

 

 The shape functions for 3 evenly spaced elements are 

 

 

u
1
(x,t)  1  3x

2l




u1

(t)  3x
l

u
2
(t)

u
2
(x,t)  2 1 

3x
2l





u2

(t)  3x
l
1





u3

(t)

u
3
(x,t)  3 1 

x
l





u3

(t)  2
3x
2l

1




u4

(t)

 

 

 Integrating to find the strain energy, the strain energies in matrix notation are 

 

 

V
1
(t)  1

2
u

1
u

2 K1
u

1
u

2 T

V
2
(t)  1

2
u

2
u

3 K2
u

2
u

3 T

V
3
( t)  1

2
u

3
u

4 K3
u

3
u

4 T

where

K
1


E
36l

(19h
1

2  7h
1
h

2
 h

2

2
)

1 1

1 1







K
2


E
36l

(7h
1

2 13h
1
h

2
 7h

2

2
)

1 1

1 1







K
3


E
36l

(h
1

2  7h
1
h

2
19h

2

2
)

1 1

1 1







 

 

 Writing the total strain energy in matrix form, the global stiffness matrix is 

 

 

K 
E
36l

f
1
 f

2
 f

2
0

 f
2

f
2
 f

3
 f

3

0  f
3

f
3















where

f
1
 19h

1

2  7h
1
h

2
 h

2

2
,   f

2
 7h

1

2 13h
1
h

2
 7h

2

2
  and  f

3
 h

1

2  7h
1
h

2
19h

2

2

 

 

 The kinetic energy of each element in matrix form is 



 

 

T
1
(t)  1

2
Ý u 

1
Ý u 

2 M1
Ý u 
1

Ý u 
2 T ,   T

2
(t)  1

2
Ý u 

2
Ý u 

3 M2
Ý u 

2
Ý u 

3 T ,

            T
3
(t)  1

2
Ý u 

3
Ý u 

4 M3
Ý u 

3
Ý u 

4 T

where

M
1


l
3240

76h
1

2 13h
1
h

2
 h

2

2 1

2
63h

1

2  24h
1
h

2
 3h

2

2 
1

2
63h

1

2  24h
1
h

2
 3h

2

2  51h
1

2  33h
1
h

2
 6h

2

2















M
2


l
3240

31h
1

2  43h
1
h

2
16h

2

2 1

2
23h

1

2  44h
1
h

2
 23h

2

2 
1

2
23h

1

2  44h
1
h

2
 23h

2

2  16h
1

2  43h
1
h

2
 31h

2

2















M
3
 l

3240

6h
1

2  33h
1
h

2
 51h

2

2 1

2
3h

1

2  24h
1
h

2
 63h

2

2 
1

2
3h

1

2  24h
1
h

2
 63h

2

2  h
1

2 13h
1
h

2
 76h

2

2















 

 

 Evaluating and assembling the mass and stiffness matrices gives: 

 

 

K 
9.285 3.726 0

3.729 5.987 2.2602

0 2.2602 2.2602














10

9

M 
13.1423 2.6573 0

2.6573 8.4299 1.6101

0 1.6101 2.7751















 

 

 1 = 10406 rad/s, 2 = 27309 rad/s, 3 = 47797 rad/s 

 

 Note that a ten element model yields 

 

 1 = 10316 rad/s, 2 = 25183 rad/s 



8.15 Consider the machine punch of Figure P8.15.  This punch is made of two materials 

and is subject to an impact in the axial direction.  Use the finite element method 

with two elements to model this system and estimate (calculate) the first two 

natural frequencies.  Assume E1 = 8  10
10

 Pa, E2 = 2.0  10
11

 Pa, 1 = 7200 

kg/m
3
, 2 = 7800 kg/m

3
, l = 0.2 m, A1 = 0.009 m

2
, and A2 = 0.0009 m

2
. 

 
Solution: The total strain energy of the system is 

 

 V(t)  1

2
u

1

2 2E
1
A

1

l


2E
1
A

1

l
u

1

u
2







T
1 1

1 1







u
1

u
2















 

u
1

                   u2

 

 The vector of derivatives of the potential energy gives 

 

V
u

1

V
u

2


















2

l
E

1
A

1
 E

2
A

2
E

2
A

2

E
2
A

2
E

2
A

2







u
1

u
2







 

The stiffness matrix is then 

 

 K 
2

l
E

1
A

1
 E

2
A

2
E

2
A

2

E
2
A

2
E

2
A

2







 

 

 In similar fashion, the total kinetic energy is 

 

 T (t)  1

2
Ý u 

1

2 1
A

1
l

6


l
12

Ý u 
1

Ý u 
2







T
2

2
A

2


2
A

2


2
A

2
2

2
A

2







Ý u 
1

Ý u 
2















 

 



 The mass matrix is then 

 

 

M  l
12

2(
2
A

2
 

1
A

1
) 

2
A

2


2
A

2
2

2
A

2








E
1
 8 10

10
Pa,  

1
 7200kg/m

3
,  E

2
 2.010

11
Pa,  

2
 7800kg/m

3
,

l  .2A
1
 .0009, A

2
 .0001

K 
9.2 2

2 2






10

8
    M 

.242 .013

.013 .026







 

 

 1 = 47556.1 rad/s, 2 = 101975 rad/s 

 

 

 

 

 

 

8.16 Recalculate the frequencies of Problem 8.15 assuming that it is made entirely of 

one material and size (i.e., E1 = E2, 1 = 2, and A1 = A2), say steel, and compare 

your results to those of Problem 8.15. 

 

Solution: 
 

 Assume A1 = A2, E1 = E2, 1 = 2 

 

 K 
4 2

2 2






 10

8
   M 

.052 .013

.013 .026







 

 

 1 = 40798.6 rad/s, 2 = 142525 rad/s 

 

 The first natural frequency decreased.  This example illustrates how a punch can be 

modified to raise the first natural frequency by changing the base material. 



8.17 A bridge support column is illustrated in Figure P8.17.  The column is made of 

concrete with a cross-sectioned area defined by A(x) = A0e
-x/l

, where A0 is the area 

of the column at ground.  Consider this pillar to be cantilevered (i.e., fixed) at 

ground level and to be excited sinusoidally at its tip in the longitudinal direction 

due to traffic over the bridge.  Calculate a single-element finite element model of 

this system and compute its approximate natural frequency. 

 

Solution: 
 

 A(x) = A0e
-x/l

 

 

 The potential energy is 

 

 

V(t)  E
2

A(x)
u(x, t)
x







2

dx
0

l


where u(x ,t)  1  x
l





u1

(t)  x
l

u
2

(t)

V(t)  EA
0

2l
e1

e
u

1
(t)  u

2
( t) 2

        EA
2l

e 1

e
u

2

2
( t)

 

 

 The stiffness is then 

 

 K 
EA
l

(e 1)

e
 

 

 Likewise, the kinetic energy is 

 

 T (t) 
1

2
A

u(x, t)
x







2

dx
0

l
 

Al
2e

(2e 5) Ý u 
2

2
(t)  

 

 The mass is then 

 



 M 
Al
e

(2e  5)  

 

 The first natural frequency is then approximately 

 

 
1


K
M


E(e 1)

(2e  5)l2


1.984

l
E


 



8.18 Redo Problem 8.17 using two elements.  What would happen if the “traffic” 

frequency corresponds with one of the natural frequencies of the support column? 

 

Solution: The shape functions for a 2 element model are 

 

 

u
1
(x,t)  1  2x

l




u1

(t)  2x
l

u
2
(t)

u
2
(x,t)  2 1

x
l





u2

(t)  2x
l
1





u3

(t )

 

 The total stain energy in matrix form is 

 

 

V(t)  1

2
u

2
u

3 K u
2

u
3 T

where

K 
4A e 1 E0

el
1 e 1

1 1








 

 Likewise the mass matrix can be found from the total potential energy to be 

 

M 
Al

e
8 e 1 e  10  6 e

10  6 e 813 e







 

 and the natural frequencies are then 

 
1


1.939

l
E


 rad/s,   
2


5.605

l
E


 rad/s  

 If the traffic frequency corresponds to a natural frequency of a pillar, the bridge 

might fail. 

 

8.19 Problems 8.17 and 8.18 represent approximations.  As pointed out in Problem 

8.18, it is important to know the natural frequencies of this column as precisely as 

possible.  Hence consider modeling this column as a uniform bar of average cross 

section, calculate the first few natural frequencies, and compare them to the results 

in Problem 8.17 and 8.18.  Which model do you think is closest to reality?  

 
Solution: 

 

 The natural frequencies of a rod with constant cross sectional area are independent 

of the area.  Therefore the first 2 natural frequencies are 

 

 
1

1.571

l
E


 rad/s,   
2


4.712

l
E


 rad/s  

 

 It is doubtful that these results are better since we know from the finite element 

model that the varying cross sectional area does have an effect. 



8.20 Torsional vibration can also be modeled by finite elements.  Referring to Figure 

P8.20, calculate a single-element mass and stiffness matrix for the torsional 

vibration following the steps of Section 8.1. (Hint: (x,t) = c1(t) + c2(t),  
T(t) = 

1

2
I  t (x, t) 0

l
2

dx  and V(t)  1

2
GI t (x, t) 0

l
2

dx .) 

 

Solution: 
 

 From equation (6.64), The static (time independent) displacement of the torsional 

rod element must satisfy 

 

 

x

 0  GJ 
2 (x,t)
x2

 

 

 which has the same form as equation (8.1).  This can be integrated to yield 

 

 (x) = C1 + C2 

 

 At x = 0 

 

 (0) = 1(t) = C2 

 

 Likewise, at x = l 
 

 (l) = 2(t) = C1l + C2 

 

 C
1



2
(t) C

2

l



2
(t)  

1
(t)

l
 

 

 Substituting the values of C1 and C2 into the shape function yields 

 

  (x, t)  1
x
l





1

(t)  x
l





2

(t)  

 

 Evaluating the strain energy yields 

 

 

V(t)  GJ
2l


1

2  2
1


2
 

2

2 

       
1

2


1
(t) 

2
( t) K 

1
(t) 

2
(t) T

 

 



 where the stiffness matrix is defined by 

 

 K 
GJ
l

1 1

1 1







 

 

 Likewise, evaluating the kinetic energy yields 

 

 

T (t)  1

2

Al
3

Ý 
1

2  Ý 
1

Ý 
2
 Ý 

2

2 

       
1

2

Ý 
1
(t) Ý 

2
(t) M Ý 

1
(t) Ý 

2
(t) T

 

 

 where the mass matrix is defined by  

 

 M 
Al
6

2 1

1 2







 

 



Problems and Solutions Section 8.3 (8.21 through 8.33) 
 
8.21 Use equations (8.47) and (8.46) to derive equation (8.48) and hence make sure 

that the author and reviewer have not cheated you. 

 

Solution: 
 

 u(x,t )  C
1
(t)x3  C

2
(t)x2  C

3
(t)x  C

4
(t)                      (8.46) 

u(0, t)  u
1
(t)                  ux (0, t) = u

2
(t)

u(l,t)  u
3
(t)                   u x(l, t)  u

4
(t)                            (8.47) 

 

 Substituting(8.46) into (8.47) 

 

 

u(0, t)  C
4
(t)  u

1
(t)

ux (0,t)  C
3
(t)  u

2
(t)

u(l,t)  C
1
(t)l3  C

2
(t)l2 C

3
(t)l  C

4
(t)  u

3
(t)

ux (l, t)  3C
1
(t)l  2C

2
(t)l C

3
(t)  u

4
(t)

This gives

C
1
 1

l3
2(u

1
 u

3
)  l(u

2
 u

4
) 

C
2
 1

l2
3(u

3
 u

1
)  l(u

4
 2u

2
) 

C
3
 u

2

C
4
 u

1

 

 

 

8.22 It is instructive, though tedious, to derive the beam element deflection given by 

equation (8.49).  Hence derive the beam shape functions. 

 

Solution: 
 

 Substituting (8.48) into (8.46) gives 

 

 

u(x,t )  13
x2

l2
 2

x3

l3






u

1
(t)  l

x
l
 2

x2

l2


x3

l3







u

2
(t)

          3
x2

l 2
 2

x3

l3







u

3
(t)  l x 2

l2
 x3

l3







u

4
(t)

 



8.23 Using the shape functions of Problem 8.22, calculate the mass and stiffness 

matrices given by equations (8.53) and (8.56).  Although tedious, this involves 

only simple integration of polynomials in x. 

 

Solution: 
 

 

T (t)  1

2
A ut(x, t) 2

0

l
 dx

        1

2
Ý u T MÝ u 

where

u  u
1
( t) u

2
( t) u

3
(t) u

4
(t) T

 

 

 And M is given by equation (8.35). 

 

 Similarly 

 

 

V(t)  1

2
EI u xx(x, t) 2

0

l

 dx

        1

2
uTKu

 

 

 where K is given by (8.56) 

 



8.24 Calculate the natural frequencies of the cantilevered beam given in equation 

(8.69) using l = 1 m and compare your results with those listed in Table 6.1. 

 

Solution: 
 

 

M 
A
840

312 0 54 6.5

0 2 6.5 .75

54 6.5 156 11

6.5 .75 11 1



















                                                        K  8EI

24 0 12 3

0 2 3
1

2

12 3 12 3

3
1

2
3 1

























 

 

 Following the procedures of section 4.2 

 

 


1
 3.5177

EI
A

,  
2
 22.2215

EI
A


3
 75.1571

EI
A

,  
4
 218.138

EI
A

 

 

 From continuous theory, the natural frequencies of a cantilevered beam are 

  i  i
EI
A

 where 
1
 3.51601,  

2
 22.0345, 

3
 61.6972,  

4
120.9019.  

 

 The predictions of the first two natural frequencies are quite accurate while the 

predictions of the third and fourth natural frequencies are terrible. 



8.25 Calculate the finite element model of a cantilevered beam one meter in length 

using three elements.  Calculate the natural frequencies and compare them to 

those obtained in Problem 8.23 and with the exact values listed in Table 6.4. 

 

Solution: Define ui using the following figure; 

u2              u4                     u6         u8

u1              u3                     u5         u6

2
 

 The equation for element one is 

 

 
Al
420

156 22 l
22l 4l 2







Ý Ý u 
3

Ý Ý u 
4








EI
l3

12 6l
6l 4l2







u
3

u
4






 0  

 

 The equation for element two is 

 

 
Al
420

156 22l 54 13l
22l 4l 2

13l 3l2

54 13l 156 22l
13l 3l 2 22l 4l2

















Ý Ý u 
3

Ý Ý u 
4

Ý Ý u 
5

Ý Ý u 
6


















EI
l3

12 6 l 12 6l
6l 4l2 6l 2l2

12 6l 12 6l
6l 2l2 6l 4l2

















u
3

u
4

u
5

u
6

















 0  

 

 The equation for element 3 is the same as for element 2 but with the vector 

 

 [u3 u4 u5 u6]
T
 replaced with [u5 u6 u7 u8]

T
. 

 

 Combining the elemental equation using the superposition of the like coordinates 

yields 

 



 

Al
420

312 0 54 13l 0 0

0 8l2
13l 3l2

0 0

54 13l 312 0 54 13l
13l 3l 2

0 8l 2
13l 3l 2

0 0 54 13l 156 22l
0 0 13l 3l2 22l 4l2





















Ý Ý u 
3

Ý Ý u 
4

Ý Ý u 
5

Ý Ý u 
6

Ý Ý u 
7

Ý Ý u 
8






















EI
l3

24 0 12 6l 0 0

0 8l2 6l 2l2
0 0

12 6l 24 0 12 6l
6l 2l2

0 8l2 6l 2l2

0 0 12 6l 12 6l
0 0 6l 2l2 6l 4l2





















u
3

u
4

u
5

u
6

u
7

u
8





















 0

 

 

 which can also be written in the form 

 

 

Al
420

312 0 54 13 0 0

0 8 13 3 0 0

54 13 312 0 54 13

13 3 0 8 13 3

0 0 54 13 156 22

0 0 13 3 22 4





















Ý Ý u 
3

lÝ Ý u 
4

Ý Ý u 
5

lÝ Ý u 
6

Ý Ý u 
7

lÝ Ý u 
8






















EI
l3

24 0 12 6 0 0

0 8 6 2 0 0

12 6 24 0 12 6

6 2 0 8 6 2

0 0 12 6 12 6

0 0 6 2 6 4





















u
3

lu
4

u
5

lu
6

u
7

lu
8





















 0

 

 

 Following the procedure of example 8.3.3 

 

 


1
 .3907

1

l2

EI
A

 , 
2
 2.456

1

l2

EI
A


3
 6.941

1

l2

EI
A

 ,  
4
 15.63

1

l 2

EI
A


5
 29.42

1

l2

EI
A

 , 
6
 58.64

1

l2

EI
A

 



8.26 Consider the cantilevered beam of Figure P8.26 attached to a lumped spring-mass 

system.  Model this system using a single finite element and calculate the natural 

frequencies.  Assume m = (Al)/420. 

 

Solution: Define ui using the following figure: 
    u

1
                                          u

3

u2                            u4

  u5

 

 The model for the spring mass system is 

 

 

0 0

0 m






Ý Ý u 
3

Ý Ý u 
5







 EI

l3

1 1

1 1







u
3

u
5







 0

The single element model for the beam is

Al
420

156 22 l
22l 4l 2







Ý Ý u 
3

Ý Ý u 
4








EI
l3

12 6l
6l 4l2







u
3

u
4






 0

Superimposing like coordinates yields

Al
420

156 22 l 0

22l 4l 2
0

0 0 1















Ý Ý u 
3

Ý Ý u 
4

Ý Ý u 
5
















EI
l3

13 6l 1

6l 4l2
0

1 0 1















u
3

u
4

u
5














 0

The equation of motion may also be written 

Al4

420EI

156 22 0

22 4 0

0 0 1















Ý Ý u 
3

lÝ Ý u 
4

Ý Ý u 
5
















13 6 1

6 4 0

1 0 1















u
3

lu
4

u
5














 0

 

 

 The eigenvalue/eigenvector problem is then 

 

 (A-I)v=0 

 



 where 

 

 

A  M 1K Al 4

420EI
,    Al 4

420EI
 2

A 
.5714 .4571 .0286

4.6429 3.5143 .1571

1 0 0
















1
 .0294, 

2
1, 

3
 2.9134

 

 


1
 3.52

1

l2

EI
A


2
 20.49

1

l2

EI
A


3
 34.98

1

l2

EI
A

 



8.27 Repeat Problem 8.26 using two finite elements for the beam and compare the 

frequencies. 

 

Solution: 
 

 A two element model of a cantilevered beam has been created in example 8.3.3. 

 

 Superimposing like coordinates for this example with the spring mass model 

yields 

 

Al
840

312 0 54 6.5l 0

0 2l2
6.5l .75l2

0

54 6.5l 156 11l 0

6.5l .75l2 11l l2
0

0 0 0 0 2



















Ý Ý u 
3

Ý Ý u 
4

Ý Ý u 
5

Ý Ý u 
6

Ý Ý u 
7




















8EI
l3

24 0 12 3l 0

0 2l2 3l 1

2
l2

0

12 3l 12
1

8
3l 

1

8

3l 1

2
l2 3l l2

0

0 0  1

8
0

1

8























u
3

u
4

u
5

u
6

u
7



















 0

 

 

 Note that the coordinate vector for the spring mass system has changed from [u3 

u5]
T
 to [u5 u6]

T
. 

 

 As in (8.26), the equations may be written in the form 

 



  

Al4

6720EI

312 0 54 6.5 0

0 2 6.5 .75 0

54 6.5 156 11 0

6.5 .75 11 1 0

0 0 0 0 2



















Ý Ý u 
3

lÝ Ý u 
4

Ý Ý u 
5

lÝ Ý u 
6

Ý Ý u 
7




















8EI
l3

24 0 12 3 0

0 2 3
1

2
0

12 3 12
1

8
3 

1

8

3
1

2
3 1 0

0 0  1

8
0

1

8























u
3

lu
4

u
5

lu
6

u
7



















 0

 

 

 The eigenvalue/eigenvector problem is then 

 

  

(A  I)v  0

where

A  M 1K Al4

6720EI
,   Al4

6720EI
2

A 

.2878 .0640 .2907 .0868 .0004

3.6700 2.1247 5.9000 1.5919 .0062

.9274 .2094 1.0368 .3516 .0041

17.8241 4.8163 20.7187 6.6253 .0519

0 0 .0625 0 .0625




















1
 .0427, 

2
 .2455, 

3
 .2772,  

4
 .9173,  

5
 2.6614


1


3.50

l2

EI
A

,  
2


20.12

l2

EI
A

, 
3


22.73

l2

EI
A

 

 

 The one element (3 DOF) model predicted the first 2 natural frequencies well.  

The prediction of the third natural frequency was extremely poor using only one 

element. 



8.28 Calculate the natural frequencies of a clamped-clamped beam for the physical 

parameters l = 1m, E = 210
11

 N/m
2
,  = 7800 kg/m

3
, I = 10

-6
 m

4
, and A = 10

-2
 

m
2
, using the beam theory of Chapter 6 and a four-element finite element model 

of the beam. 

 

Solution: 
 

 Using VTB8_1 

 

  

M 

14.49 0 2.5071 .151 0 0

0 .0232 .0151 .0087 0 0

2.507 .151 14.49 0 2.507 .151

.151 .0087 0 .0232 .151 .0087

0 0 2.5071 .151 14.49 0

0 0 .151 .0087 0 .0232





















and

K  110
5

3072 0 1536 192 0 0

0 64 192 16 0 0

1536 192 3072 0 1536 192

192 16 0 64 192 16

0 0 1536 192 3072 0

0 0 192 16 0 64





















 

 

 Remember to zero the x translations since we are not interested in the extensional 

deformations.  The natural frequencies are then found to be 

 

 1= 1134 rad/s, 2 = 3152 rad/s, 3 = 6253 rad/s, 4 = 11830 rad/s, 5 = 19565 

rad/s, 6 = 31524 rad/s 

 

 From distributed theory 

 

 1= 1132.9 rad/s, 2 = 3122.9 rad/s, 3 = 6122.2 rad/s, 4 = 10120 rad/s, 5 = 

15118 rad/s, 6 = 21115 rad/s 

 



8.29 Repeat Problem 8.28 with two elements and compare the frequencies with the 

four-element model.  Calculate the frequencies of a clamped-clamped beam using 

one element.  Any comment? 

 

Solution: 
 

 Since only two of the six degrees of freedom are free, the mass and stiffness 

matrices are simply 

 

 

M 
2A l

2

420

156 0

0 4
l
2






2










and

K  2EI
l
2







3

12 0

0 4
l
2






2










 

 

 where l = 1 m.  The natural frequencies are then 

 

 


1


192EI
l3

156Al
420

 22.736
1

l2

EI
A

1151 rad/s


2


16EI
l3

Al
420

 81.96
1

l2

EI
A

 4151 rad/s

 

 

 If you are only interested in the first natural frequency, a two degree of freedom 

model is adequate.  However, the six degree of freedom model is much more 

accurate and can better predict the second mode.  (In general, a finite element 

model must have twice as many degrees of freedom as the number of modes you 

want to predict). 



8.30 Estimate the first natural frequency of a clamped-simply supported beam.  Use a 

single finite element. 

 

Solution: Since we are using only one element, we need only take the finite 

element matrix for a single element and strike out the rows and columns 

corresponding to the fixed degrees of freedom to get the global matrices.  This 

yields 

M 
4l3A
420

,   K 
4l2EI

l3
 

 

 Since there is only a single degree of freedom 

 

  
 n 

K
M

 420
1

l2

EI
A

 20.49
1

l2

EI
A

  rad/s  

 

 Distributed theory yields 

n 15.42
1

l2

EI
A

 

 One degree of freedom is not enough to predict the first natural frequency. 

 
 
 
 
8.31 Consider the stepped beam of Figure P8.31 clamped at each end.  Both pieces are 

made of aluminum.  Use two elements, one for each step, and calculate the natural 

frequencies. 

 

Solution: Only a single degree of freedom is free.  The mass and stiffness 

matrices are therefore scalars. 

 

K 
E

1
A

1

l
1


E

2
A

2

l
2

 809375000 N/m

M 
1

3


1
A

1

l
1




2
A

2

l
2




 


 10.41 kg

  K
M

 8819.2 rad/s

 



8.32 Use a two-element model of nonuniform length to estimate the first few natural 

frequencies of a clamped-clamped beam.  Use the spacing indicated in Figure 

P8.32.  Compare the result to the actual frequencies and to those of Problem 8.28 

and 8.29. 

 

 
Solution: Since it has been shown in example 8.3.3 that the variable l can be 

factored outside of the mass and stiffness matrices, we can substitute the 

percentage of total length of each element into the mass and stiffness matrices and 

get the correct natural frequencies. 

 

 

M  A(.25l)
420

156 22  .25

22  .25 4  .25
2






 A(.75l)

420

156 22  .75

22  .75 4  .75
2







      Al
420

156 11

11 1.75







Similarly,

K  EI
(.25l)3

12 6 .25

6  .25 4 .25
2






 EI

(.75l)3

12 6  .75

6  .75 4  .75
2







     
EI
l3

796.4 85.3

85.3 21.33







  eig ˜ M 1 ˜ K  1

l2

EI
A

 

 where ˜ M  and ˜ K  represent the mass and stiffness matrices with the variables E, I, 
l,  and A factored out. 


1
 25.31

1

l2

EI
A

,  
2
 132.6

1

l2

EI
A

 

 

 This is not nearly as good as the two element model where 1 was found to be 

 


1
 22.74

1

l2

EI
A

 

 

 as opposed to the “actual” (from distributed parameter theory) value of 

 


1
 22.37

1

l2

EI
A

 



8.33 Calculate the first natural frequency of a clamped-pinned beam using first one, 

then two elements. 

 

Solution: 
 

  From problem 8.30, using one element yields 

 

 
1
 20.49

1

l2

EI
A

 

 

 Using the vibration toolbox and the method described in 8.3.3 (also in the 

README.8 file) the two element model yields 

 

 


1
 15.56

1

l2

EI
A


2
 58.41

1

l2

EI
A


3
 155.6

1

l2

EI
A

 

 

 

 



Problems and Solutions Section 8.4 (8.34 through 8.43) 
 
8.34 Refer to the tapered bar of Figure P8.13.  Calculate a lumped-mass matrix for this 

system and compare it to the solution of Problem 8.13.  Since the beam is tapered, 

be careful how you divide up the mass. 

 

Solution: The lumped mass at node 2 should be the total mass between x = .25 

and x = .75. Therefore 

 

 
M

2
 2700


4.25

.75

 h
1

2 
h

2
 h

1

l






2

x2  2h
1

h
2
 h

1

l




x







dx

     26.5

 

 likewise for node 3 

 
M

3
 2700


4.75

1

 h
1

2 
h

2
 h

1

l






2

x2  2h
1

h
2
 h

1

l




x







dx

     7.289

 

 The mass matrix is then 

 

M 
26.5 0

0 7.289







 

 and the natural frequencies are 

 

 1 = 6670 rad/s and 2 = 13106 rad/s. 

 

 For the distributed mass system 

 

1 = 7414 rad/s and 2 = 20368 rad/s. 

 

 The first natural frequency found by the distributed mass model is slightly better 

than the lumped mass model when compared to the three element distributed mass 

model derived in problem 13. 

 

8.35 Calculate and compare the natural frequencies obtained for a tapered bar by using 

first, the consistent-mass matrix (Problem 8.12), and second, the lumped-mass 

matrix (Problem 8.34). 

 

Solution: 
 

 See solution for Problem 8.34. 



8.36 Consider again the machine punch of Problem 8.16 and Figure P8.15.  Calculate 

the natural frequencies of this system using a lumped-mass matrix and compare 

the results to those obtained with the consistent-mass matrix. 

 

Solution: 
 

 The lumped mass matrix is 

 

 

M 


1
A

1
l
1

2



2
A

2
l
2

2
0

0


2
A

2
l
2

2















     rl
A

1
 A

2
0

0 A
2







    
.078 0

0 .039







 

 

 The natural frequencies are 

 

 1 = 38756 rad/s and 2 = 93565 rad/s. 

 

 The results for the consistent mass matrix were 

 

 1 = 40798.6 rad/s and 2 = 142525 rad/s. 

 

 The first natural frequency is within 5% for both predictions.  For this case, the 

inconsistent mass matrix is adequate for the 1
st
 mode. 

 



8.37 Consider again the bridge support of Figure P8.17 discussed in connection with 

Problem 8.17.  Develop a four-element finite element model of this structure 

using a lumped-mass approximation and calculate the natural frequencies.  Use 

constant area elements. 

 

Solution: 
 

 We will use elements which each have constant cross section by finding the 

average area for each element.  Elements are numbered from one to four from 

bottom to top. 

 

 

A
1
 1

.25l
A(x)dx

0

.25l
  A

0

.25l
le


x
l











0

.25l

     4A
0

e.25 1  .8848A
0

likewise

A
2
 .6891A

0
,  A

3
 .5367A

0
,  A

4
 .4179A

0

 

 

 Assembling the stiffness matrix yields 

 

 K 
EA

0

.25l

1.5739 .6891 0 0

.6891 1.2258 .5367 0

0 .5367 .9546 .4179

0 0 .4179 .4179

















 

 

 To find the mass matrix, we will assume again that the elements have constant 

cross section.  This yields 

 

 M 
A

0
l

8

1.5739 0 0 0

0 1.2258 0 0

0 0 .9546 0

0 0 0 .4179

















 

 

 The natural frequencies are then 

 

 
1
 1.86

1

l
E


,  
2
 4.50

1

l
E


,  
3
 6.62

1

l
E


,  
4
 7.78

1

l
E


,  



8.38 Consider the torsional vibration problem illustrated in Figure P8.20 and discussed 

in Problem 8.20.  Calculate a lumped-mass matrix for the single element. 

 

Solution: 
 

 The total mass moment of inertia would be divided between the two degrees of 

freedom. 

 

 Therefore 

 

 M 
1

2

Ip 0

0 Ip







 

 

 

8.39 Estimate the first three natural frequencies of a clamped-free bar of length l in 

torsional vibration by using a lumped-mass model and four elements. 

 

Solution: 
 

 The stiffness matrix is 

 

 K 
4G

l

2 1 0 0

1 2 2 0

0 2 2 1

0 0 1 1

















 

 

 The mass matrix is 

 

 M 
Jl
4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
1

2

















 

 

The natural frequencies are then 

 

 
1
 1.56

1

l
G
J

, 
2
 4.445

1

l
G
J

, 
3
 6.65

1

l
G
J

, 
4
 7.8463

1

l
G
J

 

 

 From table 6.3, it can be seen that the first two natural frequencies predicted by 

the finite element model are good approximations. 



8.40 Calculate the natural frequencies of a pinned-pinned beam of length l using one 

element and the consistent-mass matrix of equation (8.73). 

 

Solution: 
 

 The mass matrix is 

 

 M 
Al3

48

1 0

0 1







 

 

 and the stiffness matrix is 

 

 K 
EI
l

4 2

2 4







 

 

 Finding the natural frequencies gives 

 

 
1
 9.798

1

l2

EI
A

,  
2
 16.971

1

l2

EI
A

 

 

 The first natural frequency from distributed theory is 

 

 n  9.869
1

l 2

EI
A

 

 

 

8.41 Calculate the natural frequencies of a pinned-pinned beam of length l using one 

element and the lumped-mass matrix of equation (8.73).  Compare your results to 

those obtained with at consistent-mass matrix of Problem 8.40. 

 

Solution: 
 

 The consistent mass matrix is 

 

 

M 
Al3

420

4 3

3 4







which gives


1
 10.96

1

l2

EI
A

,  
2
 50.20

1

l2

EI
A

 

 

 which is worse than the inconsistent mass matrix results.  (See solution 8.40) 

 

 



8.42 Calculate a three-element finite element model of a cantilevered beam (see 

Problem 8.25) using a lumped mass that includes rotational inertia.  Also calculate 

the system’s natural frequencies and compare them with those obtained with a 

consistent-mass matrix of Problem 8.25 and with the values obtained by the 

methods of Chapter 6. 

 

Solution: 
 

 The mass matrix is M  Al diag 1,
1

24
,1,

1

24
,
1

2
,

1

48





 using the [u1 lu2] convention 

for the displacement vector. 

 

 The natural frequencies are then 

 

 
 i  ai

1

l2

EI
A

ai  .368, 2.00,  4.98,  10.7,  14.5,  17.1

 

 

 This is not as good as the consistent mass matrix results.  From distributed 

parameter theory a1 = .3911. 

 

 

 

8.43 Repeat Problem 8.42 using a lumped-mass matrix that neglects the rotational 

degree of freedom.  Discuss any problems you encounter when trying to solve the 

related eigenvalue problem. 

 

Solution: 
 

 M  Al diag 1,0,1,0,
1

2
,0





 

 

The singularity of the mass matrix does not allow a solution to be found. 

 



Problems and Solutions Section 8.5 (8.44 through 8.49) 
 
8.44 Derive a consistent-mass matrix for the system of Figure 8.9.  Compare the 

natural frequencies of this system with those calculated with the lumped-mass 

matrix computed in Section 8.5. 

 

Solution: Using the vibration toolbox 

M  Al
.6857 0

0 .7238







 

The natural frequencies are then 


1
 .8311

1

l
E


 and 
1
1.479

1

l
E


 

 These are higher than those predicted with the inconsistent mass matrix 

 

8.45 Consider the two beam system of Figure P8.45.  Use VTB8_1 to create a two-

element, rod/beam element model and compute the first three natural frequencies.  

Use A = 0.0004 m
2
, I = 1.33 10

-8
 m

4
, and the properties of aluminum.  Assume 

that nodes 1 and 3 are clamped. 

 

Solution: 
 %scipt file for problem 8.45 
 node=[0 0;1 .5;2 1;1  1.5;0 2]; 
 ncon=[1 2 69e10 .004 1.33e-8 0 2700; 
   2 3 69e10 .004 1.33e-8 0 2700; 
   3 4 69e10 .004 1.33e-8 0 2700; 
   4 5 69e10 .004 1.33e-8 0 2700]; 
 zero=[1 1; 
   1 2; 
   1 3; 
    5 1; 
   5 2; 
   5 3]; 
 conm=[]; 
 force=[]; 
 save VTB8_45.con 
 
 Running this yields that the first three natural frequencies are given as 377.5, 

8763.7 and 10951.2 rad/s. 



8.46 Follow the procedure of Problem 8.45 using two elements for each beam.  

Compare the natural frequencies and mode shapes of the four element model 

produced here to those of the two-element model of Problem 8.45.  State which 

model is better and why. 

 
Solution: Use the script file from 8.45 ending in VTB8_46.con 

 The first five natural frequencies are 286.8, 419.1, 1074.5, 1510.8, and 2838.9 

rad/s.  The result from the four element model is probably better because the 

additional elements allow the first few modes to be found in more detail.  Notice 

the difference in the result for the first mode.  The first mode is primarily a 

rotation of the joint between the two beams.  The two element model shows this 

to be the only significant motion (load the .out data file to observe the mode shape 

vector).  The four element model shows that the middle of each beam displaces 

and rotates as well.  

 

 The eight element model predicts the first five natural frequencies to be 284.3, 

413.0 ,925.6, 1147.3, and 1959.7 rad/s, the first four of which agree well with the 

four element model results. 

 

8.47 Determine a finite element model of the three-bar truss of Figure P8.47 using a 

lumped-mass matrix. 

 

Solution: 
 

 Using VTB8_1 

 

 K 
EA
l

1.89 .48

.48 .36







 

 

 The inconsistent mass matrix is 

 

 M  Al
.9 0

0 .9







 



8.48 Determine a finite element model for the three-bar truss of Figure P8.47 using a 

consistent-mass matrix. 

 

Solution: 
 

 Using VTB8_1 the consistent mass matrix is  

 

 M  Al
.6137 .0183

.0183 .6549







 

 

 However, this mass matrix is created using beam/rod elements.  Using simple rod 

elements gives a consistent mass matrix 

 

 M  Al
.48 .16

.16 .12







 

 

 

 

8.49 Compare the frequencies obtained for the system of Problem 8.48 with those of 

Figure P8.47. 

 

Solution: 
 

 The natural frequencies using the consistent mass matrix are 

 

 1 = 1.7321    2 = 2.1651 

 

 The natural frequencies using the inconsistent mass matrix are 

 

 1 =.4966    2 = 1.5012 

 

 These results are terribly inconclusive, but since we have seen in previous 

examples that the consistent mass matrix generally yields the better results, one 

would expect the same to be true in this case. 

 



Problems and Solutions Section 8.6 (8.50 through 8.54) 
 

8.50 Consider the machine punch of Figure P8.15.  Recalculate the fundamental 

natural frequency by reducing the model obtained in Problem 8.16 to a single 

degree of freedom using Guyan reduction. 

 

Solution: 
 

 From the results of 8.16 

 

 

K 
4 2

2 2






 10

8
,   M 

.052 .013

.013 .026







From (8.104)

QT MQ  .052  .013 .013 .026  .104

From (8.105)

QT KQ  (4  2) 10
8  2 10

8

  2 10
8

.104
 43852.9 rad/s

 

 

 which is a poor prediction of the first natural frequency.  If we reorder K and M 
(reducing to coordinate 2) we get  

 

 

QT MQ  .026  .013 .013  .052

QT KQ  (2 1) 10
8  1 10

8

  43852.9 rad/s

 

 

 which is the same result as reducing to coordinate 1. 



8.51 Compute a reduced-order model of the three-element model of a cantilevered bar 

given in Example 8.3.2 by eliminating u2 and u3 using Guyan reduction.  Compare 

the frequencies of each model to those of the distributed model given in Window 

8.1. 

 

Solution: 
 

 

M  Al
18

4 1 0

1 4 1

0 1 2















K 
3EI

l

2 1 0

1 2 1

0 1 1















 

 

 Let ˜ M  and ˜ K  be the matrices with the coefficients factored out. 

 

 

˜ M 
11
 4,  ˜ M 

21


1

0





 ˜ M 

12

T
,  M

22


4 1

1 2







˜ K 
11
 2,  ˜ K 

21


1

0






 ˜ K 

11

T
,  K

22


2 1

1 1







 

 

 Using equations (8.104) and (8.105) 

 

 

˜ M r  QT MQ  14

˜ K r  QT KQ  1

and

n 

3EA
l

14Al
18

1.964
1

l
E


 

 

 as compared to the distributed model value of 

 

 
1
 1.57

1

l
E


 

 



8.52 Consider the system defined by the matrices 

   M 

2 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0

















        K 

20 1 0 0

1 20 3 0

0 3 20 17

0 0 17 17

















 

 

Use mass condensation to reduce this to a two-degree-of-freedom system with a 

nonsingular mass matrix. 

 

Solution: 
 

 Following the same procedure as example 8.6.1 

 

 Mr 
2 0

0 2






 and Kr 

19.95 .15

.15 36.55







 

 

 

8.53 Recall the punch press problem modeled in Figure 4.28 and treated in Example 

4.8.3.  The mass and stiffness matrices are given by 

M 
0.4 10

3
0 0

0 2.0 10
3

0

0 0 8.010
3














   K 

30 10
4

3010
4

0

30 10
4

3810
4

810
4

0 8 10
4

88 10
4















 

Recalling that the only external force acting on the machine is at the x1(t) 
coordinate, reduce this to a single-degree-of-freedom system using Guyan 

reduction to remove x2 and x3.  Compare this single frequency with those of 

Example 4.8.3. 

 

Solution: 
 

 Following the same procedure as example 8.6.1 

 

 Mr  1.7385 10
3
, Kr  5.8537 10

4
 and the natural frequency is 

 

 n 
Kr

Mr
 5.803rad/s 

 

 Example 4.8.3 gave the first natural frequency as1 = 5.387 rad/s which is within 

10% of the Guyan reduced prediction. 

 

 

 

 

 



8.54. Consider the beam example given in Example 7.6.2.  Using the values given there 

(An aluminum beam: 0.5128 m x 25.5 mm x 3.2 mm, E = 6.9×10
10

 N/m
2
 ,  = 

2715 kg/m
3
, A = 8.16 m

2
 and I = 6.96×10

-11 
m

4
), compute the first 4 natural 

frequencies as accurately as possible and compare them to both the analytical 

values and the measured values. 

 

 


